

> Q. Okay. But you would disagree with anyone who says that the Claiborne, Clayton, and Cretaceous are not connected to any streams in the ACF River Basin?
A. The Claiborne -- these other aquifers are not connected when they are underlying the Upper Floridan Aquifer; that is correct.
Q. What about in the outcrop area?
A. In the outcrop areas they are incised by the streams in the basin.
Q. And when you say incised, what do you mean?
A. That means the streams do cut through these aquifers.
Q. Okay. So let me go back to the question I asked. If someone were to tell you that the Claiborne, Clayton, and Cretaceous do not connect with any of the rivers or -- the streams or rivers in the ACF River Basin, would you disagree with that?
A. I would agree with that if they are talking about the aquifers when they are underlying the Upper Floridan Aquifer.
Q. What about if they're talking about the basin in its entirety, sir?
A. Well, then in the upper portion, it is connected; and in the lower portion it is not. So I cannot THE REPORTING GROUP

Mason \& Lockhart
3773
just answer yes for the entire basin.
Q. Okay. So let's talk about the outcrop areas.

Are they connected in the outcrop areas?
A. Yes.
Q. But you would disagree with someone that says they are not connected in the outcrop areas?
A. Yes.
Q. Sir, may I request that you turn to tab 3 of your binder.
A. Yes.
Q. Okay. Do you recognize the document behind tab 3?
A. No, I do not.
Q. Okay. This document is designated as FX-933. And it's a 1983 report titled Hydrogeology of the Clayton and Claiborne Aquifers in Southwestern Georgia. Are you familiar with the Georgia Geologic Survey?
A. I know that there is a Georgia Geologic Survey.
Q. Okay. And did you review any reports or publications that they issued in this matter -I'm sorry. Did you review any reports that they issued in connection with the work that you did in this matter?
A. I may have. I don't recall.

THE REPORTING GROUP
Mason \& Lockhart
Q. But you don't recall looking at this particular one, sir?
A. No. I don't.
Q. May I direct you to page 1 of FX-933 and ask you to read the first paragraph under scope of study. If you would kindly read that to yourself, sir.
A. Just the first paragraph?
Q. I think the first paragraph would be fine.
A. Okay. I read that.
Q. Okay. When you prepared your direct testimony, were you aware that in 1983 the Georgia Geologic Survey had commissioned a study to evaluate water level declines in the Clayton and Claiborne Aquifers in southwestern Georgia because of increases in industrial, municipal, and agricultural water use?
A. No, I was not.
Q. And if you now turn to the left-hand column on the page, there's a paragraph that begins, measurements of water levels. And it carries on over to the right-hand side of the page. If you might take a moment to review that, I'll have a question about the last sentence of that paragraph.
A. Yes. I read that.

THE REPORTING GROUP
Mason \& Lockhart
Q. Okay. Were you aware when you prepared your direct testimony that in 1983 the Georgia Geologic Survey had concluded that the outcrop areas of the Claiborne Aquifer -- that increases in withdrawals from that outcrop area could cause declines in baseflows?
A. I wasn't aware that -- of this document; but if you are withdrawing water, that could cause a decline in baseflows. That's not surprising to me.
Q. And the decline will vary depending on where you're withdrawing water from. Is that correct?
A. Sure. It would vary where you're withdrawing water from.
Q. And as a general matter, the closer you are to the stream, will it have a greater impact?
A. The closer you are to the stream, you will have a greater impact on the groundwater flow to streams.
Q. And that term is -- the groundwater flow to streams, is that called baseflow?
A. Yes. That is baseflow.
Q. Thank you, sir.

Okay. And in evaluating the impact of groundwater withdrawals in the -- from the Upper THE REPORTING GROUP Mason \& Lockhart

Floridan Aquifer, you relied on a particular model to do that analysis?
A. That is correct.
Q. And the particular model you rely on is associated with two scholars, Jones and Torak; is that right?
A. Yes.
Q. And if you turn to tab 4, sir, you will see a USGS report written by Jones and Torak. Can you please take a moment to flip through tab 4. And the document is designated as Joint Exhibit 18, and confirm that this is the document you looked to to prepare your 2006 Jones and Torak model.
A. I believe this is the report that was produced by the Jones and Torak model -- for the Jones and Torak model.
Q. And I notice sometimes the model is referred to with different names. Sometimes it's called the MODFE model, but I'm going to try to refer to it as the 2006 Jones and Torak model so you will know what I'm talking about.
A. Very good.
Q. Sir, if you can please turn with me to page 70 of JX-18. And you will see a section entitled Model Limitations.

THE REPORTING GROUP Mason \& Lockhart

3777
A. One-seven or seven-zero?
Q. Seven-zero.
A. Yes.
Q. And within this section on model limitations, I would request that you please turn to the paragraph that begins at the bottom of the left-hand column. And it starts with lack of accurate hydrologic data. Can you please read that to yourself, sir, as well as the paragraph that follows that one.
A. Yes.
Q. Okay. Were you aware of these model limitations when you determined that you used the 2006 Jones and Torak model?
A. Yes. All models do have limitations. However, they finally do conclude that this model is accurate for the purposes that they have used it for.
Q. Okay. Sir, in that paragraph -- the second paragraph I asked you to read relates to the adequacy of the irrigation pumpage details that are used in the model. Is that correct?
A. Right.
Q. Okay. And in order to obtain details on irrigation pumpage, you relied on information THE REPORTING GROUP Mason \& Lockhart
that was provided to you from Georgia EPD?
A. Right.
Q. And the EPD data that you relied on, it doesn't contain details on crop type; does it?
A. The data I believe does contain details on the different crop types. I had developed my irrigation estimates using metered pumping information, and that's what he's referencing here that every agricultural plot was not metered and that there was a statistical sample that was metered. And that was used for developing my irrigation depths.

And I used irrigated acreage databases to evaluate the irrigated areas. And different crops would have used different amounts -different irrigation depths; but we averaged that over the whole basin.
Q. Okay. So you used an average rather than specifics associated with each particular meter; is that right?
A. We used an average because there is rotation of crops, so you cannot really consistently say that a certain crop was grown on a certain acreage. So that's the -- that's the way we did it.
Q. Okay. Sir, can you please turn to page 46 of THE REPORTING GROUP

Mason \& Lockhart

JX-18. There is a section on page 46 entitled Parameter Uncertainty.
A. Yes.
Q. Okay. What does that mean? What does parameter uncertainty mean?
A. Parameter uncertainty means that there would be uncertainty in the parameters of the model.
Q. Okay. And what particular parameters exist in this 2006 Jones and Torak model?
A. The parameters, I believe, are the aquifer parameters, which is the transmissivity of the aquifer which determines how quickly the water can flow in the aquifer, is the storage coefficient of the aquifer which determines, I would say, the size of the voids within the aquifer which holds that water. So that would be another parameter.
Q. Sir, can you please review the last two paragraphs of the parameter uncertainty section.
A. Yes. I have read that.
Q. Sir, when you prepared your direct testimony, you knew that Jones and Torak had noted particular parameters in the model were, quote, little better than educated guesses, end quote. You knew that?

THE REPORTING GROUP
Mason \& Lockhart

90 to 100 percent?
A. That is correct. This is the steady-state impact factor.

Again, there are so many different impact factors that I do want to clarify which impact factor we're talking about because that can get confusing.
Q. I think it is important to clarify that because one of the things you do in your direct testimony is you criticize Florida's expert for what you call abandoning the impact factor. Do you recall that testimony?
A. I don't think I said that he abandoned the impact factor. If I recall, he's changed his number for the impact factor. That's what he did from his expert report to his direct testimony.
Q. Okay. And we'll certainly look at that, but I want to first direct you to paragraph 86 of your direct testimony. That's behind tab 1. And paragraph 86 is page 49, sir.
A. Yes.
Q. Okay. And you will see in the middle of the paragraph you actually state that Florida has now abandoned the opinion?
A. This is paragraph 86. Right?

THE REPORTING GROUP Mason \& Lockhart
Q. That's correct, sir, on page 49.
A. Yes.
Q. Okay. So you do recall using those words?
A. Yes. And, again, that's exactly what I was saying. They have abandoned the 40 percent number, and now they're using a 60 percent number. That's what I was saying.
Q. Yes. And that's exactly what I would like to explore next, sir. The 40 percent number, the 38 to 40 percent that you ascribed to Florida's expert, Dr. David Langseth, it's not in his expert report. Correct?
A. He has the $\mathbf{4 0}$ percent number in his expert report the. The 38 percent number or around 38 percent is what I had obtained through all my model simulations.
Q. And the 40 percent number that you're associating with Dr. Langseth, he actually says that that's the number that Jones and Torak had derived in their 2006 model. He doesn't adopt it; does he?
A. Dr. Langseth never ran any groundwater model. He used the report of the Jones and Torak model -2006 model; and he extracted impact factors from that.
Q. My question for you, sir, is Dr. Langseth never

THE REPORTING GROUP
Mason \& Lockhart
adopted the 40 percent impact factor that's associated with Jones and Torak as his own. He never said, this is the impact factor that I'm endorsing. In fact, he always proposed a range; isn't that true?
A. He use the $\mathbf{4 0}$ percent impact factor value in his conservation scenarios in the multiple scenarios that he provided in his expert report. That 40 percent value was, I believe, also used then by other Florida experts when they were evaluating their scenarios of conservation for Georgia's agricultural pumping.

So the 40 percent value was adopted by them. They used it in all their calculations.
Q. Okay, sir. Perhaps we can refresh your recollection if we go to tab 8. That is Dr. Langseth's expert report.
A. Yes.
Q. Tab 8 is $\mathrm{FX}-795$. And you recall reviewing this; don't you, sir?
A. Yes.
Q. And it's a lengthy expert report, so I'll direct you to particular pages; and you can let me know if you recall reviewing these previously.

I would like to first turn to page 54. On THE REPORTING GROUP Mason \& Lockhart
page 54 is a section entitled Conservation measure scenario, 50 percent reduction in agricultural withdrawals in the Georgia portion of the ACF Basin. Do you see that?
A. I don't see that.
Q. Okay. That's my fault because I should have referred you to the prior page for the heading. The heading appears on page 53, section 5.2 titled Conservation measure scenario, 50 percent reduction in agricultural withdrawals in the Georgia portion of the ACF River Basin.
A. Yes.
Q. And then on page 54, the paragraph right before the table, perhaps you could read that to yourself, sir.
A. Yes. I read that.
Q. Okay. And you will see that he lists an average annual impact factor for the cells that he's selected in his conservation scenario of .56; isn't that right?
A. This is the impact factor -- the impact factor that he selected for his conservation scenario. And this is not the basin-wide impact -- these, again, are different impact factors.
Q. I understand, sir. If we could now turn to page THE REPORTING GROUP

Mason \& Lockhart

3800	380
A. No. Q. The document designated as FX-594 was authored by you? A. Yes. Q. And it's dated June 1998. Did you prepare it in or around that time? A. Yes. Yes. Q. Can I ask you to review the last two sentences of the first paragraph on page 1. You're certainly free to read the entire paragraph, but my questions are going to focus on that. It's the first page of FX-594. A. Yes. Q. Okay. A. I have read the last two sentences, too. Q. At the time you wrote these two sentences that there exists a high degree of hydrologic interaction between the aquifers and the streams and floodplains and estuaries of the basin, did you believe it to be true? A. Yes. Q. And do you believe it to be true today? A. Yes. Q. And the focus of the work you were doing was to THE REPORTING GROUP	A. The last sentence is the entire hydrologic system, therefore, needs to be quantified to examine the effects of the various water uses upon each other and upon discharge to streams that flow into Apalachicola Bay. It's -- it really does not describe the work we did. The work we did was run the model for sensitivity simulations and run the model for transient simulations. So that is the work we did. Q. And, actually, I meant to direct you to the last sentence on the bottom of the page. And that describes the work. So I apologize for that. A. That is correct. Q. Okay. A. The last two sentences actually talk about the work that was done here. Okay. The current study expands on these previous modeling efforts by examining a cyclic transient behavior of the system for monthly varying current and estimated future pumping rates. And then it says the focus of this work is to quantify the net groundwater discharge and its fluctuations to streams and rivers that discharge into the Apalachicola Bay. THE REPORTING GROUP Mason \& Lockhart
quantify the net groundwater discharge and the fluctuations in the streams and rivers that discharge in Apalachicola Bay? A. I believe this work was to build upon an earlier model by Torak and McDowell, which was just a steady state model. And we evaluated sensitivities to certain parameters in this project, and we converted the model from a steady state model to a transient model. So we looked at the behavior of the system for transient cyclic conditions. Q. Okay. My question was just really designed to go at the last sentence on the page to see if the whole work was intended to quantify the impact that the groundwater fluctuations would have on the river and the bay. Is that why you did this work? A. Can you repeat your question, please. Q. Sure. A. I did not quite follow you. Q. The last sentence on the first page -- A. Yes? Q. -- did that accurately describe the work you were doing for the Northwest Florida Water Management District? THE REPORTING GROUP	Q. Okay. Thank you, sir. Can we now turn to the conclusions of this work on page 25. A. Yes. Q. And the conclusions actually run onto page 26 , but I'm interested in the two paragraphs on 25. So if you might read those to yourself. A. Yes. Q. I'll have a couple of follow-up questions after you finish. A. Yes. I have read that. Q. Okay. There's a reference in the first paragraph to the Newton, Bainbridge, and Woodruff reaches. A. Yes. Q. What does that represent? A. Those are reaches on the Flint River. Q. Okay. And when you wrote the Newton, Bainbridge, and Woodruff reaches are the most affected by pumping, did you believe that was a true statement at the time? A. Yes. Q. And when you wrote that the effects of the individual reaches result in a cumulative effect in flow reduction of the Apalachicola River, did you believe that was a true statement at the THE REPORTING GROUP

technical finding 2.

Q. Okay. The same question with respect to technical finding 3, is that consistent with the conclusions you reached in this matter?
A. Again, over here I don't know the context of the entire document. But he says that the data he has provides evidence that agricultural irrigation compounded the effect of climatic drought on streamflow. So essentially he is saying that both the drought and pumping can have these impacts which -- and, again, he's talking about local aquatic habitats.
Q. Okay. He writes -- the authors write that the data provides the clearest evidence that agricultural irrigation compounds the effect of drought on streamflow. Isn't that right?
A. That's what he says here.
Q. All right. And he goes on to say that that effect is more pronounced during drought. Do you agree with that?
A. Yes. There will be less baseflow during droughts. I agree with that.
Q. Okay. And do you agree that irrigation compounds the impacts of drought on groundwater discharge into streams?

THE REPORTING GROUP Mason \& Lockhart
A. Pumping of groundwater will reduce the flow of groundwater to streams. But how much, the quantity, is what I have evaluated in my evaluation.

And he -- he's -- this is a general statement. And it does. I agree. If you pump groundwater, you're going to affect streams.
Q. Do you -- do you know who put this together, this particular document?
A. No, I don't.
Q. Well, if you look on the cover page, that might give you --
A. Yes.
Q. -- some insights.
A. I was just going there.

Yes. It says it was produced by Georgia Department of Natural Resources Environmental Protection Division. Carol Couch, director; Robin J. McDowell, plan coordinator.
Q. Okay. And we'll look at their quantification of amounts in other documents. But the technical findings 2 and 3 are consistent with the conclusions you reached in this matter?
A. I agree with what he says in technical finding 2 that when you pump, some watersheds could have THE REPORTING GROUP
Mason \& Lockhart
larger impacts; some watersheds could have less
impacts. I agree with technical finding 3
inasmuch that if you are pumping groundwater, it
will impact streams. And that if you are in drought conditions, the baseflow is going to be even less.
Q. Sir, did you evaluate the impact of agricultural irrigation on blue hole springs in Georgia?
A. No, I did not.
Q. All right. Do you know what blue hole springs are?
A. I believe these are springs which get water from groundwater.
Q. That's right. And if you -- that's exactly right. And if you turn to page 67 and 68 of JX-21, there is some discussion of this topic.

Do you recall reviewing this in the course of your work here, sir?
A. I don't know if I read this very document. But I recall that Florida had brought up blue hole springs, so I had looked at that as well.
Q. And is that discussed in your direct testimony?
A. I'm not sure I have referred to blue hole springs in my direct testimony. I have looked at the local impacts that Florida has discussed. THE REPORTING GROUP Mason \& Lockhart
Q. The -- the particular blue hole spring that's referred to here is -- referred to here is Radium Springs. Have you heard of Radium Springs before?
A. Yes, I have.
Q. And you know it's the largest natural spring in Georgia?
A. I don't know about that.
Q. You were unaware of that?
A. No, I don't know if that's the largest spring in Georgia, no.
Q. Okay. It says here on page 67 that the flow in Radium Springs has been measured at 49,000 gallons per minute. Do you see that?
A. Yes.
Q. And, sir, were you aware that Georgia EPD says that Radium Springs went dry for the first time in recorded history because of drought and increased withdrawals?
A. I have done a little analysis of Radium Springs. I looked at the flows in Radium Springs and minimum flows during droughts in past years, earlier years. And I don't recall the exact numbers, but they were small. They were, I believe, less than $\mathbf{1 0} \mathbf{c f s}$, if I recall. And if THE REPORTING GROUP Mason \& Lockhart

		3836			3838
1		And it does that for three different aquifers	1		this table is between 237 and $\mathbf{3 2 8} \mathbf{~ m g d}$. And that
2		that are in the ACF Basin, the Claiborne Aquifer,	2		is a case, as 1 explained to you, what they did
3		the South Central Georgia Upper Floridan, and the	3		is they took the model; and they kept ramping up
4		Upper Floridan Aquifer in the Dougherty Plain.	4		pumping to see when any reach was -- violated
5		Are you with me?	5		that 40 percent criterion.
6	A.	Yes.	6	Q.	So it's your testimony that the difference
7	Q.	Okay. And you will see that the estimated	7		between the current groundwater withdrawals and
8		groundwater withdrawals from the Upper Floridan	8		the sustainable yield criteria, if we look at it
9		Aquifer range from 450 to 587 million gallons per	9		in cfs, it's roughly 122 -- I'm sorry, 188 to 540
10		day. Right?	10		cfs difference?
11	A.	That's what it says here.	11	A.	I haven't done the math. From this table, if
12	Q.	All right. But the sustainable yield for	12		your math is correct, that's what it may be.
13		groundwater withdrawals in the Upper Floridan	13		But, again, as I mentioned, the sustainable
14		Aquifer in the Dougherty Plain is between 237 to	14		yield criteria is something local within Georgia.
15		328. Isn't that right?	15		And if you can add up that 1.7 with what happened
16	A.	That's what it says here. And, again, the	16		at Mosquito Creek, it's still negligible compared
17		sustainable yield criteria was the 40 percent	17		to the flow into Florida.
18		reduction in any streamflow; and that was	18	Q.	If you rely on JX-57 that uses outdated
19		triggered with these numbers in small upper	19		agricultural withdrawal information?
20		reaches of the basin which had low flow itself.	20	A.	JX-57 never used agricultural withdrawal
21		So when that low flow of 1.7 cfs that you	21		information in the model. Like I mentioned, in
22		mentioned, for example, when 40 percent reduction	22		the model what they did is they pumped, and they
23		of that is an even smaller reduction.	23		kept increasing the pumping until that criterion
24		So you're referring to --	24		was violated. Then what they did is they
25	A.	So it's a local impact, and I did not evaluate	25		compared that to what they believed was the
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart
		3837			3839
1		this any further.	1		estimated groundwater withdrawal.
2	Q.	You're referring to JX-57, the document we were	2		So they never used that number in their
3		just looking at?	3		calculations. That's comparing that to the
4	A.	No. You mentioned the number 1.7 from my direct	4		number that they came up with in the modeling
5		testimony, which I looked -- took from	5		scenarios. And that modeling scenario had, I
6		Muckaloochee Creek.	6		believe, these numbers on the right-hand side of
7	Q.	And you derived that number by relying on JX-57;	7		the table, and those numbers violated the
8		isn't that right?	8		criteria which we discussed which were in the
9	A.	I derived that number by relying on the model. I	9		upper reaches of the basin in Muckaloochee Creek
10		looked -- I had the Jones and Torak model. I had	10		and in Mosquito Creek.
11		a run without any pumping. So for that run	11	Q.	And you realize that this is the Lower
12		without any pumping I could go to the streams and	12		Flint-Ochlockonee Regional Plan; it has nothing
13		add up what baseflow is occurring to those	13		to do with the Upper Flint?
14		streams. And this document which you mentioned	14	A.	This is the Lower Flint. And as you mentioned,
15		did show which reach was violated. So I went to	15		it's the Ochlockonee region as well. And so that
16		that reach and calculated what the flow was for	16		is, I believe, outside of the Flint River Basin
17		that reach.	17		also.
18		So I relied on the model as well as the	18		I don't know what analysis they have done for
19		document to show me where the reach was violated.	19		this. But it seems they are talking about
20	Q.	But the document we were talking about, JX-57,	20		another basin here, the Ochlockonee --
21		used a number of calculated withdrawals that was	21	Q.	Okay.
22		much lower than the actual number that Georgia	22	A.	-- region.
23		EPD itself provided?	23	Q.	Was it material to your conclusions that Georgia
24	A.	That is correct. The number that they have for	24		EPD determined that the groundwater withdrawals
25		the sustainable yield which they're showing me on	25		from the Upper Floridan Aquifer were between 188
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart

to 540 cfs in excess of the sustainable yield criteria? Was that important to your conclusions?
A. It is totally irrelevant to my conclusions because I am not looking at local impacts. I have been studying the net impact of pumping within the basin.
Q. Sir, are you familiar with a Georgia law called the Flint River Drought Protection Act?
A. I have heard of that.
Q. Okay. You know that was passed and signed into law in Georgia in 2000?
A. No, I do not know that.
Q. Okay. Have you ever seen the document behind tab 16 previously?
A. No, I have not.
Q. Okay. May I request that you take a moment to read the paragraph at the bottom of page 30 that continues onto the top of page 31.
A. Yes, I have read that paragraph.
Q. Okay. Did you ever review any studies by EPD that evaluated whether the high use of irrigation would dramatically reduce the flow of the Flint River?
A. Georgia EPD has conducted modeling studies for THE REPORTING GROUP Mason \& Lockhart
various years, and I have seen those modeling studies. They have done a modeling study for 2011 conditions. They have done a modeling study for 2007 conditions. They have done modeling studies for 2001 conditions. So I have seen those.
Q. Okay. And the Flint River Drought Protection Act was passed in 2000. So did you see any studies during that time frame that talked about the high use of irrigation potentially dramatically reducing the flow to the Flint River?
A. No. I have not seen any studies. And if it was before 2000, they probably did not have a very good handle on the agricultural irrigation. A lot of the agricultural irrigation studies were done -- and I believe a lot of them were -- some of them were concluded in 2005. And that was published by Dr. Hook. And then they were doing more metering, and I believe in 2008 they had an even better handle on what the agricultural irrigation was.
Q. Do you have any understanding as to why the Flint

River Drought Protection Act was passed?
A. No, I do not.
Q. You didn't look into that issue?

THE REPORTING GROUP
Mason \& Lockhart
A. No, I do not -- did not.
Q. Okay. Your conclusions in this matter, sir, are that groundwater withdrawals have a minimal impact on streamflow in Florida. And you go on to say that climatic changes are the principal causes of reductions in streamflow to Florida. Is that right?
A. I say it's weather patterns. When you're in a drought, you're going to have less flow. When you're in a normal or wet conditions, you're going to have more flow.
Q. And as we looked at earlier, irrigation during droughts will exacerbate the reduction in flows?
A. Irrigation during drought has an impact on the baseflow, but the quantity of that impact is what I have quantified.
Q. Okay. Have you performed a literature review to determine whether there are any scholars who disagree with your conclusions?
A. I don't know any scholars who have reviewed my conclusions and are disagreeing with them.
Q. Have you reviewed -- have you conducted a
literature review to evaluate the work of other scholars who look at the impact of river flow into Florida and whether that's caused by THE REPORTING GROUP

Mason \& Lockhart
irrigation or whether that's associated with changes in weather patterns?
A. I have reviewed the Jones and Torak model. That's what I have reviewed.
Q. And you didn't look at anything else?
A. I looked at data. I looked at precipitation data. I looked at streamflow data. I looked at groundwater level data.
Q. Let's turn to a document behind tab 17 or FX-49d1. It's entitled Impacts of agricultural pumping on selected streams in southwestern Georgia by David W. Hook -- I'm sorry, David W. Hicks and Stephen W. Golladay. Do you recall looking at this report, sir?
A. No, I did not. I haven't seen this -- I don't recall seeing this before.
Q. But you recognize the name of the author David W. Hicks as Woody Hicks?
A. Yes. I recognize the name of both authors.
Q. Can you please turn with me to page 27, sir. And take a look at the middle paragraph that begins, with our analysis of climate data.
A. Yes.
Q. Have you had an opportunity to read that to yourself?

THE REPORTING GROUP
Mason \& Lockhart

```
A. I'll read it.
    Yes. I have read that.
Q. Okay. Do you agree with the conclusion that
there's no climatologic indication that more
recent droughts were more severe or persistent
than those in the past?
```

A. I do not know about that. I have looked at the precipitation data from 1975 through 2015. I have looked at water level data from ' 75 through 2015 and streamflow also for the same time period. And what I have found is that there are more severe and multi-year droughts occurring after 2000. 2000-2001 was a severe, multi-year drought. 2006-2007 was a severe, multi-year drought. 2010-'11, going into '12-- pushing a little into ' 12 was a severe, multi-year drought. And when we compare that to similar droughts from the 1975 period we don't see such multi-year, severe recurring droughts.
Q. So is the answer to my question, yes, you disagree with the conclusion here?
A. No. The answer is I haven't studied climate since the 1930's to now. That's what my answer is.
Q. Okay. What about the conclusion that the primary THE REPORTING GROUP Mason \& Lockhart

3845
factor that's causing record low streamflows and other alterations to the regional hydrology is water use? Do you disagree with that?
A. I do not know the context of this. He may be talking about some specific context where it might be critical to him. But as far as I'm concerned, I don't believe that the impact to the entire basin is substantial compared to the flows that are going into Florida.
Q. Did you know that Georgia EPD had funded this project in FX-49d1?
A. No. I don't know about this project.
Q. No one ever mentioned it to you during your work on the case?
A. No.
Q. Let's talk now about your opinion that the Sumatra and Chattahoochee Gage flows show an increased loss of water over time. Do you recall giving that opinion?
A. Yes.
Q. And in order to reach this conclusion, you looked at flows at the Chattahoochee Gage as well as the USGS Sumatra Gage; is that right?
A. Right. The Chattahoochee Gage shows how much flow is coming across the state line, and the THE REPORTING GROUP

Mason \& Lockhart

Sumatra Gage is the gage just upstream of -- is the last gage upstream of the Apalachicola Bay. So I looked at flow differences between those two gages.
Q. And over what time period did you conduct your analysis?
A. I looked at this, again, from 1975 through the current time period, the data that was available.
Q. Are you aware of any measurement errors associated with either of those USGS gages?
A. During my deposition it was brought up that there were possible errors in those gages.
Q. And prior to it being raised at your deposition, were you aware of that fact?
A. I don't remember the time lines, but I believe there was some memos following our expert report which did talk about the Sumatra Gage and the difference in flow between the Chattahoochee and Sumatra Gages.
Q. Are you aware of a USGS letter from July 2016 that highlights these anomalies in measurements at the Sumatra Gage?
A. At my deposition I was shown two correspondences from the USGS. The first one with an earlier date was from, I believe, a field person who does THE REPORTING GROUP

Mason \& Lockhart
3847
this work, the professional who does that work.
And that one indicated -- did not indicate that there were any errors in there.

And, again, I do not -- I wasn't sure of the correspondence from Florida to the USGS asking whatever they were asking. So I don't know how that went.

But then later on, I believe there was another correspondence; and this came right from the top. And, again, I don't -- I didn't see the correspondence from Florida to the USGS; but from the USGS to Florida the correspondence did indicate that there were errors in the Sumatra Gage between, I believe, 1990 and 2002. So if I look at the period before 1990 and I can look at the period after 2002, then I believe the USGS had no problem with that.
Q. Okay. Did you ever talk to the USGS about the Sumatra Gage?
A. No, I did not.
Q. Other than looking at the letter that was shown to you at your deposition, what independent investigation did you do on the accuracy of the Sumatra Gage?
A. I did not.

THE REPORTING GROUP
Mason \& Lockhart

actual baseflow itself. The impact is just a certain percent of the pumping value regardless of that baseflow.
Q. I want to actually turn back to the exhibit that Florida's counsel used with you. So it's in the binders that they handed out at tab 6. And it's FX --
A. Yes, I'm there.
Q. -- 934. Do you see that?
A. Yes I see that.
Q. And can you describe how you used the data in this chart.
A. Right. We can see what I have done is I did simulations for the different years -- for the acreages for the different years, and the different years being 1992, 2011, and 2013. And for those years, I evaluated the pumping for -the pumping requirements for normal conditions as well as for dry conditions. For dry conditions you need more irrigation depth than for normal conditions.

Once I did that, I ran the model. You get the results of the baseflow from this model; and you can subtract out the no pumping case for the same hydrology from the pumping case for the same THE REPORTING GROUP

Mason \& Lockhart
3865
hydrology. And the hydrology impacts go away, and I'm left with the impact of pumping on baseflow.
Q. So if there was an error or miscalculation or an inaccuracy, as a hypothetical, in your hydrologic conditions, would that impact your conclusions about the impact of pumping?
A. No, it does not. The hydrology does not affect the impact of pumping. Your impact factors also are developed without concern of hydrology. They are developed because of the -- it's the portion of the pumping that matters.
Q. Let's turn in your written direct to page 25, and I would like to look at demonstrative 13.
A. Yes.
Q. Does demonstrative 13 show some of the results of your groundwater modeling?
A. Yes. It does.
Q. Okay. And can you describe what demonstrative 13 shows.
A. Demonstrative $\mathbf{1 3}$ shows the impact of groundwater pumping for normal and dry conditions from my modeling analysis for 2011 irrigated acreages. And we can see that for dry conditions, the impact was slightly over 500 cfs. The impact of THE REPORTING GROUP

Mason \& Lockhart
pumping within Georgia was slightly over 500 cfs.
And the number is 511 cfs that the model gave.
Q. And that's the maximum impact?
A. And that is the maximum monthly impact. And that occurred in July.
Q. Now, in your direct testimony, you characterize the impact of groundwater pumping, this impact, as minimal or negligible. What's the basis for that opinion?
A. I compared this impact of groundwater pumping to the actual flow occurring at the Chattahoochee Gage into Florida. And in that respect, I say that this impact is negligible.
Q. Let's turn to page 27 in your direct and take a look at demonstrative 15. Is this the comparison that you were just referring to?
A. That is correct. This is one of the comparisons I was referring to. This is for the dry conditions.
Q. And can you describe what demonstrative 15 shows?
A. Right. This is a chart showing the baseflow and the impact of pumping over an annual cycle. The blue line shows the impact of pumping over the annual cycle. And the maximum of 511 cfs in July is part of that blue line there. And then the THE REPORTING GROUP

Mason \& Lockhart
red line shows the actual streamflow occurring into Florida at the Chattahoochee Gage. And we can compare these two lines, and this is where I say that the impact of pumping is negligible compared to flow into Florida.
Q. Now, you testified earlier that one of the factors that influences how groundwater flows into the rivers and streams is weather or precipitation. What analysis did you do to reach that conclusion?
A. Yes. What I did was I-- since this case is about flow of water into Florida, I evaluated the flow of water into Florida at the Chattahoochee Gage. And from looking at the flow signature, I evaluated that most of the baseflow impacts are weather related and not pumping related.
Q. Let's turn to page 30 in your written direct. And I would like to focus on demonstrative 18. Can you describe what the graph in demonstrative 18 shows?
A. Yes. This graph shows the streamflow at the Chattahoochee Gage, which is into Florida, between 1975 and 2015. The lowest line, the purple line, shows the minimum flow. So for every month we can see the average. We can take THE REPORTING GROUP

Mason \& Lockhart

no basin-wide trend of decreasing water levels.
Secondly, I have also looked at how agricultural irrigation has increased within Georgia from the '70's through the 1990's; and the largest increases had occurred in that time period. And I look at water levels during that time period, and water levels seem to be generally stable during that time period or even slightly increasing. So when you see that increase in agricultural irrigation within Georgia and compare it to groundwater levels, you don't see groundwater levels decreasing as a result.
Q. Now, in your direct testimony on page 62, in demonstrative 37 you actually show groundwater information for a well that is in Florida, not in Georgia. Why are you showing groundwater information from a well in Florida?
A. Yes. Demonstrative 37 is groundwater level -shows groundwater levels from a well in the Upper Floridan Aquifer right adjacent to the ACF River Basin, but not within the ACF River Basin. And the reason I show this is because the -- this water level signature that I see in this graph is very similar to the water level signatures that THE REPORTING GROUP Mason \& Lockhart

3873

we see in wells within the Upper Floridan Aquifer in Georgia.

As you can see here, water levels decline in the dry season and rise back up every year in the wet season. However, if you look at 2011 and 2012 -- and this is a well in Florida -- you see that the rise has not been complete. But then when you get back into 2013, you see that the rise in water levels is pretty much full compared to previous.

And this is the same signature we see for wells in Georgia. So what I understand from that is that this could be regional precipitation or weather-related issues. And you cannot have the same signature here in Florida in a different basin because of pumping in Georgia.
Q. Now, you said before that another analysis you had done was you compared pumping to groundwater levels to see if there was a correlation or an inverse correlation between the two.

And let's look at demonstrative 38 in your direct testimony on page 63. And does that show the results of your analysis?
A. Yes. That is correct.
Q. And can you describe what you found?

THE REPORTING GROUP
Mason \& Lockhart
A. Yes. As we see in this graph, the largest increases in pumping within Georgia occurred -within the basin occurred between 1975 through the 1990's. And the blue -- that's the red line. And the blue line shows the water levels at the well in the basin in the Upper Floridan Aquifer. And we can see that the water levels are not declining as a result of this increased pumping.

The gray bars show the annual precipitation at the gage within the basin, and the water levels generally follow that trend.

In fact, Dr. Langseth in his expert testimony also said that water levels generally follow precipitation, recharge trends, though they may lag in time.
Q. Now, the last piece of analysis that you had mentioned with respect to groundwater levels was an analysis that you did of long-term trends in different wells. And if you turn to page 60 and you look at demonstrative 35, is that the analysis you were referring to?
A. Yes. Demonstrative $\mathbf{3 5}$ shows the trend analysis that I have done in Upper Floridan Aquifer water wells.
Q. And what did you find in that analysis?

THE REPORTING GROUP
Mason \& Lockhart
A. I have done two different trend analyses. The second to last column shows my results from my linear trend analysis. And that shows that some wells indicated a declining trend, some wells indicated an increasing trend, and some showed a generally stable trend.

I also did this Mann-Kendall statistical trend analysis, and that also shows that all wells are not decreasing. Some are stable. Some are decreasing, and some are increasing in the basin.
Q. And based on all these analyses that you have done with respect to groundwater levels, what have you concluded about the general health of the aquifer in the Upper Floridan?
A. The general health of the aquifer in the Upper Floridan is good.

We see, if you look at the monthly water level changes also, that water levels drop in the dry period and rise back in the wet period. They may not rise back fully during droughts or multi-year droughts; but once there is a return of normal precipitation or wetter periods, you see that the water levels bounce right back up and that the aquifer gets fully recharged.

THE REPORTING GROUP
Mason \& Lockhart

1

THE REPORTING GROUP Mason \& Lockhart

3885
A. Yes.
Q. In fact, in your direct testimony in section 9, you state that, quote, there is no evidence of groundwater pumping in the ACF River Basin causing long-term depletion of the Upper Floridan Aquifer.

Do you recall making that testimony?
A. Yes.
Q. Okay.
A. Specifically basin-wide declines.
Q. Basin-wide declines. But you do acknowledge that individual wells have declined?
A. Yes. Some wells have declined, some wells have increased, and some wells have been stable. Correct.
Q. Let's take a look at the particular table you were reviewing with counsel for Georgia. I believe that was on page 60 of your prefiled direct. That's behind tab 1.

This is the trend analysis for the 20 wells.
A. Yes. I'm there.
Q. And the time period that you have looked at here
Q. Okay. Dr. Panday, during redirect, you talked a little bit about groundwater levels. Do you recall that?
is 1975 through 2015?
A. That is correct. Any data that was available within that time period has been analyzed.
Q. Okay. And of these 20,11 are decreasing or potentially decreasing?
A. From the linear trend analysis, I see one, two, three, four, five, six showing a declining trend. And from the Mann-Kendall statistics, it shows one, two, three, four, five of them with a decreasing trend, with one, two, three, four, five, six of them with a probably decreasing trend.
Q. Okay. So it's a total of 11 that are either decreasing or probably decreasing?
A. From the Mann-Kendall statistical analysis, that is what it shows.
Q. All right. And from the Mann-Kendall statistical trend analysis, it shows five as being stable?
A. And it shows five as being stable; correct.
Q. And three with no trend?
A. And three with no trend, yes.
Q. And one that's increasing?
A. Yes.
Q. And you actually looked at this -- these 20 wells pre-1992 and post-1992 as well; didn't you?

THE REPORTING GROUP
Mason \& Lockhart
A. I have -- this trend analysis is for the entire record of -- period of record from ' 75 through 2015. But when I looked at the individual wells, I do have statistics, I believe, for pre-'92 conditions and post-' 92 conditions.
Q. And those statistics, if you recall, showed that 18 of the 20 wells are declining post-1992; isn't that true?
A. I do not recall. But I do recall that Florida had done a trend analysis for post-1992 conditions and pre-1992 conditions. And in that, a lot of those wells showed declining water levels post-1992, yes.

And I'm not surprised about that because you're starting off with high water levels in 1992 through 1998. There were either normal or average weather conditions -- precipitation conditions. And then after that, we start getting into these multiple multi-year severe droughts. So the water levels started off high in 1992 and dropped after that. So that's not surprising.

I, myself, have done an analysis starting from 1998, which is just before those droughts hit. And when you look at the water levels THE REPORTING GROUP Mason \& Lockhart
pre-1998, they do not show a declining trend. And that was, in fact, when agricultural pumping increased. The most increases occurred in Georgia during that period of time. And then when you look at the post-1998 -- also in my direct I have that -- there is no declining trend again, because we started off low; and we are staying low.
Q. Sir, is your testimony that agricultural irrigation increased in 1998, not in the '70's?
A. No, I did not say that. I said maximum agricultural increases occurred from the '70's through the ' $\mathbf{9 0 ' s}^{\mathbf{s}}$. That's what I said.
Q. Sir, can you please look at tab 21 of your binder. Tab 21 is JX-83. It's a USGS report entitled Groundwater Conditions in Georgia, 2010-2011. Have you seen this report previously, sir?
A. Yes. I believe I have seen this report previously.
Q. Okay. Can you turn with me to page 12. On page 12 there's a discussion that begins on a paragraph that starts with groundwater pumping is the most important human activity that affects -do you see that?

THE REPORTING GROUP
Mason \& Lockhart

	3888		3890
	A. Yes, I see that.	1	those wells during the $\mathbf{2 0 1 0}$ to $\mathbf{2 0 1 1}$ period by as
2	Q. Can you read that paragraph to yourself.	2	much as he says. I don't know these numbers, but
3	A. Yes, I read that.	3	they would decline because of the drought.
4	Q. Okay. And you agree with the statements in that		Q. Okay. And did you -- did you study this data in
5	paragraph; don't you?	5	connection with issuing your direct testimony?
6	A. It says that the most important human activity		A. I don't believe I have looked at this.
7	that affects groundwater storage and the rate of	7	This is a local impact, again. There are
8	discharge from an aquifer is groundwater pumping.	8	wells where it says that the impacts are higher.
9	So he's specifically talking about human	9	There are wells where it says that the impacts
10	activity, and I guess that is the case. I mean,	10	could be lower.
11	there could be other human activities like	11	And, again, I was evaluating the impacts of
12	dredging or something that could impact the	12	baseflow due to pumping. So my specific
13	groundwater flow to streams. But I guess that's	13	objective was not to look at water levels, but to
14	not a common daily activity, and groundwater	14	look at how much the -- there is a reduction in
15	pumping might be.	15	baseflow because of pumping in Georgia.
16	So I agree that from human activities,	16	Q. But you rendered an opinion that there is no
17	groundwater pumping can affect the storage as	17	evidence that groundwater levels are declining?
18	well as the discharge from the aquifer.	18	A. That is correct. In the Upper Floridan Aquifer.
19	Q. Okay. And then there is a hydrograph of a	19	Q. But that's not what you looked at?
20	particular well in Randolph County. Do you see	20	A. I looked at the data for different wells in the
21	that?	21	Upper Floridan Aquifer to evaluate that.
22	A. Yes, I see that.	22	Q. Sir, you're not a climate expert?
23	Q. And that shows a trend line; doesn't it?	23	A. No, I'm not.
24	A. Yes, it does.	24	Q. Okay. And you're not a hydroclimatologist?
25	Q. And that's decreasing, sir?	25	A. No, I'm not.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	3889		3891
1	A. Yes, it is. But this line is not in the Upper	1	Q. So, in fact, at your deposition you weren't aware
2	Floridan Aquifer, and it's just one well.	2	to what that meant?
3	Q. Your testimony is that Randolph County is not in	3	A. Right.
4	the ACF Basin?	4	Q. All right. Do you know now?
5	A. No. It said over here that this is a Clayton	5	A. Someone who looks at the hydrologic impacts of
6	completed in the Clayton Aquifer in Randolph	6	climate. I believe that's what it would be.
7	County. It specifically says that in the last	7	Q. And when you examined precipitation data in this
8	sentence of this paragraph you made me read.	8	case, you had not done that type of analysis
9	So --	9	previously; is that correct?
10	Q. My question is is this in the ACF Basin?	10	A. What kind of analysis are you specifically
11	A. It is in the ACF Basin, yes. It's not in Upper	11	referring to?
12	Floridan Aquifer is what I said.	12	Q. The analysis that you did in this case, and that
13	Q. Let's look at the Upper Floridan Aquifer on	13	is evaluating trends in precipitation.
14	page 24.	14	A. I looked at the precipitation data across the
15	A. Yes. I'm there.	15	basin. And I looked at how much the average
16	Q. Okay. And you can read the paragraph right	16	precipitation was pre-'92, and I looked at the
17	before the reference section.	17	average precipitation post-'92. That's what I
18	A. Yes. I read that sentence.	18	have done.
19	Q. Okay. And do you agree with the statements	19	Q. I understand that, sir. I'm talking about
20	there?	20	outside of this engagement, outside of this
21	A. I do not know the context of this. It says here	21	project, did you ever have any other project
22	during 2010 and 2011 water levels in all wells	22	where you looked at precipitation trends?
23	declined at some particular rate, which reflects	23	A. I have used precipitation data in other models.
24	drought conditions that existed in 2010 and 2011.	24	In this modeling I haven't even used the
25	So I do agree that water levels dropped in	25	precipitation data for my model. I have looked
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

	3896		3898
1	from farm ponds? Do you know that?	1	BY MR. QURESHI:
2	A. I do not know what Dr. Sunding has done in this	2	Q. I may have asked you this previously, Dr. Panday.
3	regard.	3	Have you read the entirety of Dr. Langseth's
4	Q. Okay. Have you heard about the Georgia Water	4	transcript?
5	Resources Institute?	5	A. No, I have not.
6	A. I'm not sure.	6	Q. Okay. Well, I'll direct you to page 1028,
7	Q. Okay. Have you heard of Dr. Georgakakos?	7	line 24, through 1030, line 3.
8	A. I have heard the name, yes.	8	A. Okay. I read this.
9	Q. How about Dr. Martin Kistenmacher?	9	Q. Okay. The next section I want you to read is on
10	A. I'm not sure.	10	the following pages, page 1032, line 3, to 1033,
11	Q. Okay. Were you in court at all last week	11	line 9.
12	when we were discussing the UIF report issued by	12	A. Yes. I read this.
13	GWRI?	13	Q. Okay. Does this inform your understanding of
14	A. I was in court for a short period during	14	Dr. Langseth identifying a range of potential
15	Dr. Hornberger's testimony.	15	impact factors from 41 all the way up to 87
16	Q. Okay. Sir, if you could turn to tab 19 of	16	percent?
17	volume 2 of your binder, I'm going to ask you if	17	A. I have not seen this before.
18	you have ever seen this document before.	18	Q. Okay. So when you said that he had abandoned his
19	A. No, I have not seen this document before.	19	opinion, it was not based on reading this
20	Q. Okay. So in your work on this, you're not	20	transcript?
21	familiar with criticisms by the Georgia Water	21	A. That is right. They were -- Florida has been
22	Resources Institute of the agricultural water	22	using the impact factor of . 6 in the direct
23	consumption numbers provided by Georgia EPD?	23	testimonies that were submitted. That's why I
24	A. I don't know if there was a criticism. You're	24	said that. And previously they used the impact
25	telling me that there was a criticism. I don't THE REPORTING GROUP Mason \& Lockhart	25	factor of .4. And that is why I said that they THE REPORTING GROUP Mason \& Lockhart
	3897		3899
1	know that there was.	1	had abandoned the . 4 impact factor and selected
2	Q. I'm asking you if anyone has ever told you that	2	. 6 impact factor instead.
3	there was a criticism?	3	Q. You understand that this deposition that you are
4	A. No. I don't know that.	4	looking at was given before the prefiled direct
5	Q. Okay. Has anyone ever told you that GWRI	5	was submitted in August?
6	estimated that up to 1200 cfs a year is lost to	6	A. Right. It was in August.
7	evaporation from farm ponds? Did you ever hear	7	Q. And you hadn't read this when you wrote your
8	that before?	8	prefiled direct?
9	A. Not before now, no.	9	A. No, I have not.
10	Q. Okay. Sir, you were shown a portion of	10	Q. Okay.
11	Dr. Langseth's testimony during your redirect	11	MR. QURESHI: Nothing further.
12	examination. Do you recall that?	12	SPECIAL MASTER LANCASTER: Redirect?
13	A. Yes. I do.	13	MS. ALLON: Yes, your Honor, very
14	Q. Okay. And it was for a particular day. I	14	briefly.
15	believe Mr. -- Dr. Langseth was deposed for four	15	REDIRECT EXAMINATION
16	days. Does that sound correct to you?	16	BY MS. ALLON:
17	A. I believe he was deposed for four days, yes.	17	Q. Dr. Panday, I just want to go back to one exhibit
18	Q. Okay. I'm going to show you a transcript for	18	that counsel for Florida was asking you about
19	another day. I don't think you were at this	19	just now. It was behind tab 21 in your binder on
20	particular day of his deposition, but I want to	20	page 24, the USGS report.
21	see if that relates at all to your understanding	21	A. Yes. I'm there.
22	of the impact factor range that Dr. Langseth	22	Q. Page 24?
23	provided.	23	A. Yes. I'm there.
24	MR. QURESHI: Your Honor, may I provide	24	Q. And counsel for Florida had asked you about five
25	the deposition transcript?	25	wells that are discussed on page 24, and he said
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

	3900		3902
1	that there were declining trends in those wells.	1	Q. Okay.
2	And he asked you had you ever considered these	2	MR. QURESHI: Thank you, you Honor.
3	trends when you formed your opinions about	3	SPECIAL MASTER LANCASTER: Redirect?
4	groundwater trends in the ACF Basin. Dr. Panday,	4	MS. ALLON: Nothing else, your Honor.
5	are all of these wells even in the ACF Basin?	5	Thank you.
6	A. I'm not sure that they are.	6	SPECIAL MASTER LANCASTER: Doctor --
7	Q. And, in fact, if you go back to your direct	7	THE WITNESS: Yes, your Honor?
8	testimony on page 71, for example, you can look	8	SPECIAL MASTER LANCASTER: -- you have
9	at the map there. And if you just put it side by	9	heard the old saying there are lawyers and
10	side --	10	there are lawyers; and there are doctors and
11	A. Yes.	11	there are doctors. Yes?
12	Q. -- you can see, for example, if you look at	12	THE WITNESS: No, I haven't heard it
13	Thomas County, it's in the bottom right-hand	13	before. But it's quite funny.
14	corner of your demonstrative 42. And it's in	14	SPECIAL MASTER LANCASTER: In the same
15	this map that counsel for Florida was showing	15	token, are there models and there are models?
16	you. That's outside the ACF Basin; isn't that	16	THE WITNESS: There are models and there
17	right?	17	are models, yes.
18	A. Yes. That is correct. In fact, looking at this	18	SPECIAL MASTER LANCASTER: And it --
19	map at the bottom of page 24 of Exhibit 21 here,	19	does it make a difference as to which model
20	it shows the blue area shaded where these wells	20	you pick?
21	are. And these wells are outside of the ACF	21	THE WITNESS: It can make a difference
22	River Basin.	22	as to which model we pick and also what the
23	Q. Are wells outside of the ACF Basin relevant to	23	objectives of the modeling are.
24	your analysis of groundwater trends inside the	24	SPECIAL MASTER LANCASTER: And does
25	ACF Basin?	25	it -- can it make a difference as to what you
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
3901		3903	
1	A. No, they're not.		put in the model?
2	MS. ALLON: Thank you, your Honor.	1	THE WITNESS: It makes a difference as
3	Nothing further.	2	to what you put into the model, again,
4	SPECIAL MASTER LANCASTER: Anything	45	depending on the objectives of the model,
5	further?		
6	MR. QURESHI: May I just ask one	6	And if you want, I can explain a little.
7	question?	7	What I meant was that if you put in
8	SPECIAL MASTER LANCASTER: Sure.	8	weather-related conditions which could be different, then you could get different
9	RECROSS-EXAMINATION	9	
10	BY MR. QURESHI:	10	different, then you could get different answers. But if the objective of the model
11	Q. Dr. Panday, sticking with page 24, the well on	1112	was the impact of pumping, then that -- what
12	the left-hand side next to where it says Flint		you put in with regards to the
13	River, is that in the Flint River Basin?	12	weather-related impacts do not make a difference on the impact of pumping.
14	A. When I look at the little map with it, it shows	14	
15	it to be at the edge of the Flint River there.	15	difference on the impact of pumping. SPECIAL MASTER LANCASTER: So if
16	Q. And Thomas County that Georgia's counsel	16	SPECIAL MASTER LANCASTER: So if somebody picked a model and put certain
17	highlighted for you, how many wells are in Thomas	17	things in, they might get certain results?
18	County there?	18	THE WITNESS: Right.
19	A. None. But the point I believe she was trying to	19	SPECIAL MASTER LANCASTER: Let me ask you this. Have you heard of the Battle Bend?
20	make is that most of the wells are further east		
21	of Thomas County. So now, they're even further	21	you this. Have you heard of the Battle Bend? THE WITNESS: I heard about this
22	away from the ACF River Basin.	22	yesterday, your Honor.
23	Q. But there is one on the Flint River; isn't there?	23	SPECIAL MASTER LANCASTER: Do you know where it's located?
24	A. There is one that -- which seems to be on the	24	
25	Flint River, yes.	25	THE WITNESS: I Google-Mapped it, and I THE REPORTING GROUP Mason \& Lockhart
	THE REPORTING GROUP		
	Mason \& Lockhart		

Q. And he explained the different circumstances under which the minimum release requirements are determined. Correct? A. Correct. Q. And he talked about three factors, time of year, basin inflow, and composite storage. Do you recall that? A. Yes. Those are the three main drivers that sort of, if you will, dictate the outflow and all of that from Woodruff Dam. Q. And he also noted that there was a $5,000 \mathrm{cfs}$ minimum release requirement when the Corps is in something called drought operations. Correct? A. Yes. Q. Okay. During this explanation, Dr. Zeng did not ever use the term offset operation. Correct? A. I didn't listen to it that closely. Q. Okay. Did you look at his prefiled direct testimony? A. I have -- I have glanced through it; but I have not studied it. Q. Okay. From your glance through of his prefiled direct testimony, do you recall whether Dr. Zeng ever used the term offset operation? A. No, I don't. THE REPORTING GROUP Mason \& Lockhart	A. I'm not sure if it was something that I came up with or if it was something that we determined within the group. Q. Okay. Well, you're familiar with the Corps October 2015 Draft Environmental Impact Study for the Water Control Manual update. Correct? A. I'm familiar with it. Yes. Q. Okay. And that represents the Corps' most comprehensive description of its reservoir operations in the ACF Basin? A. I believe so. Q. And it totals over 4200 pages? A. I know it's extensive. Q. Don't worry. I didn't put the whole thing in front of you. A. Please don't. Thank you. Q. And are you aware that the term offset operation is nowhere among those 4200 pages? A. If you're telling me that, I wouldn't be surprised. It -- again, it's a term that is used in my demonstrative No. 12 in my direct testimony to offer up, if you will, a concept so that it's easily understandable. Q. And you know that offset operation is not actually an operating protocol of the Corps. THE REPORTING GROUP Mason \& Lockhart
Q. Or even the term offset? A. No, I don't. Q. And you didn't use the term offset operation in your expert reports; did you? A. I would have to go back and -- and carefully look or study those reports. They're fairly extensive. Q. Okay. A. It's a -- it's a term that I have used simply because it -- when we say offset, it's something that's fairly easy to understand. Q. Well, we looked for the term offset operations in your two reports which are in your binder. I'm not suggesting that you look through them right now, but we couldn't find that term anywhere in your two expert reports. But we do see it when we get to your prefiled testimony. Correct? A. Yes. And I believe that there's a graphic that sort of demonstrates the offset. And we call it the offset because, again, we're trying to simplify a fairly complex phenomenon. And by calling it offset, we think that's an easily understandable definition. Q. Are you the one who made up the term offset operation? THE REPORTING GROUP Mason \& Lockhart	Correct? A. Well, no; that's not true at all. I believe we have got plenty of information, plenty of data, plenty of plotted, if you will, hydrographs and response curves from the reservoirs that clearly show that offset is taking place, especially during drought conditions. Q. It's not a term that's defined like drought operations is in any of the Corps materials; correct? A. I will agree with what you just said, yes. Q. And this is precisely why the U.S. Government says that you and Georgia are speculating when you assert that the Corps will offset any water conserved on the Flint. Correct? A. Well, now, that statement comes out of the -- the U.S. Government position, I recall reading that. And while they go on to talk about that, they were also mainly talking about annual flows and all sorts of flows. And they also say in that exact statement that a lot of this is subject to a lot more study, and there's more data that needs to be evaluated. Q. Sir, you recall reading the Government's brief? It was an amicus brief that they filed in THE REPORTING GROUP Mason \& Lockhart

		3944			3946
1		events with 3 inches of rain, as we went back and	1		would not go above 5,000 cfs for releases?
2		carefully looked at the rainfall events. So	2		That's what you stated. Correct?
3		hydrology is a very dynamic science.	3	A.	Well, it's -- it is their policy. However, they
4		And, in fact, in this regard, if you look at	4		are also operating these reservoirs, as I said
5		that figure in demo cross 1 up in the top left,	5		earlier, to meet seven different project purposes
6		it really is quite close to 5,000 much of the	6		within the basin. One of those project purposes
7		time. And there are just these times where there	7		is flood control.
8		are rainfall events that come through that	8		Okay. And, sir --
9		elevate it.	9	A.	And, clearly, what's happening here in this time
10	Q.	So, sir, these statements in your expert report	10		frame, especially in -- as we get into February
11		are no longer correct. Right?	11		and January, for that matter, there were large
12	A.	They -- I didn't say that. They are shooting for	12		floods and large storms that moved through the
13		values near 5,000. And in what we just read from	13		system and refilled -- it refilled conservation
14		my prefiled testimony, I said at or near 5,000.	14		storage in some of the reservoirs; and it started
15		So I corrected that statement already.	15		to then impact flood storage. And when you get
16	Q.	Okay. Now, sir, let's focus on -- let's go back	16		into the flood zone, by definition the reservoirs
17		to table 4 from Dr. Shanahan that was tab 33,	17		have to be operated in such a way that they --
18		page 32, I think.	18		they release that floodwater downstream. They
19		MS. WINE: Mr. Walton?	19		store a certain amount, and they release a
20	A.	Okay. And now, you're asking me to use some sort	20		certain amount. So there are rules according to
21		of different dataset -- different dataset for --	21		that.
22		from Dr. Shanahan's table.	22		And you can see that in my demonstrative
23	Q.	I'm asking you to look at Dr. Shanahan's table.	23		No. 7.
24		We'll get into the differences in the datasets.	24	Q	Sir, you know that the composite conservation
25	A.	Well, the difference --	25		flood storage did not fill all the way back up
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart
		3945			3947
1		I understand. We'll get to the provisional data.	1		until after February of 2013. Right?
2		He used the gage data from the USGS, okay.	2	A.	I do know that. Right.
3		And we're going to go look at table 4 again.	3	Q.	Okay. So this was not an issue where the
4	A.	Okay. I'm there.	4		reservoirs had filled all the way back up.
5	Q.	I'm waiting to get it up on the screen.	5		Correct?
6		We looked at the last six months of 2012	6	A.	They had not filled all the way back up; that is
7		before. And what I want focus you on now is the	7		correct.
8		winter refilling season. So that would be	8	Q.	Okay.
9		December 2012 through February of 2013.	9	A.	But there were obviously massive rainfalls within
10		MS. WINE: Mr. Walton, I believe that's	10		the basin that were driving these flows.
11		on page 32 of this exhibit.	11	Q.	Sir, you stated that until those reservoirs were
12	BY MS. WINE:		12		filled up, the Corps does not exit drought
13	Q.	So now, focusing on this -- it's labeled winter	13		operations; and it's still under the 5,000
14		refilling season. Do you see that?	14		minimum release. Correct?
15	A.	Yes, I do.	15	A.	Yes. But we can't just look at --
16	Q.	So, sir, not only are we now still in drought	16	Q.	Sir, I just asked you if that was correct under
17		operations; but we're also in the winter	17		the rules?
18		refilling season, which is another time that you	18	A.	That is according to the rules, yes. But --
19		say the 5,000 cfs will not be exceeded. Correct?	19	Q.	And you can see here --
20	A.	That's a stated policy in the RIOP. And, of	20		Can I finish my question?
21		course, we all know that what happened during	21	Q.	I just asked you if that was connect, sir.
22		this particular period of time -- and I have got	22		Can I finish my question?
23		to get --	23		I would just like you to answer my question.
24	Q.	Sir, I just asked you if those were -- if that is	24		I said yes.
25		another reason that you assert that the Corps	25	Q.	You will have the opportunity --
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart

A. I said yes. However, clearly when you're going from 400 to $\mathbf{3 8 0 0}$ to $\mathbf{3 2 , 0 0 0}$, something else very different is happening in the basin. And that something else, during this particular time of the year, was a major rainfall and a major flood moving across the basin. Once that moves anywhere upstream of Lake Seminole, it's going to come right on through Lake Seminole. And that's how it operates.
Q. Sir, are you saying that your statement that the Corps will remain in drought operations and will retain the 5,000 minimum release until the reservoirs are filled back up and it exits drought operations, that that statement is not correct?
A. No. It's a correct statement. But in this particular situation where you have this level of flow coming through the system, it's obviously flow related.
Q. Right. And the Corps released a lot more in each of these months. Correct?
A. I don't know whether they released a lot more. I haven't studied the reservoir operations from flood control standpoint. But I do know that there had to have been a lot of water moving THE REPORTING GROUP

Mason \& Lockhart
3949
through Lake Seminole to generate a differential of $\mathbf{3 2 , 0 0 0}$.

MS. WINE: Your Honor, I'm about to
switch topics. Would this be a good time to
switch topics, or would you like me to keep going?

I'm happy to keep going if you're not ready.

SPECIAL MASTER LANCASTER: Let's go a little longer.

MS. WINE: This is good. We're going to
get into provisional data, which I know
Dr. Bedient wants to talk about.
BY MS. WINE:
Q. So as we discussed, you contend that in table 4 and other analyses that Dr. Shanahan did, he has relied on the, quote, wrong data. Correct?
A. He has -- well, data is data. Now, there are three different datasets here. So we can talk about those to the level that you would like to.
Q. I just want to know if you recall saying in your prefiled direct testimony at paragraph 161 that he relied on the wrong data. Do you recall saying that?
A. Oh, you mean for his analysis?

THE REPORTING GROUP
Mason \& Lockhart

Yes, I did say that.
Q. Okay. And that wrong data is the official USGS streamflow data recorded at the Chattahoochee Gage on the Apalachicola River. Correct?
A. It is the official data that is adjusted after some period of time by the USGS. However, it is not the data on which the Army Corps of Engineers makes its day-to-day decisions to operate this basin. That starts with provisional data from the USGS. And then by the end of the day, it is adjusted by the Army Corps themselves; and it then becomes the Army Corps of Engineers release data.

And they have to use that because they're standing there at the dam, at the gates, watching the outflow. And they're making day-to-day decisions. So they can't wait for the data to come back after it's been adjusted by the USGS.
Q. So what you're saying in essence is that even though the Corps did release above the 5,000 cfs minimum, they didn't intend to do that?
A. They're basing -- they're basing their releases on their information that they have on a daily basis as shown in my demonstratives 5 and 6, which, as you will notice there, targets just THE REPORTING GROUP Mason \& Lockhart

3951
above 5,000. That's what they're making their decisions based on.
Q. So if they released more than the 5,000 cfs minimum, they didn't intend to do that?

They were doing it based on provisional data that was presented to them that may have been telling them something different?
A. Well, first of all, they -- there's a minimum of 5,000. That's a minimum. They're releasing just above 5,000 because, again, there's quite a bit of variability in that data, as you have shown me, actually, in Bedient cross demonstrative No. 1. There is quite a bit of up and down in the data. They don't want any of those down dips to drop below 5,000 because they're trying to hit that minimum.
Q. Okay. Let's look at this provisional data.

First of all, you had to get the data from Georgia EPD. Correct?
A. I -- let's see. Which -- you're calling this provisional data. Are you talking about the Corps data or the USGS data?
Q. Well, tell me what you looked at and what you relied upon.
A. I looked at this Corps release data.

THE REPORTING GROUP Mason \& Lockhart

A. I have seen those.
Q. Okay. And we don't have to walk through them all. They were shown with Dr. Zeng. But they are in your packet at Bedient cross demo 5. And it shows a number of missing records from that data?
A. It does. And that's fairly typical for provisional data.

However, for 2011 and 2012 it seemed to provide a fairly -- a fairly complete dataset.
Q. Can you explain how these errors occurred, sir?
A. Oh, there's a variety of ways that -- I have got a lot of familiarity with USGS gages because I have helped put them in. You can get power failures. You can get maintenance issues. You can get clogging. You can get destruction of the gage for some period of time. There are all sorts of reasons that they go down.
Q. So are you aware of whether there are any other errors in that provisional data dataset that you were provided that we didn't happen to find?
A. No.
Q. How would you know whether that dataset is accurate or not?
A. Again, I relied upon EPD, who was in THE REPORTING GROUP Mason \& Lockhart

3957
communication with the Army Corps, to provide that to me; and I just relied upon that dataset.
Q. Now, sir, in addition to that provisional data that Georgia EPD provided to you, you also cite another dataset that I want to ask you about.
A. Sure.
Q. So if you turn to your prefiled direct testimony on page 70 --
A. Okay.
Q. -- you will see that you have a demonstrative there. It's labeled demo 13.
A. Yes.
Q. And I just want to ask you. The -- in paragraph 50 the source cited is GX-949. Correct?
A. It is --
Q. Do you see right there in paragraph 50 it says, Bedient demo 13 is a true and accurate copy of the results of my analysis of RIOP flow thresholds and basin inflow for 2007. And it says --
A. Excuse me. What page are we on?
Q. We're on page 70, I believe.

Let me just make sure that's the right page. It's paragraph 50, for sure. THE REPORTING GROUP
A. No, it's not -- there is no paragraph 50 on page 70.
Q. All right.
A. That's wrong.
Q. Hang on.

I'm sorry. Page 27.
A. Okay.
Q. I have got a little typo here.
A. No problem. No problem.
Q. Sorry about that. Thanks for correcting me.
A. No problem.
Q. Here we go.
A. Okay.
Q. Do you see that reference to GX-949 at the end of paragraph 50?
A. Yes, I see it.
Q. Right at the bottom there.

So I don't imagine you know offhand what GX-949 is based on that moniker?
A. No, I don't.
Q. Okay. So we were trying to figure it out ourselves, so what we have done is a spreadsheet.
It's just a slip sheet in your tab that we're going to pull up a portion of GX-949 to see if you can help us understand where this data came THE REPORTING GROUP Mason \& Lockhart
from.
And, actually, we have got a demo. These guys are way ahead of me.

Let's turn to cross demo 6-1.
A. All right.
Q. So this is just a picture -- we put it on the screen, too -- of just a portion of the GX-949 data worksheet.
A. Yes.
Q. And I'll represent to you that you have a bunch of worksheets in this file?
A. Right.
Q. But we pulled out this one that says data. And it looks like it identifies Woodruff Outflow Data. Do you see that?
A. Yes.
Q. Sir, do you -- based on looking at this, do you know what GX-949 is?
A. I don't; but I suspect -- well, I know that this came to us from the Georgia EPD.
Q. It looks like the provisional data that Georgia EPD provided you. Correct?
A. But I don't know that for a fact. And this was also the same plot that was in my very first expert report dated in February.

THE REPORTING GROUP

Mason \& Lockhart

Q. You didn't evaluate the quality of those UIF's?
A. No. This was the same UIF's used by the State of Georgia. They had been reviewed by them. And the Army Corps of Engineers uses these UIF's to make all of their runs with ResSim for the ACF Basin.
Q. And as you just said, the UIF's are actually dependent on consumptive use data provided by Georgia. Correct?
A. No. The UIF's are based upon -- yes. I mean, they have to go back and subtract those out; so I guess that's true.
Q. Right. They get the consumptive use data from Georgia?
A. Yes, they do.
Q. All right. Now, I know you were here when Dr. Zeng testified. Were you also here when Mr. Masters testified?
A. I was not, no.
Q. Okay. Well, they were both asked questions -but obviously you will only remember Dr. Zeng -about some of the errors in the Corps' UIF's. Do THE REPORTING GROUP Mason \& Lockhart

3969
you recall that questioning?
A. Yes. I'm familiar with that line of questioning.

I am.
Q. And you're aware of the criticisms that GWRI or Georgia Tech will sometimes refer to it as levied in its UIF assessment report?

You were aware of that before you filed your prefiled direct testimony. Correct?
A. I'm aware of it, yes.
Q. And were you aware of it before you submitted your expert reports?
A. I don't know. It seems like I saw the document early on. But one of the -- there are criticisms
there. However, the two gentlemen that authored that report also clearly stated that for the express purpose that ResSim is used in this basin for -- especially for comparative analysis on consumptive use, the UIF's are perfectly acceptable.
Q. We'll get into that; but, sir, you did not alert the Court to any of the Georgia Tech critiques of the UIF dataset. Did you?
A. No. Once -- once they basically said that for the express application that we're using the model for, they had no particular problem. THE REPORTING GROUP
Mason \& Lockhart

Neither one of them, neither one of the authors had a problem with the approach. We went -- I mean -- and, again, the Army Corps of Engineers in this particular basin both operates the basin, manages the basin. And they ought to be the ones that best understand how that model works and how those UIF's need to be determined.
Q. And you know that Georgia Tech concluded that the

UIF dataset included both random and systematic errors. Correct?
A. Right. For their express purpose that they were -- that they were doing the analysis.
Q. We'll get to the purpose, sir. I promise.

But for now, I just want to test your recollection about that UIF report.

And it found that those systematic errors affect both the long-term and daily flow calculations. Correct?
A. Correct.
Q. And that many of the errors are related to agricultural demand, including groundwater pumping. Correct?
A. I believe that was correct.
Q. And that many of the errors related to the fact that evaporation from farm ponds and other THE REPORTING GROUP Mason \& Lockhart
impoundments was not accounted for. Correct?
A. Well, they made that -- they made that statement.

But, again, Army Corps of Engineers and others, including the State of Georgia, feel that the whole issue of small pond impoundment and the evaluation of evaporation by itself without consideration of size of pond and infiltration is -- is a very difficult and complex thing to compute and certainly highly inaccurate.
Q. Sir, do you recall that Georgia Tech said that the error from that issue alone can be up to 1200 cfs. Correct?
A. I recall that.
Q. And that the systematic errors in the dataset create a false assurance regarding the amount of water available during periods of drought?
A. Right. Yes.
Q. Okay. And, sir, if we could, you will find the UIF report at tab 21 of your binder. And I want to turn to the page marked with a little Roman numeral iv -- I think it's actually the fourth page of the document. This is Exhibit FX-534.
A. Okay.
Q. Sir, are you at the page that says Executive Summary? THE REPORTING GROUP

Mason \& Lockhart

	3976		3978
1	A. Yes.	1	a serious drought year, and we're comparing that
2	Q. Okay. Now, you also used the Corps' dataset --	2	against, I guess, Dr. Sunding's proposal --
3	the UIF dataset and ResSim to identify historic	3	proposed cap of a thousand cfs. And so we're
4	daily discharges at the state line and predict	4	doing a -- a direct, if you will, scenario
5	what those daily discharges would have been under	5	comparison just like the Fish and Wildlife
6	various conservation scenarios. Correct?	6	Service said was completely appropriate. And
7	A. Yes.	7	those are the results we got.
8	Q. Okay. And if you would, sir, just briefly turn	8	Q. Sir, you're running a predictive models, and
9	to your prefiled testimony. And I'm looking at	9	you're using daily time steps; is that correct?
10	your demo 24, which is a page 41 of your	10	A. That's correct.
11	testimony.	11	Q. Okay. Now, sir, are you also aware that Georgia
12	A. Okay. I see it.	12	Tech warned about the use of the UIF's for
13	Q. Sir, I just to want look at that briefly. Do you	13	comparative analyses?
14	see at the bottom right you cite a source there,	14	A. Everything that I have seen from Georgia Tech,
15	which is GX-911. Do you see that?	15	from both of the main lead authors there, were
16	A. Yes.	16	that for running sort of a -- this model in a
17	Q. And now, if you could turn to your demonstrative	17	planning mode, meaning sort of a comparison of
18	packet, sir --	18	consumptive use caps or whatever, or increases
19	A. Okay.	19	into the future -- and, of course, this is the
20	Q. -- to demo 16.	20	exact same model that was run by the Army Corps
21	A. All right.	21	of Engineers in consideration of Georgia's 2013
22	Q. Which is, I think, the very last one.	22	and 2015 request for sort of future uses.
23	A. Okay. I'm there.	23	Everything I have seen, they said it's
24	Q. Sir, what we did here was we took a screen shot	24	perfectly -- this model is perfectly fine. Yes,
25	of GX-911, which was cited in this demo in your	25	it's subject to a few issues and a few problems
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	3977		3979
1	prefiled direct testimony.	1	that they solved for their specific application;
2	A. Okay.	2	but in general, the model is perfectly fine for
3	Q. And, sir, do you see here that you are putting a	3	comparative analysis.
4	baseline and then 1,000 cfs cap scenarios on a	4	Q. Sir, could you turn back for a moment to tab 21,
5	daily basis in this spreadsheet?	5	which is Georgia Tech's UIF --
6	A. Yes.	6	A. Sure.
7	Q. And you did that by running ResSim. Correct?	7	Q. -- unimpaired flow, analysis.
8	A. I believe so, yes.	8	A. Sure.
9	Q. And so you were using ResSim precisely in the	9	Q. And if you could, sir, please turn to page 124.
10	manner that Georgia Tech and the U.S. Fish and	10	A. Okay.
11	Wildlife Service warned you against as a	11	Q. The numbers are in the box on the bottom of the
12	predictive tool and with daily time steps.	12	page --
13	Correct?	13	A. Thanks.
14	A. Well, we're doing a comparative analysis here	14	Q. -- yes, in the light gray.
15	between -- if you're talking about my demo,	15	A. In the light gray. So I have to get three layers
16	demonstrative 24, is that what we're referring	16	of glasses.
17	to?	17	All right. 124, you said?
18	Q. It is.	18	Q. Correct.
19	Well, I'm looking at --	19	A. Okay.
20	A. On page 41?	20	Q. The heading on that page says, Unimpaired flow
21	Q. -- what you have here as support, which is	21	uncertainty implications for --
22	GX-911, on demo 16.	22	A. Yes.
	A. Okay. So we're actually running a scenario	23	Q. -- FWMP?
24	comparison between the baseline 2011, which is	24	A. Yes.
25	the $\mathbf{2 0 1 1}$ sort of condition in the basin, which is	25	Q. And, sir, if you look at the paragraph that
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

4004	4006
flat line, and they're the same. Q. What was the specific consumption cap that you were modeling in demonstrative 21 ? A. This one is a $\mathbf{3 0}$ percent cap on both M\&I and on agricultural use. Q. And what was your conclusion about reservoir operations from the results of this modeling? A. Well, the conclusion is that the -- you know, the reservoirs that are in the system -- and there are these -- there are these five big reservoirs with three big storage reservoirs in place. They tend to smooth or dampen out any changes or any alterations that might take place in the system. And that's what they're designed to do. Q. Now, Dr. Bedient, I think you had said that you -- when you had looked at caps, you went all the way up to a 40 percent reduction in consumptive use; is that right? A. Yes. Q. And if you look at page 40, demonstrative 23 -- A. Right. Q. -- in your direct testimony, does that show the results of your analysis with respect to the impact of a 40 percent reduction in consumptive use? THE REPORTING GROUP Mason \& Lockhart	Georgia's consumptive use, whether we're talking about increases or decreases, is not having a significant impact on state line flows into Florida during the dry times and drought years? A. It's all related to two things, the reservoirs and the way in which the Army Corps of Engineers operates those reservoirs. They have the RIOP rule. They basically are acting as a smoothing mechanism or a dampening mechanism for any changes that might migrate through the system. Q. I want to move on to a different topic, and I want to talk about your analysis of the relationship between precipitation and streamflow in the ACF Basin. Have you analyzed that issue? A. I have. Q. Now, let's take a look at page 56 of your direct testimony, specifically demonstrative 34 . A. Okay. Q. And does this show the results of your analysis of the relationship between streamflow and precipitation? A. It does. And I apologize; it's a fairly complex graph, but I can -- I can explain it, I think, in simple terms. THE REPORTING GROUP Mason \& Lockhart
A. Yes. This is essentially taking it all the way back to the 1992 level of consumptive use, a 40 percent difference or cap. And when -- again, you see very similar results here to what we got with the $\mathbf{3 0}$ percent. Q. And what are those results? A. And those results basically say no material difference of flows at the state line. A few little differences, but mostly in the wetter months, not in the dry months. Q. Now, let's talk about the modeling you did of increases in Georgia's consumptive use. What scenario did you look at for that modeling? A. There, we -- we ran the 2040 into the future use, I believe. Q. So you looked at projected increases in Georgia's consumptive use. Is that right? A. That's correct. Q. And what did your modeling show with respect to the impact of increases in Georgia's consumptive use on state line flows into Florida? A. And, again, going all the way to 2040 with the projected uses, we see no material differences especially, again, in the summer months. Q. Dr. Bedient, how does it make sense that	There are two things being shown here. The red is rainfall. And it's been converted over into cubic feet per second, but essentially it's inches of rainfall that's been converted. And you will notice how the rain starts over there in 1929 on the graph. It was actually a fairly high year, and then it bounces up and down quite a bit. There is a low year in 1954, another kind of low year in the '60's. And then you come across, and you will notice that over there in the 1999 and forward time frame, you see three sort of double-year droughts; '99 and 2000, '06 and ' 07 , and then ' 11 and ' 12 . And then you will also notice that the flows -- and these are flows at the Chattahoochee Gage at the state line -the flows also show a marked reduction. And, again, these are in units of tens of thousands of cfs average annual flows. But they show a marked reduction, especially post-1999. So there's this correlation that appears to show up. MS. ALLON: Your Honor, may I hand up one more demonstrative? May I hand up one more demonstrative? SPECIAL MASTER LANCASTER: Please. BY MS. ALLON: THE REPORTING GROUP Mason \& Lockhart

Q. Now, Dr. Bedient, this is a demonstrative that the Court has seen before. Florida's counsel actually used it in their opening statement. Have you seen this before?
A. I have.
Q. Okay. And can you describe what it shows.
A. It's basically showing the -- and I choose to look at annual streamflow; it's easier to see, but you can also look at June to September streamflow. And what you're seeing is a comparison between droughts of '54 and '55 compared to today, 2011 and 2012.

And the -- the effort here is to show that -or the statement up here is that fewer inches of precipitation and higher temperatures in the past lead to -- or were considerably higher and produced sort of worst droughts in the future.
Q. Okay. And do you agree with that conclusion?
A. No, I don't. I think there are a lot of other issues going on here.
Q. Okay. Can you describe what you mean by that?
A. Well, in particular two things have changed dramatically in the basin between '54 and '55. And that was shown on my earlier exhibit that we just looked at.

THE REPORTING GROUP
Mason \& Lockhart
4009
In 1954, that was basically just a single-year drought. And all the -- all the earlier droughts were sort of single-year type drought occurrences.

Secondly, in 2011 and 2012 the reservoirs were in place; the RIOP was in place. So they were hitting or shooting to hit that minimum 5,000, which explains why you see the June to September streamflow in there around 5500.

Lastly, and more importantly than anything, the high annual streamflow during 1954 is kind of a false and misleading number because the end of 1953 had one of the largest rains on record. And it happened in the very end of the year, and then flows just carried over into 1954 generating a higher value, much higher than -- you will notice ' 55 ; the value there is 11,000 . And you will notice it's 3,000 higher. And that's just not -and I investigated that.
Q. Okay. And let's look at page 85 of your direct testimony.
A. Okay.
Q. And specifically at demonstrative 50 .
A. All right.
Q. And can you describe what demonstrative 50 shows.

THE REPORTING GROUP
Mason \& Lockhart
A. That shows what I was just talking about for 1954 and '53. You will notice in January of 1954, the rainfall starts to really, really go down. And you will notice the flows also in '54 track down, but they start very high. They start at 40,000. And the reason they start really high at 40,000 is because look at that ginormous rain spike that comes in at the very, very end of 1953. It just carries over.

This is a slow-moving, slow-responding basin.
And those flows just carry over into '54 and register at the state line.
Q. Now, Dr. Bedient, based on your review of the precipitation data and streamflow data, what have you concluded about the relationship between precipitation and streamflow in the ACF Basin?
A. Well, I think it's just common sense that higher rain, higher runoff, higher streamflow; lower rain, especially significantly lower rain, lower flow -- lower streamflow, lower flows measured at the gage.
Q. Thank you.

MS. ALLON: Your Honor, nothing further.
EXAMINATION THE REPORTING GROUP Mason \& Lockhart 4011

BY MS. WINE:
Q. Sir, I just want to pick up where we left off with your counsel asking you about your analysis of rainfall.
A. Sure.
Q. You're not a climatologist. Correct?
A. I'm not a climatologist.
Q. And you're not a hydroclimatologist?
A. I'm not one of those, no.
Q. And were you here when Dr. Hornberger testified about this chart that you were just asked about comparing '54 to '11 and '55 to 2012?
A. No, I wasn't here.
Q. And were you -- so you weren't here to hear him say he compared 2010 to 1953, and that they were the same?
A. No.
Q. And did you hear him talk about looking at the effect of any kind of carryover analysis?
A. No, I did not.
Q. Sir, when you looked at the relationship between rainfall and streamflow for purposes of your expert report and your prefiled direct testimony, did you rely on gridded climate datasets?
A. No. I relied on the data that basically came THE REPORTING GROUP

Mason \& Lockhart

CERTIFICATE

I, Claudette G. Mason, a Notary Public in and for the State of Maine, hereby certify that the foregoing pages are a correct transcript of my stenographic notes of the Proceedings.

I further certify that I am a disinterested person in the event or outcome of the above-named cause of action.

IN WITNESS WHEREOF, I subscribe my hand this 13th day of December, 2016.
/s/ Claudette G. Mason
Claudette G. Mason, RMR, CRR
Court Reporter
My Commission Expires
June 9, 2019.

THE REPORTING GROUP
Mason \& Lockhart

	9	```3963:18 accounted [2] - 3895:22, 3971:1 accounts [1] - 3961:14 accuracy [3] -```	$\begin{aligned} & \text { acreages }[2]- \\ & 3864: 15,3865: 23 \\ & \text { acres }[5]-3770: 9, \\ & 3770: 20,3771: 1, \\ & 3791: 14 \\ & \text { Act }[3]-3840: 9, \end{aligned}$	```3793:20, 3909:6 adopted [6] - 3794:1, 3794:13, 3855:4, 3855:9, 3856:2, 3856:7 advantage [1] -```
	$\begin{aligned} & \hline 9 \text { [9]-3799:2, } \\ & 3799: 17,3882: 15, \\ & 3882: 16,3884: 5, \\ & 3898: 11,3964: 6, \\ & 3964: 11,4020: 17 \end{aligned}$			
$\begin{aligned} & 5600[1]-3966: 4 \\ & 587[1]-3836: 9 \\ & 590[1]-3834: 4 \end{aligned}$				
		3847:23, 3983:7	3841:7, 3841:23	3974:19
$3864: 6,3898: 22,$	$\begin{aligned} & 90[3]-3791: 3, \\ & 3791: 5,3792: 1 \end{aligned}$	accurate [14] - 3777:	acting [1] - 4006:8	adverse [1] - 3821:21
3899:2, 3928:22,		3777:17, 3780:18,	action [1] - 4020:9	advise [1] - 3804:19
3934:6, 3934:12,	$\begin{aligned} & 900[2]-3882: 24, \\ & 3883: 22 \end{aligned}$	3804:17, 3956:24,	activities [2] -	Advisory [2] -
3935:12, 3936:3,		3957:18, 3975:8,	$3888: 11,3888: 16$	$3809: 23,3809: 24$
36:6, 3939:	$934[1]-3864.9$94	3980:16, 3982:23,	activity [4] - 3887:24,	affect [5] - 3813:7,
6,000 [3] - 3936:12,3937:17, 3938:4		3991:25, 3996:15,	3888:6, 3888:10,	3865:8, 3888:17,
	3988:22	3996:18, 3996:21,	3888:14	3970:17, 3972:10
	96 [2]-3975:6,	4013:18	actual [17] - 3780:7,	affected [2] - 3803:18,
6-1 [1] - 3959:4	3983:10	accurately [4]	$3820: 18,3834: 3$	3811:4
6-2 [1]-3960:2	$97 \text { [1] - 3993:5 }$	3801:23, 3862:21	837:22, 3864:1	affects [3] - 3860:4,
6.8 [1] - 3817:3	9:00 [2] - 3764:14,	3974:14, 4000:13	3866:11, 3867:1,	3887:24, 3888:7
$\begin{aligned} & 60[13]-3793: 6, \\ & 3797: 25,3798: 13 . \end{aligned}$		ACF [58]-3768:2, $3768 \cdot 13,3768: 18$	3931:1, 3938:15,	Africa [1] - 3922:1
$\begin{aligned} & 3797: 25,3798: 13, \\ & 3798: 18,3804: 4, \end{aligned}$	A	3768:13, 3768:18	38:23, 3939:9,	afternoon [4] -
$\begin{aligned} & 3804: 13,3856: 8 \\ & 3857: 7,3870: 12 \end{aligned}$				
	a.m [5] - 3764:14,	3772:18, 3781:12,	$3942: 13,3967: 1$	$\mathbf{A g}[2]-3964: 14$
3870:15, 3874:19,	3828:6, 3828:8,	3782:16, 3782:17,	add [8] - 3820:9,	3989:19
79:16, 3884:21	3880:16, 4019:13 abandoned [7] -	3783:3, 3795:4,	3820:10, 3829:9	ago [3] - 3848:19
62 [1]-3872:14		3795:11, 3799:14,	3837:13, 3838:15,	3935:7, 4001:16
63,000 [2] - 3966:10,	$\begin{aligned} & 3792: 13,3792: 24, \\ & 3793: 5,3798: 9, \end{aligned}$	3799:16, 3799:18,	3879:17, 3920:10,	agree [43] - 3769:19,
	$\begin{aligned} & 3793: 5,3798: 9, \\ & 3798: 15,3898: 18, \end{aligned}$	3805:3, 3805:9,	3966:7	$3772: 19,3781: 24,$
$67 \text { [2] - 3814:15, }$		826:19, 3827:3,	added [2] - 3807:20,	3782:8, 3791:23,
	3899:1 abandoning [1] -	836:2, 3859:4	4001:21	3807:17, 3810:24,
$68[2]-3814: 15,$	3792:11	3859:8, 3859:9	addition [4] - 3918:18,	3811:7, 3812:20,
		3859:12, 3859:21,	3957:3, 3967:19,	$3812: 22,3812: 23,$
3962:18	$\begin{aligned} & \text { abandonment [1] - } \\ & 3798: 25 \end{aligned}$	859:23, 3861:5	3987:15	$3813: 6,3813: 24,$
7		3861:16, 3871:14	additional [9]	3814:2, 3821:10,
	ABID [1] - 3764:18 ability [1] - 4000:13	72:21, 3872:22,	19:1, 3930:2	3821:15, 3821:19,
$7 \text { [4] - 3790:4, 3808:3, }$ 3832:22, 3946:23	able [7]-3860:24,	889:4, 3889:10,	$\begin{aligned} & 3932: 17,3997: 25, \\ & 3998: 4,3998: 10, \end{aligned}$	$\begin{aligned} & 3822: 10,3828: 21, \\ & 3829: 8,3829: 10, \end{aligned}$
$\begin{aligned} & \text { 3832:22, 3946:23 } \\ & 7-1[1]-3960: 10 \end{aligned}$	$\begin{aligned} & 3860: 25,3905: 8, \\ & 3905: 9,3918: 16, \end{aligned}$	889:11, 3892:10	4003:18, 4003:22	3833:25, 3844:3,
$\begin{aligned} & 7-1[1]-3960: 10 \\ & 7-2[1]-3960: 18 \end{aligned}$		92:11, 3900:4,	address [1] - 3811:5	3871:17, 3880:2,
70 [5] -	3953:9, 3967:20	00:5, 3900:16	addressed [2] -	3888:4, 3888:16,
	above-entitled [1] -	00:21, 3900:23,	3854:16, 3854:17	3889:19, 3889:25,
$\begin{aligned} & 3895: 19,3957: 8, \\ & 3957: 23,3958: 2 \end{aligned}$	above-named [1] -	00:25, 3901:22	adequacy [1] -	3915:11, 3925:17,
70's [3] - 3872:4,		3910:15, 3914:10,	3777:21	3937:10, 3937:25,
	$\begin{aligned} & \text { 4020:9 } \\ & \text { absence [1] - 3825:15 } \end{aligned}$	3921:13, 3924:25	adjacent [1] - 3872:21	3966:11, 3975:16,
$3887: 10,3887: 12$	absence [1] - 3825:15	32:10, 3968:8,	adjourned [1] -	3995:4, 3995:10,
71 [2] - 3790:7, 3900:8		80:18, 3981:6	4019:12	3996:4, 3996:5,
76 [2]-3821:2, 3876:5	$3780: 11,3789: 15,$	006:14	adjudicated [1] -	996:22, 3997:2,
7Q10	$4014: 2$		3918:17	4008:18, 4016:4
		1] - 3980:2	adjust [1] - 3937:16	agreed [3] - 3982:15,
$3818: 14,3819: 1$	absolutely [3] -	achievable [1] -	adjusted [6] - 3936:8,	3991:7, 3996:21
$3819: 20,3820: 17$	3931:19, 3967:18, 3995:4	95	3936:12, 3940:3,	agricultural [53] -
	acceptable [3] -	achieve [2]	950:5, 3950:11	3774:16, 3778:9,
8	acceptable $[3]-$ $3969: 19,3973:$	3878.21	3950:18	3794:12, 3795:3,
	983		adjusting [1] - 3936:5	3795:10, 3804:12
8 [3]-379	according [8]	$\begin{aligned} & 3770: 3,3884: 14 \\ & 3994: 8 \end{aligned}$	adjustment [1] -	3807:7, 3807:8, $3807 \cdot 15,3812 \cdot 7$
3794:19, 3961:2	3816:9, 3881:3,	ackno	3961:17	$3812: 15,3814: 7,$
85 [1] - 4009:20	3881:18, 3882:18,	3981:10	adjustments [2] 3952.13, 3955:	3818:8, 3818:13,
3792.20, 3792.25	3939:7, 3946:20,	acreage [2] - 377		3819:23, 3833:3,
87 [1] - 3898:15	account [2] - 3963	REPORTING	DUP [3] - 3767:2,	3838:19, 3838:20,

3793:17	3883:6, 3886:17,	3952:13, 3958:19,	3900:16, 3900:22,	3977:5, 3991:14
assume [2] - 3882:22,	3891:15, 3891:17,	3959:17, 3965:8,	3900:23, 3900:25,	Battle [6] - 3903:20,
3883:19	3941:1, 3941:2,	3968:13, 3996:10,	3901:13, 3901:22,	3904:6, 3904:11
assumed [1] - 3953:14	3941:13, 3941:24,	3996:12, 4010:13	3910:15, 3914:10,	4016:11, 4016:16,
assumes [1] - 3963:23	3990:1, 3990:3,	baseflow [48]	3924:25, 3932:11,	4016:21
assumption [3] -	3990:20, 3991:14,	3775:21, 3775:22,	3968:9, 3980:18,	Bay [4] - 3801:3,
3919:8, 3922:21,	3991:21, 3992:2,	3780:19, 3785:13,	4000:14, 4006:14,	3802:5, 3802:25,
3932:4	3992:6, 3994:1,	3786:1, 3786:19,	4010:17	3846:2
assurance [2] -	3995:2, 4007:18	3786:21, 3787:5,	basin [77] - 3772:10,	bay [1] - 3801:16
3848:6, 3971:15	averaged [1] -	3787:8, 3787:16,	3772:22, 3773:1,	Bean [1] - 3828:10
attempt [2] - 3982:25,	3778:16	3788:8, 3788:9,	3778:17, 3780:20,	beast [1] - 4001:6
3984:4	aware [28]-3774:11, $3775: 1,3775: 7$,	$\begin{aligned} & 3788: 10,3788: 11, \\ & 3788: 20,3788: 22 \end{aligned}$	$\begin{aligned} & 3781: 23,3782: 21, \\ & 3784: 16,3789: 11, \end{aligned}$	beautifully [1] - 3975:5
attempting [2]- 3922:1, 3939:4	$3777: 12,3797: 23,$	3790:1, 3791:8,	$3789: 16,3789: 24,$	became [1] - 3816:1
attention [1] - 3991:1	$3815: 16,3816: 5,$ 3826:6, 3833:4	3791:9, 3805:22, 3805:23, 3806:21,	$3795: 23,3800: 20,$ 3805:25, 3806:21,	become [3] - 3797:23,
attorneys [1] - $3771: 14$	$\begin{aligned} & 3826: 6,3833: 4, \\ & 3846: 9,3846: 14, \end{aligned}$	$\begin{aligned} & 3805: 23,3806: 21, \\ & 3812: 21,3814: 5, \end{aligned}$	3805:25, 3806:21, 3807:7, 3807:9,	$\begin{gathered} \text { 3905:13, 4017:16 } \\ \text { becomes [1] - 3950:12 } \end{gathered}$
attribute [3]-3998:9,	3846:20, 3878:15,	$3823: 25,3825: 5 \text {, }$	3807:15, 3819:16,	Bedient [31] - 3765:4,
3998:11, 3998:12	$\begin{aligned} & 3891: 1,3894: 23, \\ & \text { 3914:17, 3953:20, } \end{aligned}$	$\begin{aligned} & 3825: 10,3825: 12, \\ & 3830: 18,3837: 13, \end{aligned}$	$\begin{aligned} & 3820: 1,3826: 23, \\ & 3830: 13,3832: 6, \end{aligned}$	3907:15, 3908:18, 3908.20, 3909:3
augmentation [1] 3994:15	3955:19, 3956:19,	3842:15, 3860:1,	$3832: 14,3833: 14,$	3909:11, 3909:23,
augmenting [2] -	3969:4, 3969:7,	3860:3, 3860:5,	3833:15, 3834:22,	3916:23, 3934:6,
3998:16, 3998:18	3969:9, 3969:10,	3860:12, 3861:16	3835:8, 3836:20,	3935:20, 3936:16,
August [11] - 3788:7,	3978:11, 3980:21,	3864:1, 3864:3,	3839:9, 3839:20,	3936:17, 3949:13,
3797:20, 3797:23,	3986:9, 3995:25,	3864:23, 3865:3,	3840:7, 3845:8,	3951:12, 3954:1,
3899:5, 3899:6,	$\begin{aligned} & \text { 4012:3 } \\ & \text { axis [2] - 3936:5 } \end{aligned}$	$\begin{aligned} & 3866: 21,3867: 15, \\ & 3870: 12,3870: 16, \end{aligned}$	$\begin{aligned} & 3863: 3,3870: 2, \\ & 3871: 16,3871: 22, \end{aligned}$	3954:14, 3956:4,
$\begin{aligned} & 3943: 2,3965: 3, \\ & 3990: 10,3992: 3 \end{aligned}$	3936:9	3883:4, 3883:11,	3872:1, 3873:16,	$\begin{aligned} & \text { 3957:18, 3960:10, } \\ & \text { 3961:1, 3964:6, } \end{aligned}$
3994:7, 3994:8		3890:12, 3890:15 baseflows [4] -	3874:3, 3874:6, 3874:10, 3875:11,	3964:10, 3991:4,
author [1] - 3843:17	B	$3775: 6,3775: 8$	3876:16, 3876:23,	3991:12, 3991:16,
3969:14	back-to-back [1] - 3995:14	3786:14, 3786:16 baseline [8] - 3977:4,	$\begin{aligned} & 3877: 6,3884: 13 \\ & 3884: 14,3891: 15, \end{aligned}$	$\begin{aligned} & 4005: 25,4008: 1, \\ & 4010: 13,4014: 14 \end{aligned}$
$3831: 17,3843: 19$	Bainbridge [10]	3977:24, 3992:24,	3892:2, 3892:23,	began [1] - 3934:23
3970:1, 3974:25,	3803:13, 3803:17,	4001:24, 4002:24,	3893:12, 3894:4,	begin [4]-3767:7,
3978:15, 3999:16,	$\text { 3817:21, } 3818$	4003:13, 4003:16	12:6, 3918:1,	3768:1, 3768:11,
3999:17		basic [1] - 3858:18	24:18, 3930:6	3821:6
availability [8] -	3943:10, 4016:16	Basin [61] - 3768:3,	30:20, 3932:10	begins [15] - 3774:19,
3825:25, 3826:7,	balanced [1]	678:13, 3768:18		3777:6, 3796:7,
3827:9, 3827:19,	3924:23	9:23, 3770:5,	3948:6, 3950•9,	3810:20, 3822:6,
3828:23, 3829:4,	Bankruptc	3770:10, 3772:4,		3833:22, 3843:21,
3829:7, 3835:13	$3764: 12$	3772:18, 3781:12,	69:16, 3970:	3887:22, 3972:3,
available [10]-	bar [4] - 3870:20,	$3783: 4,3795: 4$	970:5, 3973:24,	972:9, 3973:9,
3781:22, 3782:6, 3797:7, 3804:24,	3870:23, 3876:17,	3795:11, 3799:14,	3975:10, 3975:15,	$\begin{aligned} & 3973: 13,3974: 12, \\ & 3980: 1,3982: 5 \end{aligned}$
$3846: 8,3849: 7 \text {, }$	3877:2 ${ }^{\text {3 }}$	3799:16, 3799:18,	3977:25, 4008:23,	behalf [1] - 3830:8
3861:20, 3885:2,	barely [1] - 3811:24	3805:3, 3805:9,	4010:10	behavior [2] -
3894:7, 3971:16	Barnes [1] - 3823:7	3809:3, 3809:13,	basin-wide [7] -	3801:10, 3802:19
average [40] -	bars [11] - 3868:9, $3868: 11,3868: 12$	3810:21, 3826:19,	89:11, 3795:23,	behind [12]-3773:11,
3778:18, 3778:21,	868:11, 3868:12,	3827:4, 3836:2,	32:6, 3872:1,	3792:19, 3799:17,
3789:11, 3789:22,		39:16, 3859:4	7:6, 3884:13	3807:25, 3809:12,
3795:17, 3816:13,		3859:8, 3859:9,		826:3, 3827:12
3818:5, 3855:22,		3859:12, 3859:2	basing [2] - 3950:22	3834:15, 3840:14,
3867:25, 3869:22,	base [2] - 3830:19,	$\begin{aligned} & 59: 23,3861 \\ & 61 \cdot 17 \quad 3871 \end{aligned}$	38	843:9, 3884:22,
3869:24, 3870:7,	3952:7	3872:22, 3879:2		3899:19
3870:8, 3870:12,	based [17] - 3858:6,	3884:7, 3889:4,	3882:9, 3939:4,	labor [1] - 3995:5
$3870: 15,3870: 18$, $3870: 21,3870: 22$,	3875:12, 3898:19,	3889:10, 3889:11,	3939:23, 3950:24,	[1] - 3797:4
3876:17, 3878	20:23, 3926:19,	3892:10, 3892:12,	3952:9, 3955:8,	ves [1]-3995:23
3882:8, 3882:18,	3931:24, 3932:7	REPORTING	UPr:10, 3955:15,	3919:15, 3937:20,

$\begin{aligned} & \text { 3942:9, 3942:19, } \\ & \text { 3944:11, 3945:19, } \end{aligned}$	3921:25 correspondences	$\begin{aligned} & 3862: 14,3935: 12, \\ & 3971: 15 \end{aligned}$	$\begin{aligned} & 3960: 10,3961: 1, \\ & 3964: 6,3964: 10 \end{aligned}$	D
3946:2, 3947:5,	- 3846:23	created [4] - 3904:17,	3965:17, 3991:4,	daily [13] - 3888:14,
3947:7, 3947:14,	Couch [1] - 3813:18	3940:23, 3940:24,	3991:12, 3991:16,	3939:23, 3950:23,
3947:16, 3948:15,	council [1] - 3834:8	4017:2	3993:22, 3996:9,	3970:17, 3973:19,
3948:16, 3948:21,	counsel [19] -	Creek [16] - 3817:9,	3998:21, 3999:9,	3973:24, 3974:15,
3949:17, 3950:4,	3827:22, 3855:7,	3817:15, 3817:20,	3999:15, 4018:15	3976:4, 3976:5,
3951:19, 3952:2,	3856:5, 3857:5,	3817:22, 3822:18,	CROSS [2] - 3767:22,	3977:5, 3977:12,
3952:16, 3952:21,	3863:19, 3864:5,	3832:14, 3832:17	3909:9	3978:9, 3984:4
3953:5, 3955:4,	3880:8, 3880:20,	3832:21, 3832:22,	cross-examination	dam [2]-3905:24,
3955:22, 3957:15,	84:20, 3899:18	3837:6, 3838:16,	- 3767:15,	3950:15
3959:22, 3961:20,	3899:24, 3900:15	3839:9, 3839:10,	3855:1, 3855:8,	Dam [5] - 3911:1,
3962:15, 3962:20,	3901:16, 3909:12,	3876:3, 3877:12,	3856:6, 3863:19,	3912:10, 3923:12,
3962:21, 3962:25,	3941:18, 4008:2,	3877:22	3876:1, 3878:15,	3937:2, 4000:23
3963:6, 3963:11,	4011:3, 4013:7,	Cretaceous [9] -	3998:21, 3999:9,	dampen [1] - 4004:12
3963:16, 3963:20,	4014:14	69:7, 3769:21,	3999:15	dampening [1] -
3964:1, 3964:2,	count [2] - 3893:8,	3770:8, 3770:12,	CROSS-	4006:9
3964:14, 3965:1,	4017:8	70:22, 3771:6,	AMINATION [2] -	dark [2] - 3791:1,
3965:11, 3965:12,	counted [1] - 3997:23	772:2, 3772:16,	3767:22, 3909:9	4015:18
3966:5, 3966:17,	counting [1] - 3997:23	1-1	crosses [3] - 3992:17,	Data [1] - 3959:15
3967:12, 3967:24,	country [1] - 4014:23	crevices [1] - 3858:20	3993:14, 3994:24	data [137] - 3777:8,
3968:12, 3969:8,	County [7]-3888:20,	criteria [21] - 3826:14,	crossing [2] - 3930:1,	3778:3, 3778:5,
3970:10, 3970:18,	89:3, 3889:7,	3829:15, 3830:10,	3942:19	3812:6, 3812:14,
3970:19, 3970:22,	3900:13, 3901:16	3830:15, 3831:19,	CRR [2] - 3764:14,	3816:6, 3818:20,
3970:23, 3971:1,	3901:18, 3901:21	3831:22, 3832:3,	4020:15	3818:21, 3818:22,
3971:12, 3972:23,	couple [7] - 3797:13,	3832:8, 3832:10,	crux [1] - 3910:17	3824:4, 3824:5,
3973:25, 3974:4,	3803:9, 3848:19,	3833:8, 3833:10,	Crystalline [2] -	3824:12, 3843:6,
3975:25, 3976:6,	3905:17, 3935:7	3833:16, 3834:12,	3769:10, 3769:11	3843:7, 3843:8,
3977:7, 3977:13,	3984:10, 4016:10	3835:25, 3836:17,	cubic [1] - 4007:3	3843:22, 3844:8,
3978:9, 3978:10,	course [10] - 3809:16,	3838:8, 3838:14,	cumulative [4] -	3844:9, 3846:8,
3979:18, 3980:12,	$3810: 14,3814: 17,$	3839:8, 3840:2,	3803:23, 3807:18,	3848:4, 3848:6,
3981:8, 3981:11,	3825:24, 3921:25,	877:11	3807:21, 3807:23	3848:14, 3849:6,
3982:19, 3983:15,	3937:15, 3945:21,	criterion [2] - 3838:5,	cumulatively [1] -	3849:15, 3849:21,
3983:23, 3984:21,	3963:2, 3978:19,	3838:23	3966:7	3850:1, 3850:9,
3985:6, 3985:11,	3995:13	critical [2] - 3845:6,	curious [1] - 3907:25	3864:11, 3885:2,
3986:6, 3986:12,	court [6] - 3771:20,	973:19	current [16] - 3802:17,	3890:4, 3890:20,
3986:21, 3987:5,	3896:11, 3896:14,	criticism [4] -	3802:20, 3818:7,	3891:7, 3891:14,
3987:22, 3989:5,	3928:18, 3929:4,	3896:24, 3896:25	18:8, 3818:12,	3891:23, 3891:25,
3989:18, 3990:4,	3936:25	3897:3, 3981:6	818:21, 3818:22,	3892:1, 3892:5,
3990:7, 3990:10,	COURT [1] - 3764:1	criticisms [4] -	$3835: 18,3835: 23,$	3892:6, 3893:15,
3990:11, 3990:23,	Court [20] - 3764:12	3781:19, 3896:21	$\begin{aligned} & 3835: 18,3835: 2 \\ & 3838: 7,3846: 8, \end{aligned}$	3893:18, 3893:19,
3991:18, 3994:25,	$3766: 20,3848: 2,$	3969:4, 3969:13	77:18, 3877:20,	3893:21, 3893:23,
3995:21, 3995:24,		criticize [1] - 3792:10	894:3, 3920:23,	3894:5, 3915:3,
3996:2, 3997:1,	3904:5, 3904:11,	criticizes [1] - 3782:9	$975: 7$	3915:22, 3925:24,
4005:18, 4011:6,	$3904: 16,3904: 25,$	critiques [1] - 3969:21	curtail [1] - 3870:13	3926:19, 3932:16,
4012:12, 4013:3,	3911:24, 3919:2,	crop [3] - 3778:4,	curtailing [1] - 3871:6	3933:14, 3935:12,
4013:9, 4014:5,	3969:21, 3993:9,	$3778: 6,3778: 23$	curves [1] - 3915:5	3936:3, 3939:14,
4020:4	3995:5, 4000:25,	crops [2] - 3778:15,	cushion [2] - 3920:	3939:17, 3939:20,
corrected [1] -	4008:2, 4016:20,	3778:22	3920:7	3939:21, 3939:25,
3944:15	4017:1, 4017:9,	Cross [1] - 3765:2	cut [5] - 3772:12	3940:3, 3940:5,
correcting [1] -	4020:16	cross [33] - 3767:15,	cut [5] - 3772.12	3942:2, 3942:7,
3958:10	courtroom [1] -	3855:1, 3855:2,	4003:17, 4017:9	3942:11, 3942:24,
correctly [1] - 4013:11	3911:9	$\begin{aligned} & 3855: 1,3855: 2, \\ & 3855: 8,3856: 6, \end{aligned}$	cuts [2] - 3987:18,	3945:1, 3945:2,
correlation [5] -	cover [5] - 3813	$\begin{aligned} & 3855: 8,3856: 6, \\ & 3863: 19,3876: 1, \end{aligned}$	cuts [2] - 3987:18, 3989:1	3949:12, 3949:17,
3873:19, 3873:20,	3819:1, 3878:12	$\begin{aligned} & 3863: 19,38 / 6: \\ & 3878: 15,3909: \end{aligned}$	39	3949:18, 3949:23,
3975:6, 3983:9,	3893:23, 3981:1	3935:20, 3936:17,		3950:2, 3950:3,
4007:20	coverage [1] -	3941:22, 3943:1,	3866:22, 3866:24	3950:5, 3950:7,
correspondence [5] -	$3893: 25$	3944:5, 3951:12,		3950:9, 3950:13,
3847:5, 3847:9,	CRAIG [1] - 3764:20	3954:1, 3954:14,	$\begin{gathered} \text { cycic [2]- } \\ 3802: 19 \end{gathered}$	3950:17, 3951:5,
3847:11, 3847:12,	create [4]-3848:4	REPORTING	3802	1, 3951:14,
				3951:17, 3951:18,

3841:18, 3850:11,	4008:1, 4010:13,	3948:14, 3963:1,	3890:1, 3896:14,	efficient ${ }_{[1]}$ - 3853:20
3850:12, 3850:13,	4011:10, 4012:14,	3963:7, 3967:12,	3897:11, 3910:19,	effort [2] - 3783:25,
3850:14, 3850:18,	4012:18, 4014:14,	3967:13, 3967:14,	3912:15, 3915:7,	4008:13
$\begin{aligned} & 3850: 22,3850: 25, \\ & 3851: 1,3851: 3, \end{aligned}$	$\begin{aligned} & \text { 4015:10, 4015:19, } \\ & 4018: 3 \end{aligned}$	$\begin{aligned} & 3967: 15,3971: 16, \\ & 3978: 1,3987: 25, \end{aligned}$	$\begin{aligned} & \text { 3919:16, 3919:17, } \\ & 3919: 25,3920: 1 \text {, } \end{aligned}$	efforts [1] - 3802:18
3851:6, 3851:9,	Draft [1] - 3914:5	3991:9, 3995:14,	3921:13, 3925:7,	3892:25, 3893:8,
3851:11, 3851:12,	dramatically [3] -	3997:12, 3998:13,	3926:8, 3927:18,	3893:9
3851:15, 3851:16,	3840:23, 3841:10,	3998:16, 4000:19,	3928:21, 3930:17,	either [9] - 3846:10,
3851:17, 3851:21,	4008:23	4003:1, 4006:4,	3931:3, 3931:4,	3885:13, 3886:16,
3851:23, 3851:25,	drawdown [1] -	4009:2, 4009:4	3932:5, 3933:21	3905:12, 3966:20,
3852:2, 3852:5,	3831:23	drought-related [1] -	3942:17, 3943:22,	3997:25, 4017:6,
3852:6, 3852:8,	drawdowns [1]	3822:17	3945:21, 3948:4,	4017:12, 4017:21
3853:5, 3853:6,	3972:16	drought-type [1] -	3962:13, 3963:1,	elevate [1] - 3944:9
3853:8, 3853:10,	dredging [1] - 3888:12	3919:17	3965:23, 3966:15,	eliminate [2] -
3853:14, 3853:16,	drenching [3] -	droughts [20]-	3966:18, 3966:25,	3852:23, 3852:25
3854:2, 3854:4,	4017:24, 4017:25	3812:22, 3815:22,	3971:16, 3990:3,	eliminating [1] -
3854:14, 3854:16,	Dresser [1] - 3784:24	3816:8, 3842:13,	3990:9, 3990:22,	3894:25
3854:25, 3855:3,	drivers [1] - 3912:8	3844:5, 3844:12,	3991:19, 3994:13,	Elliott [1] - 3790:10
3855:8, 3855:13,	driving [1] - 3947:10	3844:17, 3844:19,	3997:12, 3998:5,	elsewhere [1] - 4012:4
$\begin{aligned} & 3855: 14,3855: 17, \\ & 3855: 19,3856: 2, \end{aligned}$	drop [4] - 3875:19,	3875:21, 3875:22,	3998:7, 3999:15, 4003:1, 4006:4,	emergency [2] -
$\begin{aligned} & 3855: 19,3856: 2, \\ & 3856: 7,3856: 12, \end{aligned}$	3906:23, 3937:20,	$\begin{aligned} & 3877: 15,3878: 5, \\ & 3886: 20,3886: 24, \end{aligned}$	$\begin{aligned} & \text { 4003:1, 4006:4, } \\ & \text { 4009:11 } \end{aligned}$	3926:3, 3926:6
3856:13, 3856:18,	dropped [4]-3825:4,	3926:24, 3962:13,	dynamic [1] - 3944:3	3932:16
$\begin{aligned} & 3856: 23,3857: 12, \\ & 3857: 14,3857: 15, \end{aligned}$	3886:21, 3889:25	4007:12, 4008:11,		enabling [1] - 3974:22
$3857: 25,3858: 14,$	Drought [4]-3840:9,	dry [36] - 3785:5,	E	End [1] - 4019:14
3871:14, 3874:12, 3878:13, 3879:2	3841:7, 3841:23, 3929:21	$3785: 9,3785: 15,$	$\begin{gathered} \hline \text { e-mail }[4]-3781: 2, \\ 3781: 15,3782: 9, \end{gathered}$	$\begin{aligned} & \text { end [17] - 3779:24, } \\ & 3782: 2,3821: 22, \end{aligned}$
3879:12, 3879:22,	drought [87] -		3907:18	3882:21, 3934:24,
3879:25, 3880:24,	3785:10, 3785:25, 3787:1, 3787:13	3788:10, 3815:17,	early [2]-3942:21,	$\begin{aligned} & 3950: 10,3952: 6, \\ & 3952: 13,3958: 14, \end{aligned}$
3882:12, 3882:19,	$\begin{aligned} & 3787: 1,3787: 13, \\ & 3787: 19,3787: 20, \end{aligned}$	3816:1, 3816:5,	3969:13	$\begin{aligned} & 3952: 13,3958: 14, \\ & 3981: 20,3981: 23, \end{aligned}$
3883:16, 3884:1,	3787:25, 3788:1,	3816:7, 3860:2,	earth [1] - 3769:17	3981:24, 3984:22,
3894:8, 3894:22,	$3788: 16,3788: 21,$	3863:16, 3863:20,	easier [2] - 3916:16,	3993:7, 4009:12,
3895:24, 3896:2,	$3805: 8,3812: 9,$	3864:19, 3865:22,	4008:8	$4009: 14,4010: 8$
3896:7, 3896:9,	3812:10, 3812:16,	3865:24, 3866:18,	easily [2]-3913:23, 3914:23	endangered [1] -
3896:15, 3897:11,	$3812: 19,3812: 24,$	3868:8, 3868:23,	3914:23	$3911: 4$
3897:15, 3897:22,	3814:5, 3815:18,	3868:25, 3869:6,	east [1] - 3901:20	endorsing [2] -
$\begin{aligned} & \text { 3898:2, 3898:3, } \\ & \text { 3898:14, 3899:17, } \end{aligned}$	3822:7, 3822:12,	3869:21, 3870:24,	$\begin{aligned} & \text { easy }[1]-3913: 11 \\ & \text { eats }[1]-4017: 21 \end{aligned}$	3794:4, 3797:3
3900:4, 3901:11,	3822:17, 3822:23, 3823:1, 3824:9,	878:10, 3895:15,	ecologist [1] -	engaged [1] - 3821:24
$3907: 15,3908: 20$	3823:1, 3824:9,	895:16, 3991:8,	4017:19	engagement [1] -
3909:3, 3909:11,	$3825: 8,3842: 9,$	3997:12, 4005:10,	economic [1] -	3891:20
3909:23, 3911:10,	3842:14, 3844:14,	4006:4	3850:14	Engineering [1] -
3911:12, 3912:15,	$3844: 15,3844: 16,$	due [2] - 3890:12,	economist [1] -	3975:12
3912:23, 3916:23,	852:11, 3853:8,	3892:3	3878:16	Engineers [20] 3918.22, 3920.24
3923:1, 3927:24,	$3853: 11,3853: 15,$	DUNLAP [1] - 3764:23	edge [1] - 3901:15	3924:17, 3937:18,
$\begin{aligned} & 3935: 5,3935: 10, \\ & 3936: 2.3936: 16 \end{aligned}$	3877:18, 3877:20,	during [71] - 3804:5,	$\begin{aligned} & \text { educated }[1] \text { - } \\ & 3779: 24 \end{aligned}$	3939:3, 3939:22,
3940:7, 3940:9,	3889:24, 3890:3,	$3808: 10,3810: 14,$	$\text { effect }[18]-3803: 2$	3943:7, 3950:7,
3940:12, 3940:18,	3906:21, 3906:24, 3910:19, 3912:13	3815:22, 3833:22,	3812:8, 3812:15,	3950:12, 3952:6,
3942:12, 3944:17,	3910:19, 3912:13, 3915:7, 3915:8,	3841:9, 3842:12,	3812:19, 3825:6,	3953:13, 3955:11,
3944:22, 3944:23,	$18: 23,3919: 1$	3842:14, 3845:13,	$3860: 18,3904: 7$	3968:7, 3970:3,
3949:13, 3949:16,	3921:2, 3924:6,	3846:11, 3849:4,	3904:13, 3904:18,	3971:3, 3973:3,
3955:19, 3956:3,	3925:7, 3925:16,	3853:15, 3855:7,	3905:1, 3922:23,	3975:10, 3975:12, 3978:21, 4006:6
3968:20, 3968:24,	$3926: 8,3929: 24,$	3856:5, 3868:7,	3927:11, 3935:3,	Engineers' [1] -
3978:2, 3985:20,	3930:5, 3931:3,	3868:24, 3869:21,	3935:4, 3963:23,	3999:5
3986:5, 3986:8, 3986:13, 3987:4,	3932:5, 3933:22,	3872:6, 3872:8,	3984:13, 4011:19,	enrolled [1] - 3921:24
3989:15, 3997:9,	3934:23, 3940:22, 3942:17, 3945:16	$\begin{aligned} & 3875: 21,3876: 1, \\ & 3879: 13,3884: 1, \end{aligned}$	effects [4] - 3802:3,	entering [2] - 3987:21,
4000:3, 4002:19,	3942:17, 3945:16, 3947:12, 3948:1	3879:13, 3884:1,	$\begin{aligned} & \text { effects [4] - 3802:3, } \\ & \text { nnnn: } \end{aligned}$	3988:24

3821:11, 3821:13,	3814:10, 3814:20,	Hydrogeologic [3] -	identity $\left.{ }_{[1]}\right]$ - 3768:16	3855:9, 3855:20,
3910:11	3814:23, 3815:1,	3799:5, 3799:7,	ignorance [2]	3855:22, 3855:23
HEC [1] - 3999:3	3878:1	3858:5	3906:6, 3906:12	3856:3, 3856:8
held [1] - 3764:11	hone [1] - 3974:22	Hydrogeology [1] -	ii [1] - 3980:3	3856:17, 3856:24,
help [6] - 3766:9,	Honor [47] - 3766:2,	3773:15	iii [1] - 3980:4	3857:7, 3859:5,
3883:5, 3908:12,	3767:5, 3767:13,	hydrogeology [1] -	imagine [1] - 3958:18	3859:6, 3860:8,
3921:3, 3940:6,	3767:14, 3828:1	3784:6	impact [198] - 3771:4,	3860:10, 3860:12,
3958:25	3828:18, 3854:19,	hydrograph [1] -	3771:7, 3775:16,	3860:15, 3860:19,
helped [1] - 3956:14	3854:21, 3880:4,	3888:19	3775:18, 3775:24,	3860:25, 3861:4,
helpful [1] - 3931:21	3897:24, 3899:13,	hydrographs [1]	3780:5, 3780:10,	3861:7, 3861:16,
hereby [1] - 4020:3	3901:2, 3902:2,	3915:4	3782:3, 3783:22,	3861:18, 3861:21,
Hicks [9]-3781:3,	$3902: 4,3902: 7$, $3903: 5,3903: 22$	hydrologic [11] -	3783:24, 3784:15,	3862:2, 3862:14, 3862:15, 3862:22
$\begin{aligned} & 3781: 15,3782: 8, \\ & 3810: 6,3810: 8, \end{aligned}$	$\begin{aligned} & \text { 3903:5, 3903:22, } \\ & \text { 3904:14, 3904:20, } \end{aligned}$	$\begin{aligned} & 3777: 8,3800: 18, \\ & 3802: 1,3863: 8, \end{aligned}$	$\begin{aligned} & 3788: 24,3789: 2, \\ & 3789: 5,3789: 10, \end{aligned}$	$\begin{aligned} & 3862: 15,3862: 22, \\ & 3862: 24,3863: 11, \end{aligned}$
3843:13, 3843:18	3904:23, 3905:3,	63:13, 3863:15,	3789:11, 3789:14,	3863:24, 3864:1,
Hicks's [1] - $3781: 11$	3905:14, 3905:23,	3863:20, 3865:5,	3789:18, 3789:20,	3865:2, 3865:6,
high [12] - 3800:18,	3906:9, 3906:22,	3891:5, 3921:13,	3789:22, 3789:23,	3865:7, 3865:9,
3840:22, 3841:9,	$3907: 6,3907: 8$, $3907 \cdot 10,3907: 13$,	4018:5	3789:25, 3790:17,	3865:21, 3865:25, 3866:3, 3866:4
3886:15, 3886:20,	3907:10, 3907:13, 3907:23, 3908:5	Hydrologic [1] 3975:11	$3790: 20,3790: 23,$ $3790: 25,3791: 1$	3866:3, 3866:4, 3866:7, 3866:10,
$\begin{aligned} & 3995: 3,4002: 20 \\ & 4007: 6,4009: 11, \end{aligned}$	$\begin{aligned} & 3907: 23,3908: 5 \\ & 3908: 20,3909: 14 \end{aligned}$	3975:11	3790:25, 3791:1,	3866:13, 3866:22,
4010:5, 4010:6,	3949:3, 3962:2,	3853:20	3792:4, 3792:5,	3866:23, 3867:4,
4015:4	3997:6, 3999:11	hydrologies [1] -	3792:11, 3792:13,	3869:20, 3869:23,
high-tech [1] - 4015:4	4007:21, 4010:24,	3863:17	3792:15, 3793:23,	3869:24, 3869:25,
higher [22] - $3784: 11$,	4014:11, 4015:6, $4018: 16,4018: 17$	hydrologist [5] -	$3794: 1,3794: 3$, $3794: 6,3795: 18$	3870:1, 3870:7, 3871:11, 3876:18,
3784:13, 3785:22,	4018:16, 4018:17, 4018:22, 4019:6	3816:22, 3851:6,	3794:6, 3795:18,	$\begin{aligned} & 3871: 11,3876: 18, \\ & 3876: 22,3876: 25, \end{aligned}$
$\begin{aligned} & 3788: 7,3788: 10, \\ & 3798: 1,3859: 25, \end{aligned}$	4019:9, 4019:10	$\begin{aligned} & 3908: 21,3921: 17, \\ & 3921: 23 \end{aligned}$	$3795: 24,3797: 3,$	3877:7, 3877:24,
3860:15, 3868:9,	hook [2]-3841:18,	hydrology [19]	3797:8, 3797:24,	3879:2, 3879:3,
3868:23, 3890:8,	3907:12	3768:2, 3770:25,	3801:14, 3805:4,	3879:8, 3879:16,
3965:24, 3995:11,	Hook [1] - 3843:12	3780:5, 3780:6	3806:12, 3806:20,	879:18, 3881:2,
3995:13, 4008:15,	Hornberger [8] -	3780:11, 3788:16,	$3807: 18,3807: 20,$	3881:9, 3882:3, 3883:4, 3888:12,
4008:16, 4009:16,	$\begin{aligned} & 3851: 6,3851: 9, \\ & 3851: 15,3871: 1 \end{aligned}$	3788:17, 3845:2,	$3807: 21,3807: 23,$ $3808: 10,3808: 24$	$\begin{aligned} & 3883: 4,3888: 12, \\ & 3890: 7,3897: 22, \end{aligned}$
$\begin{aligned} & \text { 4009:18, 4010:18, } \\ & \text { 4010:19 } \end{aligned}$	3985:20, 3986:5,	$\begin{aligned} & 3864: 25,3865: 1, \\ & 3865: 8,3865: 10, \end{aligned}$	3811:23, 3811:24,	3898:15, 3898:22,
highest [3] - 3990:9,	3986:13, 4011:10	3871:16, 3921:21,	3814:4, 3814:7, 3816.3, 3818:10	$\begin{aligned} & 3898: 24,3899: 1, \\ & 3899: 2,3903: 11, \end{aligned}$
3992:14, 3994:9	Hornberger's [7] 3798:3, 3798:12	$\begin{aligned} & 3921: 22,3922: 2, \\ & 3944: 3,4018: 10 \end{aligned}$	$\begin{aligned} & 3816: 3,3818: 10, \\ & 3819: 14,3819: 23, \end{aligned}$	$\begin{aligned} & \text { 3899:2, 3903:11, } \\ & 3903: 14, ~ 3946: 15, \end{aligned}$
highlighted [4] - 3768:13, 3901:	$3850: 25,3851: 1$	3944:3, 4018	3820:1, 3820:11,	3980:10, 3987:1,
3917:5, 3917:15	3851:11, 3896:15,	3926:	3822:11, 3822:16,	3988:20, 3998:22,
highlights [1] -	4012:14	hypothesis [1]	3822:22, 3822:23,	4001:2, 4002:21,
3846:21	host [1] - 3924:21	3932:5	3823:1, 3823:2,	4003:9, 4004:24, 4005•20, 4006:3
highly [2] - 3971:9, 3980:16	hovered [1] - 3966:1 hovers [1] - 3937:17	hypothetical [1] -	$\begin{aligned} & \text { 3823:22, 3824:10, } \\ & 3824: 13.3824: 15 \end{aligned}$	$\begin{gathered} \text { 4005:20, 4006:3 } \\ \text { Impact [1] - 3914:5 } \end{gathered}$
	huge [1] - 3927:15		$\begin{aligned} & 3824: 13,3824: 15, \\ & 3824: 19,3824: 20, \end{aligned}$	Impacts [1] - 3843:10
$\begin{aligned} & \text { himself [2] - 3858:14, } \\ & 3986: 13 \end{aligned}$			3825:3, 3825:7,	impacts [53] - 3781:23, 3782:15
historic [2] - 3974:15,	3888:6, 3888:9,	Ichawaynochaway	$\begin{aligned} & 3825: 16,3829: 10, \\ & 3829: 11,3829: 23, \end{aligned}$	3781:23, 3782:15, 3783:12, 3783:13,
3976:3	3985:2, 4001:12,	-3817:9, 3817:20	3830:10, 3830:11,	$3783: 16,3783: 18,$
hit [8] - 3886:25,		$\begin{array}{r} \text { idea [3] - 3834:10, } \\ 3883: 13,3883: 2 \end{array}$	$\begin{aligned} & 3830: 14,3830: 21, \\ & 3831: 1,3836: 25, \end{aligned}$	$\begin{aligned} & 3785: 5,3785: 6, \\ & 3811: 6,3812: 11, \end{aligned}$
$3921: 1,3937: 10$, $3937: 19,3937 \cdot 25$,	3985:2	identical [1] - 3928:5	3840:6, 3842:4,	3812:24, 3814:1,
$\begin{aligned} & 3951: 15,3994: 17, \\ & 4009: 7 \end{aligned}$		identified [1] -	3842:14, 3842:15,	3814:2, 3814:25,
	$\begin{aligned} & {[4]-3890: 24,} \\ & 3894: 18,4011: 8, \end{aligned}$	3955:20	3842:24, 3845:7,	3820:3, 3820:9,
4009:7		$\begin{gathered} \text { identifies [1] - } \\ \text { 3959:14 } \end{gathered}$	$\begin{aligned} & 3851: 18,3852: 14, \\ & 3852: 16,3852: 17 \end{aligned}$	$\begin{aligned} & 3822: 17,3822: 20, \\ & 3829: 9,3829: 14, \end{aligned}$
```hitting [2] - 3926:25, 4009:7```	4014:15	identify [3] - 3768:19	3852:18, 3853:1,	3829:17, 3829:18,
holds [2] - 3779:16, $3805 \cdot 8$	hydrogeologic [5] -	3974:14, 3976:3	3853:2, 3853:22,	3831:20, 3832:21,
	3858:1, 3858:13,	identifying [2] -	3853:24, 3853:25,	3832:24, 3840:5,
3805:8 hole [6] - 3814:8,	3858:15	T-ING	ATP-: 3 , 3855:4,	$\begin{aligned} & 3853: 4,3861: 1, \\ & 3863: 18,3865: 1 \end{aligned}$



JX-18 [4] - 3765:9	lake [1] - 3904:2		led [1] - 3830:8	3872:6, 3872:7,
3776:24, 3779:1, $3782: 12$	LANCASTER [72] -   3764:11, 3766:21,   3767:6, 3767:11,   3767:16, 3767:21,   3827:22, 3828:3,	$\begin{aligned} & 3857: 14,3857: 15, \\ & 3879: 22,3897: 11, \\ & 3898: 3 \end{aligned}$	left [7] - 3774:18,   3777:7, 3865:2	$\begin{aligned} & 3872: 11,3872: 12, \\ & 3872: 20,3873: 3, \end{aligned}$
JX-21 [5] - 3765:10,			1:12, 3923:1	773:9, 3873:1
309:12, 3810:19,		language [3] - 3917	3944:5, 4011:	8874:5, 3874:7
3814:16, 3816:9		28:5, 3938:2	nd [3]	874:11, 3874:13,
JX-46 [2] - 3765:10,	3828:9, 3854:20,	large [6] - 3780:16	3774:18, 3777:7	3874:17, 3875:13,
963:	880:6, 3880:12	83:6, 3811:23	3901:12	3875:19, 3875:24,
JX-5 [1] - 3765:9	3880:14, 3880:19,	3937:21, 3946:11	legal [2]-3907:18	3877:6, 3884:2
JX-57 [8] - 3830:5	3899:12, 3901:4,	3946:12	3907:19	3886:13, 3886:15,
3831:3, 3831:8,	$\begin{aligned} & \text { 3901:8, 3902:3, } \\ & \text { 3902:6, 3902:8, } \\ & \text { 3902:14, 3902:18, } \\ & 3902: 24,3903: 15, \end{aligned}$	$\begin{gathered} \text { larger [10] - 3789:19, } \\ 3790: 23,3814: 1, \end{gathered}$	$\begin{aligned} & \text { Leitman [5] - 3921:10, } \\ & \text { 3921:17, 3922:4, } \end{aligned}$	$\begin{aligned} & 3886: 20,3886: 25, \\ & 3889: 22,3889: 25, \end{aligned}$
$\begin{aligned} & 3837: 2,3837: 7, \\ & 3837: 20,3838: 18, \end{aligned}$		$\begin{aligned} & 3790: 23,3814: 1, \\ & 3833: 15,3860: 9, \end{aligned}$	$\begin{aligned} & 3921: 17,3922: 4, \\ & 3922: 7,3922: 11 \end{aligned}$	$\begin{aligned} & 3889: 22,3889: 25, \\ & 3890: 13,3890: 17, \end{aligned}$
3838:20		$\begin{aligned} & 3833: 15,3860: 9 \\ & 3860: 16,3860: 17 \end{aligned}$	Leitman's [1] - 4019:1	$\begin{aligned} & 3890: 13,3890: 17, \\ & 3905: 24,3906: 15, \end{aligned}$
JX-71 [2] - 3765:11,	3902:24, 3903:15, 3903:19, 3903:23,	3860:18, 3996:8, 3996:25	length [1] - 4018:25   lengthy [2]-3794:22,	$\begin{aligned} & 3906: 23,4002: 17, \\ & 4018: 2 \end{aligned}$
3790:14	3904:4, 3904:10,			
JX-72 [2] - 3765:1	$\begin{aligned} & 3904: 15,3904: 21, \\ & 3904: 24,3905: 5, \end{aligned}$	$\begin{aligned} & \text { largest }[7]-3815: 6, \\ & 3815: 10,3853: 23, \end{aligned}$	3821:5	levied [1] - 3969:5   LEWIS [1] - 3764:21
3923:4			less [26]-3785:18,	
JX-83 [2] - 3765:12,	3905:15, 3906:1, 3906:4, 3906:19, 3906:25, 3907:7,	3872:5, 3874:1,   3882:20, 4009:13		LEWIS [1] - 3764:21 lie [2] - 3826:22,
3887:15			3790:25, 3807:16,	$\begin{aligned} & 3827: 3 \\ & \text { light }[3]-3979: 14, \end{aligned}$
		$\begin{aligned} & \text { last }[40]-3766: 14, \\ & 3766: 16,3774: 23, \end{aligned}$	3812:21, 3814:1,	
	3907:11, 3907:16, 3907:24, 3908:2, 3908:6, 3908:25,			3979:15, 3985:8
$\begin{aligned} & \text { keep }[6]-3808: 19, \\ & 3909: 20,3919: 19, \\ & 3925: 7,3949: 5, \\ & 3949: 7 \end{aligned}$		3779:18, 3797:19,	3814:6, 3815:25, 3824:7, 3825:22,	lighter [1] - 3769:2
		$\begin{aligned} & 3800: 8,3800: 16, \\ & 3801: 13,3801: 21, \end{aligned}$	3842:9, 3859:16,	$\begin{aligned} & \text { limitation [1] - } \\ & 3967: 19 \end{aligned}$
	$\begin{aligned} & 3949: 9,3961: 24, \\ & 3997: 5,3999: 13, \end{aligned}$	$\begin{aligned} & \text { 3801:13, 3801:21, } \\ & \text { 3802:1, 3802:11, } \end{aligned}$	3860:3, 3877:12,	Limitations [1] -3776:25
		3802:16, 3823:4,	3877:16, 3877:17,   3877:24, 3879:10,	
Kendall [4] - 3875:7,	$\begin{aligned} & \text { 4007:24, 4014:10, } \\ & \text { 4015:9, 4015:12, } \end{aligned}$	3825:2, 3846:2,   3848:17, 3856:6,	3879:14, 3879:19,$3880: 11,3880: 13,$	
85:8, 3885:15,				$\begin{aligned} & 3777: 4,3777: 12, \\ & 3777: 15,3963: 10 \end{aligned}$
3885:17	4015:16, 4015:23,	3856:11, 3870:19,	3907:2, 3907:3	
kept [3] - 3832:3	$\begin{aligned} & \text { 4016:1, 4016:5, } \\ & \text { 4016:9, 4016:15, } \end{aligned}$	$\begin{aligned} & 3870: 20,3870: 23, \\ & 3874: 16,3875: 2, \end{aligned}$	$\begin{aligned} & \text { Lettenmaier [3] - } \\ & 3894: 8,3985: 20, \end{aligned}$	$\begin{array}{r} 3777: 15,3963: 10 \\ \text { limited [2] - 3829:8, } \end{array}$
3838:3, 3838:23				3829:12
kicks [2]-3988:1,	4016:19, 4016:25,	$\begin{aligned} & 3874: 16,3875: 2, \\ & 3876: 11,3878: 12, \end{aligned}$	3986:8	line [83]-3805:5,3808:9, 3809:2,
3988:4	4017:7, 4017:13,	$\begin{aligned} & 3889: 7,3896: 11, \\ & \text { 3908:17, 3911:9, } \end{aligned}$	$\begin{aligned} & \text { Lettenmaier's [1] - } \\ & \text { 4012:18 } \end{aligned}$	
kind [10] - 3891:10	4017:23, 4018:7,   4018:11, 4018:14,			3821:6, 3830:13,
3926:4, 3967:		$\begin{aligned} & 3908: 17,3911: 9 \\ & \text { 3927:24, 3940:24, } \end{aligned}$	letter [10] - 3827:13,	$3845: 25,3855: 19,$
83:9, 3988:1	4018:18, 4018:20,	3927:24, 3940:24, 3941:10, 3945:6,	3827:16, 3829:3,	3856:15, 3857:2,3857:3, 3866:23,
3992:23, 4001:3,	4019:3, 4019:7	3972:6, 3972:8, 3973:8, 3976:22,	$\begin{aligned} & 3846: 20,3847: 21, \\ & 3849: 10,3849: 18, \end{aligned}$	
4007:8, 4009:11,	Langseth [29] -   3793:11, 3793:18,			3857:3, 3866:23,   3866:25, 3867:1,
4011:19		3984:16, 4017:15	3849:25, 3850:3,	$3867: 23,3867: 24,$
kindly [1] - 3774:6	$\begin{aligned} & 3793: 21,3793: 25, \\ & 3796: 6,3796: 11, \end{aligned}$	lastly [2] - 3920:15,	3974:8	3868:4, 3868:14,
Kistenmacher [2]		$\begin{aligned} & \text { 4009:10 } \\ & \text { late }[1]-3799: 9 \end{aligned}$	$\begin{gathered} \text { level }[21]-3774: 13, \\ 3818: 8,3818: 12, \end{gathered}$	3868:21, 3869:23, 3870:3, 3870:5,
3896:9, 4000:3	$\begin{aligned} & 3850: 12,3850: 14, \\ & 3851: 3,3852: 5, \end{aligned}$			
knowledge [1] -		law [2] - 3840:8,	3824:4, 3829:1, $3832 \cdot 6,3833 \cdot 10$	3874:4, 3874:5, 3881:13, 3888:23,
4015:	3853:6, 3853:10,	3840:12		
Kwazulu [1] - 3921:25	3853:16, 3855:3,	$\begin{gathered} \text { lawyers }[3]-3849: 10, \\ 3902: 9,3902: 10 \end{gathered}$	$3843: 8,3844: 9,$	$\begin{aligned} & 3889: 1,3898: 7, \\ & \text { 3898:10, 3898:11, } \end{aligned}$
	$\begin{aligned} & 3855: 8,3855: 13, \\ & 3855: 19,3856: 2, \end{aligned}$		3872:19, 3872:24,3872:25, 3875:19,	
		layers [1] - 3979:15		3930:1, 3931:1,
label [1] - 3883:5	$\begin{aligned} & 3856: 7,3856: 18, \\ & \text { 3856:23, 3857:12, } \end{aligned}$	layman [1] - 3907:1 lead [6] - 3824:23,	877:3, 3892:6,   $3925 \cdot 6,3948: 17$	3932:14, 3933:13,
labeled [3]-3835:16,	3857:25, 3858:14,	$\begin{aligned} & \text { lead }[6]-3824: 23, \\ & 3972: 15,3972: 18, \end{aligned}$	3949:20, 3999:25,	3942:15, 3942:19,
3945:13, 3957:11	$3874: 12,3879: 12,$	3978:15, 3997:11,	4002:20, 4005:2	3962:13, 3962:19,
lack [5] - 3777:7,	$3897: 15,3897: 22,$	4008:16	levels [46] - 3774:20,	$\begin{aligned} & 3963: 24,3964: 17, \\ & 3965: 10,3965: 20, \end{aligned}$
3823:14, 3823:18,	$3898: 14$	least [11] - 3852:9,	3785:19, 3785:21,	
lag $21-3860: 18$	Langseth's [19] -	3917:23, 3925:18,	3848:15, 3859:25,	3966:8, 3966:14,
$\begin{gathered} \text { lag [2] - 3860:18, } \\ 3874: 15 \end{gathered}$	$3794: 17,3797: 11$, 3798.22 3850.22,	3943:1, 3953:17,	$3860: 2,3860: 5,$	3969:2, 3976:4,
Lake [6] - 3819:16,	98:22, 3850:22,	3991:8, 3994:17,	$\begin{aligned} & 3887: 2,3860: 5, \\ & 381: 7,381: 14, \end{aligned}$	3987:24, 3988:20,
3832:19, 3943:13,	$1: 17,3851: 23$, $1: 25,3853: 14$	3994:20, 3995:23,	$\begin{aligned} & 3871: 17,3871: 21, \\ & 3871: 23,3871: 24 \end{aligned}$	3989:4, 3990:3, 3990:16, 3990:21
3948:7, 3948:8,	3854:2, 3854:16	96:5, 3996:22	3871:23, 3871:24,	3990:16, 3990:21,
	$3855: 14,3855: 1$		ROUP :25, 3872:1,	3991:13, 3991:22,






3784:23, 3839:16,	3876:5, 3882:15,	3822:6, 3831:11,	4014:6, 4014:7	4002:18, 4004:4,
3891:20, 3900:16,	3884:21, 3887:21,	3833:22, 3833:24,	particularly [3] -	4004:17, 4004:24,
3900:21, 3900:23	3887:22, 3889:14,	3840:18, 3840:20,	3917:12, 3917:24,	4005:3, 4005:5
$\begin{gathered} \text { overall }[3]-3819: 25, \\ 3894: 1,3925: 12 \end{gathered}$	$\begin{aligned} & 3893: 4,3898: 6, \\ & \text { 3898:10, 3899:20, } \end{aligned}$	$\begin{aligned} & 3843: 21,3857: 18, \\ & 3857: 21,3858: 1, \end{aligned}$	3973:19 parts [1] - $3835: 3$	percentage [13] - 3791:7, 3791:10,
overarching [1] -	3899:22, 3899:25,	3887:23, 3888:2,	pass [2] - 3943:11,	3823:1, 3987:21,
3973:9	3900:8, 3900:19,	3888:5, 3889:8,	3943:12	3988:23, 3992:16,
overlying [1] - 3780:4	3901:11, 3916:19,	3889:16, 3933:24,	pass-through [2] -	3993:13, 3993:18,
overview [1] - 4001:1	3916:23, 3917:3,	3934:3, 3936:23,	3943:11, 3943:12	3994:10, 3994:22,
own [4] - 3794:2,	3923:5, 3930:14,	3949:22, 3954:18,	passed [4]-3840:11,	3995:4, 3996:8,
3983:2, 3986:16,	3933:17, 3933:20,	3954:20, 3957:14,	3841:8, 3841:23,	3996:25
3986:17	3934:2, 3934:3,	3957:17, 3957:25,	3980:10	perfect [1] - 3962:1
oysters [3] - 3905:12,	$3934: 13,3934: 14$, $3940: 12,3944: 18$,	3958:1, 3958:15,	past [3]-3815:22,	perfectly [6] -
4017:16, 4017:21	$\begin{aligned} & 3940: 12,3944: 18, \\ & 3945: 11,3954: 13, \end{aligned}$	$\begin{aligned} & 3962: 18,3972: 2, \\ & 3972: 9,3973: 8, \end{aligned}$	$3844: 6,4008: 15$	3969:18, 3973:6,
P	3957:8, 3957:22,	3979:25, 3980:3,	3843:2	3983:11
P.E [1] - 3765:4	3958:1, 3958:6,	$\begin{aligned} & \text { 3982:4, 3984:11, } \\ & \text { 3984:16, 3984:23, } \end{aligned}$	$\begin{gathered} \text { peak }[5]-3771: 4, \\ 3805: 8,3850: 17, \end{gathered}$	$\begin{aligned} & \text { performed [4] - } \\ & 3786: 13,3799: 12 \text {, } \end{aligned}$
p.m [4] - 3880:18, $3962 \cdot 4,3962 \cdot 6$,	3962:18, 3971:20,	3988:11, 3988:22,	3852:10, 3853:7	3842:17, 3962:14
$\begin{aligned} & 3962: 4,3962: 6, \\ & 4019: 11 \end{aligned}$	$\begin{aligned} & 3971: 22,3971: 24, \\ & \text { 3973:9, 3976:10, } \end{aligned}$	$\begin{aligned} & 3993: 5,3993: 7, \\ & 3997: 15,3997: 16 \end{aligned}$	people [2] - 3810:3,	performing [2] -
packet [8]-3954:1,	3977:20, 3979:9,	paragraphs [3] -	per [13]-3815:14,	perhaps [4]-3770:15,
3954:14, 3956:4, 3961:2, 3964:6	3979:12, 3979:20,	3779:19, 3803:6,	3816:10, 3831:13,	3794:15, 3795:14,
$\begin{aligned} & 3961: 2,3964: 6 \\ & 3976: 18,3991: 2, \end{aligned}$	$\begin{aligned} & 3981: 19,3981: 25, \\ & \text { 3983:21, 3984:3, } \end{aligned}$	3954:7   Parameter [1] - 3779:2	3831:18, 3833:1,	3926:5
3995:7	3984:11, 3984:16,	parameter [4] -	$\begin{aligned} & 3833: 5,3833: 19, \\ & 3834: 5,3836: 9, \end{aligned}$	period [56] - 3818:5, 3844:11, 3844:18,
Page [1] - 3765:8	3988:9, 3988:17,	3779:4, 3779:6,	3940:25, 3941:14,	3846:5, 3846:8,
page [131] - 3768:8,	3989:8, 3993:3,	3779:17, 3779:19	3984:8, 4007:3	3847:15, 3847:16,
3768:12, 3770:15,	3993:21, 3993:23,	parameters [8] -	percent [71] - 3791:3,	3852:24, 3872:6,
3770:17, 3774:4,	3997:13, 4003:4,	3779:7, 3779:8,	3791:6, 3792:1,	3872:7, 3872:8,
3774:19, 3774:21,	4004:20, 4006:16,	3779:10, 3779:11,	3793:5, 3793:6,	3875:20, 3877:14,
3776:23, 3778:25,	4009:20	3779:23, 3780:3,	3793:9, 3793:10,	3884:25, 3885:3,
3779:1, 3782:24,	pages [9]-3794:23,	3780:15, 3801:7	3793:13, 3793:14,	3886:2, 3887:4,
3790:13, 3792:20,	3809:22, 3827:17,	pardon [1] - 3880:12	3793:17, 3794:1,	3890:1, 3894:6,
3793:1, 3794:25,	3898:10, 3914:12,	part [12] - 3780:4,	3794:6, 3794:9,	3896:14, 3919:16,
3795:1, 3795:7,	3914:18, 3929:18,	3786:7, 3786:11,	3794:13, 3795:2,	3919:17, 3920:3,
3795:8, 3795:13,	3961:7, 4020:4	3819:21, 3827:6,	$3795: 9,3797: 3,$	3929:1, 3929:24,
3795:25, 3800:9,	pair [1] - 3828:13	3848:9, 3861:2,	3797:9, 3798:13,	3938:3, 3940:4,
3800:13, 3801:13,	Panday [20]-3765:3,	3866:25, 3895:18,	3798:14, 3798:15,	3940:22, 3942:22,
3801:21, 3802:12,	3766:3, 3766:16,	3910:14, 3918:19,	3798:16, 3798:18,	3942:25, 3945:22,
3803:3, 3803:5,	3766:17, 3766:24,	3967:9	3804:5, 3804:13,	3950:6, 3956:17,
3805:11, 3808:3,	3767:15, 3767:24,	particular [38] -	3808:13, 3830:20,	3965:9, 3965:24,
3810:19, 3811:9,	3797:11, 3826:13,	3770:1, 3774:1,	3830:22, 3831:24,	3966:8, 3966:11,
3813:11, 3814:15,	3828:20, 3854:25,	3776:1, 3776:4,	3832:10, 3836:17,	3966:15, 3966:18,
3815:12, 3816:25,	3880:24, 3884:1,	3778:19, 3779:8,	3836:22, 3838:5,	3966:25, 3967:2,
3817:3, 3819:1,	3898:2, 3899:17,	3779:22, 3780:15,	3855:4, 3855:9,	3967:3, 3975:3,
3821:2, 3822:4,	3900:4, 3901:11,	3787:10, 3791:18,	$3856: 2,3856: 8 \text {, }$	3980:15, 3983:10,
3822:6, 3822:8,	4015:10, 4015:19,	3794:23, 3799:11,	3856:20, 3856:24,	3990:22, 3994:13,
3823:11, 3826:20,	4018:3	3808:2, 3810:15,	3857:7, 3864:2,	3994:20, 4000:21,
3827:14, 3827:20,	paragraph [64] -	3811:13, 3813:9,	3876:18, 3876:21,	4013:14, 4013:16,
3827:21, 3829:3,	3774:5, 3774:7,	3815:1, 3882:13,	3876:22, 3876:25,	4013:21, 4013:24,
3831:10, 3833:20,	3774:8, 3774:19,	3884:19, 3888:20,	3879:15, 3879:16,	4014:4, 4014:7
3834:18, 3835:12,   3835:16, 3840:18	3774:24, 3777:6,	3889:23, 3897:14,	3895:20, 3895:21,	periods [16] - 3868:8,
$\begin{aligned} & 3835: 16,3840: 18, \\ & 3840: 19,3843: 20 \end{aligned}$	$3777: 9,3777: 19$, $3777 \cdot 20,3792 \cdot 18$,	3897:20, 3939:8,	3898:16, 3964:14,	3868:10, 3868:11,
$3855: 16,3856: 12,$	3777:20, 3792:18, 3792:20, 3792:23	$3945: 22,3948: 4$, $3948: 17,3966: 18$,	3965:8, 3966:13,	3868:12, 3869:6,
$3856: 25,3857: 3,$	3792:25, 3795:13,		$\begin{aligned} & \text { 3992:10, 3993:17, } \\ & \text { 3994:7. 3994:11. } \end{aligned}$	$\begin{aligned} & 3875: 23,3919: 14, \\ & 3920: 1,3931: 3, \end{aligned}$
3857:15, 3865:13,	3796:5, 3796:7,	3970:4, 3993:19,	$\begin{aligned} & \text { 3994:7, 3994:11, } \\ & \text { 3994:12, 4001:23, } \end{aligned}$	3931:4, 3962:14,
3866:14, 3867:17,	3796:21, 3800:9,	4008:22, 4013:14,	4002:2, 4002:15,	3965:21, 3971:16
3869:13, 3872:14,	$3800: 11,3803: 1^{n}$	REXPORRTIING	DUP :16, 4002:17,	PERRY [1] - 3764:17
3873:22, 3874:19,	3810:20, 3810:2	REPORIING		


persistent [2] -	3827:10, 3850:10,	3817:19	3779:21, 3780:13,	produced [7] -
3844:5, 3985:8	3850:22, 3893:18,	pre-1990 [1] - 3849:21	796:15, 3820:21,	3776:14, 3787:14,
person [2] - 3846:25,	3893:21, 3901:19,	pre-1992 [2]	3820:22, 3830:2,	3813:16, 3964:4,
4020:8	3920:18, 3927:8,	3885:25, 3886:11	3830:7, 3831:2,	3980:24, 3983:9,
Ph.D [5] - 3765:3,	3990:6, 3993:19	pre-1998 [1] - 3887:1	3935:11	4008:17
3765:4, 3921:20,	pointed [3] - 3782:20,	precipitation [30]-	prescribed [2] -	production [1] -
3921:22, 3922:1	3784:16, 3924:9	3843:6, 3844:8,	3928:7, 3938:8	3964:9
phenomenon [1] -	policy [2] - 3945:20,	3848:15, 3867:9,	present [3] - 3771:14,	professional [3] -
3913:22	3946:3	3873:13, 3874:9,	3871:4, 3995:11	8:5,
Phil [1] - 3907:15	pond [2] - 3971:5,	3874:14, 3875:23,	Present [1] - 3764:23	3848:7
PHILIP [1] - 3764:17	3971:7	3886:17, 3891:7,	presented [8] -	professionals [1] -
Philip [3] - 3765:4,	ponds [13] - 3894:25,	3891:13, 3891:14,	3829:20, 3848:1,	3848:3
3908:18, 3908:19	95:6, 3895:12	3891:16, 3891:17,	3850:5, 3932:13,	professor [1] -
phone [1] - 3771:13	3895:14, 3895:18	3891:22, 3891:23,	3938:13, 3938:20,	3894:20
pick [4] - 3848:14,	3895:20, 3895:22,	3891:25, 3892:1,	3951:6, 3955:24	program [1] - 3967:20
$\begin{aligned} & 3902: 20,3902: 22 \\ & 4011: 2 \end{aligned}$	$\begin{aligned} & 3896: 1,3897: 7 \\ & 3970: 25,3985: 5 \end{aligned}$	$\begin{aligned} & 3892: 5,3892: 8, \\ & 3893: 15,3893: 16 \end{aligned}$	presenting [1] - 3804:21	programmed [1] $3963: 18$
4011:2	$\begin{aligned} & 3970: 25,3985: 5, \\ & 3986: 24,3987: 2 \end{aligned}$	$\begin{aligned} & 3893: 15,3893: 16, \\ & 3894: 3,3943: 17, \end{aligned}$	3804:21	$\begin{aligned} & \text { 3963:18 } \\ & \text { progress [1] - 4017:14 } \end{aligned}$
picture [1] - 3959:6	portion [15] - 3770:10,	3943:22, 4006:13,	pretty [5] - 3811:25,	project [10] - 3799:2
piece [1] - 3874:16	3772:24, 3772:25	4006:21, 4008:15,	3873:9, 3926:23,	3799:23, 3801:8
pink [1] - 3769:9	3781:1, 3782:15,	$4010: 14,4010: 16$	3996:1, 3996:15	3845:11, 3845:12,
place [10]-3915:6,	3782:21, 3783:6,	precisely [4] -	previous [7] -	3891:21, 3924:18,
$3925: 2,3975: 8$	$\begin{aligned} & 3795: 3,3795: 11 \\ & 3826: 19,3826: 22 \end{aligned}$	$\begin{aligned} & 3915: 12,3977: 9 \\ & 3985: 24,3985: 25 \end{aligned}$	3802:18, 3816:8,	3946:5, 3946:6
	$3865: 11,3897: 10$	predict [1] - 3976:4	$\text { 873:10, } 3877: 1$	$4005: 16,40$
4004:13, 4009:6	3958:24, 3959:7	predicted [3] -	3878:4	projects [1] - 3799:15
places [1] - 3940:1	portions [2] - 3769:23,	3931:14, 3966:12,	previously [13] -	promise [1] - 3970:13
Plain [5] - 3826:24,	$3851: 1$	3966:24	$3780: 24,3781: 18$	pronounced [1] -
$3826: 25,3827: 1$	Portland [1] - 3764:13   position [4] - 3796:15	predicting [2] 3782.3, 3828•12	3794:24, 3799:4,   3817:4, 3840:15	3812:19
$\begin{gathered} 3836: 4,3836: 14 \\ \text { plain [1] - 3821:8 } \end{gathered}$	$3796: 24,3796: 25$	predictive [8] -	$\begin{aligned} & 3817: 4,3840: 15 \\ & 3850: 8,3887: 17 \end{aligned}$	proper [1] - 3856:17 properties [1] -
plain [1] - $3821: 8$ Plaintiff [1] - $3764: 4$	3915:17	$3962: 19,3974: 15,$	$3887: 20,3891: 9,$	$\begin{aligned} & \text { properties [1] - } \\ & 3860: 11 \end{aligned}$
Plan [5] - 3809:4,	possible [9]	$75: 19,3975: 22$	3898:2, 3898:24	proposal [1] - 3978:2
3809:14, 3839:12,	3846:12, 3850:19	3975:23, 3977:12,	primary [1] - 3844:25	propose [1] - 4018:25
$3910: 22,3980: 25$	3878:21, 3878:25,   3925:6, 3925:8	3978:8, 3980:14	PRIMIS [3] - 3764:20,	proposed [2] - 3794:4,
plan [5] - 3809:5,	$\begin{aligned} & 3925: 6,3925: 8, \\ & 3926: 10,3981: 17 \end{aligned}$	$\begin{aligned} & \text { preferred [1] - } \\ & 3980 \cdot 30 \end{aligned}$	4018:22, 4019:9   principal [1] - 3842-5	3978:3
$\begin{aligned} & 3810: 16,3813: 19 \\ & 3834: 13,3834: 16 \end{aligned}$	$\begin{aligned} & 3926: 10,3981: 17, \\ & 3994: 18 \end{aligned}$	prefiled [37] - 3766:2	principal [1] - 3842:5 principally [1] -	proposing [1] - 3895:10
planning [2] - 3809:8,	possibly [1] - 3850:1	08:19, 3884:21,	3808:17	Protection [4] -
3978:17	post-92 [2] - 3886:5, 3891 -17	3892:18, 3894:10,   3894:12, 3899:4	principles [1] -   3925:12	$3813: 18,3840: 9$
plausible [2]		3894:12, 3899:4,   3899:8, 3909:4	3925:12	3841:7, 3841:23
$3917: 23,3920: 14$	post-1992 [4] -   3885•25, 3886:7	3899:8, 3909:4, 3910:7. 3912:18.	priority [1] - 3826:8	protocol [1] - 3914:25
plenty [3]-3915:3,	$\begin{aligned} & 3885: 25,3886: 7, \\ & 3886: 10,3886: 13 \end{aligned}$	$\begin{aligned} & 3910: 7,3912: 18 \\ & 3912: 22,3913: 17 \end{aligned}$	privileged [2] -   3987:7, 3987:	proven [1] - 3982:22
$\text { plot }[7]$	post-1998 [1] - 3887:5	3928:10, 3928:17,	PRMS [1] - 3986:5	$\begin{gathered} \text { provide }[6]-3851: 18, \\ 3897: 24,3919: 25, \end{gathered}$
3939:13, 3959:24,	post-1999 [1] -	3933:16, 3934:12, 3936:4, 3936:24,	problem [10] -	3956:10, 3957:1,
$3991: 25,3992: 22,$	$\begin{gathered} \text { 4007:19 } \\ \text { post-2002 [1] - } \end{gathered}$	$3938: 14,3939: 15$	$\begin{aligned} & 3847: 17,3932: 2, \\ & 3955: 14,3958: 9 \end{aligned}$	3985:14
4003:11	3849:21	3940:10, 3944:14,	$\begin{aligned} & 3955: 14,3958: 9, \\ & 3958: 11,3969: 25 \end{aligned}$	$\begin{aligned} & \text { provided [21] - } \\ & 3768: 4,3778: 1, \end{aligned}$
3868:3, 3868:13,	posted [1] - 3952:3	3949:22, 3955:4,	3970:2, 4016:24,	3786:8, 3786:15,
3915:4, 3939:8,	potential [1] - 3898:14	$\begin{aligned} & 3955: 17,3957: 7 \\ & 3962: 17,3967: 10 \end{aligned}$	4017:20	$3794: 8,3805: 22,$
$\begin{aligned} & 3965: 19,3994: 1, \\ & 4003: 14 \end{aligned}$	$\begin{aligned} & \text { potentially }[3]- \\ & 3841: 10,3885: 5 \end{aligned}$	$3969: 8,3975: 24,$	$\begin{aligned} & \text { problems [2] - } \\ & 3973: 18,3978: 25 \end{aligned}$	$\begin{aligned} & 3806: 18,3837: 23, \\ & 3896: 23,3897: 23, \end{aligned}$
plotting [3] - 3990:15,	3926:1	976:9, 3977:1,	Proceeding [1] -	3955:22, 3956:21,
$3991: 23,4003: 12$	pouring [1] - 4015:16   power [1] - 3956:14	$3993: 2,4011: 23$	4019:12   PROCEEDINGS	$3957: 4,3959: 22$ 3960:3. 3968:11.
$\begin{aligned} & \text { plus [2] - 3806:25, } \\ & 3963: 24 \end{aligned}$	pre-'70's [1] - 3818:20	prepare [2] - 3776:13,	$3764: 9,3766: 1$	3989:20, 3989:23,
point [15] - 3780:2,	pre-'92 [2] - 3886:4,	3800:5   prepared [11] -	Proceedings [1] -	3996:12, 3996:19,
$3790: 19,3806: 19,$	3891:16	prepared [11] -	4020:6	3999:3
	pre-1970's [1] -	REPORTING	OUP ce [1] - 3796:22	provides [6] -



3813:23	4014:22	3815:18, 3937:1,	3987:16	3834:8, 3834:16,
reaches [7]-3803:13, 3803:16, 3803:18	realtime [4] - 3954:19, 3955:6, 3955:15	$3943: 14,3950: 3$	refer [6] - 3776:19, 3830:1, 3910:7	3845:2, 3873:13
$\begin{aligned} & 3803: 16,3803: 18, \\ & 3803: 23,3836: 20, \end{aligned}$	3955:6, 3955:15, 4015:2	records [1] - 3956:5   recovery [1] - 3824:24	$\begin{aligned} & 3830: 1,3910: 7, \\ & 3969: 5,3981: 3, \end{aligned}$	$\begin{aligned} & \text { register [1] - 4010:12 } \\ & \text { relate [1] - } 3984: 13 \end{aligned}$
3839:9, 3860:19	reason [3] - 3872:23,	recreation [1]	3989:12	related [22] - 3822:17,
reaches' [1] - 3832:7	3945:25, 4010:6	3924:20	reference [4] -	3867:16, 3869:12,
read [57] - 3774:5,	reasons [1] - 3956:18	Recross [1] - 3765:2	3803:12, 3889:17,	3869:18, 3870:4,
3774:6, 3774:9,	recalled [1] - 3855:12	RECROSS [2]	3928:11, 3958:14	3871:2, 3871:12,
3774:25, 3777:8,	receive [8]-3918:16,	3880:22, 3901:9	referenced [3] -	3873:14, 3876:13,
$\begin{aligned} & 3777: 20,3779: 20 \\ & 3781: 16,3795: 14, \end{aligned}$	$\begin{aligned} & 3919: 1,3929: 25, \\ & 3942: 18.3997: 24 \end{aligned}$	RECROSS- EXAMINA	$\begin{aligned} & 3796: 16,3829: 13 \\ & 3955: 16 \end{aligned}$	$\begin{aligned} & 3878: 7,3903: 8 \\ & 3903: 13,3910: 13 \end{aligned}$
$3795: 16,3800: 10$	3998:4, 3998:6,	$3880: 22,3901: 9$	Referenced [1] -	$3932: 21,3932: 23,$
3800:16, 3803:7,	3998:10	recurring [1]	3765:8	3943:3, 3948:19,
3803:11, 3810:21,	received [1] - 3834:2	3844:19	referencing [1] -	3966:20, 3970:20,
3810:23, 3811:16,	receives [1] - 3807:19	red [8] - 3790:22	3778:8	3970:24, 4006:5
3811:18, 3814:19,	recent ${ }_{[1]}$ - 3844:5	3791:1, 3791:12	referred [6] - 3776:17,	relates [3] - 3777:20,
3822:5, 3822:9,	recently [2]-3816:7,	7:1, 3868:9	3795:7, 3814:23,	3799:18, 3897:21
3827:16, 3831:8,	3967:9	0:3, 3874:4	3815:2, 3878:2	relationship [8] -
3833:22, 3833:24,	recess [4]-3828:4,	4007:2	referring [18] -	3805:7, 3990:1,
3840:18, 3840:20,	3880:7, 3961:25,	redirect [8] - 3854:22,	3789:14, 3818:8,	4006:13, 4006:20,
3843:24, 3844:1,	4019:8	3884:1, 3894:23,	3829:14, 3836:2	4010:15, 4011:21,
3844:2, 3857:21,	Recess [3] - 3828:7	97:11, 3899:1	3837:2, 3856:1,	4012:10, 4012:22
3857:24, 3888:2,	3880:17, 3962:5	02:3, 3997:5,	3856:22, 3866:16	relative [6]-3789:25,
3888:3, 3889:8,	recharge [15]	4014:10	3866:18, 3874:21	3821:12, 3869:8,
3889:16, 3889:18,	23:14, 3823:19	Redirect [1] - 3765:	3891:11, 3916:25	3869:10, 3980:11,
3894:10, 3894:12,	$23: 23,3824: 2$	REDIRECT [4] -	920:7, 3942:1,	3983:7
3894:14, 3898:3,	3824:6, 3824:7	3854:23, 3899:15,	3977:16, 3999:2	relatively [4] -
3898:8, 3898:9,	3824:8, 3824:21	997:7, 4014:12	4000:2, 4000	3934:16, 3960:6,
3898:12, 3899:7,	4:22, 3825:3	reduce [7]-3810:25,	refill [3] - 3925:	3987:20, 3988:23
3917:20, 3944:13,	25:6, 3825:8,	3811:2, 3813:1,	3926:9, 3994:19	release [29]-3910:25,
3972:6, 3972:12,	3825:16, 3825:21,	2:10, 3840:23	refilled [2]-3946:13	3911:3, 3911:7
3972:13, 3973:14,	3874:14	853:18, 3910:2	refilling [7] - 3925:9	3911:22, 3912:2,
3974:17, 3980:4,	recharged [3]	reduced [3] - 3807:12,	3930:12, 3930:14	3912:12, 3919:9,
3981:2, 3982:7,	3822:13, 3875:25	$3825: 11,3853: 19$	3931:4, 3945:8	3922:21, 3924:12,
3984:22, 3999:24	3906:17	reduces [2]-3818:13,	3945:14, 3945:1	3924:15, 3925:10,
reading [10]-3898:19,	recognize [10]	964:13	refine [1] - 3982:2	25:18, 3925:20,
3915:17, 3915:24,	$3766: 24,3773: 1$	reducing [4]	reflected [1] - 3876:10	926:1, 3926:12
3917:7, 3919:19,	$6: 5,3810: 3,$	$\text { 3841:11, } 3895:$	reflects [3] - 3786:12,	926:16, 3928:16,
3932:7, 3932:9,	$3843: 17,3843: 1 \mathrm{~S}$	3895:25, 3997:10	3786:14, 3889:23	3935:3, 3941:4,
3933:8, 3942:2,	$3850: 13,3851: 21$	reduction [32]-	refresh [2] - 3770:19,	941:15, 3946:18,
3942:13	$3882: 11,3909: 3$	$3791: 9,3795: 2$	3794:15	946:19, 3947:14,
readings [1] - 3942:6	recognized [2] -	3795:10, 3803:24,	refuted [1] - 3796:25	948:12, 3950:12,
ready [3] - 3808:15,	$3917: 11,3982: 1$	304:4, 3805:22,	regard [4] - 3896:3,	350:20, 3951:25,
3907:14, 3949:8	recollect [1] - 3827:11	$05: 23,3820: 12,$	3944:4, 3953:2	3952:1, 3963:5
real [2]-3955:14,	recollection [3] -	$320: 13,3820: 15,$	$3963: 11$	released [4]-3925:24,
4015:1	3770:19, 3794:16,	3820:19, 3823:24,		3948:20, 3948:22,
realistic [1] - 3985:14	3970:15	3830:20, 3831:24,	3971:15	3951:3
realize [6]-3833:1,	Recommendations	32:11, 3836:18,	regardless [1] -	Releases [2]-3923:8,
3839:11, 3851:3,	[1] - 3983:25		3864:2	3923:23
3852:3, 3895:6,	recommendations	342:13, 3870:12,	regards [2]-3860:4,	releases [15] -
3995:19	-3984:1	78:17, 3878:21,	3903:12	3923:16, 3927:9,
realized [1] - 3986:18	recommended [2] -	883:11, 3890:14,	regimes [1] - 3972:19	3932:14, 3932:17,
really [18]-3778:22,	$3972: 24,3975: 11$	3962:11, 3965:8,	region [8] - 3784:15,	3932:19, 3932:22,
3796:10, 3801:12,	reconsider [1] -	966:13, 3989:16,	3833:3, 3834:9,	933:21, 3934:8,
3802:6, 3830:22,	3849:16	004:17, 4004:24,	$3834: 25,3835: 18$	936:18, 3937:1,
3835:15, 3858:3,	record [7]-3845:1,	4007:16, 4007:19	3839:15, 3839:22,	3941:14, 3942:15,
3860:23, 3868:6,	3877:14, 3886:2,	reductions [7] -	3893:24	946:1, 3950:22,
3920:17, 3944:6,	3894:6, 3982:2,	87:5, 3805:19	Regional [3] - 3	3972:16
4000:11, 4000:19,	$\begin{aligned} & 3094.0, \\ & 4009: 13 \end{aligned}$	3806:16, 3842:6,	$3809: 14,3839: 12$	releasing [1] - 3951:9
4010:3, 4010:6,	recorded [4] -	REPORTING	OP al [5] -3811:7,	relevant [2] - 3819:11,


3900:23	3887:15, 3887:17,	4016:14	4000:13, 4000:25,	4001:12
reliable [1] - 3862:5	3887:19, 3892:17,	reserves [1] - 3920:10	4001:6, 4003:9,	right-hand [4] -
relied [19]-3776:1,	3894:15, 3896:12,	reservoir [10]	4013:6, 4013:12	3774:21, 3839:6,
3777:25, 3778:3,	3899:20, 3910:17,	3908:21, 3914:9,	ResSim's [1] -	3900:13, 3941:13
$3784: 2,3784: 24$, $3831 \cdot 3,3834: 24$,	$\begin{aligned} & 3921: 9,3921: 19, \\ & 3922: 5.3929: 14 \end{aligned}$	$\begin{aligned} & 3937: 22,3943: 12, \\ & 3943: 13,3948: 23, \end{aligned}$	3963:10	RIOP [30] - 3910:21, 3910:25, 3911:6,
$\begin{aligned} & 3831: 3,3834: 24, \\ & 3837: 18,3851: 17, \end{aligned}$	$\begin{aligned} & 3922: 5,3929: 14, \\ & 3929: 19,3929: 23, \end{aligned}$	$\begin{aligned} & 3943: 13,3948: 23, \\ & 3972: 16,3974: 23, \end{aligned}$	rest [1] - 3974:17   result [11] - 3788:13,	$\begin{aligned} & 3910: 25,3911: 6 \\ & 3911: 21,3911: 23, \end{aligned}$
3949:17, 3949:23,	3931:6, 3931:15,	4000:14, 4004:6	3791:9, 3803:23,	3918:22, 3919:11,
$3951: 24,3953: 12,$ 3956.25, 3957.2	$\begin{aligned} & 3931: 17,3936: 22, \\ & 3943: 16,3944: 10, \end{aligned}$	reservoirs [27] -   3915:5, 3920:11	$\begin{aligned} & 3829: 23,3872: 13, \\ & 3874: 8,3962: 12, \end{aligned}$	3919:12, 3921:5, 3922.25, 3927.18,
$\begin{aligned} & 3956: 25,3957: 2, \\ & 3967: 22,3975: 9, \end{aligned}$	$\begin{aligned} & 3943: 16,3944: 10, \\ & 3959: 25,3964: 5, \end{aligned}$	$\begin{aligned} & 3915: 5,3920: 11, \\ & 3922: 16,3925: 1, \end{aligned}$	$\begin{aligned} & 3874: 8,3962: 12, \\ & 4013: 17,4016: 22, \end{aligned}$	3922:25, 3927:18, 3928:12, 3929:9,
3989:22, 4011:25	3969:6, 3969:15,	3925:5, 3925:9,	4017:4, 4017:10	3931:14, 3938:17,
relies [1]-3833:2	3970:15, 3971:19,	3926:10, 3930:21,	resulting [1] - 3989:17	3938:25, 3939:3,
$\begin{gathered} \text { rely }[9]-3776: 4, \\ 3808: 16,3831: 6 \end{gathered}$	$\begin{aligned} & 3997: 16,3999: 17, \\ & 4000: 4,4011: 23 \end{aligned}$	$\begin{aligned} & 3943: 9,3946: 4 \\ & 3946: 14,3946: 16 \end{aligned}$	$\begin{gathered} \text { results [30] - 3796:23, } \\ 3806: 7,3823: 18, \end{gathered}$	$\begin{aligned} & 3939: 7,3940: 21, \\ & 3941: 5,3943: 8, \end{aligned}$
3833:5, 3838:18,	reported [1] - 3862:13	3947:4, 3947:11,	3835:17, 3861:25,	3945:20, 3957:19,
$\begin{aligned} & 3893: 15,3955: 7, \\ & 3996: 11,4011: 24 \end{aligned}$	Reporter [1] - 4020:16 reports [11]-3773:20,	$\begin{aligned} & 3948: 13,3988: 5, \\ & 3994: 19,3998: 20 \end{aligned}$	$\begin{aligned} & 3862: 13,3864: 23, \\ & 3865: 16,3873: 23, \end{aligned}$	$\begin{aligned} & 3963: 2,3963: 19 \\ & 3995: 18,3998: 15 \end{aligned}$
relying [5] - 3837:7,   3837.9, 3858.2	3773:22, 3798:16,   3857:13, 3913:4,	4001:8, 4001:9, 4004:9, 4004:10	3875:2, 3903:17,   3957:19, 3964:4	$\begin{aligned} & 4000: 20,4006: 7, \\ & 4009: 6 \end{aligned}$
$\begin{aligned} & 3837: 9,3858: 2, \\ & 3862: 8,3939: 23 \end{aligned}$	$\begin{aligned} & 3857: 13,3913: 4, \\ & 3913: 6,3913: 13, \end{aligned}$	4004:9, 4004:10,   4004:11, 4006:5,	$\begin{aligned} & 3957: 19,3964: 4, \\ & \text { 3964:12, 3965:14, } \end{aligned}$	RIOP's [1] - 3932:14
remain [4]-3943:19,	3913:16, 3938:15,	4006:7, 4009:5	3973:23, 3978:7,	rise [8] - 3873:4,
$\begin{aligned} & 3948: 11,3965: 10, \\ & 3985: 1 \end{aligned}$	3938:22, 3969:11 represent [10] -	residue [1] - 3824:17   resolution [1] - 3936:5	$\begin{aligned} & 3997: 16,3998: 2, \\ & 3999: 7,4000: 10, \end{aligned}$	$\begin{aligned} & 3873: 7,3873: 9, \\ & 3875: 20,3875: 21, \end{aligned}$
remaining [1] -	3791:6, 3791:13,	resolve [1] - 3860:24	4002:3, 4003:8,	3905:24, 3906:15,
3883:22	$3803: 15,3817: 25$, $3818 \cdot 2,3923: 16$,	Resources [3] -	4004:7, 4004:23,	3906:17
remains [1] - 3824:17   remember [9]-	$\begin{aligned} & 3818: 2,3923: 16, \\ & 3959: 10,3992: 9, \end{aligned}$	$\begin{aligned} & 3813: 17,3896: 5, \\ & 3896: 22 \end{aligned}$	$\begin{aligned} & \text { 4005:4, 4005:6, } \\ & 4005: 7,4006: 19 \end{aligned}$	$\begin{gathered} \text { River [60] - 3769:23, } \\ 3770: 5,3770: 10, \end{gathered}$
3846:15, 3892:14,	3996:7, 3996:24	respect [17] - 3797:4,	retain [1] - 3948:12	3772:3, 3772:18,
3921:11, 3922:10,	representation [1] - 3967.5	$3812: 2,3820: 25$, $3857: 8,386: 12$	retained [1] - 3799:7	3781:12, 3782:18, 3783:3, 3795:11
$\begin{aligned} & 3937: 18,3968: 24, \\ & 3987: 6,3987: 10, \end{aligned}$	3967:5   representations [1]	$\begin{aligned} & 3857: 8,3866: 12, \\ & \text { 3874:17, 3875:13, } \end{aligned}$	return [1] - 3875:22   review [21]-3771:15,	$\begin{aligned} & 3783: 3,3795: 11, \\ & 3799: 16,3803: 16, \end{aligned}$
4015:19	3972:19	3917:24, 3918:21,	3771:23, 3773:20,	3803:24, 3809:3,
remove [1] - 3853:23	representative [1] -   3853:11	$\begin{aligned} & \text { 3924:17, 3924:23, } \\ & \text { 3993:21. 3995:16. } \end{aligned}$	$\begin{aligned} & 3773: 22,3774: 22, \\ & 3779: 18.3781: 14 \end{aligned}$	$\begin{aligned} & 3809: 5,3809: 13, \\ & 3810: 21,3817: 8, \end{aligned}$
3849:15, 3853:21	representing [1]	4000:24, 4002:12,	$3797: 11,3798: 22,$	$3817: 12,3817: 21,$
render [1] - 3830:1	3820:18	4004:23, 4005:19	3800:8, 3809:3,	3818:11, 3818:17,
rendered [2] -	represents [9] -   3817.7 3818:4	respectively [1] 3994:12	3811:10, 3825:25,   3827:6, 3827:21	$\begin{aligned} & 3820: 12,3827: 3, \\ & 3835: 3,3839: 16 \end{aligned}$
$\begin{aligned} & 3808: 22,3890: 16 \\ & \text { rendering }[1]-3819: 8 \end{aligned}$	$\begin{aligned} & 3817: 7,3818: 4, \\ & 3914: 8,3987: 20, \end{aligned}$	3994:12   responded [1] -	$\begin{aligned} & 3827: 6,3827: 21, \\ & 3833: 21,3840: 21, \end{aligned}$	$\begin{aligned} & 3835: 3,3839: 16, \\ & 3840: 9,3840: 24, \end{aligned}$
repeat [1] - 3801:18	3988:23, 3992:16,	3916:5	3842:17, 3842:23,	3841:7, 3841:11,
replenishment [2] -	3993:12, 3994:22,	responding [2] -	4010:13	3841:23, 3859:4,
3823:14, 3823:19	4003:17	3916:25, 4010:10	reviewed [12] -	3859:12, 3861:17,
report [63] - 3773:15,	reproduce [1] -	response [1] - 3915:5	3771:18, 3797:14,	3872:21, 3872:22, 3884:7, 3892:12,
3776:9, 3776:14, 3785:1, 3786:9,	$4000: 14$   reproduced [2]	ResSim [36] 3938:11, 3962:22,	$\begin{aligned} & 3809: 10,3816: 6, \\ & 3827: 5,3842: 20, \end{aligned}$	$\begin{aligned} & 3884: 7,3892: 12, \\ & \text { 3900:22, 3901:13, } \end{aligned}$
$\begin{aligned} & 3785: 1,3786: 9 \\ & 3792: 16,3793: 12 \end{aligned}$	$\begin{aligned} & \text { reproduced [2] - } \\ & 3791: 18,3820: 19 \end{aligned}$	$\begin{aligned} & 3938: 11,3962: 22, \\ & 3962: 24,3963: 4, \end{aligned}$	3842:22, 3843:3,	$3901: 15,3901: 22,$
$3793: 13,3793: 22,$	request [7] - 3768:8,	3963:9, 3963:17,	3843:4, 3940:13,	3901:23, 3901:25,
3794:8, 3794:17,	3773:8, 3777:5,	3963:23, 3964:3,	3968:6, 3980:24	3904:3, 3904:17,
3794:22, 3796:17,	3822:5, 3827:21,	3964:13, 3966:9,	reviewing [9] -	3904:18, 3910:2,
3796:25, 3797:9,	3840:17, 3978:22	3966:12, 3966:24,	$3794: 19,3794: 24,$	3911:2, 3916:8, 3917:12, 3917:25,
$\begin{aligned} & \text { 3797:10, 3804:19, } \\ & \text { 3819:3, 3820:22, } \end{aligned}$	required [1] - 3995:18 requirement [2] -	$\begin{aligned} & 3967: 3,3967: 19, \\ & 3967: 22,3968: 8, \end{aligned}$	$\begin{aligned} & 3809: 15,3814: 17, \\ & \text { 3817:4, 3827:23, } \end{aligned}$	3918:6, 3929:25,
$\begin{aligned} & 3819: 3,3820: 22, \\ & 3826: 6,3828: 15, \end{aligned}$	3912:12, 3930:19	$\begin{aligned} & 3967: 22,3968: 8, \\ & 3969: 16,3973: 23, \end{aligned}$	3835:7, 3884:20,	3930:19, 3942:18,
3830:2, 3831:17,	requirements [6] -	975:4, 3975:17,	3981:5	3943:10, 3950:4,
3843:14, 3846:16,	3864:18, 3911:1,	3976:3, 3977:7,	revised [1] - 3984:8	3965:16, 4017:3
3849:4, 3851:25,	3911:7, 3911:23,	3977:9, 3981:7,	Revised [1] - 3910:22	river [3] - 3801:16,
3852:2, 3856:16,	$3912: 2,3932: 15$	$3983: 2,3986: 14$, $3986 \cdot 15,3986 \cdot 17$	revisions [1] -	3842:24, 3973:23   rivers [11] - 3772:17
$\begin{aligned} & 3857: 14,3857: 16, \\ & 3858: 2,3862: 1, \end{aligned}$	research [1] - 3975:13   researched [1] - TH	3986:15, 3986:17, REPORTING	3954:11   OUP 3904:11,	3801:2, 3802:24,










