

$\frac{\text { TRIAL - Nove }}{4061}$			
		4063	
1	MR. AVALLONE: And we also placed a copy	1	Leitman, Pine, and Kiker. The document is
2	of the testimony in the front of the binder	2	GX-754. And it was marked during
3	in the order that it will be played in the	3	Mr. Leitman's deposition as Exhibit 14. The
4	video so it's easier to follow along.	4	set of clips relate to the first page
5	our Honor, the first set of clips	5	on line 27. Then the -- we have included a
6	escribes Mr. Leitman's background. And	6	yellow flag to indicate where there will be
7	ere are no exhibits that are going to be	7	another discussion, which is on page 14,
8	discussed during this set of clips.	8	lines 397 through 400.
9	(Whereupon the video was played.)	9	(Whereupon the video was played.)
10	MR. AVALLONE: And, your Honor, the next	10	MR. AVALLONE: And, your H
11	set of clips discusses the impact of the Army	11	time of Mr. Leitman's deposition, only the
12	Corps of Engineers on the Apalachicola River.	12	raft article behind tab 3 was available. So
13	And this discussion does not relate to any of	13	the final version of that article was
14	the documents in the binder.	14	published in June of 2016 in a journal titled
15	SPECIAL MASTER LANCASTER: They do not	15	Environmental Management. And we have
16	what?	16	included the final version of that paper for
17	MR. AVALLONE: It does not relate to any	17	your reference behind tab 4. And it has been
18	the documents in the binder	18	marked GX-1131
19	SPECIAL MASTER LANCASTER: Thank you.	19	And the net set of clips will be
20	(Whereupon the video was p	20	ferencing a document behind tab 5. And
21	MR. AVALLONE: Okay. Your Honor, the	21	this document is a presentation titled An
22	next set of clips relates to the Army Corps	22	Evaluation of the Supreme Court Lawsuit Filed
23	of Engineers' operations of the reservoir	23	by the State of Florida Against the State of
24	system in the ACF Basin. The first document	24	Georgia in 2003. This document is marked
25	THE REPORTING GROUP Mason \& Lockhart	25	THE REPORTING GROUP Mason \& Lockhart
4062			4064
1	your binder.	1	discussing the slide at page 15. And we
2	A number of these documents are	2	have marked this with a red flag with the
3	PowerPoint presentations that do not have	3	letter A.
4	page numbers; so to make it easier, we have	4	(Whereupon the video was played.)
5	put a blue flag on page 26. And that is the	5	MR. AVALLONE: And, your Honor, we're
6	first clip.	6	of clips discusses slides 18 through 20. And
7		7	
8	SPECIAL MASTER LANCASTER: Thank you.	we have marked slide 18 with a red flag with	
9	(Whereupon the video was played.)	9	the letter B; and it begins with, in the
10	MR. AVALLONE: And, your Honor, the next document that will be discussed is behind	10	lawsuit.
11		11	(Whereupon the video was played.) MR. AVALLONE: And, your Honor, the next
12	tab 2 in the binder. The document is titled	12	
13	Seeing the ACF Watershed As a System:	13	set of clips will be discussing slides 22 and
14	Examining the Effect of Reducing Irrigation	14	23. And we have placed a red flag with the letter C on slide 22.
15	Withdrawals. The first set of questions	15	
16	relates to a slide entitled Conclusion. And we have marked that page with a green flag	16	letter C on slide 22. (Whereupon the video was played.)
17		17	MR. AVALLONE: And, your Honor, the next
18	with the letter A.	18	document that will be discussed is still in GX-683; and it is marked with a red flag with
19	SPECIAL MASTER LANCASTER: Thank you. (Whereupon the video was played.)	19	
20		20	GX-683; and it is marked with a red flag with the letter D. And it's on slide 35.
21	MR. AVALLONE: And, your Honor, the next document that will be referenced is in your	21	(Whereupon the video was played.)
22		22	MR. AVALLONE: And, your Honor, the
23	binder behind tab 3. It is a draft	23	final set of clips designated by Georgia
24	manuscript titled An Investigation Into the	24	relates to slides 38, 39, and 40. And we
25	2012 Drought on the Apalachicola River By THE REPORTING GROUP	25	laced a red tab with the lette
	Mason \& Lockhart		Mason \& Lockhart

Q. And you're familiar with Dr. Greenblatt, Florida's expert in this case. Right?
A. I am.
Q. And you know that she assessed the impact of changes in river flows on salinity in Apalachicola Bay. Correct?
A. I'm sorry. Could you repeat that.
Q. Sure. Dr. Greenblatt assessed the impact of changes in river flows on salinity in the bay; isn't that true?
A. That's true.
Q. And you're aware also that Dr. Greenblatt testified as a general matter that salinity decreases when more flow enters the bay from the river: Isn't that true?
A. I'm aware that she has expressed that opinion in her report.
Q. And she also said that salinity increases as less flow from the river enters the bay. Do you recall that?
A. I recall that her report says that as well.
Q. And you would agree, would you not, Dr. McAnally, that all else being equal, input increased freshwater inflows into Apalachicola Bay decrease salinity. Isn't that true? THE REPORTING GROUP Mason \& Lockhart
A. Since you added the phrase that she did not; that is, all other things being equal, then I can agree with the statement.
Q. And in the converse, all else being equal, decreased freshwater flow leads to higher salinity in Apalachicola Bay; isn't that true?
A. That is true.
Q. And you testified that you modeled for specific scenarios of river discharge as part of your opinion. Right?
A. I did.
Q. And one of those contemplates additional flows into Apalachicola of a thousand cubic feet per second, which you call a conservation scenario. Right?
A. I'm sorry. I missed the first part of your question about the conservation scenario.
Q. One of those scenarios contemplates a thousand additional cubic feet per second, which is what you called a conservation scenario. Right?
A. That was what -- how the conservation scenario was described, yes.
Q. But you did not model for any scenarios where there's more than an additional thousand cubic feet per second into the Apalachicola Bay.

THE REPORTING GROUP
Mason \& Lockhart

Correct?
A. I don't know the precise comparison of the other flows that were considered. I tested -- I tested four flows; plus I did also run two of Dr. Greenblatt's flows. So how those would compare to the thousand cfs during the dry season I'm afraid I can't answer.
Q. But you're aware, aren't you, Dr. McAnally, that

Florida is seeking more than an additional 1,000 cubic feet per second in riverflow as part of the remedy in this case?
A. I'm not aware of what Florida is seeking, sir, other than what was expressed in my report.
Q. So you didn't model the effect on salinity of an additional incremental freshwater inflow as part of a remedy scenario. Right?
A. As I said, I modeled four scenarios, the 1992 -that were labeled as 1992 consumption, as 2011 consumption, and as 2040 consumption, and then the conservation scenario, which was the 2011 or baseline case plus a thousand cfs during selected months. Then I also modeled the two flows by -that Dr. Greenblatt used entitled No Withdrawals and Remedy. And so those are, a round-up, six different freshwater flow scenarios. But those THE REPORTING GROUP

Mason \& Lockhart
were the only ones that I ran.
Q. And you're aware that Dr. Greenblatt's remedy scenario was also a thousand cubic feet per second. Right?
A. I don't recall the specifics of her remedy scenario. I recall that it included -- the only thing that I recall specifically about it was that it included a reduction -- maybe a 50 percent reduction in agricultural use and some other conservation measures.
Q. Okay. All right. Well, you would agree with me, sir, would you not, that all else being equal, additional increments of flow into Apalachicola Bay would have the effect of decreasing salinity. Correct?
A. As long as you include the statement all else being equal, then, yes, additional inflow will decrease salinity in Apalachicola Bay, although perhaps not by significant amounts, which is the -- one of the things that I found in my analysis.
Q. And you also are aware, are you not,

Dr. McAnally, that Dr. Greenblatt testified with regard to something called residence time in Apalachicola Bay. Right? THE REPORTING GROUP

Mason \& Lockhart

	4075
A. I recall seeing that in her report. Q. And you're aware that she looked at the effect of freshwater flows on residence time in the bay. Right? A. I do. Q. And are you aware that Dr. Greenblatt testified that persistent low flows would increase residence time and corresponding salinities in the bay? A. I do recall that her analysis suggested that decreased freshwater flows would increase residence times in Apalachicola Bay. Q. I'm sorry. Just to clarify, that persistent low flows would increase residence time. Right? A. I think you can add persistent to that sentence without any problem. Q. Great. And you didn't conduct any analysis of residence time; did you, Dr. McAnally? A. I did. Q. Well, you didn't present any analysis regarding the change in river discharge in residence time in your direct testimony; did you? A. In my direct testimony, I don't believe I included anything about residence time. Q. And you're not aware, sir, are you, of the effect THE REPORTING GROUP	Q. I want to invite your attention to the plate, plate 1, at the top of the page. Do you see that? A. I do. Q. And this is your plot of the daily discharge of -- at the Sumatra Gage from 2002 to 2014. Right? A. The date range on this plot is 2002 to 2014. Q. And it's plotting riverflow measured at the Sumatra Gage in the river. Correct? A. That's correct. Q. And I want to direct your attention, if you would, to the portion of the plot that covers the years 2011 and '12. Can you see that portion? A. I do. Q. And that's the period of low flows that I'm -- I have been referring to here plotted on your chart. Isn't that correct? A. Yes. Q. Now, I would like you to now focus your attention on plate 2 on the same page. Okay? And on plate 2 now you have plotted salinity at Dry Bar in the same time period. Correct? A. That's correct. Q. And if I can invite your attention to the portion THE REPORTING GROUP Mason \& Lockhart
of residence time on the Apalachicola Bay ecosystem; are you? A. I have no opinions to offer on ecosystems, sir. Q. So you -- you're not aware of the biological impact of the change in freshwater flows on the bay ecosystem. Right? A. I have no opinion to offer on biological effects. Q. Now -- but you are aware that persistent low flows occurred in the Apalachicola River in 2011 and 2012. Right? A. I'm aware of that. Q. And, in fact, your expert report included a chart that reflected the low flows at the Sumatra Gage in 2011 and 2012. Right? A. I believe that -- that chart -- such a chart was in my report, yes. MR. LEOPOLD: If you would, Mr. Walton, please bring up appendix C , page $\mathrm{C}-48$, in Dr. McAnally's report. And this is tab 2 in your binder. Your Honor, may I approach? BY MR. LEOPOLD: Q. Sir, if you want to turn to the hard copy, it's tab 2, appendix C at page C-48. A. I'm there. THE REPORTING GROUP Mason \& Lockhart	of the chart that reflects 2011 and 2012 on the right-hand side. MR. LEOPOLD: If you could highlight those, Mr. Walton. BY MR. LEOPOLD: Q. Do you see that that period has a corresponding period of higher salinity; isn't that true, Dr. McAnally? A. I see that. Q. And unlike other years, salinity never dropped to the lower levels that it did in prior years on this graph. Correct? A. If you're saying there were lower salinities in prior years than in 2011-2012, then, yes, that is correct. That is a correct statement. Q. And are you aware, Dr. McAnally, that those lower levels of salinity are necessary to flush out saltwater predators in Apalachicola Bay? A. I'm sorry. I didn't follow the question. Q. Are you aware that biologically the system needs lower levels of salinity to flush out saltwater predators in Apalachicola Bay? A. I am not offering any opinion on biological predators. Q. All right. And, now, moving on, your statistical THE REPORTING GROUP

A. Yes.
Q. Take a moment and read that.
A. Yes.
Q. So are you -- have you had a chance to review that, sir?
A. I have.
Q. So based on this paragraph, despite its importance, your paper says that uncertainty analysis is an uncommon practice in hydrodynamic investigations. Right?
A. In -- yes. That's what it says. And in 2013 when this paper was written, that was, indeed, the case.
Q. Thank you, Dr. McAnally.

I would like to move on to a new topic.
It's your opinion, is it not, that sea level is rising in Apalachicola Bay. Right?
A. It's my opinion that sea level is rising in Apalachicola Bay.
Q. And you have also offered an opinion that sea level rise has increased salinity in Apalachicola Bay since at least 2002. Correct?
A. That is correct.
Q. And to evaluate the effects of sea level rise in the future on Apalachicola Bay, you used your THE REPORTING GROUP Mason \& Lockhart
model to simulate a sea level rise of approximately .26 meters or 10 inches by 2040. True?
A. That's correct also.
Q. And that was -- that 10 inches was from a 1992 baseline. Correct?
A. That is correct.
Q. Now, it's Georgia's position in this case, Dr. McAnally, that this sea level rise is being caused by global climate change. Right?
A. I'm sorry. I don't know what -- how Georgia feels on it. It's my opinion that sea level rise is -- in Apalachicola Bay is caused primarily by climate change.
Q. Okay. So you believe global climate change is the driver for the increased sea level that you discuss in your opinion. Correct?
A. I do.
Q. But you're not a climatologist, are you, Dr. McAnally?
A. I am not.
Q. And you're not offering an opinion in this case about climate change; are you?
A. In this case I'm offering an opinion about sea level rise, which is a product of climate change. THE REPORTING GROUP
Mason \& Lockhart

And to the extent that I can read and understand the literature on climate, I have -- do believe that climate change is occurring, has occurred, and will occur in the future.
Q. Okay. And, Dr. McAnally, if you would, I would ask you to turn to tab 3 of your binder, which is a copy of your deposition transcript. If you would, sir, please turn to page 61, lines 12 through 61 -- I'm sorry. Starting at line 12 -61, line 12, through 61, 15.

Are you with me?
A. Page 61, line 12.
Q. Right. And that states, and just going back to your areas of expertise, do you consider yourself an expert in climate change?

Answer. I do not.
Did I read that correctly?
A. That is correct.

MS. DeSANTIS: Objection, incomplete impeachment. Could the witness please be directed to look at surrounding lines?
BY MR. LEOPOLD:
Q. Sir, would you like to look at surrounding lines of the testimony, Dr. McAnally?
A. Just that I went on to explain that what I have THE REPORTING GROUP Mason \& Lockhart
actually said earlier, I think, is that while I don't consider myself an expert in climate change, I do consider myself expert in sea level rise that is caused by climate change.
Q. Thank you.
A. Is that -- does that answer your question, sir?
Q. I'll move on. Thank you.

So if you would, please, turn in your binder to tab 6. And this is FX-339. And my first -are you -- sorry. Are you with me, Dr. McAnally?
A. And what page?
Q. Just starting on the first page of tab 6.
A. All right.
Q. And do you recognize this document, sir?
A. I believe I do.
Q. And this is a chapter, chapter 13 , from the IPCC's fifth assessment report, which you cite in your testimony. Correct?
A. It appears to be that, yes, sir.
Q. And just for the record, Dr. McAnally, the IPCC is the Intergovernmental Panel on Climate Change which was set up through the United Nations. Right?
A. I believe that's correct.
Q. And you're familiar with the IPCC; aren't you?

THE REPORTING GROUP
Mason \& Lockhart

4089	4091
A. I have been following their reports for a number of years; yes, sir. Q. And you're aware, Dr. McAnally, that it's been regarded by NOAA, the federal government agency, as the most senior and authoritative body providing science advice to global policymakers. Right? A. I don't guess I have any personal knowledge of what NOAA says about the IPCC. There are several hundred NOAA scientists that have worked on the IPCC. And I do know that in their reports, NOAA uses IPCC's data and methods. But as far as an official policy, I'm afraid I'm unable to comment. Q. Okay. If you would turn in your binder to tab 7, please, sir, which is FX-935. Are you there? A. I'm there. Q. Take a moment to review it. And I would like to invite your attention, sir, to the second paragraph from the bottom, which begins internationally. A. I see that. Q. Do you see that? And that -- that's -- you would agree with me that this web page is from NOAA's climate data THE REPORTING GROUP Mason \& Lockhart	Q. All right. I would like to focus your attention, if I may, to the four graphs at the top of the page under the section $\operatorname{sub}(a)$. Do you see that? A. I see that. Q. And you have seen this before, correct, Dr. McAnally? A. I believe I have. Q. And you would agree with me that this is the IPCC's likely range of global mean sea level rise as shown through the gray-shaded bands around the black line. Correct? A. That's correct. And it's shown for various stages. Q. Right. And the stages -- you mentioned there's four different scenarios here. Correct? A. Correct. Q. And those scenarios are called RCP's, or representative concentration pathways? A. Correct. Q. And would you agree with me that the different scenarios consider future sea level rise from more conservative to more aggressive. Correct? A. That is the intent. Q. Right. Now, if you would, sir, please turn in your binder to tab 8. And this is McAnally THE REPORTING GROUP Mason \& Lockhart
center? A. Yes. Q. Okay. But you did not draw on your sea level rise projections from the IPCC in this case. Correct? A. I'm sorry. Please repeat that. Q. You did not draw your future sea level rise predictions from the IPCC in your opinion for this case. Correct? A. Indirectly, yes, sir, I did, because the NOAA and Corps of Engineers protections are based on the IPCC data and methods. Q. It's -- so as you have testified, you used a planning tool from the Army Corps of Engineers. Right? A. Army Corps of Engineers and NOAA. Q. Okay. So I would like to invite your attention back to tab 6 of your binder, which is the IPCC document, sir. And at this time if you would turn to page 1181. A. I'm there. Q. Okay. MR. LEOPOLD: Mr. Walton, if you could bring that up. BY MR. LEOPOLD: THE REPORTING GROUP Mason \& Lockhart	demonstrative Exhibit 1. Now, Dr. McAnally, this is the same page or for the same four scenarios that I just showed you from the IPCC. However, on this one, we have plotted your sea level rise future projections with the red data point, which was .26 meters or 10 inches of rise by 2040. Do you see that? A. I see that. Q. Okay. And as you can see, Dr. McAnally, your prediction is in excess of the gray bands on each of these scenarios. Correct? A. Sir, by presenting this plot, you have committed a fairly bad error. These plots used by the IPCC are for global average sea levels. They -- those then must be turned into site specific estimates, which is what the Army Corps of Engineers and NOAA does. And they have done -- taken these results and applied them to the standard methods to Apalachicola Bay specifically. And that . 26 meters or 10 inches is in the middle of how they have applied these results to the specifics of Apalachicola Bay, which are different than the worldwide averages. Q. So is it your testimony, Dr. McAnally, then that the sea level rise in the future in Apalachicola THE REPORTING GROUP Mason \& Lockhart

Bay is going to exceed the worldwide average? Is that your testimony?
A. I don't know what the worldwide average will be.

I strongly believe that the worldwide average will be higher than the 2000 -- the 2013 IPCC projections. But the -- as those were used, these $\mathbf{2 0 1 3}$ projections that we're looking at here, were the ones that were used by the Corps and NOAA to generate the authoritative results to be used in the United States.
Q. Right. And your point that you selected exceeded even RCP 8.5, which is the most aggressive sea level rise scenario that the IPCC used in this chart. Right?
A. I believe I have already pointed out that you're making a serious error by --
Q. And, sir --
A. -- making such a statement.
Q. -- I'll let your counsel -- I'm sure your counsel will get to that when you're doing your redirect; but for now, I would just like to try to get through the questions.

And you testified a moment ago you're not a climatologist. Right, Dr. McAnally?
A. That I'm not a what?

THE REPORTING GROUP
Mason \& Lockhart
4094
Q. A climatologist.
A. That's correct.
Q. And you're not offering an opinion on future climate change. Correct?
A. I am not offering it in this case.
Q. But you testified in your direct testimony, sir, that there will be a greater level of sea level rise from glaciers in the Greenland ice sheet. Do you recall making that statement?
A. I do.
Q. But you, yourself, do not have any expertise with Greenland ice sheet melting. Correct?
A. You seem to be mistaking the -- or misunderstanding the various disciplines. Greenland ice sheet melting is a geophysical process and is included in oceanography. And climatology affects that, but the actual melting of the land-based glaciers is part of coastal engineering and oceanography.
Q. So my question was do you have any personal expertise with Greenland ice sheet melting?
A. I would not attempt to do an independent research on Greenland or West Antarctic ice sheet melting. However, once again, I do have a reading familiarity with the professional literature in THE REPORTING GROUP

Mason \& Lockhart
those areas; and I believe I'm capable of reading and evaluating that literature.
Q. So you haven't done any climate modeling yourself. Correct?
A. I have not.
Q. Now, sir, moving on, you opine in your direct testimony that sea level rose about 3 inches from 2002 to 2014 in Apalachicola Bay. Right?
A. That's correct.
Q. And when you were asked about that opinion at your deposition, you couldn't recall how you arrived at the 3 -inch sea level rise. Do you remember that?
A. Actually, I don't. But I do recall because I have re-examined my report, perhaps in response to that question.
Q. And you have offered that opinion again in your direct testimony. Right?
A. That's correct.
Q. But your prefiled direct testimony doesn't provide any citation for your determination that sea level rise has risen 3 inches in 12 years in Apalachicola. Right?
A. It cites my original expert report, particularly appendix C. And that's where the 3 - inch rise THE REPORTING GROUP

Mason \& Lockhart

was calculated.

Q. So if you would, please, sir, turn in your direct testimony, which, again, is tab 1 in your binder, to page 24; and I would like to focus your attention to paragraph 49.
A. I'm at page 24.
Q. Okay. And paragraph 49 is where you authored this opinion. Right?
A. Correct.
Q. And, sir, my question is it doesn't offer any citation to the data that you relied upon to offer this opinion. Correct?
A. I'm sorry. Are you complaining that I don't offer a citation in this paragraph?

Is that your question or --
Q. My question, Dr. McAnally, is simply you haven't cited to the basis for your opinion that sea level rise rose 3 inches in 12 years. Correct?
A. It does not -- okay. That's part of my confusion here. It says, the statistical analyses of observed data show that. And that is my citation. And that is what occurred in, I believe it was appendix \mathbf{C} of my original technical report.

So it doesn't cite an external source; it THE REPORTING GROUP

Mason \& Lockhart
Q. So if you would, sir, please turn in your direct

THE REPORTING GROUP
testimony to page 35. And, again, that's tab 1 of your binder.

Are you with me, sir?
A. I'm with you.
Q. Okay. And this is your demonstrative Exhibit 13. Correct?
A. It is.
Q. And specifically, if you look at the bar on the right-hand side, you can see the median rate for sea level rise observed at the tide gage is 1.96 millimeters per year. Correct?
A. That is the number on this chart. However, it is not directly comparable to the number that we -you just calculated.
Q. Okay. And so your assertion that sea level rise rose 3 inches over 2002 to 2014 would require a rate of sea level rise that is approximately triple of what this NOAA tide gage suggests. Right?
A. First of all, it's not a triple; it's more like a double. But on any trend it's dependent on the period of record. And so in the case of the 2015 figure here, they're using a long-term average number, 19 years, sometimes longer, and factoring in all of the preceding data. And so rather than THE REPORTING GROUP

Mason \& Lockhart
taking a specific period, like I did, from 2002 to 2014, they are taking a very long-term average of hourly measurements. So the numbers, again, are not directly comparable.
Q. So you would agree with me then your rate of rise that you calculated is almost, not quite, three times the long-term average observed at the tide gage?

MS. DeSANTIS: Objection, asked and answered and misstating the witness's testimony that he just gave.

MR. LEOPOLD: Can he answer, your Honor?
SPECIAL MASTER LANCASTER: Can he?
I don't know.
MR. LEOPOLD: All right.
BY MR. LEOPOLD:
Q. Dr. McAnally, you would agree with me, would you not, that the rate of rise that I presented, a 5.8 millimeters, is almost three times 1.96 . Correct?

MS. DeSANTIS: Same objection.
A. I agree that if you compare apples and oranges, you will get a different result.
Q. Now, if you would, sir, please turn in your binder to tab 10. THE REPORTING GROUP Mason \& Lockhart

this is that it clearly shows an acceleration of sea level rise.
Q. Okay.

MR. LEOPOLD: No further questions, your Honor.

SPECIAL MASTER LANCASTER: We'll take a break.
(Time Noted: 10:50 a.m.)
(Recess Called)
(Time Noted: 11:00 a.m.)
MS. DeSANTIS: Good morning, your Honor. SPECIAL MASTER LANCASTER: Good morning, counsel.

REDIRECT EXAMINATION
BY MS. DeSANTIS:
Q. Dr. McAnally, before we look at your salinity modeling and your opinions regarding sea level -before we look at your salinity modeling and your opinions regarding sea level rise, I would like to ask you to look again behind tab 1 of your binder, page 35, demonstrative 13 in your written direct.

So it is page 35.
A. I'm sorry, which tab?
Q. Tab 1.

THE REPORTING GROUP
 Mason \& Lockhart

4118
A. Tab 1, page 35.
Q. Yes. Your written direct testimony, page 35, demonstrative 13.
A. I'm there.
Q. And at the conclusion of his questioning, Mr. Leopold was asking you about demonstrative 13. Doctor, how does this chart show accelerating rates of sea level rise in the Apalachicola Bay?
A. By definition, acceleration is a change in velocity. And so this is in effect a -- the millimeters per year makes it a velocity plot or a speed plot.

So it shows that back in the early 2000's, it was -- the calculated speed was about 1.3 millimeters per year. And then it -- as it increases, that is a positive acceleration. So that is a -- its acceleration would be whatever the difference is between 1.96 and 1.38 , divided by then the time in years.

So the fact that it's sloping upwards shows that it's a positive acceleration.
Q. And would you please explain for the Court why you chose to include this particular graph in your written direct and how it's relevant to your testimony.

THE REPORTING GROUP
Mason \& Lockhart
A. Dr. Douglass, in his analysis and report, used a linear extension of sea level rise into the future, which corresponds roughly to the low estimate that I used. Then in his direct testimony, he added that inspection of this web page showed that there was no evidence of acceleration and says that it has been 1.96 millimeters per year for the past 40 years. And clearly, that is a mistaken statement.

I don't believe that Dr. Douglass would intentionally misrepresent this; but he simply didn't look at this closely enough to realize that 1.96 millimeters per year is a good bit larger than 1.26 millimeters per year.
Q. Thank you, doctor. We will return to a discussion of sea level rise, but I do want to focus on your salinity modeling. And I would like to focus particularly, again, in your written direct behind tab 1, page 7. And we will pull up on the screen the four bullets on page 7 of your written direct testimony on the screen.

And, Dr. McAnally, looking at the particular bullets in your written direct to guide you, can you please describe the hydrodynamic modeling that you did and the scenarios that you used for THE REPORTING GROUP

Mason \& Lockhart your opinions in this matter.
A. I used these four scenarios, which we took -again, they were generated by Dr. Bedient. And they represented the scenario 2011, which I called it the baseline. And that is -represented Georgia's upstream consumptive use quantities of 2011. And scenario 2040, which was the same thing but with upstream consumptive uses to be projected basin-wide in 2040. And then 1992 was a look back at what those consumptive uses were occurring in 1992. And then finally, the conservation scenario, which was the same as the baseline except that the flows were increased by a thousand cfs during the low flow season.
Q. And I would now like to ask you to please turn to page 8 of your written direct testimony -- and we'll bring that up on the screen -- going over to the top of page 9 .

And, doctor, could you please look at the bullet points on the bottom of page 8 and the top of page 9 and describe for the Court your findings on salinity changes as a result of the modeling of these scenarios.
A. Okay. The model showed that the -- going back to 1992 would decrease salinity -- average salinity THE REPORTING GROUP

Mason \& Lockhart

	4121		4123
1	in the dry season in Central Bay by up to about	1	under any of the scenarios that you used show any
2	. 5 psu, or practical salinity units, which is	2	salinity changes in the bay above 1 psu or 1 ppt
3	equivalent to ppt.	3	as a result of increased flow?
4	The scenario of 2040, however, was -- had a	4	A. There may have been individual locations -- in
5	negligible change from the baseline. It was 0.1,	5	fact, there were individual locations, individual
6	which is really within the level of noise of the	6	days when the change would have been greater than
7	model. And I considered it to be equivalent to	7	that. But averaged over weeks and months and
8	no change.	8	averaged over space -- well, just it's enough to
9	The conservation scenario had the greatest	9	say averaged over weeks and months I didn't see
10	effect. And it showed that it would decrease	10	any that were larger than those -- that 0.7 is
11	both annual and dry season average salinity in	11	the highest I saw.
12	Central Bay by as much as 0.7 psu, or practical	12	Q. And, doctor, before we go into the details of
13	salinity units, plus or minus the confidence	13	some of your hydrodynamic modeling, I don't want
14	limits.	14	to neglect the second kind of modeling that you
15	Q. Doctor, the Court has heard before during the	15	did for this case. Can you please describe the
16	testimony of Dr. Greenblatt about the meaning of	16	second type of modeling work, the numerical
17	ppt. But could you please refresh all of us on	17	modeling work you did, and what that showed.
18	the definition of ppt and how that corresponds to	18	A. The other -- for many years I have practiced
19	psu.	19	using at least two approaches for every problem.
20	A. Okay. Ppt, or parts per thousand, is a mass	20	That way if I should make a mistake or miss a
21	concentration that was used for decades, perhaps	21	decimal point or there may be something
22	centuries, in the oceanographic and water quality	22	fundamentally wrong with the method in one
23	fields. It was rather difficult to take -- make	23	approach, in using a very different approach I'll
24	that measurement because it involved titration	24	catch it.
25	of -- in a lab and so forth, so on.	25	And so in this case I used the statistical
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	4122		4124
1	And sometime in the 1980's, I think it was,	1	methods to analyze the observed data from the
2	the international community got together and	2	National Estuarine Research Reserve and to
3	decided that they would change it over to an	3	formulate actually a set of opinions and results
4	electrical conductivity standard and just defined	4	based on those calculations. And then I was able
5	the new practical salinity units based on	5	to compare those with the -- those from the
6	electrical conductivity; that is, sticking a	6	physics-based EFTC numerical model. And they
7	probe into the water, and making it equivalent --	7	confirmed each other. And so the fact that they
8	exactly equivalent at 1 ppt and 35 ppt. And then	8	confirmed each other and were also consistent
9	generally they would fit elsewhere.	9	with my own experience in the Gulf gives me
10	So most of the -- most of the world has	10	complete confidence in my conclusions.
11	converted to using psu, or practical salinity	11	Q. And, doctor, would you consider your hydrodynamic
12	units. There are still some folks in the U.S.,	12	modeling to be more understandable perhaps to the
13	including myself when I forget, that drop back to	13	layperson?
14	say ppt.	14	A. Yes, it is, certainly. It -- the layperson tends
15	Q. But is psu equivalent to ppt numerically?	15	to regard it as a black box, but -- but it's --
16	A. For all practical purposes, they are equivalent	16	certainly, the results look obvious; and people
17	numerically.	17	can understand it when they look at the plots.
18	Q. Okay. And, doctor, again, please remind us of	18	Q. All right. Well, we're going to focus then on a
19	the range of ppt values in the Apalachicola Bay.	19	couple of particular -- a particular finding of
20	A. The values in Apalachicola Bay observed data	20	your hydrodynamic modeling since it is somewhat
21	ranged from very near zero to 39 psu, which is	21	more understandable to a layperson. And I
22	slightly saltier than Gulf water because of local	22	particularly want to focus on the conservation
23	evaporation.	23	scenario that you ran. And I also want to focus
24	Q. And as you have just described the results of	24	on some modeling work done by Dr. Greenblatt
25	your hydrodynamic modeling, did your modeling	25	under a remedy scenario.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

You are familiar with the work that was done by Dr. Greenblatt, as you have testified. Right?
A. I am.
Q. And are you critical of some of Dr. Greenblatt's methods?
A. I am, and I was. I think that Dr. Greenblatt is a very bright person and will become a good engineer with sufficient experience and good guidance on how to approach these problems.
Q. Regardless of your criticisms of her methodologies, are you critical of her findings?
A. Her -- Dr. Greenblatt's model results were very similar to my own. So I'm -- obviously I can't say that I'm critical of those results.
Q. And did you find the results of her modeling to be results that you would have expected?
A. Yes.
Q. All right. And, doctor, in particular, I would like to look at Dr. Greenblatt's remedy scenario. What was your understanding of Dr. Greenblatt's remedy scenario?
A. My understanding of that -- of Dr. Greenblatt's remedy scenario was that it included a $\mathbf{5 0}$ percent reduction in irrigation use of water in Georgia. Plus there were some other conservation measures THE REPORTING GROUP

Mason \& Lockhart
4126
that escape me at the moment. Probably -- I think it was evaporation control and some other things that were included in that remedy.
Q. And was it your understanding that that remedy scenario run by Dr. Greenblatt would result in increased flow into the Apalachicola Bay?
A. I believe that I recall that it would, yes.
Q. All right. I would like to look now behind tab 4 of the binder that was given to you by counsel for Florida, which has Dr. Greenblatt's written direct testimony. And we'll ask the Court and you, Dr. McAnally, to please turn to pages 36 and 37 where we see Dr. Greenblatt's figures 3-15 and 3-16.
A. Okay.
Q. And Mr. Smith has helpfully put up both figure 3-15 and 3-16 side by side on the screen.

Is it your understanding, doctor, that these maps show salinity changes in the bay if Florida's proposed 50 percent cut remedy were in place for the years 2011 and 2012?
A. Yes.
Q. And what do you see with respect to salinity changes on these maps as modeled by Dr. Greenblatt if Florida's remedy scenario were in place?

THE REPORTING GROUP
Mason \& Lockhart
A. They show that -- well, let me first quibble. One of the things that I am critical of her approach was here she used observed flows versus calculated flows. And in the modeling world, that is -- that's -- that shouldn't be done. It should be model results compared to model results. So she used observed flows versus modeled, which is not a good idea.

But, again, that's a quibble rather than a criticism of the results, actually.

But what I see here is that over most of Apalachicola Bay, the changes are -- the plot shows all white over most of the bay; so that means changes less than 1 psu. There are areas in July of 2012, for example, that show higher changes of between 1 and 2 psu very close to the river mouth, essentially where the river distributaries discharge into the bay.
Q. So is it your understanding that the white areas on Dr. Greenblatt's map represent salinity changes of less than 1 ppt or 1 psu?
A. That's my interpretation of this plot.
Q. All right. Now, doctor, in your work, did you run another conservation scenario that was called the 1000 cfs conservation scenario?

THE REPORTING GROUP
Mason \& Lockhart
A. I did.
Q. And I would like to ask you now to turn back to your own written direct testimony behind tab 1, and specifically to look at page 12. And demonstrative 4 -- and Mr. Smith is bringing that up on the screen.

Now, does demonstrative 4 shows the results of your conservation scenario and the modeling that you ran?
A. It does.
Q. And what did you find when you ran your $1,000 \mathrm{cfs}$ conservation scenario?
A. I found that all of the changes were less than 1 psu. However, I did -- in this graphic, for example, I used a different scheme for creating a color bar; so I was showing down to actually . 25 and . 1 psu, which is the -- about the lower limit of detection. And so mine, therefore, show a lot more color than hers; but they are showing essentially the same results. If I plotted -used her scale, these would have been all white.
Q. All right. So if you could use Dr. Greenblatt's color coding scale, your maps would have been all white?
A. That's correct.

THE REPORTING GROUP
Mason \& Lockhart

	4129		4131
	Q. All right. I'm going to ask Mr. Smith to please	1	NOAA data showed that there has been a sea level
2	show us your maps as they would have looked if	2	rise during that period. But I also took the
3	they had been coded according to Dr. Greenblatt's	3	tide gage data and analyzed it and found that it
4	color scheme.	4	had -- it had, indeed, risen -- sea level had
5	And Mr. Smith has put up demonstrative --	5	risen during that period from 2002 -- actually,
6	what we keyed as demonstrative 4 shows your maps	6	from 1992 to 2014; but particularly I looked at
7	color-coded according to Dr. Greenblatt's color	7	2002 to 2014. And it showed that it had risen.
8	scheme; is that right?	8	Q. And is it your opinion that sea level rise will
9	A. That's correct.	9	have an impact on future salinity levels in the
10	Q. All right.	10	bay?
11	MS. DeSANTIS: I would like to ask that	11	A. It most certainly will.
12	both this particular map be put side by side	12	Q. And what is the basis for that opinion?
13	with Dr. Greenblatt's maps from figures 3,	13	A. It -- that's sort of like asking what is the
14	dash -- figure 3-15, which are her results	14	basis of my opinion the sun is going to rise
15	from 2011.	15	tomorrow?
16	BY MS. DeSAN	16	The literature is unanimous to that effect.
17	Q. Now, Dr. McAnally, when you look at your maps on	17	I cited some literature about Apalachicola Bay in
18	the left using your conservation scenario of	18	my report. It's -- that's been a result of, for
19	$1,000 \mathrm{cfs}$-- additional 1,000 cfs of flow next to	19	example, my experience in Louisiana where land
20	Dr. Greenblatt's maps for 2011 showing the 50	20	subsidence has introduced an apparent sea level
21	percent cut remedy resulting in increased flow,	21	rise that is much accelerated over what we see
22	what do you see with respect to salinity changes	22	elsewhere in the Gulf. And so in those cases we
23	in the bay under each of these two remedy or	23	see the morphological changes. We see the
24	conservation scenarios?	24	sediment deposition, and we see the shoreline
25	A. I see the same as my conclusion in my testimony, THE REPORTING GROUP Mason \& Lockhart	25	extend inland. In every single case that I'm THE REPORTING GROUP Mason \& Lockhart
	4130		4132
1	and that is is that the conservation scenario --	1	aware of, salinity has increased, sometimes
2	and it turns out her remedy scenario -- both	2	precipitously.
3	produce changes of less than $1 \mathbf{p s u}$ in	3	Q. Doctor, could you please turn again, tab 1, your
4	Apalachicola Bay.	4	written direct testimony, to page 26, and
5	Q. Okay. Doctor, I want to turn now to sea level	5	particularly to your demonstrative 10. Can you
6	rise.	6	explain, please, what this particular graph
7	A. I'm sorry. Let me correct that. About 1 psu in	7	shows.
8	hers.	8	A. Okay. Page 26?
9	Q. Approximately 1 psu?	9	Q. Page 26, demonstrative 10 , which is on the
10	A. Approximately 1 psu, yes.	10	screen
	Q. So whether you run the remedy scenario by	11	A. This shows a range of potential projections of
12	Dr. Greenblatt or your scenario based on the	12	salinity increases from 1992 forward based on,
13	$1,000 \mathrm{cfs}$ additional flow, you are seeing	13	first of all, two levels of -- of projected sea
14	comparable salinity changes in the bay?	14	level rise. One, the low estimate by the Corps
15	A. Yes. They are comparable.	15	of Engineers; the other, the high estimate by
16	Q. Doctor, let's talk about sea level rise. And you	16	NOAA, which happens to be the same as that for
17	also, as part of your work in this matter,	17	the Corps of Engineers. And then in addition to
18	analyzed the impact of sea level rise on salinity	18	those -- that range of sea level rise rates, I
19	in the bay, as you testified; correct?	19	have applied the -- a low estimate of my
20	A. Correct.	20	calculations showing the effect of sea level rise
21	Q. And can you please explain the basis for your	21	on salinity and a high -- higher rate, not the
22	opinion that there has been a sea level change in	22	highest rate. But these are extremely
23	the bay in the years that you analyzed up to	23	conservative estimates of the band that would be
24	2014?	24	most likely experienced by average salinity in
25	A. Okay. I took the two methods actually, but the THE REPORTING GROUP	25	central Apalachicola Bay in the future due to sea THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

level rise.
Q. And which of these bands shown do you believe to be the most likely?
A. I strongly believe that the highest is the most -- that the actual experience is going to be much closer to the high estimate than it is to the low estimate.
Q. And on what do you base that opinion?
A. I base that on the fact that the National Academy of Sciences has provided a method to project sea level rise in the future and based on IPCC estimates.

IPCC -- I'm putting in too many C's. IPCC estimates in the past have been shown to be too low. They're being too conservative. And in the 2013 report, they were -- they were corrected for the effect of Greenland ice sheet melting. And they -- it increased the values. They did not include the effect of accelerated West Antarctic ice sheet melting. And I am -- I read the literature on that; and I am virtually certain that when the next update occurs in the IPCC report and which would then be translated into the Corps' and NOAA's projections, that the number will be higher still. And so I think it THE REPORTING GROUP Mason \& Lockhart

4134
will be pushing certainly the upper limit of this and perhaps being even higher than my high projection.
Q. Dr. McAnally, when Mr. Leopold was questioning you, he was asking you to compare what you termed apples and oranges concerning some sea level rise data. Would you please explain why Mr. Leopold was asking you to compare data that should not be compared?
A. Okay. The -- well, the data that was shown on NOAA's website are calculated by a prescribed formula that all of us involved in coastal engineering are familiar with that -- but it involves long-term averages of many values per day. And so as a result, the 2015 value is -inherits all of the tendencies of the data going back to the start of the -- of the gage. And in that case, I -- it's sometime in the 1960 's, I think, for the Apalachicola Gage. So that 2015 value is, in fact, a very long-term average over decades and reflects the weight of all that has happened before.

What I did was I took two distinct dates, 2002 and 2014, and said, what was the mean sea level on these two years? And I compared those THE REPORTING GROUP

Mason \& Lockhart
and got a difference in the two values.
So mine was a discrete analysis of the difference of the rise in -- over that 12, 13-year period, whereas, NOAA's was a weighted average that goes back decades.
Q. Now, Dr. McAnally, in her testimony in this court Dr. Greenblatt suggested that changes in inlet size will offset the impact of sea level rise on salinity in the bay in the future. Is she right?
A. No, she's not. It betrays, frankly, a lack of knowledge of coastal processes, and in particular those for -- of those of bay estuaries with multiple inlets.

They are very dynamic systems. And so, for example, if they get narrower, if a tidal inlet gets narrower, usually the tidal currents will scour it deeper so that the total exchange remains about the same. We have seen this over and over again throughout the world. So it does not follow that as an inlet narrows, it would also become more shallow. In fact, it's usually the reverse.
Q. Did Dr. Greenblatt or any other expert for the State of Florida report on any modeling done regarding changes in inlet size and the effect on THE REPORTING GROUP Mason \& Lockhart
salinity in the bay?
A. No. And that's -- that's one of the star differences. Drs. Greenblatt and Douglass did no modeling, did no calculations of the effect of sea level rise on salinity. Instead, they were speculating. And, in fact, Dr. Douglass, to his credit, said likely. And I think even in using that word likely, he was -- he was overstepping what he should have concluded.

But neither one of them performed any actual calculations. They simply speculated, whereas, I performed detailed calculations; so did Drs. Freeman and Huang and Clough. And they all came to the same conclusion I did when they made their calculations saying that salinities would increase as a result of sea level rise.
Q. Dr. Greenblatt also suggested in her testimony in this court that sedimentation will offset the impact of sea level rise on salinity in the future in the bay. Is she correct about that?
A. Absolutely not.
Q. And why not?
A. First of all, the nature of sedimentation from the river is that the vast majority of that sediment will settle out in the delta. That is THE REPORTING GROUP Mason \& Lockhart
very close to the mouth of the river. And this is a pattern that we see over and over again throughout the world. And so it does not go out and deposit in the bay. There are -- there's a certain fraction that's very light, settles very slowly, and that would tend to be washed out.

And, in fact, if we look at the bottom sediments in Apalachicola Bay, we see that that's the case. It's primarily beach sand and shell fragments throughout much of the bay with a few spots of fine sediment.

So there's that. There's also the fact that, again, my experience in other estuaries in which -- for example, Atchafalaya Bay, there is massive sedimentation going on in Atchafalaya Bay. The barrier islands did move and were submerged by sea level rise, and salinity increased steadily throughout the system.

And I have -- I have seen that. I have documented it. I have experienced it.

So both the -- from basic physics and from my own personal experience I can say that Dr. Greenblatt is totally incorrect when she says that bay sedimentation would offset salinity increases.

> THE REPORTING GROUP Mason \& Lockhart

4138
Q. Should there be any credence given to an opinion that the migration of barrier islands will protect the bay from sea level rise and increasing salinity levels?
A. I'm trying to think of a case where that has ever actually occurred. And I have seen a lot of cases -- a lot of situations, projects, where barrier islands migrated; but I have never seen where they strongly affected the salinity within the estuary behind them. So I don't think there's any particular reason to give credence to that speculation.
Q. And, doctor, to your knowledge did Dr. Greenblatt or any other expert for the State of Florida do any modeling to support an opinion that sedimentation or migration of barrier islands will offset the effects of sea level rise on salinity in the bay?
A. I have not seen anything that Dr. Greenblatt and Dr. Douglass did that would suggest or that they actually did any calculations at all on the subject of the effects of bay sedimentation or barrier island movement on salinity.
Q. Thank you, doctor.

MS. DeSANTIS: I have no more questions. THE REPORTING GROUP Mason \& Lockhart

RECROSS-EXAMINATION

BY MR. LEOPOLD:

Q. Dr. McAnally, just a couple more questions.

You just testified that you have seen the effects of geomorphic changes in other parts of the Gulf of Mexico. Right?
A. I have.
Q. And, sir, you agree that geomorphic processes exist. Correct?
A. Geomorphic processes do occur.
Q. Okay. And, yet, you didn't model any geomorphic processes other than the narrowing of the pass inlets that Dr. Douglass suggested. Right?
A. That was the only geomorphic change that I modeled.
Q. And you agree though that sedimentation has the effect of elevating the bottom of Apalachicola Bay. Right?
A. No, I did not.
Q. And there is published data that shows a rate of sedimentation in Apalachicola Bay. Correct?
A. There is some very old data that shows the rate of sedimentation.
Q. And because you thought it was old data, you made no assumption whatsoever for sedimentation rate. THE REPORTING GROUP Mason \& Lockhart

You assumed a zero sedimentation rate in your model. Correct?
A. No. That is not correct.
Q. You assumed no sedimentation to the bottom of Apalachicola Bay; isn't that true?
A. That is not -- that is not true.
Q. And -- so you didn't address in your model, Dr. McAnally, what the effects of sedimentation are going to be in the bay and whether it would offset sea level rise. Correct?
A. I did not model the deposition of sediment in the bay because I knew that it would occur up in the delta and have little or no effect on salinity in Central Bay.
Q. Okay. And, now, turning to the remedy discussion regarding Dr. Greenblatt's modeling, the maps that Ms. DeSantis just showed you indicate the magnitude of change in salinity based on the remedy scenario. Right?
A. That's -- that's what they show.
Q. But those maps don't show the persistence of the change in salinity over time. Correct?
A. Actually, they do because they show month by month what those -- what those changes are. So you can -- by looking at the month, you can draw THE REPORTING GROUP

Mason \& Lockhart

Q. You didn't analyze that relationship yourself?
A. That's correct.
Q. And you didn't analyze whether agricultural irrigation by Georgia compounds the impacts of drought on streamflow in the Flint River Basin. Correct?
A. I didn't specifically look at that.
Q. You also didn't look at the impacts of streamflow on the various microhabitats in the Apalachicola River. Correct?
A. I didn't disaggregate or specifically look at micro habitats; that's correct.
Q. And you didn't examine basin yield, meaning how much water the watershed yields per unit of rainfall. Correct?
A. That's correct.
Q. Now, you're aware that Georgia's consumption in the ACF Basin began increasing dramatically around 1970. Correct?
A. I'm aware that use may have begun around that time. I don't have any sense of whether it was dramatic or not.
Q. Okay. Sir, if you could turn to tab 1 in your binder that I handed you.

Tab 1 is a document marked FX-575. It's a THE REPORTING GROUP Mason \& Lockhart

USGS publication entitled Georgia Irrigation, 1970 to '80, A Decade of Growth. Do you see that?
A. I do.
Q. And you may recall this was an exhibit in your deposition. Correct?
A. That's correct.
Q. And if you could turn to the page in the document that's marked page 1, but it's actually about nine pages into the document. And you will see that there's -- it says Abstract at the top of the page?
A. I do see that.
Q. And, sir, if you could just read the first sentence under Abstract to yourself.
A. I have read it.
Q. And, sir, do you see that the USGS is reporting here that irrigation use in Georgia increased by a factor of 12 between 1970 and 1980. Correct?
A. That's correct.
Q. And that that was the fastest rate of increase among the southern states?
A. Yes.
Q. Okay. But your analysis of the impacts on the Apalachicola River and Bay of Georgia's

THE REPORTING GROUP
Mason \& Lockhart
consumptive use did not consider this 12 -fold increase in agricultural irrigation. Correct?
A. Going back to -- in earlier testimony, I looked at the period, specifically post-1992, using the scenarios provided me from Dr. Bedient. So I didn't specifically look at this 10-year period or this aspect of it.
Q. Now, even though you did not evaluate the impact of Georgia's consumption prior to 1992, you did go back earlier than 1992 in assessing a number of other potential causes of harm. Correct?
A. That's correct.
Q. So, for example, you evaluate the potential impacts of road construction and other land use changes in Georgia going back to the 1950's. Right?
A. That's right.
Q. And you analyzed what you called natural and man-made stressors other than Georgia's consumption going back to the 1940's. Right?
A. I did do that, yes.
Q. So you did a modeling analysis and drew conclusions about causality that looked at other potential causes of harm prior to 1992, but limited your assessment of Georgia's consumptive THE REPORTING GROUP

Mason \& Lockhart
use to the incremental increase of water starting in 1992; is that correct?
A. Well, the 1992 to 2011 period that we're talking about, that was for the purpose of modeling, using Dr. Bedient's models. And as I mentioned earlier, I looked at the entirety of influences on the -- on the system to the extent that information was available during that time and prior.
Q. But, sir, you didn't look at the influences of consumptive use prior to 1992 on the system. Correct?
A. Not directly. I looked at responses; that's correct.
Q. And, sir, you cannot tell this Court how

Georgia's water consumption between 1970 and 1992 impacted the Apalachicola River and Bay. Correct?
A. I looked at -- as I said, I looked at biological responses. So, for example, I would have compared -- I did compare the fish community and their abundance post-1992 and even in more recent times to those that existed in the 1970's and 1980's. So I did that type of analysis to see if there was any influence.

THE REPORTING GROUP
Mason \& Lockhart

of reduced growth and/or reproduction due to high temperatures and low dissolved oxygen. Correct?
A. Right. The causes of mortality in mussels that are stranded would either be direct exposure, they might be eaten by animals, or the dissolved oxygen in remnant pools might decrease. But this would occur under any circumstance where flows were changing from a higher flow to a lower flow.
Q. Okay. Now, sir, if you could turn to page 151 of this document. Do you see the section 8 titled Conservation Recommendations?
A. Yes.
Q. And, sir, if you could read the paragraph that's numbered 3 in that section to yourself.
A. Yes.
Q. Now, sir, you understand from this that the U.S. Fish and Wildlife Service was recommending the reduction of overall streamflow depletions in the ACF Basin, particularly on the Flint River. Correct?
A. Let me read that again with regard to your question.

You said recommending reductions?
Q. Correct. This is under a section called Conservation Recommendations.

THE REPORTING GROUP Mason \& Lockhart
A. Right. I read that as the Fish and Wildlife Service under Conservation Recommendations suggesting that the states work together to look for alternatives.
Q. And one of those alternatives is reducing overall streamflow depletions in the ACF Basin, particularly on the Flint River. Correct?
A. That's included as an example that water users and managers can work together to identify alternatives to agricultural use -- to reduce agricultural use of water in the Flint River Basin, yes.
Q. So the answer to my question is, yes, that was one of the recommendations?
A. Well, that's something they're recommending that the states consider. I don't think they're suggesting that with regard to their biological opinion.
Q. Sir, do you see right there in No. 3 it recommends work in consultation with the states and other stakeholders to assist in identifying ways to reduce overall depletions in the ACF Basin, particularly the Flint River. Correct?
A. Yes.
Q. Okay. Now, sir, let's look at tab 3, which is THE REPORTING GROUP Mason \& Lockhart
the 2016 biological opinion. It's JX-168. And if you could, sir, first, please turn to page 74 . And, sir, are you there?
A. I am.
Q. Okay. At the bottom of that page, do you see there is a section about juvenile sturgeon?
A. Yes, I do.
Q. And, sir, if you could just read that paragraph that continues onto page 75.
A. I have read it.
Q. Okay. So, sir, do you see that the Service there finds that very young juvenile Gulf sturgeon have a lower tolerance for saline conditions than sub-adult or adult surgeon. Correct?
A. What's being reported here is from the literature; and, yes, what they are pointing out is that the younger sturgeon may be more sensitive to salinity. That's correct.
Q. And they cite a study that observes 100 percent mortality of 72-day-old juvenile sturgeon when exposed to 10 ppt salinity. Correct?
A. That's what the -- this particular experiment showed.
Q. And then the Service goes on to say that conditions like lower salinity in foraging areas THE REPORTING GROUP

Mason \& Lockhart
may be vitally important to the growth and survival of young-of-the-year juvenile sturgeon. Correct?
A. That's what they say. Yes, that's correct.
Q. And, sir, you know that changes in streamflow can affect salinity regimes. Correct?
A. I do.
Q. Okay. Now, could you turn to page 86 of this document. And if you could, sir, do you see the section that says Interpretation, in italics? Right under the figure.
A. I got it.
Q. Okay. If you could read those two paragraphs to yourself, please.
A. I have read it.
Q. And, sir, do you see here that the Service is saying that reduced floodplain inundation, even small reductions on the order of 4.7 to 6.3 percent, can have an adverse effect on Gulf sturgeon. Correct?
A. I don't think that's a conclusion that they have reached. I think that -- when I read this, I read this as a-- populating a concern, because I know that there is no evidence that these have had effects on sturgeon in the Apalachicola THE REPORTING GROUP

Mason \& Lockhart

Q. And that can result in harm to those habitats?
A. It could be a period during which there is dryness. But that happens -- you know, that would happen also under natural conditions. So it's -- it would depend on the matter of degree.
Q. Sure. But those times of dryness can have adverse impacts on the habitats in those sloughs. Correct?
A. That is a time when there's such a potential. But it doesn't necessarily mean that that has happened.
Q. I'm just asking if it's a possibility?
A. Is it a possibility?
Q. Yes.
A. It's a possibility, yes.
Q. Okay. Now, to the contrary, when flow increases, the inundation expands beyond the boundaries of the slough stream beds; is that correct?
A. That's correct.
Q. And that can be beneficial to the floodplain and the floodplain habitats. Correct?
A. Again, that provides the water that some of the plants in the floodplain require to continue to grow, yes.
Q. And there are over 300 sloughs in the

THE REPORTING GROUP Mason \& Lockhart

Apalachicola River. Correct?
A. That's my understanding.
Q. Now, Dr. Menzie, if hypothetically all of the sloughs in the Apalachicola River were disconnected or cut off, that would decrease floodplain inundation. Correct?
A. Under that hypothetical, yes. If you blocked all the sloughs with sediment or something of that nature, you would -- you would have that -- an adverse effect.
Q. And that would have a harmful impact on the floodplain, including that it would contribute to the drying of the floodplain forest. Correct?
A. Yes. Blockage of all the sloughs would have an adverse effect upon the floodplain.
Q. And it would decrease habitat for species that depend on the floodplain forest?
A. It would turn the floodplain forest from a wet forest to a dry forest.
Q. Now, turning back to your prefiled direct testimony, you note that USGS researchers have found floodplain inundation has declined since the 1970's. Correct?
A. I believe they -- that's correct, yes. It's been a long-term decline.

THE REPORTING GROUP
Mason \& Lockhart
Q. And the forest ecosystem of the floodplain is an important habitat for many species. Correct?
A. It does provide habitat for many species.
Q. And trees can be an indicator of changes in the ecosystem?
A. In this particular case where we're talking about flooding, trees can be an indicator of changing from wetter to drier environments.
Q. And you believe that there has been a shift in the Apalachicola River floodplain towards tree species that are characteristic of a drier, less inundated habitat. Correct?
A. I do believe that has occurred.
Q. And as an example, there's been a change in the abundance of tupelo trees and the production of tupelo honey from those trees. Correct?
A. There's definitely been a change in the abundance of tupelo trees.
Q. Okay.
A. The production of honey is influenced by a lot of factors.
Q. Now, you conclude that the changes in floodplain forest composition that have been detected since the late 1970's are linked to changes in the extent and duration of floodplain inundation.

THE REPORTING GROUP
Mason \& Lockhart

Correct?
A. Well, I believe that the changes occurred prior to the 1970's. So the 1970's changes continued; but they had begun well before that as -- as the U.S. Geological Survey has pointed out.

But, yes, those changes that have occurred since the construction of the dam are related to a decline in the flooding of the floodplain.
Q. Well, you agree that riverflow and floodplain inundation are related. Correct?
A. They are related.
Q. Okay. And you didn't consider the impact of Georgia's consumptive use on riverflow until 1992 despite these changes in floodplain inundation that you know began in the late 1970's. Correct?
A. I have actually looked at the influence prior to that. I think the earliest years I looked at were around 1996.
Q. Okay.
A. But not prior to 1970, no.
Q. Okay. Now, do you recall that in the report you submitted in this case, you included a figure that showed changes in floodplain inundation between 1922 and 2015?

I can help you out if you don't remember. THE REPORTING GROUP

Mason \& Lockhart
A. Yes.
Q. I don't think it was in your prefiled direct; but if you could in the binder, turn to tab 9.

And what we have done in tab 9, just to try to save a little paper, we have just included some excerpts of your report, because it was quite lengthy.

So if you just turn, like, one page in here, do you see that we have got page 85 from your report excerpted here?
A. Yes.
Q. And it has a chart. Do you see that chart with the blue line that says climate year underneath? It's figure 26.
A. Yes, I do.
Q. Okay. Now, in this chart you were showing annual acreage of floodplain inundation from 1922 to 2015. Correct?
A. Yes. I have.
Q. And you include a trend line here. Correct?
A. That's correct.
Q. And you state that the trend line of these data indicates that floodplain inundation has changed over time with a pronounced decline in annual inundated floodplain acres since the 19 -- since THE REPORTING GROUP Mason \& Lockhart

4170
the late 1970's. Do you see that that's right above the figure?
A. Yes.
Q. And that this decline is consistent of the period over which changes in floodplain forest and declines in tupelo honey production were observed. Correct?
A. Correct.
Q. And the decline continues through 2015 on your figure 26. Correct?
A. That's correct.
Q. And the post-1970's period includes both time of drought on the one hand and naturally wetter periods on the other. Correct?
A. Right. So --
Q. I'm just --
A. At this point.
Q. I just want to be clear that the years included all the years, whether they were dry years or wet years. Correct?
A. Right. At this point though when you ask about the decline, you're looking at the trend line. And just so that the Court is clear about the trend line, it's an average over many years.

So when you say going through 2015, it's THE REPORTING GROUP
Mason \& Lockhart
because it's averaged over the previous number of years. If we were to look actually at the most recent level of inundation, it would be, you know, not at that depth.
Q. Well, sir, looking at this chart, the beginning of the decline in floodplain inundation occurred during a wetter period. Correct?
A. Yes. There was a wet period in this region. From somewhere in the 1960's to 1970's, the amount of wetness increased in the region.
Q. Okay. So something other than climate was causing the dramatic decline which began in the late 1970's. Correct?
A. No. It was climate.
Q. Sir, the decline began during a wet period.

Correct?
A. Well, as I just explained, the trend line is affected mainly by the droughts that are occurring. So the -- if you look at the seesaw in numbers that are going up and down, these sharp points that you see periodically occurring, one in the ' 80 's and one in the late ' 90 's, and then, of course, the more recent one, it's those low points that are dragging the line down. That's climate.

THE REPORTING GROUP
Mason \& Lockhart 4172
Q. Sir, you don't know if the cause of this trend line had anything to do with Georgia's consumptive use; do you?
A. I don't believe it does.
Q. Okay. But you don't know?

You didn't do that analysis. You didn't analyze what was going on with Georgia's consumptive use starting in 1970 when their agricultural use also started to dramatically increase at this time. Correct?
A. Can you reask me that question?
Q. Sure. You didn't analyze the impact of Georgia's consumptive use starting in 1970 when we know that its agricultural consumptive use increased dramatically?

You didn't look at the impact of that consumptive use on the floodplain, at least not until starting in 1992. Correct?
A. Right. I have looked at dates prior to 1990 -to those periods of time; but you're correct that I did not try to separate out the influence of irrigation in the 1970's in any particular way.
Q. Okay. Now, sir, I want to talk now about your opinion regarding the impacts of Georgia's consumptive use on species in the Georgia portion THE REPORTING GROUP Mason \& Lockhart

41	
of the ACF Basin. Okay? A. Okay. I did not study that, but I would be happy to discuss it with you. Q. You didn't put it in your prefiled direct testimony, but you included discussion of that in your expert report. Correct? A. Insofar as Dr. Allan was talking about it, that's the first time I noticed anybody talking about resources in Georgia in a case that involved Florida. So I responded to Dr. Allan. Q. Okay. And do you recall stating in your report that factors other than the low flow were impacting species like mussels in the Lower Flint River Basin -- the Georgia portion of the Lower Flint River Basin? A. I don't recall saying factors other than the low flow. Q. Sir, if you could, please, turn back to tab 9, which are excerpts from your expert report. And do you se at the bottom of the paragraph on that page that is the continuation -- it's the first paragraph on the page. It says, clearly factors other than low flow events affect mussel distribution and abundance in the Lower Flint River Basin. THE REPORTING GROUP Mason \& Lockhart	A. Yes, I see that. Q. And do you see that this was part of a Georgia water resources conference in 2015? It says that after where it says reference. A. Yes. Q. Now, could you please look at the abstract and look at the first two sentences of the abstract. Just please read those to yourself. A. I'm finished reading that. Q. And, sir, do you see that the authors are looking at the relationship between the increase in agricultural irrigation in Georgia and diminished flows in the Lower Flint? A. I see that that's what they're studying. Q. And they're looking at the impact of those reduced flows on the river habitat. Correct? A. That's what they're looking at. Q. Now, if you could review the paragraph just below the figure on that same page, the paragraph that begins, the Lower Flint River Basin. Please just review that and let me know when you're done. A. Okay. I'm finished reading that paragraph. Q. And do you see there, again, the authors are identifying the rapid expansion of water use for irrigation during the '70's. Correct? THE REPORTING GROUP Mason \& Lockhart
A. There are literature on the Flint River Basin; and I believe that the literature, in addition to low flow, talks about substrate type, all the types of things that would normally affect the distribution of mussels. Q. And, sir, have you reviewed the literature that looks at the impacts of the flow in the Georgia portion of the Flint River Basin? A. I haven't. Q. And, sir, if you could then, please turn to tab 4 in your binder. Tab 4 is a document marked FX-50. And it's an article titled Effects of Reduced Summertime Streamflows on In-stream Habitat in the Lower Flint River Basin, Georgia, U.S.A. Do you see that? A. I see it. Q. Are you familiar with this article, sir? A. I may have seen this in general reviews; but it's not something I used in my -- for my -- forming my opinions. Q. Do you see that the authors are affiliated with the Jones Ecological Research Center in Newton, Georgia? A. Yes. Q. And the National Park Service in Athens, Georgia? THE REPORTING GROUP Mason \& Lockhart	A. I see that's what these authors are looking at. Q. And they state that the current levels of agricultural pumping are associated with reduced summertime flows, particularly in droughts. Correct? A. I see that's what they're writing about, yes. Q. Okay. Now, if you could turn to the next page and read the paragraph under Data Analysis. A. Yes. I have finished reading the data analysis piece. Q. Okay. And you see there the authors are looking at habitat inundation at a reach on Ichawaynochaway Creek in the Flint River Basin in Georgia. Correct? A. Right. I understand that this is all about the Flint River and its resources, and I did not include assessment of the Flint River as part of looking at the claims with regard to the resources in Florida. Q. Do you not think it's relevant what the effects of consumption are on the streamflow of the Flint River in Georgia? A. It may be relevant for our purposes. It wasn't relevant to my report. Q. You know that the Flint River flows down into the THE REPORTING GROUP

4189	4191
station internal to East Bay. Q. Okay. And your direct testimony presents your salinity analysis for only one of those stations, and that's Cat Point. Correct? A. Oh, in the direct? You mean the most recent? Q. Correct. In your prefiled direct testimony -- A. Correct. Q. -- you only present the salinity data for Cat Point? A. That's correct. Q. And Cat Point is further from the mouth of the Apalachicola River than East Bay. Correct? A. That's right. Q. And has a higher salinity than East Bay? A. It's definitely higher than the East Bay regions where the plants occur. And it is, I think, also higher than what's recorded at the East Bay station. Q. And wild celery, which does not like the higher salinity conditions, typically does not grow around Cat Point. Correct? A. That's the part of Apalachicola Bay around the edges where you would find the seagrass beds like eelgrass and plants like that. Q. Right. THE REPORTING GROUP Mason \& Lockhart	Apalachicola Bay has been steadily increasing since Hurricane Dennis. Correct? A. I don't think that's the basis for that opinion. I base that opinion on two things. One is the monitoring that's been going on by the research station since Hurricane Dennis as well as my observations in East Bay. But I don't believe that what you just referred to would be -- would be the basis for a steady increase. Q. Sir, if you could, please, turn to page 69 of your prefiled direct testimony. It's on page 31 . Do you see there that you referenced GX-1254, which is the document that you're looking at? A. I'm on page 69. Correct? Q. Paragraph 69. A. Oh, paragraph 69. Thank you. I'll get used to the fact that it's over here on my right, but -- let's see. Okay. I'm at 69. Q. You're at paragraph 69. And do you see there, sir, that you cite GX-1254, which is the document we're looking at, and other reports that similarly suggest that SAV in Apalachicola Bay has recovered following Hurricane Dennis? A. Let me -- let me reread 69. Right. So that includes what we were THE REPORTING GROUP Mason \& Lockhart
A. So they do very well. Q. You find more of the saltwater plants as opposed to the freshwater plants? A. Right. Lots of saltwater plants out there. Q. Right. Now, you rely in your testimony on a Florida Fish and Wildlife Conservation Commission report on seagrass in Franklin County coastal water. Correct? A. I include that in my testimony, yes. Q. And you note that that document shows a net increase of 159 acres of submerged aquatic vegetation between 1992 and 2010 in the regions of Apalachicola Bay. Correct? A. To put that in some context, there were two surveys that were done that mapped out grass beds, either freshwater or saltwater grass beds throughout the entire region. And then calculations were made of area and subtractions and -- were determined in terms of areas of loss, areas of gain. And over the entire region there was a net gain of 100 . But there was -- in certain regions like East Bay there was a reduction that occurred. Q. Okay. And we'll look at that in a moment. But you created this report to say that SAV in the THE REPORTING GROUP Mason \& Lockhart	referring to earlier as the Franklin County coastal waters for the entire system. And then that's followed by some sentences from other reports from Florida that were -- that was what I was referring to. Q. Okay. Now, sir, let's look at GX-1254, which is in tab 8 of your binder. A. I have it. Q. So, sir, can you turn to page 4. Do you see table 1 ? A. Yes. Q. Sir, do you see the line that says Apalachicola Bay? A. I do. Q. Do you see the column on the far right that says change 1992 to 2010? A. Yes. Q. And, sir, do you see that instead of showing an increase in SAV in Apalachicola Bay, it actually shows a decrease of 2,000 acres of SAV during that time periods? A. Right. And I addressed this in my expert report as to the kinds of reliance you should place on this table. Q. Okay. I will let you address that; but you see THE REPORTING GROUP Mason \& Lockhart

though also consider data and information from years prior to 1992 to inform your opinions?
A. I did.
Q. And, Dr. Menzie, in the course of your analysis, did you work alone; or did you work with others?
A. I worked with a team. Typically for these causal analyses approaches that involve bringing together a variety of types of information such as hydrology and whatnot, it's helpful to bring a team together to look at various aspects and then kind of combine that into a whole, a whole analysis.
Q. All right. I would like to ask you and ask the Court to please look at your written direct testimony on page 8. And I know we handed your written direct testimony to the Court; and I know it is also in the very front of Florida's binder, although it's not behind a tab number. And there is a chart. And we'll put this up on the screen, as well in your direct testimony on page 8.

What does this chart show, Dr. Menzie?
A. These are the primary members of my team. It shows their names and their degrees. And then the areas that I felt were important for answering the questions I was asked to answer are THE REPORTING GROUP Mason \& Lockhart

4198
listed across the top. So the methodology I have
just mentioned is something called causal analyses. But the technical fields that need to be called upon to answer the questions include marine ecology, freshwater ecology, statistics modeling, and GIS -- geographic information systems -- and whatnot.

So while I'm familiar with all of these areas and have deep expertise in some, I felt it wise to bring together a team that could share knowledge so that we could collaborate in putting together our assessments of what was claimed and also the extent to which Georgia was contributing to any changes in the bay or in the floodplain.
Q. Separate and apart from this team that you assembled, did you look at the work of other experts for the State of Florida and the State of Georgia in order to develop your opinions and analyses in this case?
A. I did. One of the things I wanted to be able to do is have as complete an understanding of the technical issues in this case as I could. So on the biology side with respect to Georgia's experts, I spoke with the expert on oysters to understand what that individual was looking at THE REPORTING GROUP Mason \& Lockhart
and to share some of my thoughts. And I talked to and read the reports of Georgia's experts on modeling. And we -- you heard earlier from Dr. McAnally, as an example. I reviewed Dr. Bedient's reports. I had conversations with their staff so that I was clear about what they did.

And then I also looked at all the work that was done by Florida's experts. So I wanted to make sure that I had a clear understanding of where the differences lied and to help me feel more confident about my results.

So I began with Dr. Flewelling who assessed consumption of water, to Dr. Hornberger who translated that into flows, to Dr. Lettenmaier and then all of the biological consultants that Florida has employed, in particular Dr. Allan who looked at floodplains, and Dr. Glibert who looked at the base of the food web, and Dr. Jenkins who looked at the fish.
Q. Did you also review and analyze literature as part of your work on this case?
A. I did. It was important to get as -- as broad an understanding of what individual researchers in Georgia and Florida had been discovering over the THE REPORTING GROUP

Mason \& Lockhart
4200
many years. And so I made a careful examination of those literature to broaden my understanding.
Q. Now, doctor, you have talked about the causal analysis that you did for this matter. And you have spoken of your expertise in causal analysis. I would like to turn to page 22 of your written direct testimony and particularly to look at demonstrative 6 on that page to assist in an understanding of what a causal analysis is. Can you please describe what you are showing in demonstrative 6 in your written direct testimony.
A. Yes. So, you know, recognizing that this is a very complex problem and that ecosystems are complex, it's important to approach this in a -you know, in a step-wise manner so that you can -- you can bite off pieces and look at them and then move on to the next.

So I use a three-step process. And the first, really, is to look at all of the available information to see whether there is evidence of change.

This case really is about change in the bay and change in the floodplain. And so the first step before going any further was to see whether that premise that changes were occurring was

Mason \& Lockhart

freshwater and the ocean and saltwater. So they are forever being pushed upon by forces of nature that are conflicting with one another in their type.

So if you look around and think about just for a moment the -- some of the major estuaries in the world. Even starting up here if we were thinking about the Penobscot, for example, that would be a system that is resilient or has, you know, developed with periodic influences of large amounts of fresh water, ice melt, snow melt, all that sort of thing, temperature changes, extreme temperatures.

If we go to some other part of the world, if we go to the Amazon, we don't see those extreme temperatures; but we get tremendous changes in flow, very wet seasons, very dry seasons. So if you wanted to fish in the Amazon, you would go there in the dry season because it concentrates the fish; and you have a better chance of catching them.

> If you look at the Apalachicola, it's somewhere in between that. But, again, it does experience the Gulf of Mexico on one side and the river on the other and this mixing of the two. THE REPORTING GROUP Mason \& Lockhart

And so estuaries need to be resilient in order to basically maintain themselves estuaries.
Q. Dr. Menzie, you mentioned in your testimony under examination by Florida that you had visited the Apalachicola Bay recently. Is that right?
A. That's right.
Q. And I don't want to spend a lot of time on this particular visit, but when did you visit the estuary?
A. I went in April of this year.
Q. And what was the purpose of that visit?
A. I try to visit every system that I might be asked to look at. So that was important. But there were particular pieces of information that I wanted to confirm for myself. I had read about them and I wanted to see if they were true, and basically to ground-truth my analysis, to feel much more comfortable to be able to talk about the system than if it were just an abstract.
Q. And in the course of that visit, what did you do and what did you find, if you could just summarize it for us briefly?
A. There was a lot that I saw, but I distilled it down to a couple things that I think are worth sharing. One -- for me, one of the most

THE REPORTING GROUP Mason \& Lockhart
important things that I had read in the expert reports developed by Florida's experts, Dr. Glibert and Dr. Jenkins, was that -- the impression was that these plants that we were talking about were absent from the East Bay, which is an important nursery area.

So that's an easy thing to check. And I thought -- and I have done a lot of work in that in many different estuaries. So I knew that if I just went down there, got a boat with a person that was knowledgeable, and went over to where the plants were supposed to be and see if they were there. They were either there or they weren't. And they were there. And so I kind of got a sense of how extensive they were.

There was another feature of the system that was really interesting, which was that parts of the system are fed by rivers that are known to carry black water. This is water that is deeply stained by draining through forest systems and stuff. It's tannins and things like that. And I had read that this had a strong influence on conditions at this one station, the East Bay monitoring station. So I went to see whether those conditions existed, at least during the THE REPORTING GROUP

Mason \& Lockhart
time of my visit. And they did. You could take a sample of water; it looks like a cup of coffee.

And then, finally, I wanted to visit the heart of the tupelo honey area. So there is a little family, the Lanier family, they make honey and put out bees and stuff where they come off the tupelos. So I visited their place. And as I was driving around through there, I noticed that because of the road construction up along the side of the river, that the roads were blocking the flow of water from the river to the floodplain. That doesn't exist everywhere, but it does exist along stretches. And so for that reason I wound up analyzing roads in a little bit more detail.
Q. All right, doctor. I want to turn now to your causal analysis and conclusions regarding the ecology of the river and the floodplain. And you were asked a number of questions about this floodplain by counsel for the State of Florida. Can you please describe for us briefly the causal analysis that you performed regarding the river and the floodplain.
A. Sure. So the first step was to see if there were changes. That's step No. 1. And so I reviewed THE REPORTING GROUP

Mason \& Lockhart

critical habitat for that species.
Q. All right. I would like to ask you to look at the last sentence of the next paragraph, also on page 3, and to read that to yourself.
A. Okay. I have finished.
Q. And what does that sentence indicate to you about the population of mussels?
A. With respect to the ongoing subsistence and existence of the mussel populations, the sustainability of the mussel populations, given the proposed operation of the reservoirs and everything else being considered, including consumption of water, the Service reaches the opinion that they would not be at risk.
Q. All right. And I would like to ask you to now please turn to page 63 of the biological opinion.
A. Yes.
Q. And particularly, to look at the first sentence of the last paragraph, and please read it to yourself.
A. Okay. I have read that.
Q. What does that sentence indicate to you about the condition of Gulf sturgeon in Apalachicola?
A. The Fish and Wildlife Service evaluates these species in terms of their populations and whether THE REPORTING GROUP Mason \& Lockhart

4222
they're stable or not, which means are they ongoing. And -- and in this case the -- the Service reaches the conclusion that that population of sturgeon utilizing the Apalachicola River is, indeed, stable.
Q. Let's turn now to pages 124 and 125 of the biological opinion. And I am particularly looking at the second paragraph. And could you please read that to yourself.
A. I have finished reading that.
Q. And what does that paragraph tell you about the condition of the fat threeridge mussel species in the Apalachicola River?
A. Okay. This is -- this happens to be the species of mussel that the U.S. Fish and Wildlife Service thought might be most at risk because of it getting stranded. And what they're finding here is that there's abundance of these animals present, much higher than was previously thought. And they made an estimate of the percent of the population that might be adversely affected by the new operations. And that -- that's a percentage of 0.07 percent.

So my reading of this and other aspects of the document is that the U.S. Fish and Wildlife THE REPORTING GROUP

Mason \& Lockhart

Service have come to the conclusion that this species is doing pretty well in the river.
Q. And on page 125, the third paragraph that begins with, considering the recent information, may I ask you to read that paragraph to yourself.
A. I have read that.
Q. And what does that paragraph indicate to you about the fat threeridge?
A. That the U.S. Fish and Wildlife Service has concluded that it's stable and may be increasing in population size, and that they're going to do some additional studies to -- to refine their estimates.
Q. Now, let's page back through the document, please, to page 119. And under section 9.1.1 I would like to ask you about the sentence that begins with the status of. Can you please read that to yourself.

And what does that indicate to you, Dr. Menzie?
A. It looks -- as this is written, it says the Service is going to review and re-evaluate the status of the species.

I know from reading this document and other literature -- some of it is cited here -- that THE REPORTING GROUP Mason \& Lockhart 4224
there's a general sense that the species is one that could be taken off of the list or delisted because it seems to have -- be quite abundant now.
Q. And before we leave the river and the floodplain, you are familiar with the opinions of one of Florida's experts, Dr. Allan; are you not?
A. I am.
Q. And can you please provide the Court with a brief assessment of your views on Dr. Allan's opinions.
A. I think the most notable thing to mention is that Dr. Allan really looked for differences in the amount of flooding or amount of presence of water under certain flows. He was comparing difference scenarios that he had been provided. But my feeling when I looked at that was there's a little bit of apples and oranges among those scenarios. They're not quite equivalent.

Nevertheless, the work largely involves looking at the potential of things to occur such as the potential number of days that things might be drier versus wetter. So none of the work really involves looking at populations of any of the species. So there's no population considerations in the work. And I -- I think THE REPORTING GROUP

Mason \& Lockhart

Some of them are -- they go by the name Dinoflagellate, which is sort of after dinosaurs. Some look like dinosaur heads. And you get little tiny plants present in addition to some that are present during the spring. So you see that kind of shift that occurs.

I did studies on this in the '70's back on the Hudson River in the early part of my career. And this is what you see. You see this in every estuary.
Q. Did these changes in composition at the base of the food web have any ramifications for species in the higher levels of the food web?
A. The only way to really judge that is to think about the -- whether these plants, whether they be the submerged plants, these big plants, or these little plants, continue to serve as food for the upper food level -- the levels of the food web -- and they do -- and then to check to see whether the animals that would be dependent on this food web sustain themselves.

Like, there's a fish called the sand trout or the flounder or the various species that live here. Are they continuing to be in similar population abundance over time?

THE REPORTING GROUP
Mason \& Lockhart
4230
And that is direct evidence as to whether or not the food web is sustained.
Q. All right. Doctor, I would like to ask you, please, to turn to page 50 of your written direct testimony, and particularly to demonstrative 20 that is shown on page 50. And we'll also put that up on the screen.

MS. DeSANTIS: And, your Honor, may I
ask again if Dr. Menzie may go to the screen
to help explain this demonstrative?
SPECIAL MASTER LANCASTER: Sure.
BY MS. DeSANTIS:
Q. Doctor, can you please describe what that demonstrative shows.
A. Sure. So this is a very simple picture of these little tiny plants that are at the base of the food web, the animals that are in the middle of the food web, and then an example of the fish at the top of the food web. And you will find this present in estuaries pretty much around the country.

But just a little bit of biology, on the left here are these interesting shapes. These are diatoms. And they're very important all around the coastline. And they -- and they're an THE REPORTING GROUP

Mason \& Lockhart
important source of food. They're a little bit bigger than these plants here, and they can be eaten directly by these copepods.

These are little shrimp, little tiny shrimp-like animals. And these in turn are eaten by this fish, the bay anchovy. This fish, the bay anchovy, is probably one of the most important fish in the bay. It swims through the water with its mouth open and just basically takes in all these little tiny copepods and eats those. And then the bay anchovy is the source of food for all these other fish like the Menhaden that are well known all around the country. They're sources of food for all kinds of other fish and birds and mammals. So this fish can be supported by eating these little tiny shrimp-like animals in between that eat these diatoms.

The other way that they can be supported is that during the summer months, there is an increasing amount of these little tiny plankton, little tiny green spheres. And these are eaten by little animals known as ciliates, little tiny animals that you can see in a microscope. They're very tiny. And they in turn are eaten by these copepods, these shrimp, which in turn are THE REPORTING GROUP Mason \& Lockhart eaten by the bay anchovy. So there's two ways in which the bay anchovy continue to be supported in Apalachicola Bay.

My check on this was to see over all kinds of conditions since the 1970's, through droughts, through wet periods, whether the bay anchovy continues to be abundant -- it's almost like a barometer -- and it does. So that tells me that one way or the other the grazers exist, and the bay anchovy continues to be supported, sometimes by diatoms coming up this way, as in the spring, or sometimes by a combination of diatoms and little tiny plankton, as in the summer.

So it's just an interesting biology piece.
Q. Dr. Menzie, I'm actually going to ask you to stay at the screen because we are going to put up another demonstrative as we move on to the upper levels of the food web from page 65 of your written direct, demonstrative 27. And as we move on to talk about the upper food web and about the fish, including the anchovy that you just testified about, can you explain to us, please, what is shown in demonstrative 27.
A. Sure. It turns out that the most extensive data on biological and ecological organisms in the THE REPORTING GROUP Mason \& Lockhart

4249	4251
1 and that those that are intolerant to	1 parties need to hash out a few logistical
2 salinity don't thrive well there?	2 issues about the video and the sequence in
3 THE WITNESS: That's right.	3 which it's played, I would suggest that we
4 SPECIAL MASTER LANCASTER: Thank you.	4 recess, play those first thing in the
5 Redirect?	5 morning, and then turn to Dr. Lipcius.
6 MS. DeSANTIS: No questions, your Honor.	6 That would then only leave our economist,
7 SPECIAL MASTER LANCASTER: Recross?	7 Dr. Stavins. And the question would be
8 MS. WINE: No thank you, your Honor.	8 whether he could get on Thursday afternoon,
9 SPECIAL MASTER LANCASTER: Enjoy your	9 probably on the later side, or start first
10 son.	10 thing Friday morning.
11 THE WITNESS: Yes, thanks.	11 I think for scheduling purposes,
12 SPECIAL MASTER LANCASTER: Oh, I have	12 Dr. Stavins Friday morning would probably be
13 one more question. I'm sorry.	13 best. And I think that that would ensure
14 You were shown this USFIG piece dated, I	14 that we finish on Friday.
15 think, May 22, 2012. And you were asked	15 MR. PERRY: That's fine with us, your
16 about work in consultation with the state to	16 Honor.
17 identify alternatives to agriculture use or	17 SPECIAL MASTER LANCASTER: Is Dr. Stavins
18 incentives to reduce agriculture use of	18 in the area?
19 water. That was one of the conservation	19 MR. PRIMIS: Not just yet. But he
20 recommendations?	20 teaches at Harvard, so we can get him here.
21 THE WITNESS: Yes.	21 SPECIAL MASTER LANCASTER: I'm just
22 SPECIAL MASTER LANCASTER: Would you	22 suggesting that he be available. Just in
23 tell me, please, how two states who cannot	23 case I'm not long-winded and we could get to
24 even agree on the number of cases -- I'm	24 him, it would be very nice.
25 sorry, on the number of games that the Gators THE REPORTING GROUP Mason \& Lockhart	25 MR. PRIMIS: Okay. We'll make sure that THE REPORTING GROUP Mason \& Lockhart
4250	4252
1 and the Bulldogs played can possibly agree on	1 happens.
2 something like this?	2 SPECIAL MASTER LANCASTER: Let me just
3 THE WITNESS: They have to put aside	3 finish by thanking you again, all of you, for
4 parochial interests.	4 the rain. The weatherman's prediction for
5 SPECIAL MASTER LANCASTER: Do you think	5 tonight and tomorrow is driving, driving,
6 that would be possible?	6 driving rain. I told my wife about it and
7 THE WITNESS: I think that's the	7 she said what, can you do? And I said, great
8 challenge.	8 Scott, nothing. But we'll have to deal with
9 SPECIAL MASTER LANCASTER: Do you think	9 it.
10 they would be here if they could?	10 We'll recess.
11 THE WITNESS: No.	11 MR. PRIMIS: Thank you, your Honor.
12 SPECIAL MASTER LANCASTER: I don't	12 (Time Noted: 3:15 p.m.)
13 either.	13 (Proceeding adjourned to Thursday,
14 Thank you.	14 December 1, 2016, at 9:00 a.m.)
15 Any other questions?	15 (End of day)
16 Okay.	16 - - -
17 MS. DeSANTIS: No, your Honor. Thank	17
18 you.	18
19 MR. PRIMIS: Your Honor, the next	19
20 witnesses are going to be two witnesses by	20
21 video, Dr. Pine and Dr. Havens, who have	21
22 written a number of the oyster-related	22
23 documents that we have discussed, and then	23
24 our oyster expert, Dr. Lipcius.	24
25 Given the time and the fact that the	25
THE REPORTING GROUP	THE REPORTING GROUP
Mason \& Lockhart	Mason \& Lockhart

CERTIFICATE

I, Claudette G. Mason, a Notary Public in and for the State of Maine, hereby certify that the foregoing pages are a correct transcript of my stenographic notes of the Proceedings.

I further certify that I am a disinterested person in the event or outcome of the above-named cause of action.

IN WITNESS WHEREOF, I subscribe my hand this 13th day of December, 2016.
/s/ Claudette G. Mason
Claudette G. Mason, RMR, CRR
Court Reporter
My Commission Expires
June 9, 2019.

THE REPORTING GROUP
Mason \& Lockhart

4180:25, 4220:5,	4174 [1] - $4058: 13$	4229:7, 4239:2	4175:7, 4179:22,	additional [24] -
4220:10, 4221:4,	4179 [1] - 4058:14	72-day-old [1] -	4214:19	4060:19, 4065:3,
4238:14	4180 [1] - 4058:10	4159:20	abundance [8] -	4070:12, 4070:19,
3-15 [3] - 4126:13,	4186 [1] - 4058:10	74 [1] - 4159:2	4152:22, 4167:15,	4070:24, 4071:9,
4126:17, 4129:14	4191 [1] - 4058:19	75 [5] - 4065:25,	4167:17, 4173:24,	4071:15, 4072:13,
3-16 [2] - 4126:14,	4195 [1] - $4058: 6$	4097:22, 4098:3,	4222:18, 4229:25,	4072:17, 4129:19,
4126:17	4220 [1] - 4058:12	4098:13, 4159:9	4233:20, 4235:13	4130:13, 4141:6,
3-inch [2] - 4095:12,	4243 [1] - 4058:6	77 [1]-4113:12	abundant [4] -	4145:16, 4148:1,
4098:8	43 [1] - 4178:3	7th [4] - 4065:16,	4193:21, 4224:3,	4223:12, 4236:22,
3.2 [1]-4101:13	49 [2] - 4096:5, 4096:7	4066:4, 4066:6	4232:7, 4233:20	4237:3, 4237:17,
30 [1] - 4057:13			Academy [1] - 4133:9	4239:23, 4240:8,
300 [1] - 4165:25	5	8	accelerated [3] -	4240:24, 4241:6,
31 [1] - 4191:11			4113:16, 4131:21,	$4241: 9,4243: 1$
$\begin{aligned} & 325 \text { [2] - 4110:1, } \\ & 4110: 3 \end{aligned}$	$\begin{aligned} & 5 \text { [9]-4063:20, } \\ & \text { 4064:6, 4078:12, } \end{aligned}$	$\begin{aligned} & 8 \text { [9]-4091:25, } \\ & \text { 4111:13, 4120:16, } \end{aligned}$	$4133: 19$ accelerating [3] -	$\begin{gathered} \text { address }[3]-4065: 17, \\ 4140: 7,4192: 25 \end{gathered}$
34 [1] - 4113:11	$4084: 11,4121: 2$	4120:20, 4157:10,	4112:12, 4116:18,	addressed [1] -
35 [10]-4064:20,	$\begin{aligned} & \text { 4178:2, 4179:6, } \\ & \text { 10วค.? } \end{aligned}$	$\begin{aligned} & 4163: 13,4192: 7, \\ & 4197: 15,4197: 20 \end{aligned}$	4118:7	4192:22
4099:1, 4113:3,		$8.5[1]-4093: 12$	acceleration [9] -	adds [2] - 4237:21
4113:4, 4113:21,	4098:10, 4098:17,	80's [2] - 4171:22,	4114:10, 4114:12,	adjourned [1] - $4252 \cdot 13$
4117:21, 4117:23,	$4100: 19,4101: 23$	4210:19	4118:16, 4118:17,	4252:13
4122:8	50 [12] - 4065:25,	82 [1]-4177:23	4118:21, 4119:7,	4207:7
36 [1] - 4126:12	4072:8, 4125:23,	$85[1]-4169: 9$	4141:24	adopt [2] - 4067:10,
37 [1] - 4126:13	4126:20, 4129:20,	$86 \text { [1] - 4160:8 }$	accept [1] - 4098:12	4144:16
38 [1] - 4064:24	$\begin{aligned} & 4230: 4,4230: 6, \\ & 4237: 12,4237: 25 \end{aligned}$	8:38 [1] - 4057:14	acceptable [1] -	adult [2] - 4159:14
$\begin{aligned} & 39[2]-4064: 24, \\ & 4122: 21 \end{aligned}$	4238:21, 4240:7,	9	4209:5 according [3] -	$\begin{aligned} & \text { adverse [5] - 4160:19, } \\ & \text { 4161:5, 4165:7, } \end{aligned}$
$\begin{aligned} & 397[1]-4063: 8 \\ & 3: 15[1]-4252: 12 \end{aligned}$	$50 \text { 's [1] - 4210:6 }$		$\begin{aligned} & 4129: 3,4129: 7 \\ & 4243: 15 \end{aligned}$	$\begin{aligned} & \text { 4166:10, 4166:15 } \\ & \text { adversely [1] - } \end{aligned}$
3:15	$537 \text { [1] - 4057:12 }$	$\begin{aligned} & \text { 4120:18, 4120:21, } \\ & \text { 4163:14. 4169:3. } \end{aligned}$	account [5] - 4104:20,	4222:21
4	59 [1]-4115:5	4169:4, 4173:18,	$4105: 14,4105: 16$	advice [1] - 4089:6
$4 \text { [10] - 4063:17, }$	6	$\begin{gathered} 4253: 17 \\ 9-5[1]-4186: 24 \end{gathered}$	accounts [1] -	affect [9] - 4081:4,
$4128: 5$	6 [9]-4088:9,	9-6 [1] - 4187:3	4218:17	4105:18, 4160:6,
4129:6, 4174:10,	4088:12, 4090:18,	9-7 [1] - 4187:8	ACF [10] - 4061:24,	4162:12, 4173:23,
4174:11, 4192:9,	4101:9, 4101:11,	9.1.1 [1] - 4223:15	4157:19, 4158:	$4217 \cdot 11 \quad 4220 \cdot 25$
4226:2	4180:7, 4200:8,	90's [1] - 4171:22	4158:22, 4173:1,	affected [7]-4104:9,
4.7 [1] - 4160:18	$6.3[1]-4160: 18$	9:00 [1] - 4252:14	4203:20, 4206:23,	4138:9, 4171:18,
$\begin{aligned} & 40[2]-4064: 24, \\ & 4119: 8 \end{aligned}$	$60 \text { [2] - 4208:7, 4218:7 }$	A	$4208: 23$	$\begin{aligned} & 4194: 7,4219: 10 \\ & 4222: 21,4236: 11 \end{aligned}$
400 [3] - 4063:8,	61 [6] - 4087:8,	a.m [5] - 4057:14,	4104:19	affecting [2] - 4212:9,
4147:19, 4147:23		4117:8, 4117:10,	acreage [1] - 4169:17	4217:24
4061 [1] - 4058:3	63	4143:12, 4252:14	acres [5] - 4169:25,	affects [1] - 4094:17
4063 [1] - 4058:18	$65[1]-4232: 18$	ABID [1] - 4057:18	4190:11, 4192:20,	affiliated [2] -
4064 [1] - $4058: 17$	$68 \text { [1] - 4218:7 }$	able [8] - 4124:4,	4193:2, 4193:10	4174:21, 4179:10
$\begin{aligned} & 4067 \text { [2] - 4058:4, } \\ & 4058: 18 \end{aligned}$	$69[7]-4191: 10,$	4194:6, 4198:20, 4202:14. 4207:2.	Act [1] - 4202:23 action [2] - 4104:16	afraid [2] - 4071:7, 4089:13
4068 [1] - 4058:4	$4191: 14,4191: 15$	4207:19, 4214:18,	4253:9	afternoon [7] -
4084 [1] - 4058:15	4191:16, 4191:18,	4246:10	activities [3] - 4210:5,	4143:15, 4143:18,
4088 [1] - 4058:14	6th [1] - 4065:16	above-entitled [1] -	4212:4, 4246:25	4144:22, 4144:23,
4089 [1] - 4058:16	6th [1] - 4065.16	4057:10	actual [3] - 4094:17,	4225:17, 4225:20,
4101 [1] - 4058:11	7	above-named [1] -	4133:5, 4136:10	4251:8
4114 [1] - 4058:16	7	4253:9	adapted [1] - 4240:21	age [2]-4101:25,
4117 [1] - 4058:4	7 [7]-4089:15,	absent [1] - 4215:5	add [1] - 4073:15	4207:19
4139 [1] - 4058:4	4119:19, 4119:20,	absolutely [1] -	added [2] - 4070:1,	Agency [1] - 4203:15
4144 [2] - 4058:6	4186:19, 4186:21,	4136:21	4119:5	agency [8] - 4089:4,
4150 [1] - $4058: 15$	4209:2, 4243:9	Abstract [2] - 4150:11	addition [4]-4132:17,	4182:10, 4182:13,
4155 [1] - 4058:11	7.1 [1] - 4155:25	4150:15	4174:2, 4229:4,	4182:15, 4182:17,
4159 [1] - 4058:12	70's [3] - 4228:17,	REPORTING	OUP :19	4193:4, 4193:25,

4194:4	4158:4, 4158:5,	4084:13, 4176:8	4073:12, 4074:1,	appear [2] - 4114:11,
aggressive [2] -	4158:10, 4249:17	analyst [1] - 4202:10	4074:9, 4076:18,	4186:7
4091:22, 4093:12	Amazon [2] - 4213:15,	analyze [9]-4124:1,	4076:22, 4077:2,	APPEARANCES ${ }_{[1]}$
ago [2]-4093:23,	4213:18	4148:1, 4148:19,	4077:19, 4082:7,	4057:16
4111:23 agree [36]	americana [4] 4184:20, 4184:24,	$\begin{aligned} & \text { 4149:1, 4149:3, } \\ & \text { 4172:7, 4172:12, } \end{aligned}$	$\begin{aligned} & 4085: 17,4085: 19 \\ & 4085: 21,4085: 25 \end{aligned}$	$\begin{aligned} & \text { appendix }[4] \text { - } \\ & 4074: 18,4074: 24, \end{aligned}$
4070:3, 4072:11,	$4185: 8,4187: 21$	4199:21, 4233:24	4086:13, 4092:19,	$4095: 25,4096: 23$
4077:5, 4077:10,	amount [13]-4102:25,	analyzed [13] -	4092:22, 4092:25,	apples [3] - 4100:22,
4079:9, 4089:24,	4103:8, 4103:10,	4130:18, 4130:23,	4095:8, 4095:23,	4134:6, 4224:17
4091:8, 4091:20,	4105:19, 4145:16,	4131:3, 4145:21,	4098:21, 4102:14,	applicable [1] -
4097:7, 4097:11,	4171:10, 4178:25,	4145:25, 4147:15,	4103:23, 4105:9,	4147:24
4097:15, 4097:21,	4217:13, 4218:8,	4148:6, 4148:9,	4105:18, 4108:7,	applied [3] - 4092:18,
4097:24, 4098:4,	4224:13, 4231:20,	4151:18, 4178:21,	4108:20, 4108:21,	4092:21, 4132:19
4098:20, 4100:5,	4233:15	4182:22, 4196:14,	4108:23, 4108:25,	applies [1] - 4142:13
4100:17, 4100:22,	amounts [5] -	4236:23	4109:10, 4109:18,	applying [1] - 4203:11
4101:20, 4101:22,	4072:19, 4213:11,	analyzing [2] -	4110:13, 4110:19,	approach [17] -
4104:8, 4104:11,	4241:5, 4241:9,	4155:12, 4216:14	4111:4, 4111:6,	4060:1, 4067:3,
4104:14, 4105:23,	4241:21	anchovy [8] - 4231:6,	4111:9, 4112:13,	4074:21, 4123:23,
4106:2, 4107:10, 4114:6, 4115:25,	analyses [8] 4083:18, 409	4231:7, 4231:11,	4112:19, 4113:16, 4118:8, 4122:19,	$4125: 9,4127: 3,$
4116:4, 4139:8,	4197:7, 4198:3,	4232:6, 4232:10,	4122:20, 4126:6,	$\begin{aligned} & \text { 4144:25, 4200:14, } \\ & \text { 4202:10, 4202:19, } \end{aligned}$
4139:16, 4168:9,	4198:19, 4202:7,	4232:21	4127:12, 4130:4,	4203:19, 4203:20,
4185:6, 4249:24,	4203:12, 4217:12	ANERR [1] - 4188:19	4131:17, 4132:25,	4204:17, 4204:19,
4250:1	analysis [69] -	animal [1] - 4248:11	4134:19, 4137:8,	4204:21, 4227:16
agreed [2] - 4083:1, 4162.24	4072:21, 4073:10,	animals [12] - 4157:5,	$\begin{aligned} & \text { 4139:17, 4139:21, } \\ & \text { 4140:5, 4141:7, } \end{aligned}$	approaches [2] -
agricultural [14] -	4077:1, 4080:5,	4185:17, 4222:18, 4227:2, 4227:7,	4145:7, 4145:8,	4123:19, 4197:7 approximate [1] -
4065:17, 4072:9,	4083:22, 4085:9,	4229:20, 4230:17,	4148:3, 4148:15,	4097:14
4148:19, 4149:3,	4110:11, 4110:16,	4231:5, 4231:17,	4148:21, 4149:9, 4150:25, 4152:17,	April [1] - 4214:10
$\begin{aligned} & \text { 4151:2, 4158:10, } \\ & \text { 4158:11, 4163:20, } \end{aligned}$	$\begin{aligned} & \text { 4119:1, 4135:2, } \\ & 4141: 2,4145: 19, \end{aligned}$	$\begin{aligned} & 4231: 22,4231: 23, \\ & 4240: 20 \end{aligned}$	$\begin{aligned} & \text { 4150:25, 4152:17, } \\ & \text { 4153:4, 4153:11, } \end{aligned}$	aquatic [8]-4179:2,
4172:9, 4172:14,	4146:24, 4150:24,	annual [4]-4107:21,	4160:25, 4164:6,	$4183: 13,4184: 19,$
4175:12, 4176:3,	4151:22, 4152:24,	4121:11, 4169:16,	4164:12, 4166:1,	4190:11, 4228:1,
4178:12, 4182:7	4154:19, 4154:22,	4169:24	4166:4, 4167:10,	4228:10
$\begin{aligned} & \text { Agricultural }[1] \text { - } \\ & \text { 4065:22 } \end{aligned}$	$\begin{aligned} & 4155: 16,4156: 14, \\ & 4161: 12,4172: 6, \end{aligned}$	$\begin{gathered} \text { answer [13] - 4059:19, } \\ \text { 4071:7, 4087:16, } \end{gathered}$	$\begin{aligned} & \text { 4177:1, 4177:4, } \\ & \text { 4182:23, 4184:1, } \end{aligned}$	area [13]-4079:13, 4184:15, 4184:22
agriculture [3] -	4176:9, 4188:4,	4088:6, 4100:12,	4184:3, 4186:2,	4190:18, 4195:6,
4237:16, 4249:17,	4188:18, 4189:3,	4110:14, 4158:13,	4188:19, 4189:12,	4195:7, 4195:8,
4249:18	4194:10, 4194:15,	4197:25, 4198:4,	$\begin{aligned} & \text { 4189:22, 4190:13, } \\ & \text { 4191:1, 4191:22, } \end{aligned}$	4195:13, 4215:6,
aha [1] - 4201:24	4194:20, 4195:8,	4201:12, 4201:24,	4192:12. 4192:19.	4216:4, 4233:10,
ailing [1] - 4195:10	4195:12, 4196:15,	4202:1, 4248:17	$\begin{aligned} & \text { 4192:12, 4192:19, } \\ & \text { 4193:2, 4193:14, } \end{aligned}$	4235:13, 4251:18
air [1] - 4202:23	4197:4, 4197:12, $4200: 4,4200: 5,$	answered [3] -	$\begin{aligned} & \text { 4193:2, 4193:14, } \\ & \text { 4194:11, 4194:22, } \end{aligned}$	areas [17] - 4079:6,
Alabama [1]-4084:15 algae [5] - 4228:5,		$\begin{aligned} & 4100: 10,4141: 8 \text {, } \\ & 4244: 21 \end{aligned}$	$\begin{aligned} & \text { 4194:11, 4194:22, } \\ & 4195: 20,4196: 8, \end{aligned}$	4079:10, 4087:14,
algae $[5]-4228: 5$, $4228: 7,4228: 24$,	4202:5, 4202:19,	4244:21 answering [1] -	4208:15, 4211:17,	$\begin{aligned} & \text { 4095:1, 4127:14, } \\ & \text { 4127:19, 4156:16, } \end{aligned}$
4228:25, 4236:2	4204:9, 4204:14,	4197:25	4212:21, 4213:22,	$159: 25,4164: 15$
Allan [5] - 4173:7,	$4205: 5,4205: 8,$ 4205:19, 4205:24	Antarctic [2] -	$\begin{aligned} & \text { 4214:5, 4221:23, } \\ & 4222: 4,4222: 13 \end{aligned}$	4190:19, 4190:20,
4173:10, 4199:17, 4224:7, 4224:12	$4205: 25,4206: 1,$	4094:23, 4133:19 anticipated [1] -	4226:21, 4232:3,	$\begin{aligned} & \text { 4197:24, 4198:8, } \\ & \text { 4217:13, 4238:20, } \end{aligned}$
Allan's [1] - 4224:10	$\begin{aligned} & 4206: 5,4206: 6, \\ & 4211: 11.4211: 14 \end{aligned}$	4153:21	$\begin{aligned} & 4233: 8,4233: 12 \\ & 4234: 21,4235: 17 \end{aligned}$	4240:13, 4241:10
almost [6] - 4100:6,	4211:11, 4211:14,	anyway [1] - 4203:23	4239:11, 4239:24,	Army [5] - 4061:11,
4100:19, 4101:22,	$\begin{aligned} & \text { 4214:17, 4216:17, } \\ & \text { 4216:22, 4217:23, } \end{aligned}$	Apalachicola [124] -	4241:19, 4244:16,	4061:22, 4090:14,
$4101: 24,4232: 7$, $4240: 3$	4225:24, 4226:13,	4059:12, 4059:15,	$4247: 8$	4090:16, 4092:16
alone [3] - 4068:11,	4227:14, 4234:19,	4061:12, 4062:25,	apart [3]-4198:15,	arrive [1] - 4068:6
4105:17, 4197:5	4239:18, 4239:21,	4068:4, 4068:19,	4208:12, 4208:20	arrived [1] - 4095:12 article [8]-4063:12,
altered [1] - 4077:21	4239:25, 4242:20,	4069:6, 4069:24,	apologize [1] - 4097:18	4063:13, 4174:12,
alternative [1] -	4245:9, 4245:20,	4070:6, 4070:13,	Appalachians [1]	4174:17, 4177:7,
$4205: 1$	4247:9	4070:25, 4072:13,	Appalachians [1] - 10ne:11	4179:7, 4180:6,
alternatives [4] -	Analysis [2] -	REPORTING	JUP	4180:8

4097:4, 4097:11	4104:4, 4104:12,	4164:1, 4164:16,	corresponds [2] -	4181:25
converted [1] -	4104:21, 4105:4,	4164:17, 4164:19,	4119:3, 4121:18	critical [5] - 4125:4,
4122:11	4105:9, 4105:10,	4164:22, 4165:8,	cotton [1] - 4065:25	$4125: 11,4125: 14$
converts [1] - 4097:19	4105:13, 4105:22,	4165:18, 4165:19,	counsel [16] - 4060:8,	4127:2, 4221:1
conveys [1] - 4226:23	4107:3, 4107:16,	4165:21, 4166:1	4080:11, 4080:15,	criticism [3] -
copepods [3] -	4107:17, 4107:19,	4166:6, 4166:13	4093:19, 4117:13,	4080:25, 4081:3
4231:3, 4231:10,	4108:8, 4110:8,	4166:23, 4166:24,	4126:9, 4196:13,	4127:10
4231:25	4110:20, 4111:1,	4167:2, 4167:12,	4216:20, 4220:4,	criticisms [1] -
copies [1] - 4226:17	4111:4, 4111:10,	4167:16, 4168:1	4220:6, 4225:25,	4125:10
copy [3] - 4061:1,	4111:14, 4112:5,	4168:10, 4168:15,	4236:23, 4243:10,	criticized [1]
4074:23, 4087:7	4112:10, 4112:13,	$\begin{aligned} & \text { 4169:18, 4169:20, } \\ & \text { 4169:21, 4170:7, } \end{aligned}$	4247:5, 4247:6	4083:12
corner [2]-4084:24,	$\begin{aligned} & \text { 4113:8, 4113:24, } \\ & \text { 4115:11, 4116:3, } \end{aligned}$	$\begin{aligned} & \text { 4169:21, 4170:7, } \\ & 4170: 8,4170: 10, \end{aligned}$	count [1] - 4207:19	crops [1] - 4066:1 CROSS [2] - 4067:16
4203:9 Corps [9]-4061:12	4116:7, 4116:10,	4170:11, 4170:14,	country [3]-4228 $4230 \cdot 21,4231: 13$	CROSS [2] - 4067:16, $4144 \cdot 20$
Corps [9] - 4061:12,	4116:15, 4128:25,	4170:20, 4171:7,	$4230: 21,4231: 13$	4144:20
4090:14, 4090:16,	4129:9, 4130:7,	4171:13, 4171:16,	$4192: 1$	4201:8
4092:16, 4093:8,	4130:19, 4130:20,	4172:10, 4172:18,	couple [8] - 4103:19,	Cross [1] - 4058:2
4132:14, 4132:17	4136:20, 4139:9,	4172:20, 4173:6,	4124:19, 4139:3,	CROSS-
Corps' [1] - 4133:24	$\begin{aligned} & 4139: 21,4140: 2, \\ & 4140: 3,4140: 10 \end{aligned}$	$\begin{aligned} & 4175: 16,4175: 25 \\ & 4176: 5,4176: 14 \end{aligned}$	4214:24, 4218:23,	EXAMINATION [2] -
correct [305] -			4225:22, 4246:2,	4067:16, 4144:20
4067:25, 4068:1,	$4141: 13.4141: 14$		4246:19	crowd [1] - 4059:3
4068:4, 4068:5,	4141:19, 4142:3,	4177:11, 4177:14,	course [7] - 4171:23,	CRR [2] - 4057:14,
4068:19, 4068:20,	4142:8, 4145:9,	4178:4, 4178:14,	$\begin{aligned} & \text { 4177:2, 4196:25, } \\ & \text { 4197:4. 4210:11. } \end{aligned}$	4253:15
40	4145:10, 4145:13,	4178:15, 4178:19,	$\begin{aligned} & 4197: 4,4210: 11, \\ & 7214: 20,4234: 18 \end{aligned}$	cubic [7] - 4070:13,
4075:11, 4075:18,	4145:14, 4145:18,	4179:2, 4179:11,	COURT [1] - 4057:1	4071:10, 4072:3,
4075:23, 4075:24,	4145:20, 4145:22,	4179:14, 4182:3,	court [2] - 4135:6,	4078:18, 4237:22
4076:12, 4076:15,	4145:24, 4146:2,	4182:14, 4182:25,	4136:18	cup [1] - 4216:2
4077:3, 4077:4,	4146:9, 4146:10,	4183:8, 4183:15,	Court [24] - 4057:12,	cure [1] - 4204:11
4077:7, 4078:23,	4146:12, 4146:13,	4183:25, 4184:11,	4063:22, 4103:18,	current [2] - 4102:19,
4079:21, 4080:6,	4146:16, 4146:17,	4184:20, 4185:15,	4118:22, 4120:21,	4176:2
4080:12, 4081:7,		4185:21, 4185:24,	4121:15, 4126:11,	currents [1] - 4135:16
4081:13, 4081:24,			4143:4, 4143:19,	custom [1] - 4144:24
4082:13, 4083:15,		$\begin{aligned} & \text { 4186:17, 4186:22, } \\ & \text { 4187:1, 4187:17, } \end{aligned}$	4152:15, 4153:2,	cut [8] - 4126:20,
4083:16, 4084:9,	4148:7, 4148:8,		4170:23, 4195:5,	4129:21, 4166:5
4084:18, 4084:19,	4148:11, 4148:12,	4188:6, 4188:11,	4197:14, 4197:16,	4237:13, 4238:1,
4084:22, 4085:22,	4149:2, 4149:6,	188:22, 4189:4,	4205:7, 4209:5,	4238:21, 4240:7,
4085:23, 4086:4,	4149:10, 4149:12,	189:6, 4189:7,	4209:18, 4224:9,	4242:25
4086:6, 4086:7,	4149:15, 4149:16,	$\text { 189:10, } 4189$	4225:9, 4226:16,	cycle [1] - 4208:7
4086:17, 4087:18, 4088:18, 4088:24	4149:19, 4150:6,	4189:21, 4190:8,	$\begin{aligned} & \text { 4235:22, 4237:8, } \\ & \text { 4253:16 } \end{aligned}$	cypress [2] - 4210:12,
4090:5, 4090:9,	4150:7, 4150:19,	4190:13, 4191:2,	$\begin{aligned} & \text { 4253:16 } \\ & \text { cover [2] - 4183:7, } \end{aligned}$	4219:7
$\begin{aligned} & \text { 4091:5, 4091:11, } \\ & \text { 4091:12, 4091:15, } \end{aligned}$	$\begin{aligned} & 4150: 20,4151: 2 \\ & 4151: 11,4151: 12, \end{aligned}$	$\begin{aligned} & \text { 4191:14, 4193:3, } \\ & \text { 4193:7, 4193:15, } \end{aligned}$	4183:9 covers [2] - 4075:1	D
4091:16, 4091:19,	4152:2, 4152:12,	94:22, 4194:24,	4185:12	daily [1] - 4075:5
4091:22, 4092:11,	4152:14, 4152:18,	4202:1, 4235:20,	crab [3] - 4234:25,	dam [9] - 4168:7,
4094:2, 4094:4,	$\begin{aligned} & \text { 4153:4, 4153:11, } \\ & \text { 4153:12, 4153:19, } \end{aligned}$	4239:19, 4240:17,	$4235: 2,4235: 4$	4201:18, 4210:8,
4094:12, 4095:4,	4153:12, 4153:19, 4153.20, 4153.24	$\begin{aligned} & 4241: 1,4243: 18 \\ & 4244: 2.4244: 16 \end{aligned}$	crabs [2] - 4227:6,	$4211: 24,4211: 25,$
4095:9, 4095:19,	4153:20, 4153:24,	244:2, 4244:16,	4227:21	$4218: 16,4219: 21$
4096:9, 4096:12,	4154:6, 4154:10,	4245:18, 4253:4	CRAIG [1] - 4057:20	4242:15
4096:18, 4097:13,	4154:19, 4155:14,	corrected [1] -	crash [1] - 4244:18	Dam [1] - 4156:11
4097:16, 4097:19,	4155:21, 4156:11,	$4133: 16$	created [3] - 4060:22,	dams [1] - 4210:4
4097:22, 4097:23,	4157:2, 4157:20,	correctly [5] -	4079:20, 4190:25	dark [1] - 4079:7
4098:1, 4098:10, 4098:18, 4098:23,	4157:24, 4158:7,	correctly [5] - $4087: 17,4102: 23$	creating [1] - 4128:15	darker [1] - 4079:2
$\begin{aligned} & \text { 4098:18, 4098:23, } \\ & 4098: 24,4099: 6 \end{aligned}$	4158:23, 4159:14,	4115:7, 4228:18,	credence [2] - 4138:1,	dash [1] - 4129:14
4098:24, 4099:6,	4159:18, 4159:21,	4246:18	4138:11	Data [2] - 4084:14,
4099:11, 4100:20,	4160:3, 4160:4,	correlations [1] -	credit [1] - 4136:7	4176:8
$19,4103: 3$	4160:6, 4160:20,	4068:13	Creek [1] - 4176:13	data [36] - 4080:20,
4103:4, 4103:9,	$4161: 25,4162: 1$		criteria [4] - 4181:8,	$\begin{aligned} & 4082: 8,4089: 12, \\ & 4089: 25,4090: 12, \end{aligned}$

4128:13, 4130:3, 4156:25, 4167:11, 4181:13, 4219:8, 4236:12
Lettenmaier [1] 4199:15
letter [6] - 4062:18, 4064:3, 4064:9, 4064:15, 4064:20, 4064:25
level [92] - 4068:18, 4068:22, 4085:16, 4085:18, 4085:21, 4085:24, 4086:1, 4086:9, 4086:12, 4086:16, 4086:25, 4088:3, 4090:3, 4090:7, 4091:9, 4091:21, 4092:5, 4092:25, 4093:13, 4094:7, 4095:7, 4095:12, 4095:22, 4096:18, 4098:8, 4098:22, 4099:10, 4099:15, 4099:17, 4101:4, 4101:13, 4102:11, 4102:15, 4102:19, 4102:21, 4102:25, 4103:5, 4103:7, 4103:8, 4104:21, 4104:24, 4105:19, 4106:7, 4108:15, 4108:25, 4109:2, 4109:6, 4109:8, 4112:12, 4113:9, 4113:16, 4116:15, 4116:18, 4117:2, 4117:17, 4117:19, 4118:8, 4119:2, 4119:16, 4121:6, 4130:5, 4130:16, 4130:18, 4130:22, 4131:1, 4131:4, 4131:8, 4131:20, 4132:14, 4132:18, 4132:20, 4133:1, 4133:11, 4134:6, 4134:25, 4135:8, 4136:5, 4136:16, 4136:19, 4137:17, 4138:3, 4138:17, 4140:10, 4141:24, 4142:7, 4142:9, 4142:18, 4164:11, 4171:3, 4227:4, 4229:18 levels [21]-4076:11, 4076:17, 4076:21, 4079:19, 4079:23, 4082:22, 4092:14, 4108:12, 4112:4,

4131:9, 4132:13,
4138:4, 4164:18, 4176:2, 4196:21, 4229:13, 4229:18, 4232:18, 4236:4, 4236:5, 4236:11
lied [1] - 4199:11
life [1] - 4248:11
light [1] - 4137:5
likely [5] - 4091:9,
4132:24, 4133:3, 4136:7, 4136:8 likewise [1] - 4110:18 limit [5] - 4128:17, 4134:1, 4245:16, 4245:17, 4248:1
limitations [1] 4194:5
limited [2] - 4147:12, 4151:25
limiting [1] - 4245:6
limits [1] - 4121:14
line [19] - 4063:5, 4087:9, 4087:10, 4087:12, 4091:11, 4097:8, 4107:14, 4110:4, 4162:7, 4169:13, 4169:20, 4169:22, 4170:22, 4170:24, 4171:17, 4171:24, 4172:2, 4192:12
linear [1] - 4119:2 lines [7] - 4063:8, 4087:8, 4087:21, 4087:23, 4106:21, 4106:24, 4110:2
linked [1] - 4167:24
Lipcius [3] - 4248:19, 4250:24, 4251:5
list [1] - 4224:2
listed [3] - 4084:20, 4156:4, 4198:1 listing [2] - 4163:12, 4211:3
literally [1] - 4210:20
literature [21] -
4087:2, 4094:25,
4095:2, 4131:16, 4131:17, 4133:21, 4142:7, 4142:10, 4142:15, 4142:20, 4142:21, 4159:16, 4174:1, 4174:2, 4174:6, 4199:21, 4200:2, 4207:17, 4217:1, 4217:2, 4223:25
live [4] - 4059:16, 4153:10, 4229:2

4235:13
local [1] - 4122:22
location [4] - 4108:25, 4109:9, 4109:10, 4188:24
locations [7] -
4077:11, 4079:24, 4079:25, 4123:4, 4123:5, 4233:5, 4238:12
logging [1] - 4210:11
logic [1] - 4202:7
logistical [1] - 4251:1
long-term [8] -
4099:23, 4100:2, 4100:7, 4134:14, 4134:20, 4166:25, 4207:25, 4227:24
long-winded [1] 4251:23
longer-term [1] 4211:23
look [78] - 4080:24, 4084:23, 4087:21, 4087:23, 4099:8, 4117:16, 4117:18, 4117:20, 4119:12, 4120:10, 4120:19, 4124:16, 4124:17, 4125:19, 4126:8, 4128:4, 4129:17, 4137:7, 4145:24, 4149:7, 4149:8, 4149:11, 4151:6, 4152:10, 4155:8, 4155:17, 4156:3, 4158:3, 4158:25, 4162:2, 4162:17, 4163:7, 4171:2, 4171:19, 4172:16, 4175:6, 4175:7, 4178:6, 4179:21, 4182:24, 4183:2, 4190:24, 4192:6, 4196:7, 4197:10, 4197:14, 4198:16, 4200:7, 4200:16, 4200:19, 4201:25, 4205:1, 4206:17, 4207:8, 4208:16, 4208:21, 4209:18, 4212:12, 4213:5, 4213:22, 4214:13, 4217:19, 4220:3, 4220:11, 4221:2, 4221:18, 4225:5, 4227:11, 4227:17, 4227:22, 4229:3, 4234:1, 4234:2,

4244:21, 4247:2, 4248:1
looked [47] - 4073:2, 4077:1, 4098:16, 4101:18, 4129:2, 4131:6, 4145:11, 4147:18, 4147:19, 4147:22, 4151:3, 4151:23, 4152:6, 4152:13, 4152:19, 4162:19, 4168:16, 4168:17, 4172:19, 4183:1, 4186:13, 4199:8, 4199:18, 4199:20, 4201:9, 4205:14, 4206:24, 4207:11, 4207:15, 4207:18, 4207:24, 4217:16, 4224:12, 4224:16, 4225:4, 4234:3, 4235:11, 4235:14, 4236:25, 4237:18, 4238:24, 4239:1, 4239:25,
4240:25, 4247:20
looking [37] - 4093:7, 4119:22, 4140:25, 4146:23, 4147:1, 4170:22, 4171:5, 4175:10, 4175:15, 4175:17, 4176:1, 4176:11, 4176:18, 4177:3, 4186:10, 4186:12, 4191:13, 4191:21, 4198:25, 4211:8, 4212:15, 4218:13, 4218:14, 4218:21, 4219:15, 4222:8, 4224:20, 4224:23, 4226:9, 4227:18, 4233:4, 4233:19, 4237:25, 4239:6, 4242:16, 4243:23, 4247:22 looks [5] - 4174:7, 4216:2, 4223:21, 4237:23
loss [2] - 4190:19, 4196:24
losses [2] - 4211:2, 4228:9
Louisiana [2] -
4109:16, 4131:19 low [26] - 4073:7, 4073:13, 4074:8, 4074:13, 4075:16, 4082:5, 4119:3, 4120:14, 4132:14, 4132:19, 4133:7,

4164:18, 4171:24, 4173:12, 4173:16, 4173:23, 4174:3, 4178:14, 4181:8, 4211:2, 4228:21, 4236:18, 4238:16, 4239:9
lower [15] - 4076:11, 4076:13, 4076:16, 4076:21, 4083:2, 4105:24, 4128:17, 4141:19, 4141:21, 4157:8, 4159:13, 4159:25, 4227:11, 4227:15, 4228:20
Lower [7] - 4173:13, 4173:14, 4173:24, 4174:14, 4175:13, 4175:20, 4181:5 lunch [1] - 4143:5

\mathbf{M}
magnitude [2] -
4140:18, 4239:4
Maine [13] - 4057:13,

4057:15, 4195:24, 4203:6, 4203:8, 4203:9, 4203:14, 4206:8, 4246:18, 4246:20, 4246:21, 4246:22, 4253:3
maintain [1] - 4214:2 maintained [4] -
4112:20, 4112:21, 4207:6, 4241:14
major [4] - 4210:18, 4212:8, 4213:6, 4217:20
majority [1] - 4136:24
male [1] - 4248:4
mammals [3] 4185:14, 4185:16, 4231:15
man [2] - 4151:19, 4243:16
man-made [2] 4151:19, 4243:16
managed [1] - 4245:1
management [2] -
4163:24, 4219:22
Management [1] 4063:15
managers [1] - 4158:9
manatees [2] 4184:13, 4185:17
manner [1] - 4200:15
manuscript [1] -
4062:24
map [3] - 4078:24,

4215:18, 4228:22	4121:2, 4121:11,	4235:25	scientists [2] -	4183:15, 4183:21,
RMR [2] - 4057:14,	4121:13, 4122:5,	scale [3] - 4128:21,	4089:10, 4207:22	4183:22, 4184:6,
4253:15	4122:11, 4123:2,	4128:23, 4188:4	scope [1] - 4196:3	4184:7, 4189:23,
road [3] - 4151:14, 4201:21, 4216:9	$\begin{aligned} & 4126: 19,4126: 23, \\ & 4127: 20,4129: 22, \end{aligned}$	scales [1] - 4242:10	Scott [1] - 4252:8	4190:7
roads [2] - 4216:10,	$4130: 14,4130: 18,$	$070: 14,4070: 17,$	screen [16] - 4107:6,	$\begin{aligned} & \text { seagrasses }[3] \text { - } \\ & 4183: 18,4186: 4, \end{aligned}$
4216:14	4131:9, 4132:1,	4070:20, 4070:21,	4119:20, 4119:21,	4186:6
role [2]-4205:21,	4132:12, 4132:21,	4071:16, 4071:20,	4120:17, 4126:17,	season [5] - 4071:6,
4243:25	4132:24, 4135:9,	4072:3, 4072:6,	4128:6, 4132:10,	4120:14, 4121:1,
rooted [1] - 4228:4	4136:1, 4136:5,	4078:17, 4078:22,	4197:19, 4209:6,	4121:11, 4213:19
rose [3] - 4095:7,	4136:19, 4137:17,	4081:12, 4082:12,	4209:14, 4211:15,	seasonal [1] - 4108:4
4096:18, 4099:16	4137:24, 4138:4,	4082:16, 4082:19,	4226:19, 4230:7,	seasons [2] - 4213:17
rotation [1] - 4065:20	4138:9, 4138:18,	4082:23, 4093:13,	4230:9, 4232:16,	seated [2] - 4066:21,
roughly [1] - 4119:3	4138:23, 4140:13,	4102:22, 4105:7,	4238:2	4144:6
round [1] - 4071:24	4140:18, 4140:22,	4105:20, 4106:1,	screwing [1] -	seawater [2] -
round-up [1] -	4141:19, 4141:21,	4107:11, 4120:4,	4184:24	4108:17, 4108:22
4071:24	4159:18, 4159:21,	4120:7, 4120:12,	se [2] - 4173:20,	second [21] - 4070:14,
rounded [1] - 4097:12	$\begin{aligned} & \text { 4159:25, 4160:6, } \\ & 4185: 21,4185: 24, \end{aligned}$	$\begin{aligned} & \text { 4121:4, 4121:9, } \\ & \text { 4124:23, 4124:25, } \end{aligned}$	4218:3 sea [81]-4068.18	$\begin{aligned} & 4070: 19,4070: 25 \\ & 4071: 10,4072: 4 \end{aligned}$
rows [1] - 4107:8	$\begin{aligned} & \text { 4185:21, 4185:24, } \\ & \text { 4186:9, 4186:10, } \end{aligned}$	$\begin{aligned} & \text { 4124:23, 4124:25, } \\ & 4125: 19,4125: 21, \end{aligned}$	sea [81] - 4068:18, 4068:22, 4085:16,	$\begin{aligned} & \text { 4071:10, 4072:4, } \\ & \text { 4078:18, 4089:19, } \end{aligned}$
$\begin{aligned} & \text { run }[8]-4071: 4, \\ & 4105: 14,4106: 4, \end{aligned}$	4186:14, 4187:16,	$4125: 23,4126: 5,$	4085:18, 4085:20,	4101:12, 4115:16,
$4106: 5,4126: 5,$	4187:20, 4188:1,	4126:25, 4127:24,	4085:24, 4086:1,	4123:14, 4123:16,
4127:24, 4130:11,	4188:9, 4188:10,	4127:25, 4128:8,	4086:9, 4086:12,	4162:4, 4162:7,
4226:10	4188:17, 4189:3,	4128:12, 4129:18,	4086:16, 4086:24,	4207:4, 4210:13,
running [2] - 4082:10,	$\begin{aligned} & \text { 4189:8, 4189:14, } \\ & \text { 4189:20, 4201:11, } \end{aligned}$	$\begin{aligned} & \text { 4130:1, 4130:2, } \\ & \text { 4130:11, 4130:12, } \end{aligned}$	4088:3, 4090:3,	$\begin{aligned} & \text { 4217:6, 4218:10, } \\ & \text { 4218:25, 4222:8, } \end{aligned}$
	4237:24, 4238:8,	4140:19, 4141:10,	4091:21, 4092:5,	4237:22, 4239:6
S	$\begin{aligned} & \text { 4238:11, 4238:14, } \\ & \text { 4238:19, 4239:7, } \end{aligned}$	$\begin{aligned} & \text { 4141:12, 4146:11, } \\ & \text { 4146:12, 4147:18, } \end{aligned}$	$\begin{aligned} & 4092: 14,4092: 25, \\ & \text { 4093:12, 4094:7, } \end{aligned}$	$\begin{gathered} \text { section [10] - 4091:3, } \\ 4155: 25,4157: 10, \end{gathered}$
saline [1] - 4159:13	4239:10, 4239:22,	$4147: 20,4236: 24,$	4095:7, 4095:12,	4157:14, 4157:24,
4073:8, 4076:13,	4240:6, 4240:12,	4237:10, 4237:18,	4095:22, 4096:17,	4159:6, 4160:10,
4080:3, 4105:24,	4240:15, 4247:11,	4238:3, 4238:6,	4099:10, 4099:15,	4223:15
4107:20, 4107:22,	4248:25, 4249:2	4239:18, 4240:8,	4099:17, 4101:4,	sections [2] -
4107:25, 4109:9,	saltier [3] - 4122:22,	4240:9, 4243:1	4101:13, 4102:11,	4060:17, 4060:18
4136:15, 4188:18,	4184:6, 4185:25	scenarios [37] -	4102:15, 4102:19,	sediment [6] - 4104:4,
4239:4	saltwater [9] -	4067:23, 4068:3,	4102:21, 4102:25,	4131:24, 4136:25,
Salinity [1] - 4186:25	4076:18, 4076:21, 4109:7 4183:21	4070:9, 4070:18,	4103:5, 4103:8,	4137:11, 4140:11,
$\begin{aligned} & \text { salinity }[112]- \\ & \text { 4059:11, 4067:24, } \end{aligned}$	$\begin{aligned} & \text { 4109:7, 4183:21, } \\ & \text { 4183:22, 4190:2, } \end{aligned}$	$\begin{aligned} & \text { 4070:23, 4071:17, } \\ & \text { 4071:25, 4079:20, } \end{aligned}$	4104:21, 4104:24, 4105:19, 4109:1	4166:8
4068:4, 4068:19,	4190:4, 4190:16,	4080:6, 4080:11,	$\begin{aligned} & 4105: 19,4109: 1, \\ & 4112: 12,4113: 9, \end{aligned}$	sedimentation [28] - 4103:16, 4104:3,
4068:24, 4069:5,	4213:1	4080:13, 4080:19,	4113:15, 4116:15,	4104:5, 4104:9,
4069:9, 4069:13,	sample [1] - 4216:2	4081:4, 4081:6,	4116:18, 4117:2,	4104:11, 4110:19,
4069:18, 4069:25,	San [2]-4196:1,	4081:11, 4081:15,	4117:17, 4117:19,	4110:24, 4111:1,
4070:6, 4071:14,	4196:2	4081:19, 4091:15,	4118:8, 4119:2,	4111:3, 4111:5,
4072:14, 4072:18,	sand [5] - 4104:4,	4091:17, 4091:21,	4119:16, 4130:5,	4111:8, 4111:18,
4075:22, 4076:7,	4104:5, 4104:15,	4092:3, 4092:11,	4130:16, 4130:18,	4112:4, 4112:7,
4076:10, 4076:17,	4137:9, 4229:22	4106:15, 4119:25,	4130:22, 4131:1,	4136:18, 4136:23,
4076:21, 4077:1,	SAV [14] - 4182:24,	4120:2, 4120:23,	4131:4, 4131:8,	4137:15, 4137:24,
4077:25, 4078:20,	4183:14, 4183:21,	4123:1, 4129:24,	4131:20, 4132:13,	4138:16, 4138:22,
4078:24, 4079:3,	4183:25, 4188:17,	4146:7, 4147:16,	4132:18, 4132:20,	4139:16, 4139:21,
4079:19, 4079:23,	4190:25, 4191:22,	4148:23, 4151:5,	4132:25, 4133:10,	4139:23, 4139:25,
4082:6, 4082:22,	4192:19, 4192:20,	4224:15, 4224:18,	4134:6, 4134:24,	4140:1, 4140:4,
4085:21, 4102:14,	4193:2, 4193:14,	4236:22, 4237:3	4135:8, 4136:5,	4140:8, 4201:19
4105:18, 4107:15,	4194:12, 4194:21,	scheduling [1] -	4136:16, 4136:19,	sediments [1] -
$\begin{aligned} & 4107: 18,4108: 19 \\ & 4108: 25,4109: 18, \end{aligned}$	4228:2 save [1] - 4169:5	$4251: 11$ scheme [3] - 4128:15,	$\begin{aligned} & 4137: 17,4138: 3, \\ & 4138: 17,4140: 10, \end{aligned}$	4137:8
4112:4, 4117:16,	$\begin{aligned} & \text { save }[1]-4169: 5 \\ & \text { saw }[6]-4123: 11, \end{aligned}$	scheme [3] - 4128:15, 4129:4, 4129:8	$\begin{aligned} & \text { 4138:17, 4140:10, } \\ & \text { 4141:24, 4142:7, } \end{aligned}$	$\begin{gathered} \text { see }[145]-4067: 20, \\ 4075: 2,4075: 14, \end{gathered}$
4117:18, 4119:17,	4204:14, 4214:23,	science [1] - 4089:6	4142:9, 4142:18	4076:6, 4076:9,
4120:22, 4120:25,	4217:2, 4227:24	-	iss [7] -	4079:6, 4079:8,

