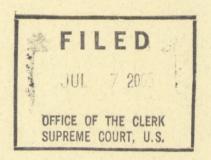
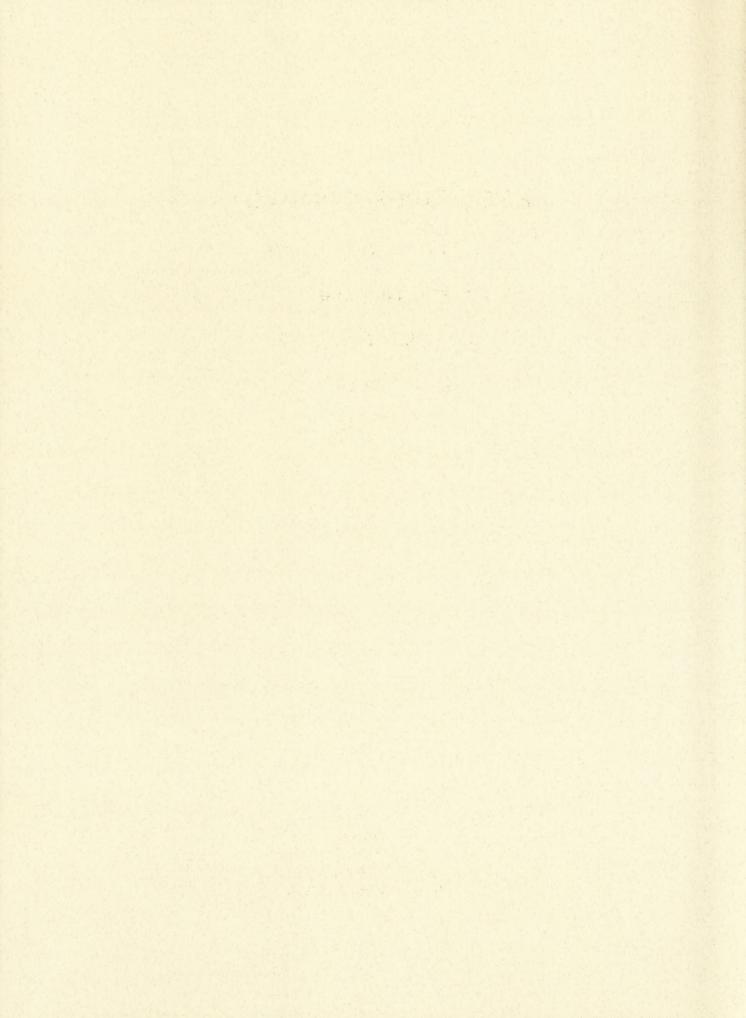
PECOS RIVER COMPACT


Report of the River Master

Water Year 2004

Accounting Year 2005


Final Report

June 27, 2005

Neil S. Grigg River Master of the Pecos River 749 S. Lemay, Ste. A3, PMB 330 Fort Collins, Colorado 80524

PECOS RIVER COMPACT

Report of the River Master

Water Year 2004

Accounting Year 2005

Final Report

June 27, 2005

Neil S. Grigg River Master of the Pecos River 749 S. Lemay, Ste. A3, PMB 330 Fort Collins, Colorado 80524

CONTENTS

Map of Pecos River Basin Showing Accounting Rea

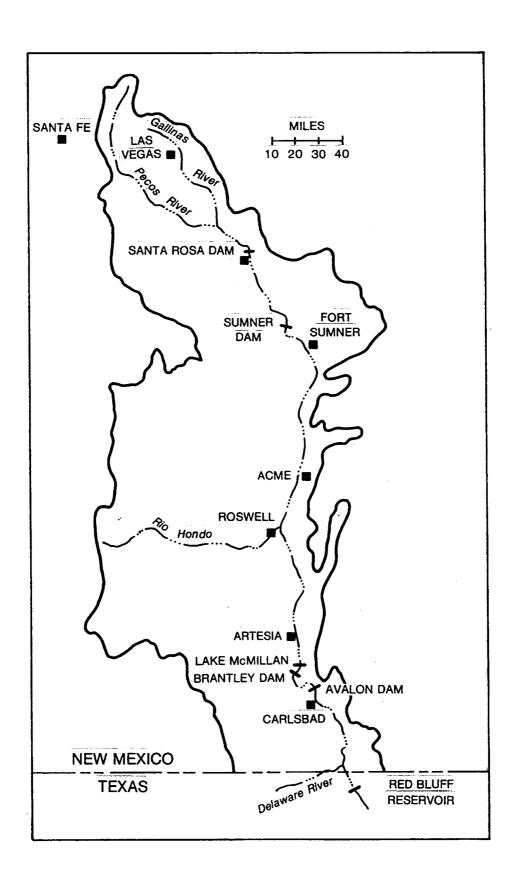

Purpose of the Report and Statement of Shortfall or Overage

Table of Annual and Accumulated Overage or Shortfall

- Table 1. General Calculation of Annual Departures, T.A.F. (B.1.a.-d.)
- Table 2. Flood Inflows, Alamogordo Dam to Artesia (B.3)
- Table 3. Flood Inflows, Artesia to Carlsbad (B.4)
- Table 4. Flood Inflows, Carlsbad State Line (B.5.c)
- Table 5. Depletion Due to Irrigation above Alamogordo Dam (C.1.a)
- Table 6. Depletion Due to Santa Rosa Reservoir Operations (C.1.b)
- Table 7. Carlsbad Springs New Water (B.4.c)
- Table 8. Carlsbad Main Canal Seepage Lagged (B.4.c.(1)(e))
- Table 9. Lake Avalon Leakage Lagged (B.4.c.(1)(g))
- Table 10. Evaporation Loss at Lake Avalon (B.4.f)
- Table 11. Change in Storage, Lake Avalon (B.4.g)
- Table 12. Data Required for River Master Manual Calculations

Appendix: Response to States' Objections

• à. ; i S. J. Company

PECOS RIVER COMPACT Supreme Court of the United States No. 65, Original Amended Decree

Final Report of the River Master
Water Year 2004 - Accounting Year 2005
June 21, 2005

<u>Purpose of the Report</u>. In its Amended Decree issued March 28, 1988 the Supreme Court of the United States appointed a River Master of the Pecos River and directed him to "... Deliver to the parties a Preliminary Report setting forth the tentative results of the calculations required by Section III.B.1 of this Decree by May 15 of the accounting year..." and to consider "... any written objections to the Preliminary Report submitted by the parties prior to June 15 of the accounting year..." and to deliver "... to the parties a Final Report setting forth the final results of the calculations required by Section III.B.1 of this Decree by July 1 of the accounting year." This is the required Final Report with the determination of:

- a. The Article III(a) obligation;
- b. Any shortfall or overage, which calculation shall disregard deliveries of water pursuant to an Approved Plan;
- c. The net shortfall, if any, after subtracting any overages accumulated in previous years, beginning with water year 1987.

Result of Calculations and Statement of Shortfall or Overage. The results of the calculations in this Final Report show that New Mexico's delivery in Water Year 2004 was an overage of 8,300 acre-feet. The accumulated overage since the beginning of Water Year 1987 is 17,200 acre-feet.

Neil S. Grigg

River Master of the Pecos River

) S. Gregg

	Pecos River Compact	
Acc	umulated Shortfall or Ove	erage
	June 27, 2005	
Water Year	Annual Overage or Shortfall, AF	Accumulated Overage or Shortfall, AF
1987	15,400	15,400
1988	23,600	39,000
1989	2,700	41,700
1990	-14,100	27,600
1991	-16,500	11,100
1992	10,900	22,000
1993	6,600	28,600
1994	5,900	34,500
1995	-14,100	20,400
1996	-6,700	13,700
1997	6,100	19,800
1998	1,700	21,500
1999	1,400	22,900
2000	-12,300	10,600
2001	-700	9,900
2002	-3,000	6,900
2003	2,000	8,900
2004	8,300	17,200

· ...

.

	1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
· · · · · · · · · · · · · · · · · · ·			•			<u>.</u>	
			: .		1		1 : 1

·
the state of the s
· · · · · · · · · · · · · · · · · · ·

Table 1. General Calculation of Annual Departures, TAF,	WY 2004		
6/26/2005			
	WY 2002	WY 2003	WY 2004
B.1.a. Index Inflows			
(1) Annual flood inflow			
(a) Gaged flow Pecos R bel Alamogordo Dam	69.6	69.0	95.2
(b) Flood Inflow Alamogordo - Artesia (Table 2)	15.8	-1.3	41.5
(c) Flood Inflow Artesia - Carlsbad (Table 3)	20.0	6.3	
(d) Flood Inflow Carlsbad - State Line (Table 4)	6.9	2.2	62.6
Total (annual flood inflow)	112.3	76.2	
(2) Index Inflow (3-year avg)			151.4
B.1.b. 1947 Condition Delivery Obligation			62.0
(Index Outflow)			
B.1.c. Average Historical (Gaged) Outflow			
(1) Annual historical outflow			
(a) Gaged Flow Pecos River at Red Bluff NM	39.7	22.4	125.2
(b) Gaged Flow Delaware River nr Red Bluff NM	2.5	1.3	
(c) Metered diversions Permit 3254 into C-2713 (awaiting		0.5	
Total Annual Historical Outflow	42.2	24.2	
(2) Average Historical Outflow (3-yr average)			70.6
(-,,			
B.1.d. Annual Departure			8.5
C. Adjustments to Computed Departure			
Adjustments for Depletions above Alam Dam			
a. Depletions Due to Irrigation (Table 5)	1.5	3.3	-1.7
b. Depl fr Operation of Santa Rosa Reservoir (Table 6)	0.4	1.6	1.5
c. Transfer of Water Use to Upstream of AD	0	0	0
Recomputed Index Inflows	-		
(1) Annual flood inflow			
(a) Gaged flow Pecos R bel Alamogordo Dam	71.5	73.9	95.0
(b) Flood Inflow Alamogordo - Artesia	15.8		
(c) Flood Inflow Artesia - Carlsbad	20.0	 	
(d) Flood Inflow Carlsbad - State Line	6.9	2.2	62.6
Total (annual flood inflow)	114.2		265.4
Recomputed Index Inflow (3-year avg)			153.6
Recomputed 1947 Condition Del Outflow			63.3
(Index Outflow)			
Recomputed Annual Departures			7.3
Credits to New Mexico			
C.2 Depletions Due to McMillan Dike			1.1
C.3 Salvage Water Analysis			0
C.4 Unappropriated Flood Waters			0
C.5 Texas Water Stored in NM Reservoirs			0
C.6 Beneficial C.U. Delaware River Water			0
Final Calculated Departure, TAF			8.3

Table 2. Determination of Flood Inflows, Alamogordo Dam to Artesia (B.3), WY 2004	of Floc	od Inflow	/s, Alan	nogordo	Dam t	o Artes	ia (B.3)	, WY 2	004				
6/26/2005													
				-									
	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEPT	OCT	NOV	DEC	T0T
Flow bel Sumner Dam	1.8	2.3	23.7	3.1	6.4	5.5	4.7	3.7	38.5	4.6	0.5	0.5	95.2
FtSumner Irria Div	0.0	1.0	5.1	2.5	5.4	5.2	4.2	2.4	5.5	3.8	0.0	0.0	35.1
Ft Sumner ID Return	0.7	9.0	1.3	1.5	2.2	2.2	2.2	2.2	2.0	1.9	0.9	0.7	18.6
Flow past FS IDist	2.6	1.8	19.9	2.1	3.2	2.5	2.7	3.5	35.0	2.6	1.5	1.3	78.7
Channel loss	0.2	0.2	3.7	1.3	1.5	1.2	1.0	1.7	4.9	0.8	9.0	0.2	17.5
Residual Flow	2.3	1.6	16.1	0.7	1.7	1.3	1.7	1.9	30.1	1.8	0.8	1.1	61.3
Base Inflow	3.6	3.5	3.8	2.7	2.4	1.6	1.4	1.7	1.4	3.6	5.0	6.0	36.6
River Pump Divers	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.3
Residual, Artesia	5.9	5.1	19.9	3.4	4.0	2.9	3.0	3.5	31.5	5.4	5.9	7.1	97.6
Pecos Flow Artesia	5.2	5.6	21.1	13.2	3.9	2.3	4.1	4.7	21.3	39.8	9.7	8.2	139.1
Flood Inflow, AD-Art	-0.7	0.5	1.1	9.6	-0.1	9.0-	1.1	1.2	-10.2	34.4	3.8	1.1	41.5
Note: Whenever the computed flow past the District is less	puted flo	w past the	District	is less									
than the return flow, set the flow past the District equal to the lettern flow (Manual, B.3.d).	he flow p; d).	ast the DR	strict equ	al to the									
					7								
					1								

6/26/2005 JAN FE 0.0 0.0 0.0 0.0 1.2 -1.2 -0.1	B MAR				5						
JAN FE 0.0 0.0 0.0 0.0 0.0 1.2											
JAN FE 0.0 0.0 0.0 0.0 1.2 1.2											
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		APR	MAY	NOS	JUL	AUG	SEPT	OCT	NOV	DEC	10 10
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.2	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	9.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.5
0.0 0.0 0.0 1.2	0.0 0.0	0.3	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.5
1.2 - 1.2 - 0.1 - 0.1	0.0	15.6	0.0	0.0	3.1	0.1	0.3	0.1	0.0	0.0	19.3
-1.2	0.0	16.4	0.0	0.3	3.3	0.2	0.4	0.1	0.1	0.0	20.9
-0.1	1.0 1.4	4.7	13.7	10.5	11.9	0.9	7.1	2.0	20.2	1.1	83.8
-0.1	1.2 -1.2	2 -1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-14.9
000	-0.2 0.1	1 3.4	12.4	9.3	10.7	4.8	5.8	3.7	19.0	-0.1	68.9
	0.2 0.3	3 0.0	0.5	0.5	0.4	0.4	0.2	0.3	0.0	0.1	3.2
Storage Chg, Lake Aval (from Table 11) 0.6 0.4	0.4 0.5	5 -1.8	0.0	0.5	2.3	-2.9	0.1	2.9	-3.6	0.7	-0.3
Carls ID diversions 0.0	0.0 0.0	2.8	13.0	6.6	9.5	8.2	9.9	0.9	0.0	0.0	50.6
93% CID diver 0.0 0.0	0.0 0.0	0 2.6	12.1	9.5	8.5	7.7	6.1	0.8	0.0	0.0	47.1
Other depletions 0.1 0.	0.1 0.1	1 0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	1.4
Ssbad 0.0	0.0 0.0	27.4	0.0	0.0	0.7	0.1	0.1	0.0	0.0	0.0	28.4
Pecos b Dark Canyon 0.5 0.5	0.5 0.6	5 47.0	1.3	1.3	2.6	2.7	2.0	2.2	28.9	1.7	91.3
Pecos R at Carlsbad 0.5 0.5	9.0 5.0	5 19.6	1.3	1.3	1.9	2.6	1.9	2.2	28.9	1.7	62.9
Total Outflow	1.2 1.5	5 20.5	14.0	11.7	13.3	8.0	8.4	6.3	25.4	2.6	114.3
Flood Inflow, DS3-CB	1.5 1.3	17.1	1.6	2.5	2.6	3.3	2.6	2.6	6.4	2.7	45.5
Flood Inflow, Art-CB	1.5 1.3	3 33.5	1.6	2.8	5.9	3.4	3.0	2.7	6.5	2.7	66.3

7 (2

..

	ummary Tab	le for Compu	itations, Car	Isbad to Stat	e Line - \	NY 200	4 (B.5)
6/26/2005							
							<u> </u>
	BCB - RB	BCB - RB*	Del R	DC			
	RM	USGS	USGS				
Jan	0	0	0	0		_	
Feb	13	11.9	0	0			
Mar	49	17.9	10.9	0			
Apr	1200	876.5	2676	27440			
May	75		10.1	0			
Jun	474	6:::::::::::::::::::::::::::::::::::::	452	0			
Jul	1677		887	718			
Aug	228	169_	2674	66			
Sep	8547	6875	5449	131			
Oct	4743	4235	4778	1.7			
Nov	0	0	234	0			
Dec	42	33.7	0	0			
Total	17049		17171	28357			
* - Average	of two USG	S estimates	is shown				
			l				
Summary c	of flood inflow	vs, Carlsbad	to State Line	e, TAF			
5 151 #	0.11				45		1
		Dark C RM o			45.4		
		Computation			17.2	<u></u> .	ļ <u>-</u>
lotal Floor	d Inflow, Ca	rlsbad to St	ate Line		62.6		

Table 5. Depletions Due to Irrigation Above Sumner Dam - WY 2004 (C.1.a)	nner Da	m. W	7 2004	(C.1.a)				
4/23/2005								
	APR	MAY JUN		J T	AUG	SEPT	OCT	JUL AUG SEPT OCT TOTAL
Precip Las Vegas FAA AP	1.35	0.07	1.53		3.28	2.75 3.28 2.27	2.51	13.76
Eff prec Las Veg FAA AP	1.28	0.07	1.43	2.41	2.79	2.04	2.23	12.25
Precip Pecos Natl Monument	4.23	0.00	1.80	3.21	2.20	2.11	2.56	16.11
Eff Precip Pecos RS	3.45	0.00	1.66	2.74	1.99	1.92	2.26	14.02
Precip Santa Rosa	3.58	0.00	96.0	2.81	1.73	3.76	3.45	16.29
Eff Precip Santa Ro	3.01	0.00	0.93	2.45	1.60	3.14	2.92	14.05
Average eff precip, ft	0.22	0.00	0.11	0.21	0.18	0.20	0.21	1.12
Consumptive use, ft	0.19	0.36	0.36	0.30	0.27	0.18	0.11	1.77
Unit depletion rate (CU less eff precip), ft	0.00	0.36	0.25	0.09	0.09	0.00	0.00	0.79
Acres (most recent inventory)	11529							
Streamflow depletion (actual use), AF	9085							
1947 depletion, AF	10804							
Difference (actual use - 1947 depletion), TAF	-1.7							
Adjustment to Gaged Flow, Pecos River below Sumner Dam, TAF =	Sumner	r Dam,	TAF =			-1.7		

Table 6. Depletions Due to Santa Rosa Reservoir Operations - WY 2004 - (C.1.b)	Due to	Santa R	osa Res	ervoir Or	erations	- WY 20	04 - (C.1	(q:					
6/26/2005													
	NAI	FFB	MAR	APR	MAY	NO.	105	AUG	SEPT	OCT	>ON	DEC	TOTAL
LS 2001 table (USBR); SRL 1997 tables used (COE)	SRL 1997	tables use	3d (COE)										
Lk Sumner ga ht, avg	47.36	50.49	37.02	39.73	39.45	33.77	31.59	33.99	36.75	47.39	50.49	53.30	
LS content, AF, avg	12772	16980	4812	6288	6126	3342	2528	3432	4678	12808	16980	21479	
LS area, acres, avg	1200	1478	205	588	579	405	342	411	493	1203	1478	1736	
LS evap, inches	4.71	3.57	6.91	6.50	13.59	11.46	11.02	9.35	9.41	5.17	2.72	2.74	87.15
.77 LS Evap	3.63		5.32	5.01	10.46	8.82	8.49	7.20	7.25	3.98	2.09	2.11	67.11
LS Precip, inches	0.00			4.31	0.00	2.36	3.52	2.49	1.42	2.61	1.14	0.15	20.67
Net LS Evap, inches	3.63			0.70	10.46	6.46	4.97	4.71	5.83	1.37	0.95	1.96	46.44
LSum Evaploss, TAF	0.36	0.07	0.20	0.03	0.50	0.22	0.14	0.16	0.24	0.14	0.12	0.28	2.47
L S Rosa ga ht, avg	91.46		79.33	12.40		27.07	28.25	30.79	25.95	17.32	18.86	19.07	
LSR content, AF, avg	5139		2085	20754		45253	47899	54049	41978	27564	29761	30101	
LSR area, acres, avg	369	193		1209	2016	2171	2242	2475	2050	1501	1616	1632	
LSR evap, inches	3.72			6.34	1	11.16	10.83	9.57	7.99	5.37	4.83	3.76	88.65
.77 LSR Evap	2.86			4.88	8.78	8.59	8.34	7.37	6.15	4.13	3.72	2.90	68.26
LSR precip, inches	0.34	2.33		4.43		0.82	2.98	2.64	1.59	3.62	1.74	0.41	21.62
Net LSR Evap, inches	2.52			0.45		7.77	5.36	4.73	4.56	0.51	1.98	2.49	46.64
LSR Evaploss, TAF	0.08			0.05	1.44	1.41	1.00	0.98	0.78	90.0	0.27	0.34	6.49
Total evaploss, TAF	0.44	0.10		90.0	1.95	1.62	1.14	1.14	1.02	0.20	0.38	0.62	8.97
Sum contents, AF	17911	19472	6897	27043	47146	48595	50427	57481	46656	40372	46741	51580	
1947 area, acres	1000	1047	009	1444	2123	2185	2261	2642	2022	1937	2105	2316	
1947 evaploss, TAF	0.30	0.05	0.24	0.08	1.85	1.18	0.94	1.04	0.98	0.22	0.17	0.38	7.43
current-1947evaploss	0.14	0.05	0.03	0.00	0.09	0.45	0.21	0.10	0.04	-0.02	0.22	0.24	1.5
					-	Annual adjustment for excess evaporation	stment for	r excess e	vaporation	ŧi			1.5
ADJUSTMENT FOR EXCESSIVE STORAGE IN SANTA ROSA RESERVOIR	(CESSIVE	: STORAG	E IN SAN	A ROSA	RESERVO								
			2003	2003	2004	2004							
			Gage	Storage	Gage	Storage							
EndYear Sumner Sto			4246.19	11440	4253.30	21479							
EndYear S R Sto			4691.27	2069	4719.08	30101							
Sum				16509		51580							
Sto Adjustment, AF						0							
Adjustm Ex Evap, TAF						1.5							
Total Adjustment, TAF						1.5							

	35 -	; ·	39 . The contract of the contr	
4				
				e de la companya de La companya de la co

				•
Table 7. Carlsbad Springs New Water WY 2004	- (B.4.c)			
6/26/2005				
	TAF	AF/day	cfs	Totals
Pecos R bel DC	91.3	249.4	125.7	125.7
Dark Canyon	28.4	77.5	39.1	39.1
Pecos R bel Lake Av, cfs	57.7	157.7	79.5	79.5
Depletion, cfs				2.0
CID lag seep, cfs (from Table 8)				4.8
Return flow, cfs				1.0
Lake Av lagged seep, cfs (from Table 9)				21.0
PR seepage, cfs				3.0
Carls new water, cfs				-20.6
Carls new wat, TAF				-14.9
Carls new wat monthly, TAF				-1.2

Table 8. Carlsbad Mai	bad Main	Canal S	eepage	Lagged	- WY 20(n Canal Seepage Lagged - WY 2004 - [B.4.c.(1)(e)]	c.(1)(e)]						
6/25/2005													
	JAN	FEB	MAR	APR	MAY	NOS	JUL	AUG	SEPT	OC1	NO No	DEC	TOTAL
WY 2004										1 1			
CID, TAF	0	0	0	2.83	12.99	9.92	9.18	8.23	6.58	0.896	0	0	50.6
days/mo	31	29	31	30	31	30	31	31	က္တ	31	30	31	366
cfs	0.0	0.0	0.0	47.6	211.3	166.7	149.3	133.8	1	14.6	0.0	0.0	69.5
cfs, qtr avg			0.0			142.6			131.5			4.9	
		•											
WY 2003		ā	20	30	40			,					
FLOWS, cfs				73.2									
SEVEN %				5.1	0.7								
WY 2004		ā	20	30	40								
FLOWS, cfs		0.0		131.5	4.9								
SEVEN %		0.0	10.0	9.2	0.3								
LAG		1.1	5.1	7.9		4.9 Avg =	4.8 cfs	cfs					

A Section of the Contract of t

6/25/2005 MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC WY 2004 JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC WS NM rept 74.34 75.03 75.68 76.41 73.46 74.23 74.74 73.24 76.80 74.07 72.9 ga ht, avg* 17.34 18.68 19.41 16.40 16.41 17.23 17.74 16.24 19.80 17.07 15.90 14.07 15.90 32.61 19.61 14.07	Table 9. Lake Avalon I	Avalon I		_eakage Lagged - WY 2004 - B.4.c.(1)(g)	WY 200)4 - B.4.(c.(1)(g)						1	
2004 JAN FEB MAR APR MAY JUL AUG SEPT OCT NOV NM rept 74.34 75.03 75.68 76.41 73.40 73.46 74.23 74.74 73.24 76.80 74.07 ht, avg* 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 ht, avg* 17.34 18.03 18.68 19.41 16.40 16.72 20.4 22.8 15.6 32.6 19.60 rs 31 30 31 30 31 30 31 30 avg 24.1 20.2 30 40 40 19.6 22.2 2004 10 20 30 40 40 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 <td< th=""><th>6/25/2005</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	6/25/2005													
2004 JAN FEB MAR APR MAY JUL AUG SEPT OCT NOV INM rept 74.34 75.03 75.68 76.41 73.46 73.46 74.23 74.74 73.24 76.80 74.07 Int, avg* 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 Int, avg* 17.34 18.03 18.68 19.41 16.40 16.7 20.4 22.8 15.6 32.6 19.80 17.07 Int, avg* 17.34 18.03 18.68 19.41 16.40 16.7 20.4 22.8 15.6 32.6 19.6 Int, avg* 10 20 30 40 31 30 31 30 32.2 Int, avg* 10 20 30 40 40 22.2 19.6 22.2 Int, avg* 10 20 30 40 40 <														
ht, avg* 17.34 75.03 75.68 76.41 73.46 74.23 74.74 73.24 76.80 74.07 74.04 75.03 75.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 17.04 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 17.04 12.0.9 24.2 27.3 30.8 16.4 16.7 20.4 22.8 15.6 32.6 19.6 avg 24.1 21.2 21.2 16.9 16.9 20.0 24.1 21.2 19.6 22.2 2004 1Q 2Q 3Q 4Q 20 24.1 21.2 19.6 22.2 20.0 cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs 20.5 VNM Report minus Gage datum at 3257.0 (USBR datum)	WY 2004	JAN	FEB	MAR	APR	MAY	N N	JUL	AUG	SEPT	OCT	NOV	DEC	TOT
ht, avg* 17.34 75.03 75.68 76.41 73.40 73.46 74.23 74.74 73.24 76.80 74.07 ht, avg* 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 17.03 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 17.07 18.03														
ht, avg* 17.34 18.03 18.68 19.41 16.40 16.46 17.23 17.74 16.24 19.80 17.07 1 1	WS NM rept	74.34		75.68	76.41	73.40		74.23	74.74		76.80	74.07	72.97	
Second Park	na ht ava*	17.34		18.68	19.41	16.40	16.46		17.74		19.80	17.07	15.97	
ss 31 29 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 30 30 30 30 40 20 30 40 8	cfs	20.9	24.2	27.3	30.8	16.4	16.7	20.4	22.8		32.6	19.6	14.3	
avg 24.1 21.2 19.6 2003 1Q 2Q 3Q 4Q 2004 1Q 2Q 3Q 4Q 2004 1Q 2Q 3Q 4Q cfs 24.1 21.2 19.6 22.2 cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs cmmouted as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum)	davs	31	29	31	30	31	30	31	31	30	31	30	31	365
2003 1Q 2Q 3Q 4Q cfs 16.9 16.9 16.9 2004 1Q 2Q 3Q 4Q cfs 24.1 21.2 19.6 22.2 lag cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs * Computed as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum) * Computed as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum) * Computed as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum)	cfs avg	24.1			21.2			19.6			22.2			21.8
cfs 16.9	2003		10	20	30	4								
cfs 20.04 1Q 2Q 3Q 4Q cfs 22.2 24.1 21.2 19.6 22.2 21.0 cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs 20.00 by NM Report minus Gage datum at 3257.0 (USBR datum)					16.9	16.9								
cfs 24.1 21.2 19.6 22.2 21.0 cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs 21.0 cfs 20.9 21.2 Avg = 21.0 cfs 21.0 cfs 20.9 21.0 cfs 21.0	2004		ā	20	ge	4Q								
lag cfs 20.5 21.5 20.9 21.2 Avg = 21.0 cfs	cfs		24.1	21.2	19.6	22.2								
* Computed as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum)	lag cfs		20.5		20.9		Avg =	21.0	cfs					
	* Computed as	s WS ele	v by NM	Report n	ninus Ga	nge datur	m at 325	7.0 (USI	3R datur	m)			-	

t ···

;

Table 10. Evaporation Loss at I		-ake Avalon - WY 2004 - (B.4.f)	lon - WY	2004 - ((B.4.f)								
6/25/2005													
	JAN	FEB	MAR	APR	MAY	N	٦	AUG	SEP	OCT	NOV	DEC	TOT
Av WS NM Rept	74.34	75.03	75.68	76.41	73.40	73.46	74.23	74.73	73.24	76.80	74.07	72.97	
Avalon ga ht, avg, ft*	17.34	18.03	18.68	19.41	16.40	16.46	17.23	17.73	16.24	19.80	17.07	15.97	
Avg area Avalon, ac**	694	739	785	837	636	640	289	719	979	98	229	610	
Panevap Brantley, in.	4.65	5.8	7.68	8.43	14.66	13.98	13.72	11.7	98'8	72.7	4.8	4.34	105.89
Lakeevap Brantley, in.	3.58	4.47	5.91	6.49	11.29	10.76	10.56	9.01	6.82	2.60	3.70	3.34	81.54
Precip Brantley, in.	0.24	1.02	1.56	6.7	1.13	6.0	3.81	2.09	3.2	98.0	4.03	0.62	26.16
Netevap, inches	3.34	3.45	4.35	-0.21	10.16	98.6	92'9	6.92	3.62	4.74	-0.33	2.72	55.38
Evaploss Av, TAF	0.2	0.2	0.3	0.0	9.0	0.5	7.0	0.4	0.2	6.0	0.0	0.1	3.2
* Computed as WS elev by NM	v by NM	Report n	ninus Ga	ge datur	Report minus Gage datum at 3257.0 (USBR datum	7.0 (USE	3R datun	(L					
** Based on USBR Area and Capacity Table in effect January 1, 1997	a and Ca	pacity T	able in e	ffect Jan	uary 1, 1	266							

.....

Table 11. Change in Storage, Lake	n Storage	, Lake A	valon - V	Avalon - WY 2004 - (B.4.g)	- (B.4.g)									
(Gage heights are end of month)	and of mor	th)												
4/23/2005	100													
				!										
	DEC	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEPT	OCT	NOV	DEC	TOT
	2003	2004												
WC NM Bent	73.90		75.30	75.90	73.40	73.40	73.40 74.20 77.17 73.40 73.60	77.17	73.40	73.60	77.35	72.40	73.50	
TO T	16.00	17.70	18.30	18 90	16.40	16.40	17.20	20.17	16.40	16.60	20.35	15.40	16.50	
Charge LOW, IL	1700		2718	1			1925	4259	1	1525	4421	790	1461	
Change, Ar	771	90	0.4		-	0.0		1	-2.9	1		-3.6	0.7	-0.3
* Computed as WS elev by NM Report minus Gage datum at 3257.0 (USBR datum)	elev bv N	M Report	t minus (Sage da	tum at 32	U) 0.75	SBR dat	(mr						
** Rased on USBR Area and Capacity Table in effect January 1, 1997	Area and	Capacity	Table in	effect J	anuary 1	1997								

Table 12. Data Required for		er Ma	ster M	anual	Calcu	lations	, Wat	er Yea	r 2004	1			
6/26/2005												ļ	
	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEPT	ОСТ	NOV	DEC	TOTAL
STREAMFLOW GAGING RECO	ORDS, 1	AF				-					 	<u> </u>	
										1 - 1 -			05.0
Pecos R b Sumner Dam	1.8	2.3	23.7	3.1	6.4	5.5	4.7		38.5	4.6	+	0.5	
Fort Sumner Main C	0.0	1.0	5.1	2.5	5.4	5.2	4.2		5.5		 	0.0	35.1
Pecos R nr Artesia	5.2	5.6	21.1	13.2	3.9	2.3	4.1	4.7	21.3	39.8	<u> </u>	8.2	139.1
Rio Penasco at Dayton	0.0	0.0	0.0	0.2	0.0	0.3	0.1	0.0	0.0	0.0		0.0	
Fourmile Draw nr Lakewood	0.0	0.0		0.4	0.0	0.0	0.0		0.1	0.0			_
South Seven Rivers nr Lkwd	0.0	0.0	0.0	0.3	0.0	0.0	0.1	0.0	0.0	0.0		0.0	
Rocky Arroyo at Hwy Br nr	0.0	0.0	0.0	15.6	0.0	0.0	3.1	0.1	0.3	0.1	 		19.3
Pecos R at Dam Site 3	1.2	1.0	1.4	4.7	13.7	10.5	11.9			5.0	+		83.8
Pecos bel Avalon Dam	0.0	0.0	·	31.3	0.0	0.0	0.0			0.0		·	
Carlsbad Main Canal	0.0	0.0	1	2.8	13.0	9.9	9.2		-	0.9	 	 	
Dark Canyon at Carlsbad	0.0	0.0		27.4	0.0	0.0	0.7		0.1	0.0			
Pecos below Dark Canyon	0.5	0.5		47.0	1.3	1.3	2.6	-	2.0	2.2	+		91.3
Pecos R at Red Bluff	1.5	1.4	2.0	49.0	2.2	2.9	5.2		11.2	9.5		 	
Delaware R nr Red Bluff	0.0	0.0	0.1	2.8	0.0	0.5	1.0	3.1	6.2	5.3	0.5	0.2	19.5
							<u> </u>				1	<u> </u>	-
	ļ	ļ			ļ			<u> </u>	ļ		ļ		ļ
GAGE HEIGHTS	-								ļ		ļ	<u> </u>	ļ
											70.40		
Avalon gage ht, end mo	74.70					74.20		+		·	+	+	
Avalon gage ht, avg	74.34							+			 		
Sumner Lake ga ht, end mo	48.36		+	+		32.32		+					+
Sumner Lake gage ht, avg	47.36				-	33.77	· · · · · · · · · · · · · · · · · · ·				 	.	
Lake S Rosa ga ht, end mo	91.63			· · · · · · · · · · · · · · · · · · ·		27.81	28.81	-		 			+
Lake S Rosa ga ht, avg	91.46	81.76	79.33	12.40	25.05	27.07	28.27	30.87	25.52	17.46	18.87	19.08	ļ
	ļ	-											
PRECIPITATION, INCHES	ļ		ļ.	ļ					ļ			ļ	
	0.04	4.00							0.00	0.00	1.00	0.00	00.40
Brantley Lake	0.24	1.02		6.70	1.13	0.90	3.81	+	 			+	1
Las Vegas FAA AP	0.06	0.32		1.35	0.07	1.53	2.75					+	
Pecos National Monument	0.40	1.37	0.72	├		1.8	3.21	+		2.56	+		
Santa Rosa	0.32	2.06		-		0.96	2.81	 -		L			·
Lake Santa Rosa	0.34	2.33		 	0.20	0.82	2.98	_				+	
Sumner Lake	0.00	2.19	0.48	4.31	0.00	2.36	3.52	2.49	1.42	2.61	1.14	0.15	20.67
BAN SWADODATION MICHES		ļ	}		 			 	ļ		 -	 	ļ
PAN EVAPORATION, INCHES			 -	ļ	ļ				ļ		 	1	
Lake Sente Dana	2.70	5.40	0.50		40.0	44.45	40.00	2	7.00			270	00.05
Lake Santa Rosa	3.72	1	_			11.16	 	+	+	+	+	+	·
Lake Sumner	4.71		+	+		11.46	-	-	+		+	+	
Brantley Lake	4.65	5.80	7.68	8.43	14.66	13.98	13.72	11.70	8.86	7.27	4.80	4.34	105.89
OTUED DEPONTS	ļ		-					-	ļ			ļ	
OTHER REPORTS	ļ		<u> </u>		ļ.·		ļ	ļ	 	 	-	1	-
Pena Arma Art TAT (1900)								1 -	 		ļ- <u>-</u> -		000
Base Acme-Art, TAF (USGS)	3.6	+							· · · · · · ·	·	+	 -	
Pump depl Ac-Artesia, TAF	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
NM irrig inv, acres (3/9/2000)				 				 	<u> </u>	<u> </u>	1	-	11529
NM Transfer water use, TAF	 			-		1			ļ	ļ	 	ļ	0
NM salvaged water, TAF			_	_	_	ļ			-	1	<u> </u>		0
Texas, water stored NM, TAF	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Texas, use Del water, TAF							<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u></u>

APPENDIX

RIVER MASTER'S RESPONSE TO STATES' OBJECTIONS

 $\{\Phi_{i,j}^{(i)}: \Phi_{i,j}^{(i)}: \Phi_{$

	÷ :	7 A	•	200	
	e de la companya de l				

RESPONSE TO STATES' OBJECTIONS

Final Report, Accounting Year 2005

NEW MEXICO'S OBJECTIONS

Table 2. Determination of Flood Inflows, Alamorgordo Dam to Artesia [B.3]

Base inflow, Acme to Artesia.

New Mexico outlined their digital method for scalping base inflow between Acme and Artesia. According to New Mexico, this digital method differs from USGS's manual method, and results in a base inflow estimate of 36,596 AF by New Mexico, as compared to USGS's estimate of 37,600 AF. USGS explained their method, contending that it is the same as in past years. As in the past, when this issue was raised by New Mexico, the River Master has reexamined the USGS computation. This procedure of re-examination was implemented as a result of a Modification of the River Master's Manual, effective December 26, 1990.

Because the scalping operation involves judgment, the River Master's estimates differ slightly from both USGS and New Mexico for a few of the time intervals. However, upon examination of USGS's graphs, it was noted that the figures written on the graph differ from those in USGS's table of base inflows. This was noted when trying to determine why New Mexico's February value differed from USGS's, when their graphs seem so close. The River Master concluded that USGS must have erred in transcribing some of the values from the graph to the table. By tabulating USGS's original report with the figures on their graphs, and comparing these with New Mexico's report, it is found that USGS and New Mexico's estimates are close. Given this, the River Master accepts New Mexico's objection and has used their value of base inflow at 36,596 acrefeet (see table below).

Table. Comparison of base inflow estimates, acre-feet

	USGS		•	USGS
	Table	NM	Diff	chart
Jan	3,570	3,600	-30	3,570
Feb	3,680	3,457	223	3,550
Mar	3,870	3,787	83	3,570
Apr	3,210	2,669	541	3,210
May	2,710	2,355	355	2,710
Jun	1,550	1,600	-50	1,550
Jul	1,410	1,400	10	1,480
Aug	1,720	1,700	20	1,720
Sep	1,430	1,400	30	1,130

Make district of the sufficient of the control of t

te to the object of the contract of the contra

Andrew An

Oct	3,570	3,600	-30	3,570
Nov	4,760	5,028	-268	4,760
Dec	6,030	6,000	30	6,030
Total	37,510	36,596	914	36,850

Note, there is a 0.2 TAF difference between New Mexico's data for Pecos River near Artesia and the reported USGS data. This difference explains the 0.2 TAF difference between the RM's and NM's flood inflow on Table 2.

Table 8. Carlsbad Main Canal Seepage Lagged [B.4.c.(1)(e)]

New Mexico reported errors in the table, which did not affect the result for this computation. The errors have been corrected and correct values were entered on Table 8.

Table 9. Lake Avalon Leakage Lagged [B.4.c.(1)(g)]

New Mexico noted that the table had two errors. One was a value carried over from WY 2003 and the other was a computation of first quarter results, where the leap year had not been figured into the computation. The objection is accepted and revised values added to the table.

Table 7. Carlsbad Springs New Water (B.4.c)

As a result of the objection about Table 9, values in Table 7 were revised. Also, New Mexico noted differences in conversion factors for the Pecos River below Dark Canyon, Dark Canyon, and Pecos River below Lake Avalon. NM used a conversion factor of 1.9835 (cfs-days to acre-feet), whereas the River Master had used 723.97 AF = one cfs-year. For the leap year of 366 days, New Mexico's numbers are more accurate. After carrying over decimal points and correcting for the leap year, the River Master's flow values are the same as New Mexico's. Table 7 has been corrected.

Table 10. Evaporation Loss at Lake Avalon (B.4.f)

The correction noted by New Mexico has been made on Table 10 and on Table 12. It does not change the value of evaporation loss, but creates more accurate tables of data.

Table 3. Flood inflows, Artesia to Carlsbad (B.4)

Table 3 has been corrected as a result of changes in Tables 7, 8, 9, and 10. The RM's value of 66.3 TAF differs by 0.1 TAF from NM's due to an apparent difference in rounding off in Table 7.

Table 4. Flood Inflows, Carlsbad - State Line (B.5.c)

New Mexico presented alternative versions of scalped hydrographs, and these will be discussed by months.

January—March. The differences between New Mexico are inconsequential. For these three months, New Mexico's estimate is about 0.1 TAF greater than the River Master's.

the state of the figure of the property of the state of the property of the state o

April.

New Mexico estimated 233 AF less than the River Master. The difference is explained by NM's estimate that the flood event is shorter than the RM estimated. The RM estimated the longer flood runoff at the Red Bluff gage as being caused by the slow release of storage from the basin from the heavy rain, and that this hydrologic event is indicated by the sharply dropping runoff at Red Bluff after April 20, when NM estimated the stream had returned to base flow. New Mexico's objection for April is rejected.

May—August. New Mexico estimated less flood inflow for May—June and slightly more for August. For May, the RM finds justification in NM's reason for estimating a rising base flow at Red Bluff. The flood inflow is small, and upon reexamination of this event, the River Master reaches a value of 75 AF for May. For the events that occurred between June 18 and July 18, the River Master rejects NM's scalping of the Red Bluff flows at just the bottom of the hydrograph dips. Rain fell off and on for this period and NM shows the flood event at Red Bluff to terminate too early (see June 26), in the River Master's judgment. For August, the difference between NM and the RM is inconsequential.

September. The major disagreement between NM and the River Master's estimate is for September. However, NM did not discuss or show the scalping lines on the graph for the period of greatest flood runoff, beginning about September 20. New Mexico's explanation ends with the situation on September 3. New Mexico did not show its scalped values for Red Bluff for the September 3 period, when the Red Bluff gage is still clearly at flood stage. Due to missing explanations, the River Master is not able to consider NM's reasoning for the flood inflow for September and rejects NM's objection for this month.

October—December. The differences between estimates by NM and the RM for this period were inconsequential. The River Master did not understand NM's point about not scalping Lake Avalon releases, and it appeared that the NM was using about the same methods as the RM. In any event, the results differ by very little.

After considering New Mexico's objections, the River Master has revised Table 4 to reflect values shown in this table.

	BCB - RB	BCB - RB	Difference	RM revised
	RM	NM	RM-NM	
Jan	0	()	0 0
Feb	13	:	5	9 13
Mar	49	68	3 -2	20 49
Apr	1,200	96′	7 2 3	1,200
May	101	43	3 5	58 75
Jun	474	33:	5 13	39 474
Jul	1,677	1,49	7 18	30 1,677
Aug	228	264	4 -3	36 228
Jul	1,677	1,49	7 18	30 1,6

The second of th 1 Commence

The state of the s

 $(x, X_{i+1}, \dots, X_{i+1}, y_i) = (x, y_i) \cdot (x_i + y_i) \cdot$

Sep	8,547	7,170	1,377	8,547
Oct	4,743	4,775	-31	4,743
Nov	0	0	0	0
Dec	42	48	-6	42
Total	17,075	15,172	1,903	17,049

Table 12. Data Required for River Master Manual Calculations

Corrections as outlined by NM were made on this table. See note above related to Table 2 as it concerns NM and USGS difference on Pecos River near Artesia.

Table 6. Depletion Due to Santa Rosa Reservoir Operations (C.1.b)

Corrections have been made. New Mexico's revised Table 6 has errors for August and October for Lake Santa Rosa area. It appears typographical errors were made on the spreadsheet, resulting in an error in the computed annual adjustment. The value shown the River Master's Final Report is 1.5 TAF.

Summary of New Mexico's objections

Because New Mexico's objections were numerous and involved both data and computations, this summary is presented to provide an easy way to review them.

Section of Report	Objection	River Master Action
Table 2. Flood Inflows,	Base inflow	Accepted NM objection.
Alamorgordo Dam to		
Artesia [B.3]	D. (Oli di
Table 8. Carlsbad Main	Data entry errors on Table 8	Objection accepted, errors
Canal Seepage Lagged	· ·	corrected.
[B.4.c.(1)(e)] Table 9. Lake Avalon	T	Ohiostian accepted amoun
	Two errors were noted	Objection accepted, errors corrected.
Leakage Lagged		corrected.
[B.4.c.(1)(g)] Table 7. Carlsbad Springs	Toble required revision of a	Objection accounted among
New Water (B.4.c)	Table required revision as a	Objection accepted, errors corrected and changes
New Water (B.4.c)	result of Table 9 revision, also conversion factor	made.
	correction needed	mauc.
Table 10. Evaporation Loss	Data correction needed	Objection accepted,
at Lake Avalon (B.4.f)		changes made.
Table 3. Flood Inflows,	Table 3 should be revised as	Objection accepted,
Artesia to Carlsbad (B.4)	a result of revisions of	changes made.
	Tables 7, 8, 9 and 10	
Table 4. Flood Inflows,	NM objected to some of the	One objection accepted,
Carlsbad - State Line	RM's scalping decisions	others rejected. See
(B.5.c)		discussion.
Table 12. Data Required for	Several data errors were	Objection accepted,
River Master Manual	reported, including missing	changes made. See
Calculations	data	discussion.

Table 6. Depletion Due to	Several data errors and	Objection accepted,
Santa Rosa Reservoir	omissions were noted	changes made. See
Operations (C.1.b)		discussion.

TEXAS'S OBJECTIONS

Texas objected to omission of the Metered Diversions for Permit 3254. This issue involving 638 acre-feet is discussed above in New Mexico's objections.

FINAL CALCULATED DEPARTURE

See Table 1, General Calculation of Annual Departures, T.A.F. (B.1.a.-d.), where corrections were made.

The Preliminary Report's Final Calculated Departure was an overage of 8.3 TAF. After considering the states' objections, the Final Determination is 8.3 TAF.