PECOS RIVER COMPACT

Report of the River Master

Water Year 2013

Accounting Year 2014

Final Report

June 27, 2014

Supreme Court, U.S. FILED

JUL 1 7 2014

OFFICE OF THE CLERK

Neil S. Grigg River Master of the Pecos River 749 S. Lemay, Ste. A3, PMB 330 Fort Collins, Colorado 80524

PECOS RIVER COMPACT

Report of the River Master

Water Year 2013

Accounting Year 2014

Final Report

June 27, 2014

Neil S. Grigg River Master of the Pecos River 749 S. Lemay, Ste. A3, PMB 330 Fort Collins, Colorado 80524

CONTENTS

Map of Pecos River	Basin	Showing	Accounting	Reaches
--------------------	-------	---------	------------	---------

Purpose of the Report and Statement of Shortfall or Overage

Table of Annual and Accumulated Overage or Shortfall

- Table 1. General Calculation of Annual Departures, T.A.F. (B.1.a.-d.)
- Table 2. Flood Inflows, Alamogordo Dam to Artesia (B.3)
- Table 3. Flood Inflows, Artesia to Carlsbad (B.4)
- Table 4. Flood Inflows, Carlsbad State Line (B.5.c)
- Table 5. Depletion Due to Irrigation above Alamogordo Dam (C.1.a)
- Table 6. Depletion Due to Santa Rosa Reservoir Operations (C.1.b)
- Table 7. Carlsbad Springs New Water (B.4.c)
- Table 8. Carlsbad Main Canal Seepage Lagged (B.4.c.(1)(e))
- Table 9. Lake Avalon Leakage Lagged (B.4.c.(1)(g))
- Table 10. Evaporation Loss at Lake Avalon (B.4.f)
- Table 11. Change in Storage, Lake Avalon (B.4.g)
- Table 12. Data Required for River Master Manual Calculations

Appendix: Response to States' Objections

Map of Pecos River Basin Showing Accounting Reaches

•			

PECOS RIVER COMPACT Supreme Court of the United States No. 65, Original Amended Decree

Final Report of the River Master Water Year 2013 - Accounting Year 2014 June 27, 2014

Purpose of the Report. In its Amended Decree issued March 28, 1988 the Supreme Court of the United States appointed a River Master of the Pecos River and directed him to "... Deliver to the parties a Preliminary Report setting forth the tentative results of the calculations required by Section III.B.1 of this Decree by May 15 of the accounting year..." and to consider "... any written objections to the Preliminary Report submitted by the parties prior to June 15 of the accounting year..." and to deliver "... to the parties a Final Report setting forth the final results of the calculations required by Section III.B.1 of this Decree by July 1 of the accounting year." This is the required Final Report with the determination of:

- a. The Article III(a) obligation;
- b. Any shortfall or overage, which calculation shall disregard deliveries of water pursuant to an Approved Plan;
- c. The net shortfall, if any, after subtracting any overages accumulated in previous years, beginning with water year 1987.

Result of Calculations and Statement of Shortfall or Overage. The results of the calculations in this Final Report show that New Mexico's delivery in Water Year 2013 was a shortfall of 6,200 1,900 acre-feet. The accumulated overage since the beginning of Water Year 1987 is 95,800 acre-feet.

Neil S. Grigg

River Master of the Pecos River

PS.Gny

	Pecos River Compact	
Acc	umulated Shortfall or Ov	erage
	June 27, 2014	
Water Year	Annual Overage or Shortfall, AF	Accumulated Overage or Shortfall, AF
1987	15,400	15,400
1988	23,600	39,000
1989	2,700	41,700
1990	-14,100	27,600
1991	-16,500	11,100
1992	10,900	22,000
1993	6,600	28,600
1994	5,900	34,500
1995	-14,100	20,400
1996	-6,700	13,700
1997	6,100	19,800
1998	1,700	21,500
1999	1,400	22,900
2000	-12,300	10,600
2001	-700	9,900
2002	-3,000	6,900
2003	2,000	8,900
2004	8,300	17,200
2005	24,000	41,200
2006	26,100	67,300
2007	25,200	92,500
2008	6,000	98,500
2009	1,600	100,100
2010	-500	99,600
2011	500	100,100
2012	1,900	102,000
2013	-6,200	95,800

Table 1. General Calculation of Annual Departures in TA	F (B.1)		
Water Year	2013		
6/27/2014			
	WY 2011	WY 2012	WY 2013
B.1.a. Index Inflows			
(1) Annual flood inflow			
(a) Gaged flow Pecos R bel Alamogordo Dam	87.4	64.9	63.6
(b) Flood Inflow Alamogordo - Artesia (Table 2)	-12.2	-17.2	54.4
(c) Flood Inflow Artesia - Carlsbad (Table 3)	12.8	11.2	39.9
(d) Flood Inflow Carlsbad - State Line (Table 4)	0.5		23.2
Total (annual flood inflow)	88.5	62.1	181.1
(2) Index Inflow (3-year avg)			110.6
B.1.b. 1947 Condition Delivery Obligation	 		39.7
(Index Outflow)	1		
B.1.c. Average Historical (Gaged) Outflow			
(1) Annual historical outflow			
(a) Gaged Flow Pecos River at Red Bluff NM	24.6	17.7	51.0
(b) Gaged Flow Delaware River nr Red Bluff NM	1.0		12.2
(c) Metered diversions Permit 3254 into C-2713	0.0	1	
Total Annual Historical Outflow	25.6		63.9
(2) Average Historical Outflow (3-yr average)			36.3
(2) / Werage / Neterious earness (e.g.) average/	+		33.3
B.1.d. Annual Departure			-3.4
C. Adjustments to Computed Departure			
Adjustments for Depletions above Alam Dam			
a. Depletions Due to Irrigation (Table 5)	3.3	3.2	2.0
b. Depl fr Operation of Santa Rosa Reservoir (Table 6)	2.7	1.0	8.6
c. Transfer of Water Use to Upstream of AD	0	0	0
	1		
Recomputed Index Inflows			
(1) Annual flood inflow	1		
(a) Gaged flow Pecos R bel Alamogordo Dam	93.4	69.1	74.2
(b) Flood Inflow Alamogordo - Artesia	-12.2	<u>. </u>	54.4
(c) Flood Inflow Artesia - Carlsbad	12.8		39.9
(d) Flood Inflow Carlsbad - State Line	0.5		23.2
Total (annual flood inflow)	94.5	 	
Recomputed Index Inflow (3-year avg)			117.5
Recomputed 1947 Condition Del Outflow			43.3
(Index Outflow)			
Recomputed Annual Departures			-7.0
Credits to New Mexico			
C.2 Depletions Due to McMillan Dike		_	0.8
C.3 Salvage Water Analysis	1		0
C.4 Unappropriated Flood Waters			0
C.5 Texas Water Stored in NM Reservoirs			0
C.6 Beneficial C.U. Delaware River Water			0
Final Calculated Departure, TAF			-6.2

Table 2. Determination of Flood Inflows, Alamogordo Dam to Artesia (B.3)	of Floc	od Inflov	vs, Alar	nogorda	Dam 1	to Artes	ia (B.3						
Water Year	2013												
5/3/2014													
	IAN	FFR	MAR	APR	MAY	2		AIG	SFPT	TUC) C	DEC	TOT
	5	}		:			1	2	j	5	2	3	5
Flow bel Sumner Dam	1.2	0.8	16.3	4.5	4.0	5.9	5.7	5.9	10.6	6.7	1.0	1.0	63.6
FtSumner Irrig Div	0.0	0.0	4.6	3.9	3.3	3.8	4.3	5.0	3.8	5.8	0.0	0.0	34.6
Ft Sumner ID Return	0.7	0.5	1.3	1.5	2.2	2.2	2.2	2.2	2.0	1.8	6.0	0.7	18.3
Flow past FS IDist	2.0	1.4	13.0	2.0	2.9	4.3	3.6	3.1	8.8	2.7	1.9	1.7	47.4
Channel loss	0.2	0.2	2.5	1.3	1.4	1.5	1.1	1.6	1.6	8.0	0.7	0.2	13.3
Residual Flow	1.8	1.2	10.5	0.7	1.4	2.8	2.4	1.5	7.2	1.9	1.2	1.5	34.1
Base Inflow	2.2	1.7	2.0	1.8	1.1	0.3	9.0	0.3	0.4	1.7	2.3	1.9	16.2
River Pump Divers	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	9.0
Residual, Artesia	4.0	2.9	12.3	2.4	2.4	3.0	3.0	1.7	7.5	3.6	3.6	3.5	49.7
Pecos Flow Artesia	3.2	2.7	8.6	2.5	1.3	0.2	2.4	1.5	57.5	14.1	6.3	4.2	104.1
Flood Inflow, AD-Art	-0.7	-0.2	-3.7	0.1	-1.2	-2.8	9.0-	-0.2	50.0	10.6	2.4	0.8	54.4
Note: Whenever the computed flow past the District is less	Tputed flor	w past the	District	is less								i	
than the return flow, set the flow past the District equal to the	he flow pa	ast the Dis	strict equ	al to the									
	<u>,</u>				<u> </u>								

Table 3. Determination of Flood Inflows, Artesia to Carlsbad (B.4)	Carlsbad	(B.4)											
Water Year	2013												
6/27/2014													
	JAN	FEB	MAR	APR	MAY	NN	JUL	AUG	SEPT	OCT	NOV	DEC	TOT
i c													
Rio Penasco at Dayton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5
Fourmile Draw nr Lakew	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	3.8
South Seven Rivers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.9	0.0	0.0	0.0	6.9
Rocky Arroyo at Hwy Br	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	21.4
Flood Inflow, Art-DS3	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	31.7	0.0	0.0	0.0	326
Pecos R at Dam Site 3	1.4	1.2	1.3	4.3	4.2	3.1	1.4	3.4	37.9	15.1	16	12	76.2
CB Sprgs New Water (from Table 7)	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	-1.8	4.1.8	1.8	-1.8	1.8	-18	-21.4
Total Inflow, DS3 - CB	-0.4	-0.5	-0.5	2.5	2.4	1.3	-0.3	1.7	36.1	13.4	-0.1	-0.6	54.9
Evap Loss, Lake Avalon (from Table 10)	0.2	0.3	0.5	9.0	9.0	9.0	0.2	0.5	0.1	0.3	0.2	0.1	4.3
Storage Chg, Lake Avalon (from Table 11)	0.4	0.2	0.1	-1.3	-0.3	0.1	0.8	-1.3	4.4	4.4	0.9	9.0	-0.1
Carls ID diversions	0.0	0.0	0.0	4.9	3.8	2.5	0.0	3.7	4.0	14.1	0.0	0.0	33.0
93% CID diver	0.0	0.0	0.0	4.5	3.6	2.4	0.0	3.4	3.7	13.1	0.0	0.0	30.7
Other depletions	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	1.4
Dark Canyon at Csbad	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	25.2	0.0	0.0	0.0	25.8
Pecos b Dark Canyon	0.7	9.0	9.0	0.5	4.0	0.7	2.0	0.5	37.9	5.4	1.3	1.3	51.7
Pecos R at Carlsbad	0.7	9.0	9.0	0.5	4.0	0.7	4.1	0.5	12.7	5.4	1.3	1.3	25.9
Total Outflow	1.4	1.3	1.3	4.4	4.3	3.9	2.6	3.3	20.7	14.5	2.4	2.1	62.1
Flood Inflow, DS3-CB	1.8	1.8	1.7	1.9	1.9	2.6	2.9	1.6	-15.4	1.2	2.6	2.7	7.2
Flood Inflow, Art-CB	1.8	1.8	1.7	1.9	1.9	2.6	3.8	1.6	16.3	1.2	2.6	2.7	39.9

Table 4. Su	mmary Table	e for Compu	tations, Carl	sbad to State	E Line (B.	5)
Vater Year	2013					
6/27/2014			-			
	BCB - RB	BCB - RB*	Del R	DC		
	RM	USGS	USGS			
Jan	0.1	0.1	0.0	0.0		
Feb	0.0	0.1	0.0	0.0	· · · · · · · · ·	
Mar	0.0	0.1	0.0	0.0		
Apr	0.0	0.1	0.0	0.0		
May	0.0	0.1	0.0	0.0		
Jun	0.2	0.2	0.0	0.0		
Jul**	0.0	-0.2	4.0	0.7		
Aug	0.0	0.2	0.0	0.0		
Sep**	0.0	-12.0	6.4	11.7		
Oct	0.1	3.3	0.0	0.0		
Nov	0.0	0.2	0.0	0.0		
Dec	0.0	0.0	0.0	0.0		
Total	0.4	-7.8	10.4	12.4		
						1.2
Summary of	flood inflow	s Carlsbad t	o State Line	TAF		
zamma, y o.	1.000	,	3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
	Carlsbad +				12.8	
	River (USGS				10.4	
Total Floo	d Inflow, Ca	risbad to S	tate Line		23.2	
	Iculations Bo					
** Dark Can	yon Draw flo	w adjusted, :	see Appendi	x for discuss	sion	

.

Table 5. Depletions Due to Irrigation Above Sumner Dam (C.1.a)	nner Dan	n (C.1.8	<u>@</u>					
Water Year	2013							
5/3/2014								
	APR	MAY	MAY JUN	JUL	AUG	SEPT	OCT	JUL AUG SEPT OCT TOTAL
Precip Las Vegas FAA AP	0.08	0.22	1.28	4.41	1.56	1.56 7.31	0.30	15.16
Eff prec Las Veg FAA AP	0.08	0.22	1.21	3.55	1.46	4.10	0.29	10.91
Precip Pecos Natl Monument	0.08	0.30	0.84	1.96	1.96	7.02	0.60	12.76
Eff Precip Pecos RS	0.08	0.29	0.82	1.80	1.80	4.10	0.59	9.48
Precip Santa Rosa	0.01	0.19	2.01	2.64	0.69	8.51	0.08	14.13
Eff Precip Santa Ro	0.01	0.19	1.84	2.32	0.67	4.10	0.08	9.21
Average eff precip, ft	00.0	0.02	0.11	0.21	0.11	0.34	0.03	0.82
Consumptive use, ft	0.19	0.36	0.36	0.30	0.27	0.18	0.11	1.77
Unit depletion rate (CU less eff precip), ft	0.19	0.34	0.25	0.09	0.16	0.00	0.08	1.11
Acres (most recent inventory)	11529							
Streamflow depletion (actual use), AF	12791							
1947 depletion, AF	10804							
Difference (actual use - 1947 depletion), TAF	2.0							
Adjustment to Gaged Flow, Pecos River below Sumner Dam, TAF =	Sumner	Dam, T	AF =			2.0		

2700	25.5	-				_		_	_	_			
Water Year	2013												
5/3/2014							j						
	Z	022	MAND	day	MAN V	2	=	2	CEDT	7	701	C	TOTAL
20 10 000 to black to co o	JAIN FI		to walking showing 1 SD 1007	AFR 007.	MAT Photographic	tokke used (COE): Add 4 600 feet to value shows	JUL 44 4 600 ft	200	SEPTI	3	2	ביי	2
	45.00 11		SHOWIT, L	1661 40	aprices used	2000	20 00	מיני ויס אמות	S STOWN	0000		000	
LK Sumner ga nt, avg	45.89	48.29	44.43	38.00	38.Ub	30.50	38.00	37.71	50.89	28.62	58.93	67.79	
LS content, AF, avg	11122	13933	9708	5673	5351	4585	5351	2166	17577	32147	32858	36099	
LS area, acres, avg	1045	1292	891	554	535	487	535	524	1512	2279	2311	2462	
LS evap, inches	3.78	5.69	10.25	12.74	16.65	18.05	13.48	12.90	9.54	8.17	3.97	2.60	117.81
.77 LS Evap	2.91	4.38	7.89	9.81	12.82	13.90	10.38	9.93	7.35	6.29	3.06	2.00	90.72
LS Precip, inches	0.23	0.05	0.00	0.00	0.05	1.40	3.70	0.90	8.83	0.28	0.27	0.08	15.79
Net LS Evap, inches	2.68	4.33	7.89	9.81	12.77	12.50	6.68	9.03	-1.48	6.01	2.79	1.92	74.93
LSum Evaploss, TAF	0.23	0.47	0.59	0.45	0.57	0.51	0.30	0.39	-0.19	1.14	0.54	0.39	5.39
1	0		- 0		0000		0, 00	000	0000	,,	1		
L S Rosa ga ht, avg	90.59	90.61	86.28	83.17	87.69	84.82	92.49	100.86	126.29	146.11	145./4	145.50	
LSR content, AF, avg	4825	4832	3529	2777	2677	3156	5532	10122	47582	101195	80866	98914	
LSR area, acres, avg	351	351	264	213	204	246	395	701	2117	3773	3735	3709	
LSR evap, inches	3.72	4.98	8.58	10.11	12.79	14.27	10.70	10.51	7.79	6.39	4.05	3.76	97.65
.77 LSR Evap	2.86	3.83	6.61	7.78	9.85	10.99	8.24	8.09	9.00	4.92	3.12	2.90	75.19
LSR precip, inches	0.23	0.46	0.02	0.01	0.19	2.01	2.64	0.69	8.51	0.08	0.54	0.11	15.49
Net LSR Evap, inches	2.63	3.37	6.59	7.77	9.66	8.98	5.60	7.40	-2.51	4.84	2.58	2.79	59.70
LSR Evaploss, TAF	0.08	0.10	0.14	0.14	0.16	0.18	0.18	0.43	-0.44	1.52	0.80	0.86	4.17
Total evaploss, TAF	0.31	0.56	0.73	0.59	0.73	0.69	0.48	0.83	-0.63	2.66	1.34	1.25	9:26
Sum contents AF	15947	18765	13237	8450	8028	7741	10883	15288	65159	133342	132666	135013	!
1947 area, acres	972		834	700	700	674	793	939	2867	4600	4600	4600	
1947 evaploss. TAF	0.22		0.55	0.57	0.74	0.70	0.44	0.71	-0.35	2.30	1.07	0.74	8.05
current-1947evaploss	0.09		0.18	0.02	-0.01	-0.01	0.04	0.12	-0.28	0.36	0.27	0.52	1.51
						Annual adjustment for excess evaporation	ustment fo	r excess e	vaporation	11			1.5
A STATE OF THE STA													
ADJUSTMENT FOR EXCESSIVE STORAGE IN SANTA ROSA RESERVOIR	XCESSIVE	STORAG	E IN SAN	TA ROSA	RESERVC						,		
			2012	2012	2013								
			Gage	Storage		ळ							
EndYear Sumner Sto			4244.34	9629	4260.94								
EndYear S R Sto			4690.53	4804	4745.44	98691							
Sum				14433		136419							
Sto Adjustment, TAF						7.1							
Adjustm Ex Evap, TAF	11					1.5							
Total Adjustment, TAF						8.6							
	\ \ \ 												
	Storage	Storage adjustment	坦										
	Both ec	Both equal or less than 129.3 TAF, adjustment is zero	than 129.	TAF, adj	stment is	zero							
	Current	eater Inan	129:3-1AF	TAF orev	previous-re	orredrent or than 129	3 TAF SI	htract prev	Outs year	from 129.3	TAF		
e vende - de manie and a capación de la capación de	Carrie	Vear great	er than 12	O 3 TAF	ov alloiver	or loce than	120 3 TA	orthing.	120 3 TAI	100 3 TAE subtract 100 3 TAE from current year	1000		
		3				ממח בים	2	ア・シロンこので	7 7 7 7 7	30 = 5	מוזיר		

Table 7. Carlsbad Springs New Water [B.4	l.c.(2)]				1.5 1
Water Year	2013				
6/27/2014					
		TAF	AF/day	cfs	Totals
Pecos R bel DC		51.7	141.2	71.2	71.2
Dark Canyon		25.8	70.6	35.6	35.6
Pecos R bel Lake Avalon		27.8	75.9	38.3	38.3
Depletion, cfs					2.0
CID lag seep, cfs (from Table 8)					2.5
Return flow, cfs					1.0
Lake Av lagged seep, cfs (from Table 9)					22.3
PR seepage, cfs					3.0
Carls new water, cfs					-29.5
Carls new wat, TAF					-21.4
Carls new wat monthly, TAF					-1.8

Table 8. Carlsbad Main	bad Mair		Canal Seepage Lagged [B.4.c.(2)(e)]	Lagged	[B.4.c.(2)(e)]							
Water Year	2013												
5/3/2014													
	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEPT	OCT	NOV	DEC	TOTAL
WY 2013													
CID, TAF	0.0	0.0	0.0	4.9	3.8	2.5	0.0	3.7	4.0	14.1	0.0	0.0	33.0
days/mo	31	28	31	99	31	30	31	31	30	31	30	31	365
cfs	0	0.0	0.0	81.8	62.1	42.7	0.0	59.7	9.79	228.5	0.0	0.0	45.2
cfs, qtr avg			0.0			62.2			42.1			77.0	
WY 2012		10	20	30	40								
FLOWS, cfs				47.9	0.0								
SEVEN %				3.4	0.0			The state of the s					
WY 2013 lagged	pa	1Q	20	30	40								
FLOWS, cfs		0.0	62.2	42.1	77.0								
SEVEN %		0.0	4.4	2.9	5.4								
LAG		9.0	2.2	2.9	4.4	Avg =	2.5	cfs					

Water Year 2013 6/21/2014 A 6/21/2014 A WY 2013 JAN FEB MAR Elev NM rept 75.30 75.65 75.82 ga ht, avg* 18.30 18.65 18.82 cfs 25.5 27.1 28.0 days 31 28 31 cfs avg 26.9 31	A APR									
1/2014 1013 JAN FEB N NM rept 75.30 75.65 , avg* 18.30 18.65 25.5 27.1 31 28 vg 26.9										
1013 JAN FEB MINM rept 75.30 75.65 27.1 28 31 28	+++									
NM rept 75.30 75.65 , avg* 18.30 18.65 , 25.5 27.1 31 28 vg 26.9										
NM rept 75.30 75.65 , avg* 18.30 18.65 25.5 27.1 31 28 vg 26.9		MAY	NOS	JUL.	AUG	SEPT	OCT	Ş	DEC	TOT
avg* 18.30 18.65 25.5 27.1 31 28 vg 26.9	82 74.95	74.19	73.59	74.37	73.77	76.15	74.49	73.05	74.30	
25.5 27.1 31 28 vg 26.9	82 17.95	17.19	16.59	17.37	16.77	19.15	17.49	16.05	17.30	
31 28 vg 26.9	28.0 23.8	20.2	17.3	21.0	18.2	29.5	21.6	14.7	20.7	
	31 30	31	30	31	31	30	31	30	31	365
	20.4			22.8			19.1		-	22.3
WY 2012 10 20	30	40								
cfs	18.2	20.6								
WY 2013 lagged 1Q 2Q	g	Φ4								
cfs 26.9 20	20.4 22.8	19.1								
lag cfs 23.3 22	22.6 22.7	20.5 Avg =	4vg =	22.3 cfs	cfs					
* Computed as WS elev by NM Report minus Gage datum at 3157.0 (USBR datum)	ort minus Ga	age datun	n at 315	7.0 (USE	3R datur	Ē				

Table 10. Evaporation Loss at Lake Aval	Loss at L	ake Ava	lon [B.4.d.(1)]	d.(1)]										
Water Year	2013													
5/3/2014														
	JAN	FEB	MAR APR		MAY	N N N	JUL	AUG	SEP	ОСТ	NOV	DEC	TOT	
Av WS NM Rept	75.30	75.65	75.82	74.95	74.19	73.59	74.37	73.77		76.15 74.49	73.05	74.30		
Avalon ga ht, avg, ft*	18.30	18.65	18.82	18.82 17.95	17.19	16.59	17.37	16.77	19.15	17.49	16.05	17.30		
Avg area Avalon, ac**	758	783	794	734	684	647	969	658	818	704	615	691	•	
Panevap Brantley, in.	4.65	5.60	9.91	12.86	15.12	15.44	11.34	12.48	7.94	7.37	4.80	4.34	111.85	
Lakeevap Brantley, in.	3.58	4.31	7.63	9.90	11.64	11.89	8.73	9.61		5.67	3.70	3.34	86.12	
Precip Brantley, in.	0.86	0.05	0.00	0.00	0.41	0.70	5.64	0.17	4.26	0.11	0.75	0.76	13.71	
Netevap, inches	2.72	4.26	7.63	9.90	11.23	11.19	3.09	9.44	1.85	5.56	2.95	2.58	72.41	
Evaploss Av, TAF	0.17	0.28	0.50	0.61	0.64	09.0	0.18	0.52	0.13	0.33	0.15	0.15	4.25	
* Computed as WS elev by NM Report minus Gage datum at 3157.0 (USBR datum	ev by NM	Report r	minus Ga	age datui	m at 315	.7.0 (USE	3R datun	n)						
** Based on USBR Area and Capacity Table in effect January 1, 1997	a and Ca	T Apacity T	able in e	ffect Jan	uary 1,	1997								

Table 11. Change in Storage, Lake	n Storage	e, Lake A	Avalon [B.4.d.(2)]	.4.d.(2)]										
(Gage heights are end of month)	nd of moi	nth)												
Water Year	2013													
5/3/2014														
								_						
ander virrit es destal en en de engeleiste. Ar de signa esta delegações est que la sea esta esta esta esta est	DEC JAN		FEB	MAR	APR	MAY	NOC	JUL	AUG	SEPT	OCT	NOV	DEC	TOT
	2012	2013												
WS NM Rept	75.0	75.5	75.8	75.9		73.6	73.8	74.9	73.0	78.2	72.5	73.9	74.8	
Gage EOM, ft*	18.0	Į	18.8	18.9	17.1	16.6	16.8	17.9	ļ	21.2	15.5	16.9	17.8	
Storage, AF**	2494	2871	3106	3185	1857	1525	1656	2494	1147			1722	2347	
Change sto, TAF		0.4	0.2	0.1	-1.3	-0.3	0.1	0.8	-1.3	4.1	4.4	0.9	9.0	-0.1
* Computed as WS elev by NM Report minus Gage datum at 3157.0 (USBR datum)	elev by N	IM Repor	rt minus	Gage da	tum at 3	157.0 (U	SBR dat	nm)						
** Based on USBR Area and Capacity Table in effect January 1, 1997	Area and	Capacity	/ Table ir	n effect J	anuary 1	, 1997								

Table 12. Data Required for	r Rive	r Mast	er Ma	nual C	alculat	ions					_		
Water Year	2013												
6/27/2014				-							-		
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	OCT	NOV	DEC	TOTAL
STREAMFLOW GAGING RECO	RDS, T	AF											
Pecos R b Sumner Dam	1.2	0.8	16.3	4.5	4.0	5.9	5.7	5.9	10.6	6.7	1.0	1.0	63.6
Fort Sumner Main C	0.0	0.0	4.6	3.9	3.3	3.8	4.3	5.0	3.8	5.8	0.0	0.0	34.6
Pecos R nr Artesia	3.2	2.7	8.6	2.5	1.3	0.2	2.4	1.5	57.5	14.1	5.9	4.2	104.1
Rio Penasco at Dayton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5
Fourmile Draw nr Lakewood	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	3.8
South Seven Rivers nr Lkwd	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.9	0.0	0.0		6.9
Rocky Arroyo at Hwy Br nr	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	20.5	0.0	0.0	0.0	21.4
Pecos R at Dam Site 3	1.4	1.2	1.3	4.3	4.2	3.1	1.4	3.4	37.9	15.1	1.6		76.2
Pecos bel Avalon Dam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.6	3.2	0.0		27.8
Carlsbad Main Canal	0.0	0.0	0.0	4.9	3.8	2.5	0.0	3.7	4.0	14.1	0.0		33.0
Dark Canyon at Carlsbad	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	25.2	0.0	0.0	0.0	25.8
Pecos below Dark Canyon	0.7	0.6	0.6	0.5	0.4	0.7	2.0	0.5	32.6	5.4	1.3	1.3	46.4
Pecos R at Red Bluff	2.0	1.5	1.4	0.9	0.7	1.0	2.3	1.0	26.2	9.3	2.4	2.4	51.0
Delaware R nr Red Bluff	0.1	0.1	0.1	0.1	0.0	0.0	4.1	0.2	6.8	0.3	0.3	0.2	12.2
Belaware IV III IVed Blain	0.1	0.1	0.1	0.1	0.0	0.0	7.1	0.2	0.0	0.0	0.0	0.2	12.2
GAGE HEIGHTS													
GAGE HEIGHTS											 		
Avalon gage ht, end mo	75.50	75.80	75.90	74.10	73.60	73.80	74.90	73.00	78.20	72.50	73.90	74.80	
Avalon gage ht, end mo	75.30	75.65	75.82	74.10	74.19	73.59	74.37	73.77	76.15	74.49	73.95	74.30	
			39.46	38.12	38.22	33.83	37.42		59.63	58.28	59.61	60.94	
Sumner Lake ga ht, end mo	47.15		44.43	38.66				36.29	50.89	58.62	58.93		
Sumner Lake gage ht, avg	45.89				38.06	36.56	38.06	37.71 102.06	L				
Lake S Rosa ga ht, end mo*	90.61		83.35	82.96	82.33	85.39	98.19						
Lake S Rosa ga ht, avg*	90.59	90.61	86.28	83.17	82.69	84.82	92.49	100.86	126.23	146,11	145.74	145.50	-
* values are referred to 4600 foo	levei	-									_		
DDECIDITATION INCLES													
PRECIPITATION, INCHES			-										
BNI-I	0.00	0.05	0.00	0.00	0.44	0.70	5.04	0.47	4.00	0.44	0.75	0.70	40.74
Brantley Lake	0.86	0.05	0.00	0.00	0.41	0.70	5.64	 	4.26	0.11	0.75	0.76	13.71
Las Vegas FAA AP	0.08	0.23	0.06	0.08	0.22	1.28	4.41		7.31	0.30		0.29	16.47
Pecos National Monument	0.52	0.32	0.27	0.08	0.30	0.84	1.96		7.02	0.60	1.92	0.58	16.37
Santa Rosa*	0.23	0.46	0.02	0.01	0.19	2.01	2.64		8.51	0.08	0.54	0.11	15.49
Lake Santa Rosa	0.23	0.46		0.01			 -	+		0.08			15.49
Sumner Lake	0.23		<u> </u>	0.00			<u> </u>				<u></u>	0.08	15.79
DAN EVADODATION INCLES	Note:	uata fro	un Sant	a Kosa (am was	SUDStit	utea for	missing	Santa F	tosa dai	id	-	
PAN EVAPORATION, INCHES									ļ				
Laba Carda Dan	0.70	4.00	0.50	10.11	10.70	44.07	10.70	10.51	7.70	0.00	1.05	0.70	07.7
Lake Santa Rosa	3.72	4.98	8.58	10.11	12.79				7.79	6.39		1	-
Lake Sumner	3.78			12.74									
Brantley Lake	4.65	5.60	9.91	12.86	15.12	15.44	11.34	12.48	7.94	7.37	4.80	4.34	111.9
OTHER RESOURCE	-							ļ	-		ļ		
OTHER REPORTS			-						<u> </u>				
					ļ			<u> </u>				<u> </u>	
Base Acme-Art, TAF (USGS)	2.2	1.7	2.0	1.8	1.1	0.3		 	0.4	1.7	+		-
Pump depl Ac-Artesia, TAF	0.0		0.1	0.1	0.1	0.1	-		0.0	 	1	-	
Pumping, C-2713, Malaga B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM irrig inv, acres (3/9/2000)											ļ		11529
NM Transfer water use, TAF			1							1		<u> </u>	
NM salvaged water, TAF													0.00
Texas, water stored NM, TAF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Texas, use Del water, TAF			<u> </u>							<u> </u>	<u> </u>]

RESPONSE TO STATES' OBJECTIONS

Final Report, Accounting Year 2014

NEW MEXICO'S OBJECTIONS

New Mexico did not have any objections but expressed concern about resolution of the Dark Canyon flood flow accounting (Manual B.5.a.(3)). This is discussed below at "Change in USGS gaging records and adjustment to flood inflow."

TEXAS'S OBJECTIONS

1. Table 9. Lake Avalon Leakage Lagged - WY 2013 - B.4.c.(1)(g)

Texas found that the quarterly average for Q1 had been computed with 29 days for February. This objection is accepted and the revision made in Table 9. Table 7 was revised accordingly.

2. Table 4. Summary Table for Computations, Carlsbad to State Line (B.5).

Delaware River flood inflows. Texas recomputed Delaware River flood inflows by inspecting when rainfall occurred. This is not required by the River Master's Manual Section B.5.b., which states: "Use the daily records furnished by the USGS for the gaging station, Delaware River near Red Bluff, N.M. and select flood inflows by inspection of daily data." The River Master inspected the analyses of Texas and USGS but without regard to the rainfall in the reach. It was apparent that the main difference in the calculations could be explained by how USGS estimated the recession curves of flood hydrographs. If they are estimated to last longer, then base flows are set lower and a higher flood inflow is computed. By re-computing the flood inflows for the main flood periods in July and September the River Master estimated 10.6 TAF (like Texas) for the longer-duration base inflows and 10.3 (like USGS) for the shorter recession curves. While estimates of flood recession curves involve complex hydrology, it is the River Master's judgment that the shorter recession estimates of USGS are more consistent with previous flood accounting and, accordingly, the objection is rejected.

Carlsbad to Red Bluff flood inflows. Texas presented a set of estimates of flood inflows that indicates 0.7 TAF instead of the 0.3 TAF in the Preliminary Report. The River Master examined each flood event scalped by Texas. For the event in early January, Texas's contention that the early rainfall should be considered is accepted, and the recalculation of this event added 37 AF. The event in February shows a *de minimus* flood inflow or none at all no matter how it is analyzed and was not considered. For the event in early May, Texas indicated a precipitation event on May 10, but this was not reported by New Mexico for the three stations near the reach and the bar on Texas's graph was so small the River Master could not tell which gage was being reported. For the event in the latter part of May, the rainfall curves provided by New Mexico showed rain occurring only a day after the peak so this was disregarded by the River Master in the Preliminary Report. Texas showed a small rainfall event the previous day, but it is so

small that the River Master could not determine which gage it was from and it did not appear on New Mexico's display. So this event is considered to be in the category of an operational rise (using language from the River Master's Manual) and is not considered flood inflow. Texas presented estimates for June that seem to differ by about 0.1 TAF from the River Master's estimate, but the curves are difficult to follow and Texas also considered a raingage that is out of the basin. Texas scalped some very small events in July which are difficult to follow due to the small rainfall events involved and the uncertainty over which gages were involved. These are not included in the Final Determination. The event in mid-August scalped by Texas appears to explain the largest difference between Texas's and the River Master's estimates. In the Preliminary Report, the River Master did not include this event because rainfall was shown on August 12, some four days before the August 16 peak. Rainfall occurred again on August 17, after the rise in flow. Texas showed rain occurring on August 15, but it appears to be the Orogrande gage, which is not in the basin. Therefore, this event is considered as an operational rise.

As a result of the adjustment for January, the River Master is revising the flood inflow shown on Table 4 to 0.4 TAF.

3. Table 1. General Calculation of Annual Departures in TAF (B.1) and Table 4. Summary Table for Computations, Carlsbad to State Line (B.5).

Texas presented a revised total of -6.2 TAF instead of the Preliminary Report's -6.1 TAF. See "Final Calculated Departure" below for the result of considering all objections and the adjustment to gaged flows reported by USGS.

CHANGE IN USGS GAGING RECORDS AND ADJUSTMENT TO FLOOD INFLOW

In the Preliminary Report the River Master explained the procedure that was used to adjust the Flood Inflow, Carlsbad to State Line (Section B.5.a.(3) of the River Master's Manual). The procedure is required during periods of Dark Canyon Draw discharges and when the initial scalped flood inflow in the Carlsbad to State Line reach is negative. The calculation showed a large negative flood inflow and the River Master requested USGS to assess the reported gaged flows. USGS reported on June 26 with lower values for two days in September on the Pecos River below Dark Canyon gage. The USGS email message from D. Michael Roark, Hydrologist, is copied here for the record:

"The record has been revised for this site by changing the rating for this gage. Attached is a tab delimited file with the daily values, which can be brought into excel quickly.

Our database only has two high water measurements for this site and the upper end of the rating was based on the highest of the two measurements. This was a slope-area indirect measurement that was computed after the 2004 floods. The slope-area computed discharge was 73,000. Since there were only two measurements at this site it was considered important to do a step backwater analysis to verify the rating. It has taken a bit of time to complete that task. From the step-back water analysis and the survey for

and Armanest and a second of the second of t

the analysis it was determined that at a flow of a little over 20,000 cfs the flow brakes [sic] out over a very flat area of farm fields. Since the upper end of the rating was a straight line in log space from the area of the rating where there were measurements to the slope-area indirect measurement, the old rating overestimated high flows.

Points were taken from the water surfaces computed by the step-backwater analysis to redraw the upper end of the rating which brings the rating with a slight curve up to 20,000 cfs and then breaks over to the slope area measurement. We are confident that the new rating is much more accurate than the previous rating."

As a result of the modified gaging values, the River Master recomputed the scalped flood inflow for September. The sheet that follows entitled "Hydrograph scalping to support Table 4 shows the calculation. The first step was to scalp the flood inflow in the reach using the revised Pecos River below Dark Canyon gaged flows. The result is still a negative value for the flood period. Therefore, following the required procedure, the Dark Canyon flow is subtracted from the Pecos River below Dark Canyon flow and the scalping is performed again. For September 12 there is a large negative net flow at Pecos River below Dark Canyon and no way to consider that daily result in determining the scalped flood inflow from Carlsbad to State Line. After disregarding that single day result, the resulting flood inflow was 11.7 TAF for the month (see the following worksheet). As shown, the adjustment in gaged flows did not change the Preliminary Report's value very much because the main change was for September 12, and the large negative value for Pecos River below Dark Canyon flow on that day could not be considered and remains unexplained.

Table 12 was revised to show the USGS changed report for gaged flow at Pecos River below Dark Canyon.

New Mexico expressed concern about the River Master Manual's procedure for the adjustment in periods such as this. The flood event during September 2013 provides an opportunity for the states to study the procedure which is used to account for flood inflow in the Carlsbad to State Line reach in a manner which is accurate and also consistent with the 1947 condition.

FINAL CALCULATED DEPARTURE

The Preliminary Report's Final Calculated Departure was a shortfall of 6.1 TAF. After considering the states' objections, the Final Determination is a shortfall of 6.2 TAF.

Hydrograph scalping to support Table 4

	31	244	12				7				24	0	24	
SEP	1	245	12 12				7.1							
	2	246					7.2							
	3	247	12				6.9							
	4	248	13				6.4							
	5	249	14				6.3							
	6	250	13				6.3							
	7	251	12				6							
	8	252	11				5.6							
	9	253	11				13							
,	10	254	9.9	T			9.9	9.9	0	DCD	PRBDC			
	11	255	9.6				73	10	63		(revised))		
	12	256	9.7	9.7	0		6070	11	6059	11200	-5141			
	13	257	5100	12	5088		2970	11	2959	1490	1469	11	1457.6	
	14	258	1560	15	1545		284	12	272					
	15	259	250	17	233		84	12	72					
	16	260	200	20	180		29	13	16					
	17	261	180	22	158		19	13	6					
	18	262	121	25	96		14	14	0					
	19	263	72	27	45		14							
	20	264	52	30	22		14	Sca	ped FIF	is still	negativ	e for tl	nis peri	od.
	21	265	43	32	11		14	DCI	flows	subtra	ted fro	m PRB	DC flow	s.
	22	266	35	35.0	0	7378.2	549	Sca	ping of	PRBDO	now s	hows 1	458 cfs	-days.
	23	267	199				783				cfs-day			
	24	268	684				767				920 cfs-			
	25	269	733				735	- 1	•		DCD fo			
	26	270	719				807			100	DCD 10	. Septe		
	27	271	778				799	D	scussic	n. The	downy	vard re	vision i	n the
	28	272	787				779			•	RbDC di		Į.	i
	29	273	762				780	- 1	_	1	use the	(1	ſ
	30	274	769				774	;	•	1	2 (one	i	ŧ	
ОСТ	1	275	771				767		•	1				
	2	276	767				633	I	• -	ł	ce bet		ł.	панкы
	3	277	690				560	W	as nega	tive an	d was s	et to z	ero.	

