

The Reporting Group (207) 797-6040
was done to serve the ports of Columbus and Bainbridge.

And in the report here it notes that the Apalachicola itself is only a necessary outlet to the Gulf, that the whole project was done to benefit commerce to the upstream ports.
Q. Okay. Thank you, Dr. Kondolf.

Now, I want to walk through some of the sections that you alluded to. In particular, on page 3, paragraph 3, I would ask you to review the first few sentences. You're welcome to read the entire paragraph if you like.

And my question is going to be what is the significance of the reference to agricultural production and population in principal cities?
A. So here, it's describing the agriculture and the urban centers within the river basin. And these are pretty much -- these are all cities in Georgia -- one is in Alabama; the others are all in Georgia. And the agriculture that's referred to is predominantly in Georgia. So these would be served by the navigation project.
Q. Dr. Kondolf, in the same paragraph at the bottom of the page, there's a sentence that begins, commerce on the river system consists. And then THE REPORTING GROUP Mason \& Lockhart
it goes on to the following page 4. Can you review that to yourself and explain how that discussion informs your understanding of the scale of the project that was undertaken.
A. So this -- this and the subsequent sentence describes commerce at the present time, so in -when this report was completed in the 1930's, which was mostly movement of sand and gravel, pulpwood to sawmills -- sorry, timber to sawmills and pulpwood to a paper mill. And so that -- the scale of that is much smaller than what's being proposed for this project in order to serve the regional interests.
Q. And this is prior to the onset of any dredging, sir?
A. There was some dredging. It was relatively minor.

We looked yesterday at a plot of dredging over time. And -- and as you saw from that, beginning in 1956, the rate of dredging increased dramatically. So this was really a much larger-scale project that was done for the regional development.

Prior to that, you had more local movement of goods, like as is shown here, pulpwood and timber THE REPORTING GROUP

Mason \& Lockhart
and some sand and gravel.
Q. Dr. Kondolf, on page 6 in paragraph 9 there is a discussion about the reservoirs, construction of reservoirs. Let's move from the dredging aspect to the reservoir aspect. And right before paragraph 10 there is a discussion about a dam in the Apalachicola. Can you review that to yourself and explain what that means.
A. So this passage essentially states that the purpose of construction of these dams is to maintain usable navigation depths in the Chattahoochee River to provide those depths up to Columbus, Georgia.
Q. How is it consistent with your opinion that the dredging and the construction of the dams was to benefit the upstream states?
A. Yes. These were really part of the same project, deepening the channel and building the dams. For the lower part of the river it was deepening the channel; above that, the dams were designed to provide the minimum depths. So they were all part of the same project, to make possible navigation up to Columbus and Bainbridge on the Chattahoochee with a 9-foot deep channel.
Q. Sir, earlier you explained that the Apalachicola THE REPORTING GROUP Mason \& Lockhart 2682 was only considered a necessary outlet. And if you turn to page 39, paragraph 140, can you explain how that discussion is consistent with your testimony.
A. This paragraph was one of the paragraphs on which I based my conclusions. And this paragraph very clearly says that the -- that the commerce for which the project is -- was proposed was -- it said that the Apalachicola River, the downstream part after the Chattahoochee and Flint come together, that that river is considered to be only a necessary outlet for these two streams, the upstream Chattahoochee and Flint; and its improvement to a greater depth than now authorized would be dependent on the improvement of one or both of them.

So -- so only a necessary outlet for the upstream streams. So that it was not commerce on Apalachicola per se, but Apalachicola was simply the way for ships to get from the Gulf to these upstream ports.
Q. Dr. Kondolf, the last item I want to review on Joint Exhibit 1 appears on pages 45 and 47. In particular on page 45 in paragraph 158 of Joint Exhibit 1 there is a discussion about the THE REPORTING GROUP Mason \& Lockhart

mile 23.
And there were certain hot spots which were -- which we looked at in the diagrams yesterday, certain places that tended to shoal more than others, so required more repeated dredging.
Q. Why would they have to dredge every year?
A. Because the riverbed is recovering. You dig the deep hole, and then sand fills it back in. And I think when they proposed the project originally, they had some idea that they could dig this deep channel, and it would stay that way. But, you know, these are sand banks; and they just collapse. And so -- so that's why they were back each -- you know, almost every year in most places. It would depend on where you were, but quite frequently they would have to go back and dredge.
Q. Okay. Sir, what can you tell us about how the river has recovered since dredging ceased in 2001?
A. Since the cessation of dredging in 2001, the first thing is we know that the riverbed has come back up, that it would be impossible for the river to have kept that deep hole in sand. You THE REPORTING GROUP Mason \& Lockhart

2688
know, we know that's going to collapse. And we also know some parts of the river have been shoaling. We lack really good survey data since then, but it's quite clear that that's been occurring.

And then we have the narrowing of the channel. So we looked yesterday at how the channel had widened. Since 2004, which are the last data that were used by the U.S. Geological Survey, we can see in the last $\mathbf{1 0}$ years that the river has begun to narrow through establishment of riparian vegetation, willows mostly, that are now narrowing the channel.

We also know that the riverbanks have stabilized. Back during the dredging year of -when the dredge was operating, it was disturbing sand; and so there was a lot of loose sand on the banks. And since then, with the -- with the stopping of the dredging, the banks have stabilized; and they're now creating a firm substrate. And that's beneficial for mussels because that's important habitat for the mussels to have a stable substrate.

And then the last thing that's really clear in terms of recovery is the sloughs. Many of the THE REPORTING GROUP Mason \& Lockhart
sloughs were blocked during the dredging period. And they -- they are now -- have become more open. So the fishermen can access many of these sloughs that had been blocked during the period of active dredging with all the sand in circulation.
Q. Dr. Kondolf, there was a suggestion yesterday that since dredging has ceased and, as you have described, the river is recovering, what do you need? Why is the river not completely recovered?
A. Well, the river needs adequate flow. And, you know, there have been a number of restoration projects that have been done that are sort of small-scale projects, which are good; but the underlying problem is that the river needs adequate flow.

If you were to use a medical analysis, if the river is the patient, the patient has a systemic disease; and that's the lack of flow. It also has a broken arm. And you can do projects such as a lot of the small-scale projects that have been done to date to reconnect some of the sloughs, which is like fixing the broken arm, which you have to do; and that's important. But that doesn't get at the underlying systemic THE REPORTING GROUP Mason \& Lockhart disease, which is the lack of water.

So you have to have adequate flow to take advantage of the habitats that have been preserved, the restoration projects that have been done. You need to have adequate water.
Q. Okay. Thank you, Dr. Kondolf. I would like to stick with this topic and show you another document, if I may.

MR. QURESHI: And, your Honor, this is Florida Exhibit 530. It's not marked as 530 because I'm going to pass out a color copy. The copy in the binders is a black and white copy; but this is the same document, Florida Exhibit FX-530.
BY MR. QURESHI:
Q. Dr. Kondolf, this is a February 2013 letter from the United States Fish and Wildlife Service to the ACFS Stakeholders. And you may not have seen this before, but I want to direct your attention to the first page and the bottom paragraph that begins for example, and through the word environmental flow components.

Also, I want you to have an opportunity to review the graph on the last page and paying attention to the red line on the graph on the THE REPORTING GROUP
Mason \& Lockhart

```
Q. Sure.
Q. Sure.
```

A. -- take a look at the entire context.
MR. PRIMIS: Your Honor, while the witness is reading the document, I'm going to object to introducing a technical document that the witness has not seen before or opined on before. And I just happen to know from being involved in the case for a long time that there were several detailed technical analyses referenced here in the first paragraph which he has no knowledge of.

MR. QURESHI: Your Honor, I'm simply going to ask him how the references to the environmental flow components are consistent with his direct testimony.

SPECIAL MASTER LANCASTER: Proceed.
MR. QURESHI: Thank you, your Honor.
A. Okay. Again, I'm not conversant in all the -all the background of this.
Q. Certainly, Dr. Kondolf. My question simply is there is a reference on the first page to minimum and maximum flow duration, magnitude, frequency, THE REPORTING GROUP Mason \& Lockhart

2692
last page.
A. Okay. I haven't seen this letter before, so I'II try to --
A. -- take a look at the entire context.

MR. PRIMIS: Your Honor, while the
and the rate of change that were observed at USGS gages during the pre-dam period. And there is a reference to these being essential environmental flow components.

Now, in your direct testimony on -- and that's in tab 2 of the binder they gave you yesterday, in paragraph 49 you write, maintaining an adequate flow regime is needed to keep the river healthy while it continues the natural process of self-healing.

So I would like to understand how this is consistent with the reference in the U.S. Fish and Wildlife Service's letter.
A. Well, it appears that here they're referring to using pre-dam flow data as a reference for -against which to judge flows that you would have today or might be simulated for today.
Q. Okay. Dr. Kondolf, how does that relate to your opinion that the river needs more flows to become healthy?
A. Well, so if I'm reading this correctly -- and, again, I might need to read through it more carefully; but it looks like roughly half the time that the recommended flows were -- were achieved. And so that would indicate that the THE REPORTING GROUP

Mason \& Lockhart
river is not getting sufficient flow now. That's what this appears to be.
Q. Okay. Why does it need that to regain its health?
A. Well, for example, the -- the river has complex habitats on the banks and in the sloughs. And so if the -- if the flows are artificially reduced, a lot of those habitats will not be inundated. So -- I was looking at this figure in the last page. Sorry.

But the principle is that you can have excellent complex habitats along the banks of the river or in sloughs; but if the flows have been artificially reduced, the river won't be inundating those, and they won't be part of the river ecosystem.
Q. And can you describe what steps the State of Florida has done to promote recovery of the river to help it regain its health?
A. I think the most -- most important thing is that the State of Florida has set aside thousands and thousands of acres in the floodplain. And it's one of the least disturbed floodplains in North America by far. And the State has -- by buying or getting easements, it's ensured that most of THE REPORTING GROUP

Mason \& Lockhart
2694
the floodplain will remain undeveloped. And so that's by far the most important thing because then, as long as you have a good flow regime, the river has the capacity to recover.

And that's really the thing. Rivers have a tremendous self-healing potential. And that potential is very high on the Apalachicola because of the wide floodplain that exists. And so as long as there is a healthy flow regime, then we can expect continued recovery of the river.

In addition to setting aside the floodplain, the State of Florida stopped the dredging that was going on and initiated a number of restoration projects. First they required the Army Corps of Engineers to do the restoration projects, but the Corps would tend to be very heavy-handed and blunt, using very large river equipment to do it. And then the State of Florida was -- began doing these projects themselves.

And they have hired my team, my colleagues at the University of Florida and me, to undertake an analysis of -- of restoration projects for river mile 40 to 63 and to look at the relationship THE REPORTING GROUP Mason \& Lockhart
between channel change and mussel habitat there and how that can inform future restoration.
Q. Dr. Kondolf, there was a suggestion yesterday that it's only river mile zero through 23 that has not suffered from the impacts of dredging. Are there other areas of the river that you have observed that are showing signs of improvement; and, if so, why?
A. Yes. There's a lot of improvement throughout the river. I mentioned that the -- you know, that channels were largely recovering from dredging because -- which is what we would expect. The bank stabilization, the fact that many of the sloughs are now accessible. Fishermen can get in there. The water can get in there, which wasn't the case during the dredging.

And we also see that the overwidening of the channel is reversing, that the channel was starting to narrow.

That's the preliminary results of our analysis of aerial photographs since 2004.
Q. And, Dr. Kondolf, how are you able to differentiate the impacts of dredging on the river versus the impacts of low flows?
A. Well, first, the lower $\mathbf{2 3}$ miles of the river do THE REPORTING GROUP Mason \& Lockhart

2696
not show any effects of the dredging. So we know that reduced flows there are entirely attributable to the reduced flows from upstream. The lower water levels in that part of the river are because of upstream reductions.

And that's a very important part of the river because that has the vast majority of the swamp forest, which is the Ogeechee tupelo which provides the tupelo honey. And it's ecologically very important for fish and whatnot. That's described in Dr. Allan's report.

As we go upstream on the river, with Dr. Hornberger's modeling and Dr. Allan's biological information, Dr. Allan's report is able to distinguish and identify the effect of that reduction in flow from the -- excuse me, the reduction in the stage of the river, the height of the river, from the reduced flows from upstream. So he's able to quantify that.

And that's potentially quite important because, for example, if you talk about a difference between 5,000 and 7,000 cubic feet per second, that's about 37 sloughs that are connected in that interval. So that's a lot of habitat that -- that would be restored by just THE REPORTING GROUP Mason \& Lockhart
having that much -- that difference in flow.
Q. Dr. Kondolf, I'm going to move to a slightly different topic; and this relates to the 2009 American Rivers document that was highlighted during your cross-examination. That's behind tab 4 of your binder.

Before we dive into the substance of it, can you explain why you prepared the document?
A. I was asked by American Rivers, which is a national nonprofit environmental organization. Their -- their goal is to preserve and restore rivers in America. They asked me to assess the prospects for restoration of the Apalachicola River.

American Rivers has identified the Apalachicola as a river of concern. And, in fact, this year, American Rivers identified the Apalachicola as the most endangered river in the United States. Each year American Rivers puts out a list of the most endangered rivers, and this year they identified the Apalachicola as the most endangered. And they cited the lack of flow as the primary threat to the river.

So it's in that context that they asked me to prepare this report.

THE REPORTING GROUP
Mason \& Lockhart
2698
Q. Okay. And since preparing this report in 2009, what additional work have you done in connection with Apalachicola River?
A. I'm currently working with colleagues at the University of Florida on a project for the Florida Fish and Wildlife Commission to evaluate channel change and mussel habitat from river mile 40 to 63.

And after I completed the -- this report for American Rivers in 2009, I returned to the river a few times in subsequent years as well -- I don't remember exactly how many -- because my -my mother grew up in Tallahassee and around there. And so we would bring her back to the beach. She -- she found the beaches in California too cold. So we were bringing her back each summer. And so I was in the area anyway; I was very close, so I would go and visit the river with the riverkeeper. And so through that I had a chance to see more sites and sort of get a better understanding even since I did this report.
Q. And can you explain how this worked for the State of Florida as well as these personal visits to the area, how have they informed some of the THE REPORTING GROUP Mason \& Lockhart

downstream part of Battle Bend. There were three others, Blue Springs Run, Sweetwater Creek, and Kelly Branch -- there was a dam removed on that, which was a little different. But there have been a number of projects to -- to remove the sediment.

And here, I proposed Swift Slough as one example. And at the time I wrote this report in 2009, I was not aware of an analysis done by the U.S. Fish and Wildlife Service which is reported in their 2006 biological opinion in which they actually went in the field and assessed the potential to clear the sand from Swift Slough. And they determined that it would actually have more of an impact -- negative impact than a benefit. So -- so I wasn't aware of that.

But for each of these -- and I think I make it clear in the report, for each of these potential slough projects, you would need to -you would need to do an assessment and to determine whether there's more benefit to be -to be gained versus impact from the project.
Q. Okay. Dr. Kondolf, you mentioned the 2006 BiOp; so I would like to provide you a copy. And maybe you can highlight for us the particular provision THE REPORTING GROUP Mason \& Lockhart
you're referring to.
I refer you to page 120. And perhaps you can explain how this discussion refers to your assessment.
A. It's a large document.

Okay. Page 20 --
Q. I'm sorry, doctor. I said page 120.
A. 120 .
Q. It's the paragraph beginning the adverse.
A. Okay. That's why I recognize that.

Okay. So this paragraph begins in which the Fish and Wildlife Service is saying that the adverse effects of low flow to the -- these mussels could be minimized by increasing the minimum flows or conducting habitat management.

And by habitat management they go on to say that they have looked at Swift Slough in 2006 to see whether they should excavate sand to -- to connect Swift Slough at a lower flow. And they said, after careful examination of the channel morphology, they determined that it would -- it would do more damage than benefit because essentially it would drain these pools that the mussels were living in.
Q. Okay.
A. So that would be a case. But in the context of my recommendations in my report, you know -- you know, I think we should be evaluating all these possible projects; but in each case we want to -we don't want to do more harm than good. And in this case the Fish and Wildlife Service did a field inspection and determined that removing the sand in that location would probably do more harm to the resource than benefit.
Q. Okay. Dr. Kondolf, in your opinion, since 2009 has the State of Florida undertaken steps to restore the Apalachicola River?
A. Yes. Certainly, the -- again, there have been these projects, Blue Springs Run, Sweetwater Creek, Kelly Branch, those are examples of projects that have been undertaken. And I think more land has been acquired and set aside. And, you know, they hired my group based in the University of Florida to provide them with scientifically-based recommendations for restoration for river mile 40 to 63; and we're hoping that that will be expanded in the future.
Q. Okay. Dr. Kondolf, if I may now refer you to tab 3 of the binder that you were provided yesterday. It was a PowerPoint presentation. THE REPORTING GROUP Mason \& Lockhart

And counsel represented to you that was prepared by Mr. Ted Hoehn.

You asked counsel for Georgia the date on which this presentation was prepared. He never told you. Why did you ask for the date?
A. Well, a lot of these things, the photographs that apparently show dredging going on and the text that describes many of the impacts, those would appear to be things that were current in the 1990's perhaps or 1980's; but you wouldn't see that today. There's been a lot of recovery in the river since then. So -- so that's why I was asking about the date because it seems like a dated document.
Q. And Mr. Hoehn actually testified that the date of the document was 2005, but some of the photographs may have appeared from earlier eras. He also explained that many of the issues highlighted in the presentation have since been remedied and are no longer in existence. How is that consistent with your observations?
A. I haven't looked at the entire document, but that would make sense. 2005 was when the permit was denied. And so I'm sure a lot of these slides -they had to have been taken before 2000. THE REPORTING GROUP

Mason \& Lockhart

And so -- so, yes, given the recovery in the river, I would imagine that some of the issues highlighted here had resolved themselves or had been addressed.
Q. Okay. You didn't review all of the slides with counsel for Georgia; but if you flip to the latter half of the presentation -- and the pages, unfortunately, are not numbered; but they're entitled Additional Effects of Low Flows. I would like for you to explain how what's depicted on those slides is consistent with your personal observations.
A. Okay. So these -- this describes -- because of the lower flows you are inundating less of the -of the roots of trees. That's evident in this photograph; it looks like cypress trees and their roots. It also shows a slough that is apparently drying up. And there is a disconnected pool, which would have concentrations of fish.

And as these -- as the sloughs disconnect from the river and you can no longer have flowing water through them, the pools become isolated, stagnant, and usually the dissolved oxygen levels drop. And so that's a big stress on the organisms, and it can be lethal.

THE REPORTING GROUP
Mason \& Lockhart

So -- and then there's also a slide entitled Submerged Aquatic Vegetation Decline. So that would refer to the -- I presume to some of the -the vegetation that's naturally submerged in the water and has a lot of ecological importance for different species. But as that is exposed as the river levels decline, then, of course, you lose that habitat.
Q. And is it your assessment that the river is continuing to suffer from these types of issues?
A. Yes. Yes. Especially in the dry years. It's -it's a -- the lack of flow is still a significant problem, yes.
Q. Dr. Kondolf, if we may now go to tab 6 of the cross-examination binder, a copy of a study prepared by Ms. Helen Light at GX-88. Have you reviewed this report before?
A. Yes, I have.
Q. And, sir, what's your assessment of the work in this report?
A. I think it's an excellent report of -- the authors are all very good scientists; and they did a very good job. It's -- you know, of course, it's a report with a certain limited scope. It's 10 years ago now. And it relies THE REPORTING GROUP Mason \& Lockhart
largely on data from 20 years ago or more. So obviously, you know, there are a lot of things that have changed since this report was done; and some of the conclusions I wouldn't necessarily agree with in any event. But I think it's a very good piece of work.
Q. Okay. And can you highlight any particular conclusion that you would disagree with?
A. I could go through and look at these, but --
Q. For example, at the bottom of page 1, there's a discussion about water level decline. What's your assessment of that particular opinion?
A. Okay. And this one was highlighted in the deposition and so on.

Yes. So this -- this statement says, water level decline caused by channel change is probably the most serious impact. The next sentence on the top of page 2 says, this decline has been exacerbated by long-term reductions in spring and summer flows.

I think I would not agree with the conclusion that water level decline caused by channel changes is the most significant anthropogenic impact.

One thing I think is useful to keep in mind THE REPORTING GROUP

Mason \& Lockhart
is this report only addressed the nontidal part of the river, so river mile 20 upsteam, when in fact from river mile 23 downstream you have no effect from the channel change.

And also, the purpose of this report was simply to look at the physical changes from the dredging. It was not -- the purpose of the report was not to assess the effects of lowered flows from upstream. There is -- later in the document there is some discussion of those lower flows; and so that it's -- the importance is recognized. But that was not the focus of this report.
Q. And even if we go beyond river mile 23 and go further north, the water level decline associated with dredging, what's your assessment of that today?
A. Well, again, there's been a lot of recovery of the bed, which has to happen. There is no way you could dredge a deep channel and not have it fill in with sediment in a context like this.

And we know from the analysis of Dr. Hornberger and Dr. Allan in which they essentially remove the effect of the consumption by upstream states, then you can see that there THE REPORTING GROUP

Mason \& Lockhart

```
    is a significant impact from the lowered flows.
    In terms of the impact of the -- of the
    remaining effect of the dredging, you know,
    there's certainly -- that is certainly still out
    there; but we're -- again, we're seeing the
    channels recovering from that.
Q. Dr. Kondolf, I now would like to move to a discussion on sloughs. You had some questions yesterday about the connectivity level of sloughs, and there was a focus on the Swift Slough. How many sloughs are in the Apalachicola River?
A. There are over \(\mathbf{3 0 0}\) sloughs connected to the Apalachicola River.
Q. And knowing what you know about river dynamics, what is your expectation regarding the change -in regard to changes to the connecting flow level to these various sloughs?
A. Well, first, these \(\mathbf{3 0 0}\) sloughs are connected at all different flows. There's a USGS report from 1998 that inventoried all the sloughs and their -- the flows at which they were connected at that time. And that report showed from about 4,000 cfs up to 19,000 cfs that, you know, different sloughs will connect or disconnect at THE REPORTING GROUP Mason \& Lockhart
```

2712
those different flows. So there's a wide range.
So essentially at almost any flow level if
you were to drop a thousand cfs, you would be cutting off $\mathbf{1 0}$ or $\mathbf{2 0}$ sloughs. So throughout the range of flows there are different sloughs that connect or disconnect.

And over time, the level at which a slough connects can change. And one of the factors has already been talked about, deposition of sand as a result of the dredging. But even without that, there are always fluctuations. It's an alluvial river. It's a dynamic system. So there would always be fluctuations in the level of when some of these sloughs would connect.

And we know that since the dredging stopped, that many of these sloughs are flushing out of sediment and that the -- they're accessible and connected at a lower level than they were before.
Q. And what is required to flush out additional sediment and connect additional flows in the sloughs?
A. River flow is needed. That's what's needed.
Q. Okay. Dr. Kondolf, can you describe for the Court some of the other river systems that you have studied?

THE REPORTING GROUP
Mason \& Lockhart
A. I have worked a lot on rivers in California, of course. The San Joaquin River is one that I was involved in. And there's a court case on that -a pretty well-known court case. In the San Joaquin, the construction of Friant Dam actually dried the river out in two places downstream. So there used to be between two and 300,000 salmon that swam upstream the San Joaquin each year, and that run was exterminated by the dam.

But, fortunately, the policy is now to restore the salmon run. And the question is what flow regime exactly do you need for that? And that was what I worked on before -- in the settlement for that case.

And this year for the first time we have continuous flow in the San Joaquin from the dam down to the delta.

So I have worked on the San Joaquin. I have worked on the Sacramento, the Trinity River, the Klamath River, worked on the Mississippi. Internally I'm doing a lot of work on the Mekong right now. I have worked on the Rhone River and its tributaries in Europe, some -- a couple of rivers in Portugal, Thailand -- Taiwan, sorry. Well, Thailand also, and -- well, Korea. THE REPORTING GROUP

Mason \& Lockhart
Q. Okay. Thank you, Dr. Kondolf.

Just based on your extensive study of rivers -- rivers around the world, can you give us your assessment of the Apalachicola River?
A. In my view the Apalachicola is a real gem. It's a beautiful system, highly productive, one of the most biodiverse and ecologically productive systems in the planet, certainly in North America. And the fact that the floodplain has been preserved, it has tremendous potential to continue to be such an amazing place.

What it really needs is flow. It needs to have adequate flow to preserve this for future generations.
Q. Thank you, Dr. Kondolf.

SPECIAL MASTER LANCASTER: Recross?
MR. PRIMIS: Yes, your Honor.
RECROSS-EXAMINATION
BY MR. PRIMIS:
Q. Dr. Kondolf, we highlighted yesterday in your American Rivers report where you acknowledged that low flow could have an impact on the river as well as channel change. Right?
A. I believe so.
Q. And I showed you the portion of your report that THE REPORTING GROUP

Mason \& Lockhart

said that. Right?

A. It's a bit of a blur; but I think so, yes.
Q. Okay. And I'm only asking you because you have done no quantitative analysis to assess the relative impact on the river of channel change caused by the Army Corps as opposed to low flow. True?
A. Certainly from river mile $\mathbf{2 3}$ downstream we can attribute all the reduction in river stage to reduced flows from upstream because there is no channel change down there. As you go upstream from that point, it was not part of my responsibility to quantify the different effects. But those that have been -- at least the effect of the reduced flows from upstream have been quantified by the Hornberger and Allan reports.
Q. Dr. Kondolf, I'm just going to ask you to narrow your answers and try to answer the question I'm asking. So I'll just focus on river mile 23 and up.

You personally, sir, have done no quantitative analysis to assess the relative impact between Army Corps dredging and channel change on the one hand and low flows on the other. Correct?

THE REPORTING GROUP Mason \& Lockhart

2716
A. So, again, the purpose of my report was not to do a quantitative disaggregation of those two, no.
Q. Are you capable of answering questions yes and no?
A. It depends on the question.
Q. How about the last one? Can you answer that question yes or no?
A. Again --
Q. I'll withdraw the question, Dr. Kondolf.
A. I'm happy to expand on it, if you would like.
Q. No. I'm going to ask you for the opposite, please.

Dr. Kondolf, with regard to low flows that you have talked about, you have done no quantitative analysis to assess whether they are caused by drought versus Corps operations versus Georgia's use versus evaporation. Correct?
A. It's correct that I have not -- it was not part of my report scope to analyze what factors could be causing the reduction in flow from upstream to the Apalachicola River.
Q. Is another way of saying that no?
A. Yes. In answering your question, I did not analyze those factors.
Q. Okay. Sir, you were shown JX-1, which is the THE REPORTING GROUP Mason \& Lockhart
letter from the Secretary of War. Can you pull that out.

It was a loose document from Mr. Qureshi.
A. Yes, I have it here.
Q. Okay. And you said that this suggests that all the dredging was done to benefit Georgia. Right? That's your opinion?
A. The dredging project and the construction of the dams was done principally to benefit upstream ports in Georgia and to some extent Alabama, but Georgia primarily.
Q. Okay. I just want to point out that the document we're looking at, JX-1, it bears the header 76th Congress First Session. Correct?
A. Yes. That appears to be right.
Q. And you understand that the dam was built as a result of an Act of Congress. Right?
A. Yes.
Q. And Georgia doesn't control the Congress; I don't think you're saying that. Right?
A. No, I'm not saying that Georgia controls the Congress.
Q. And this letter is from the Secretary of War. Correct?
A. That's correct.

THE REPORTING GROUP
Mason \& Lockhart
Q. And that person is appointed by the President of the United States. Right?
A. Yes. That's correct.
Q. The Governor of Georgia doesn't appoint the Secretary of War. Right?
A. That's correct.
Q. And in the last part of the cover page, he notes that he's giving this report as requested by resolution of the Committee on Rivers and Harbors of the House of Representatives. Correct?
A. That's correct.
Q. And that's the United States House of Representatives. True?
A. That's correct.
Q. Now, you mentioned on your redirect that you have done work in 2015 on the Apalachicola River. Correct?
A. That's right.
Q. And in paragraph 8 of your written direct, that's where you have a very short description and note that that's what -- that you have been doing some work there. Right?
A. That's correct. In paragraph 8 I briefly describe that work.
Q. And when we talked about Ted Hoehn's presentation THE REPORTING GROUP

Mason \& Lockhart
from 2005, you said that's dated. Right?
It's out of date. That's your view?
A. Well, some of the photographs are certainly from the dredging era, which would be, you know, 20 years ago. So --
Q. So the photographs are dated?
A. Well, and the -- the presentation is from 2000 -what was it, 2005 or something?
Q. Yes, sir. And Helen Light's report from 2006 that talked about channel change being the single biggest effect on the river, that's from 2006. And you said that's outdated. Right?
A. Well, I --
Q. It's a little old?
A. Well, \mathbf{I} mean, it is $\mathbf{1 0}$ years old; and it relies on the -- the data it relies on is $\mathbf{2 0}$ years old.
Q. And your 2009 American Rivers report that talks about the severe degradation caused by the Army Corps of the Apalachicola River, you said that's somewhat outdated, too, because we're doing this work now in 2015. Right?
A. Well, I -- again, I think for the time these reports were done, that they were -- it was fine. But things -- we do get new information. As we continue to work, we get further information. THE REPORTING GROUP
Mason \& Lockhart
2720
Q. And you want the Court to rely on the fact that you have done more work and have new information.
Right? That's why you're here?
Things have changed since 2009. We should look at new information. Right?
A. Well, if it's relevant, certainly, yes.
Q. Okay. Now, in paragraph 8 -- take a close look. You don't mention any further documentation of any work you have done for the Florida Fish and Wildlife Commission in that paragraph; do you, sir?
A. I'm not sure what JX-128 is, but it looks like historical gage data.
Q. Well, it's your -- it's your testimony; and you attached Exhibit 128 as attachment A.
A. Yes.
Q. So you can look at it. It's gage data. Right?
A. Yes. Yes.
Q. So you have never disclosed to this Court that you actually have done and documented additional work after your 2009 American Rivers report in the Apalachicola River. Right?
A. No. I think that -- I think that says it right here.
Q. Did you cite to that report?

THE REPORTING GROUP Mason \& Lockhart

You did a report, right, in 2015?
A. Yes. My team did a report -- progress report in 2015.
Q. It's not cited anywhere in your written direct testimony; is it, sir?
A. Maybe not. No.
Q. It's not. And you didn't mention it with Mr. Qureshi. Correct?
A. I don't think so, no.
Q. And when Mr. Hoehn was here, you're aware he didn't mention that there was a 2015 report on the Apalachicola River and mussels that you were a part of; did he?
A. I don't know. I wasn't here.
Q. Now, you -- you -- so you acknowledge you did do a report that you delivered to the Florida Fish and Wildlife Commission in 2015. Correct?
A. Yes. I think it was November of 2015.
Q. And Ted Hoehn works for the Florida Fish and Wildlife Commission. Right?
A. Yes.
Q. In fact, Mr. Hoehn, is the person responsible for mussels along the river. Correct?
A. I don't know what his responsibilities are.
Q. Well, you know Mr. Hoehn got your report. Right? THE REPORTING GROUP Mason \& Lockhart 2722
A. I assume so. I -- I don't know.
Q. He's the person at Fish and Wildlife who would get it and review it. Correct?
A. I'm not sure who would get it and review it at Fish and Wildlife.
Q. And you didn't review his testimony at all to prepare for this?
A. No. I think -- I think I was shown a couple places where he mentioned me; but, no, I didn't review his testimony.
Q. And none of those mentioned your November 2015 report. Correct?
A. I don't recall.
Q. You don't. Well, the transcript will reflect that he didn't mention it.

MR. PRIMIS: Your Honor, may I approach?
BY MR. PRIMIS:
Q. This is GX-1335.

And Dr. Kondolf, this is the report that you provided to Florida Fish and Wildlife in November of 2015 concerning your work on river mile 40 through 63. Correct?
A. That's right.
Q. And now that you have seen it, can you confirm, again, you never cited this in your written

THE REPORTING GROUP
Mason \& Lockhart

	2723		2725
1	direct testimony. Right?		A. Yes.
2	A. I don't remember -- well, apparently I didn't.		Q. And I'm not going to go through it again because
3	I	3	it's very similar to what was in your American
4	Q. Now, let's walk through this report, the one that	4	Riverkeepers report, but take a moment and just
5	you gave to Florida Fish and Wildlife and which	5	confirm that the history you describe here is
6	was not mentioned by their representative. On	6	accurate?
7	page 2 you say at the bottom there is a history	7	A. I didn't actually write this. And it does --
8	of human impacts. Correct?	8	it's not complete. I think my American Rivers
9	A. So this report had multiple authors. I -- most	9	report, that was my work; and that's probably a
10	of it was not written by me; but -- but it was	10	better reflection of my summary of the history.
11	written by other members of the team.	11	But this was done by members of the team.
12	Q. Okay. Dr. Kondolf, I should have asked this.	12	Q. The team that you were a part of?
13	Let's just look at the first page. Your name is	13	A. Yes.
14	the third one down. Correct?	1	Q. Okay. Can you go to page 8.
15	A. That's right.	15	A. Okay.
16	Q. That's you, Mat Kondolf?	16	Q. Do you see the section called Channel Dredging
17	A. Yes.	17	and Sediment Disposal?
18	Q. So you were a part of this project?	18	A. Yes.
19	A. That's correct.	19	Q. In the middle there is a sentence that starts
20	Q. And you know the context of this document?	20	dredge deposits. Can you take a look on that --
	A. Yes. So this was a progress report for the --	21	take a look at that.
22	for this larger study which still had a year to	22	Right in the middle of the Channel Dredging
23	go.	23	and Sediment Disposal paragraph on page 8.
24	Q. Okay, sir.	24	A. Right. Beginning dredge deposits?
25	A. So --	25	Q. Right.
	THE REPORTING GROUP Mason \& Lockhart		THE REPORTING GROUP Mason \& Lockhart
	2724		2726
1	Q. On page 2 you outline --	1	MR. PRIMIS: I'm also helping the Court out
2	MR. QURESHI: Your Honor, may I request	2	here, too.
3	that you allow the witness to finish his	3	SPECIAL MASTER LANCASTER: What page is
4	answer before you begin your next question?	4	that?
5	BY MR. PRIMIS:	5	MR. PRIMIS: Page 8.
6	Q. Are you done, Dr. Kondolf?	6	SPECIAL MASTER LANCASTER: Thank you.
7	A. So as I said, this was a progress report. There	7	MR. PRIMIS: In the section called
8	was another year to go in the project. And so	8	Channel Dredging, about halfway down.
9	this was done so that we could get paid for our	9	SPECIAL MASTER LANCASTER: All right.
10	deliverables 1 through 4.	10	BY MR. PRIMIS:
11	Q. And that's actually a good point. So thank you	11	Q. Dr. Kondolf, have you had a chance to read that?
12	to Mr. Qureshi for letting you finish.	12	A. The sentence or the entire rest of the paragraph?
13	You're currently getting paid by the State of	13	Q. Well, I'm focused on that sentence to the end of
14	Florida to do this work. Right?	14	the paragraph.
15	A. That's correct.	15	A. Okay. Okay.
	Q. And that's -- separate and apart from your expert	16	Q. Now, this report that you and your team submitted
17	testimony, you are a paid consultant for the	17	to Florida Fish and Wildlife is telling the State
18	State of Florida. True?	18	that there are dredge deposits. And when there
19	A. Yes. This is a research project through the	19	are high flows, the sand on those dredge deposits
20	University of Florida. And I'm one of the	20	can be deposited back into the river. Correct?
21	investigators for this project.	21	A. Yes.
22	Q. For which you were compensated. Correct?	22	Q. And one effect of that, I think you said, is that
23	A. That's correct.	23	that can raise the bed of the river, right, when
	Q. Now, you have a whole section on history of human	24	that sand goes back in?
25	impacts, correct -- your team in this report?	25	A. That's true. Yes.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

don't affect the surface of the floodplain. So the floodplain surface is affected by higher flows in the river.

So we have to -- it's important to distinguish the river channel itself may be tidal, whereas, the floodplain surface is only affected by riverine flows.
Q. Dr. Kondolf, can you turn to page 31 of your 2015 report to Florida Fish and Wildlife. You have a section called Dredge Spoil in the Floodplain. Correct?
A. That's correct.
Q. At the bottom of that page there's a picture of Sand Mountain taken in 2015?
A. That's correct.
Q. It's still there?
A. Yes. As I said yesterday, Sand Mountain is still there.
Q. And in this section you report to Florida Fish and Wildlife in that first sentence that spoil mounds from past dredging is likely a continual source of sediment. Correct?
A. That's right.
Q. Can you go two pages back now to page 33, and there's a section called Slough and Cutoff THE REPORTING GROUP Mason \& Lockhart

Inspections and Associated Photography. Do you see that?
A. Yes.
Q. Now, here is another slough that we haven't talked about called Mary Slough. Right?
A. Let's see.
Q. The last line above the caption identifies it as Mary Slough near river mile 58.5. Correct?
A. Yes. Figure B-5 on figures 22 to 24. Let's see.

Okay. I'm not sure that the photograph below -- I don't think that is Mary Slough. But -- that's a cutoff that's in -- natural cutoff that's in progress.
Q. Okay. Well, let's go to the next page.
A. Okay.
Q. You're disputing, by the way, that this is Mary Slough?
A. I don't think this is Mary Slough.
Q. Okay.
A. No. This is -- so near -- near the Florida River -- I mean, if you like, we could pull out a photo; and I could show you where this is. Near the Florida River there's a very pronounced meander bend in the river. And at flood flow water flows across this meander bend. And so as THE REPORTING GROUP Mason \& Lockhart
it does that, it erodes out -- it's eroding out a channel.

This is a natural part of river dynamics is that you can get what are called meander cutoffs. So you have a meander bend; and it can cut off in two ways, either a neck cutoff or it's just bank erosion that eventually cuts through. Or you can have what's called a chute cutoff -- C H U T E, not spelled as you would expect. And this -- and this is where during the flood flows the river begins carving out a shortcut channel.

And that's what's happening here. I would expect, you know, in 5 or 10 years' time that the river might be flowing through this channel instead of the existing river. And that's just a natural part of river dynamics.
Q. Dr. Kondolf, can you now turn to page 44 of your November 2015 report. And just to put it in context, if you look at page 43 first, you will see that we're in a section called Mussels.
A. Yes.
Q. And then go to page 44. And I want to direct your attention to the bottom of page 44, and in particular the sentence about five lines from the bottom that starts this survey. THE REPORTING GROUP Mason \& Lockhart
A. Okay.
Q. Before we go into this, the Latin name A neislerii, do you see that?
A. Yes.
Q. That is the fat threeridge mussel. Correct?
A. I believe so. I'm not an expert on mussels, but I think I recall seeing that that is the Latin name.
Q. You just testified on redirect about the work Dr. Allan was doing on mussels. Correct?
A. Yes.
Q. So you're familiar enough --
A. Yes.
Q. -- to give testimony to the Supreme Court about it?
A. Yes.
Q. Okay. In this report of November 2015, you report to the Florida Fish and Wildlife Commission that the fat threeridge is likely one of the most abundant mussels in the middle reaches of the Apalachicola River. Right?
A. Again, perhaps we should --
Q. My question, sir, was did you report what I just said before the Florida Fish and Wildlife Commission? THE REPORTING GROUP Mason \& Lockhart

	2739			2741
1	MR. QURESHI: Again, the witness needs	1		strong scientific basis for evaluating
2	to answer your question before you begin the	2		restoration projects that would benefit mussels
3	next question, please.	3		in this reach from river mile 40 to 63. And this
4	MR. PRIMIS: Your Honor, I won't debate	4		reach has a lot of what are called hooks and
5	with counsel. Can I just ask you to have the	5		bays. And it's a way that the river channel has
6	witness give an answer to my narrow question?	6		been changing apparently to renarrow the
7	SPECIAL MASTER LANCASTER: Just so you	7		riverbed. That seems to be the result of these
8	should understand, if you can answer the	8		channel changes.
9	question yes or no, do so. Your counsel can	9	Q.	We went through the report, and counsel for
10	come up and ask for clarification.	10		Georgia took particular sentences out of
11	A. Okay. I think it would be the least misleading	11		particular sections. Can you tell us as a whole
12	if I pointed out this is a report that was done	12		what's the relationship between this report and
13	by multiple authors, and I did not write this	13		the conclusions you reached in your direct
14	section on mussels. Our mussel expert on the	14		testimony?
15	team, Michael Gangloff, wrote the section on	15	A.	The conclusions in my direct testimony stand. I
16	mussels. So this was not my work here.	16		don't -- there's -- this report is -- well,
17	Q. Dr. Kondolf, you and your team submitted a report	17		there's some aspects here that -- for example,
18	a year ago to Florida Fish and Wildlife saying	18		the -- we talked -- in here we report on the --
19	that the fat threeridge was likely one of the	19		our analysis of $\mathbf{2 0 1 3}$ aerial imagery showing
20	most abundant mussels in the middle reaches.	20		that there has been narrowing of the river and
21	Correct?	21		colonization by vegetation. And that -- that
22	A. That is in our report, yes. Again, it's not a	22		informed my expert opinion that -- some of the
23	section that I wrote or even reviewed; but	23		experience that I gained from doing this work for
24	that -- that's the opinion of -- of my colleague	24		Florida Fish and Wildlife Commission.
25	obviously.	25	Q.	And the narrowing of the river and the
	THE REPORTING GROUP			THE REPORTING GROUP
	Mason \& Lockhart			Mason \& Lockhart
	2740			2742
1	Q. And you said your colleague is Michael Gangloff,	1		colonization represents what?
2	who is a mussel expert who included this in your	2	A.	That's a part of the recovery of the river from
3	joint report to Florida Fish and Wildlife.	3		the past impacts.
4	Correct?	4	Q.	And was required for the river to fully recover?
5	A. That's correct.	5	A.	To fully recover the river needs flow. It needs
6	MR. PRIMIS: No further questions, your	6		adequate flow.
7	Honor.	7	Q.	Okay. Thank you, doctor.
8	SPECIAL MASTER LANCASTER: Redirect?	8		MR. PRIMIS: No further questions, your
9	REDIRECT EXAMINATION	9		Honor.
10	BY MR. QURESHI:	10		SPECIAL MASTER LANCASTER: Doctor,
11	Q. Very briefly, Dr. Kondolf. What was the purpose	11		you're going to have to help me here. I'm
12	of this work that's memorialized in GX-1335?	12		not sure that I'm familiar with the topics.
13	A. This was a progress report, so we had actually	13		But GX-1335 bears your name in part as --
14	just started our study in the summer. And we had	14		THE WITNESS: Yes.
15	a deadline to produce these, you know,	15		SPECIAL MASTER LANCASTER: -- as an
16	deliverables, they're called, reports or datasets	16		author.
17	that we -- we were to provide in order to get	17		THE WITNESS: Yes.
18	paid for our initial section of work. And so	18		SPECIAL MASTER LANCASTER: And your
19	that's what this reflected.	19		testimony is that you did not write certain
20	So this was not a final report in any way.	20		parts of this; is that correct?
21	It was simply the deliverables report,	21		THE WITNESS: That's right.
22	essentially a progress report.	22		SPECIAL MASTER LANCASTER: Did you read
23	Q. And what's your understanding as to why the State	23		it all?
24	of Florida was undertaking this work?	24		THE WITNESS: I don't -- I don't think I
25	A. Again, the purpose of our study was to develop a	25		read the mussel part. But I read other -- I
	THE REPORTING GROUP			THE REPORTING GROUP
	Mason \& Lockhart			Mason \& Lockhart

A. Yes. Again, just so we're tracking the way -when you say impact, what I'm hearing is change. So I analyzed the fact that there was injury, but I didn't analyze a change.
Q. Can you turn to page 15 , line 1 , of your deposition, Dr. Sunding.

MR. PRIMIS: And, Mr. Smith, could you play clips 6,7 , and 8 which go from 15, line 1 to line 11.
(Whereupon the video was played.)
BY MR. PRIMIS:
Q. Were you asked those questions --

MR. PERRY: Your Honor?
BY MR. PRIMIS:
Q. -- and did you give that answer?

MR. PERRY: I'm sorry. Your Honor, might I note that the transcript actually reads just a bit differently than the clip that was played because the clip omits the objections.
BY MR. PRIMIS:
Q. Were you asked those questions, and did you give that answer?
A. Yes. And I think it's consistent with what I just said.

THE REPORTING GROUP Mason \& Lockhart

2752

> Q. Now, Dr. Sunding, you conducted a survey in this case which asked residents of Florida, Georgia, and Alabama questions about the resources in the ACF Basin. Correct?
A. I did. That's right.
Q. Okay. We're going to come back to this later, but I just want to ask you; apart from the survey, you would agree that you have not attempted to quantify in any economic or monetary sense the impact on Florida of Georgia's consumptive water use. True?
A. That's largely true. I would add one exception to that. In my direct testimony I also noted the amount of resources that the State of Florida has spent conserving land in the Apalachicola region.
Q. Dr. Sunding, can you turn to page 16, line 21, of your transcript, and going through page 17, line 1. And does it say there, apart from the survey, have you attempted to quantify in any economic or monetary sense the impact on Florida of Georgia's consumptive water use?

And after an objection to form, you said, nothing comes to mind, no.

Were you asked that question, and did you give that answer?
A. Yes. And I stand by that. You were asking me about what I quantified. I added one -- I added one -- you know, one qualification to the answer, which is that I also reported on what others testified about the amount of resources that Florida has dedicated to preserving land in the Apalachicola.
Q. I would just like a clean answer to this question. Were you asked the question posed at 16, 21; and did you give the answer at line 17, 1 of your deposition under oath?
A. Yes. Absolutely.
Q. I want to ask you some questions now about causation, sir. Okay?
A. All right.
Q. You would agree that as a general matter, it is important to eliminate other variables that could have contributed to the harm alleged. Correct?
A. Could you help me out with the context? Is that just a general statement or with respect to some specific situation?
Q. Dr. Sunding, can you answer that question?
A. I can't without more detail.
Q. Okay.
A. I want to make sure I know what you're talking THE REPORTING GROUP

Mason \& Lockhart
about.
Q. Can you turn to your deposition transcript where it appeared you knew what I was talking about. Page 19, line 3.

MR. PRIMIS: And, Mr. Smith, could you play clip 228.
(Whereupon the video was played.)
BY MR. PRIMIS:
Q. Were you asked that question, and did you give that answer?
A. Yes. In the context of a much longer discussion about biological issues.
Q. Dr. Sunding, you have not personally undertaken to do an analysis of what other -- of eliminating what other variables could have contributed to the harm alleged in this case. True?
A. I think that's right.
Q. Now, I understand that you have had discussion with other Florida experts about causation; but to be clear, you personally are not offering any expert opinion on whether Georgia's water use has caused the harm to Florida that's alleged. Correct?
A. I think that's right. I'm an economist, not a biologist or ecologist.

THE REPORTING GROUP
Mason \& Lockhart
Q. Now, can you turn to paragraph 35 of your written direct testimony. And we have included it in your binder. There is a tab called Sunding Direct; but I think you each have a loose copy of it, too. And specifically I want to ask you about paragraph 35 . Have you had a chance to look at that?
A. Yes. I read the paragraph.
Q. Okay. And, Dr. Sunding, your view is that the Apalachicola is a large ecosystem. Correct?
A. Sure. Yes.
Q. And it's your sworn testimony that changes in streamflows will impact this ecosystem in ways that are complex and multifaceted. Right?
A. Yes. That's reflecting my understanding as an economist of what the biologists have testified to.
Q. And your testimony is that the changes in streamflows will impact this ecosystem in complex and multifaceted ways. Right?
A. That's my understanding, yes.
Q. And, in fact, it's your view that it's difficult for people to comprehend the ways in which those streamflows could impact the ecosystem. Correct?
A. Yes.

THE REPORTING GROUP Mason \& Lockhart

2756
Q. Now, Dr. Sunding, as an economist, you routinely look at costs and benefits of proposed actions. Correct?
A. That is true, yes.
Q. And you would agree that comparing the costs and benefits of an environmental policy is a standard means of evaluating whether it is socially desirable. Correct?
A. I do agree with that as a general matter, although I gave a lot more context and some other opinions in my testimony.
Q. Now, can you turn to paragraph 39 of your direct.
A. I -- just give me a second to read it.
Q. Sure.
A. All right. I see it.
Q. In paragraph 39 you say that the actions that you proposed would enable Georgia to cap its annual consumptive use of water at current levels at minimal incremental cost and would provide substantial environmental benefits to Florida in both drought and nondrought years.

And that's your sworn testimony. Right?
A. Yes.
Q. Now, after you had been working on this case on and off for 10 years, none of the other experts THE REPORTING GROUP

Mason \& Lockhart
in this case have provided expert opinions that quantify the benefits to Florida from your proposed conservation measures. Are you aware of that?
A. I guess I'm confused by your question because my understanding was that -- at least Dr. Allan had looked at a thousand cfs.
Q. Well, let me reframe my question. After working on this case for 10 years, none of your expert reports provide expert opinions that quantify the benefits to Florida from your proposed conservation measures. Correct?
A. That's right. They quantify an incremental change in economic welfare.
Q. Okay. Now, you mentioned Dr. Allan. And I do now want to talk about a couple of Florida's biology and ecology experts. Okay?

You understand that a series of Florida's environmental experts and biological experts modeled the impacts of a remedy scenario. Correct?
A. I do understand that.
Q. And you understand that the remedy scenario that they modeled involved a proposed 50 percent reduction in agricultural water usage, a 50 THE REPORTING GROUP Mason \& Lockhart
percent reduction in evaporation from small impoundments, and the elimination of all interbasin transfers in the ACF Basin. Are you aware of that?
A. That all sounds familiar.
Q. And that's not a specific thing that you recommended. That came from Dr. Flewelling. Right?
A. I'm not sure who it came from.
Q. Hornberger or Flewelling, someone else; right?
A. Yes.
Q. We have a tab in your binder called Florida Experts -- FLA Experts. It's all the way at the back.

Just let me know when you're there, Dr. Sunding.

The first page says Greenblatt. Correct?
A. Oh, it is way at the back.
Q. Way in the back.
A. Got it.
Q. I'm just going to give the Court a moment to get there.

MR. PRIMIS: Are you there?
BY MR. PRIMIS:
Q. So we have here a demonstrative from Marcia

THE REPORTING GROUP
Mason \& Lockhart

Greenblatt's direct testimony. And do you know who Dr. Greenblatt is?
A. No, I don't.
Q. Your not aware that she's Florida's expert on salinity patterns in Apalachicola Bay?
A. No.
Q. Dr. Sunding, I just want to ask you as a follow-up to your testimony that Georgia's reduction in use will provide substantial environmental benefits, did you take into account Dr. Greenblatt's testimony that the remedy scenario she ran would result in somewhere less than 1 part per thousand reduction in salinity in Apalachicola Bay?
A. No. I never have seen this before. I don't know who she is.
Q. So you're not aware that the white parts depicted in Dr. Greenblatt's exhibit indicate less than 1 part per thousand with the cuts that --

MR. PERRY: Objection, mischaracterization.
A. No, I'm not familiar with this document at all.
Q. Okay. Let's go to the second tab -- I'm sorry, the second slide behind Florida Experts. And we have excerpted a chart here from Dr. Allan's expert report regarding the tupelo trees. Have THE REPORTING GROUP

Mason \& Lockhart
2760
you seen this one before?
A. I may have seen this one before. I also spoke with Dr. Allan about how he was quantifying impacts. But this particular table does not look familiar.
Q. All right. Now, with regard to the substantial environmental benefits to Florida, you're aware that when Dr. Allan ran the remedy scenario with the 50 percent reduction in agricultural irrigation, that he showed that for the tupelo trees on his 10 percent metric, you got 29 fewer days of harm over 16 years. Were you aware of that?
A. Again, you're picking a table out of his report. I'm not familiar enough with this to give an opinion about it.
Q. Are the 29 days benefit to the tupelo trees over 16 years a substantial environmental benefit?
A. Well, when I made that statement, I wasn't referring just to the tupelo trees. There are, as you know, a number of species that Dr. Allan examined.
Q. Okay.
A. So it would have -- the tupelos would have been part of it, but not the entirety by any means. THE REPORTING GROUP

Mason \& Lockhart
Q. When -- how about Dr. Wilson White; are you familiar with him?
A. No.
Q. Let's turn to the next demonstrative.

Now, you don't recognize Dr. White as an oyster on -- I'm sorry, an expert on oysters?
A. No.
Q. And you're not aware that he ran the remedy scenario through his model to see what kind of change there would be in oyster biomass?
A. No. He was not one of the experts that I interacted with.
Q. So I take it then you're not familiar with the chart we have included here from page 50 of his direct testimony which shows a maximum change in oyster biomass, running the 50 percent reduction scenario, of a little over 1 percent?
A. No. I have never seen this table before or this figure before.
Q. And so you have no opinion whether Dr. White's 1 percent change, would that type of reduction in Georgia be a substantial environmental benefit. Correct?

MR. PERRY: Objection, mischaracterization.
A. No.

THE REPORTING GROUP
Mason \& Lockhart
Q. Now, can you turn to FX-784. It's your first expert report, and Florida gave it an exhibit number for identification. So it's the first tab.
A. All right. I see it.
Q. Now, after having been involved in this case on and off for a decade, this was the initial report that you submitted in this matter. Correct?
A. Yes, it was.
Q. Page 1 of the report has your statement of opinions -- it's actually page 3.
A. Yes, it does.
Q. And then if you go to page 9, there's a table. Correct?
A. Yes, there is. I think it's the same one you excerpted in the handout you gave me earlier.
Q. Correct, sir.

And you include in your statement of opinions this table which shows four different scenarios for conservation in Georgia of a thousand cfs at peak summer streamflow. Correct?
A. That's right.
Q. Now, your report back on page 86 also has a much smaller table that you said could get you up to 1500. Correct?

THE REPORTING GROUP
Mason \& Lockhart


```
A. Yes
```

Q. Now, if we add up those same three items from your written direct testimony, that being leak abatement, reduced municipal outdoor use, and eliminate net basin exports, the combined effect of those has shrunk. Right?
A. Yes, because of examining different policies.
Q. Right. You changed the policies you examined; and you went from 546 cfs reduction for M \& I, and you reduced it to 315 . Correct?
A. That's right.
Q. And just let's be fair, Dr. Sunding. You didn't just change the policies; right? You corrected some errors that reduced the number?
A. That's right. That's true as well. There were -- there were at least two issues that I can think of now that I corrected; and then I also changed the policy. I considered different implementation of the outdoor water use restrictions.
Q. And you changed that policy that you looked at after the time of your deposition. Correct?
A. Sure. But my testimony was always about evaluating economic impacts across a whole range THE REPORTING GROUP Mason \& Lockhart

2772
of policies.
Q. Dr. Sunding, when you went from 546 cfs for M \& I and reduced it to 315 through error corrections and policy changes, you reduced the amount by 42 percent of what you were recommending Georgia do to conserve for M \& I. Correct?
A. Well, there are a couple of issues. I'm not recommending anything. I'm examining the cost of different conservation scenarios.

But, yes, it did go down by -- I'll accept your number -- 42 percent.
Q. And I do want to pause on something you just said. It is true, sir, that you're not recommending any particular policy to the Supreme Court; you're just evaluating different potential options and their costs. Correct?
A. Yes. And I can offer testimony and have about which policies might be the most economical for Georgia to implement. But it's the State of Florida that's bringing the complaint.
Q. Now, we don't need to put the chart back up; but you will recall for 2011 conditions
Dr. Flewelling had about 500 cfs of consumptive use by metro Atlanta. Right?
A. Understanding that that's not total consumptive THE REPORTING GROUP

Mason \& Lockhart
use, yes; that's the number that was on his figure.
Q. And so 315 is still about 60 percent of what Dr. Flewelling had in this figure. Correct?
A. Of consumptive use, yes.
Q. Okay. So now, I want to switch from M \& I over to agricultural usage. And we can stick with your 2,000 cfs scenario. And this, again, is page 3 of the handout or paragraph 90 in your written direct.

I find it easier to use the handout.
A. Okay.
Q. But I'll defer to everyone's preference.
A. Okay. So I would like to turn to the right page in my direct. So it's page 3 of the handout or -- what's the right page in my direct?
Q. It's paragraph 90.

MR. PERRY: Page 44.
MR. PRIMIS: Or page 44.
MR. PERRY: The handout, I believe, is from your report -- the first report.

MR. PRIMIS: This -- your Honor,
this was a source of some confusion at
Dr. Sunding's deposition because there are
different sets of numbers. Just -- I want to THE REPORTING GROUP

Mason \& Lockhart
be clear what I have handed out.
BY MR. PRIMIS:
Q. This three-page demonstrative tucked in the sleeve, Dr. Sunding, the first table is from your February expert report. And it's the four 1,000 cfs scenarios. The second page is the $2,000 \mathrm{cfs}$ reduction chart from your second expert report. And the third page is the $2,000 \mathrm{cfs}$ chart from your written direct.
A. Yes.

MR. PRIMIS: And, your Honor, they are all a little different; so it matters which page we're on.
BY MR. PRIMIS:
Q. And I will just say that for the third page of this demonstrative, the 2,000 cfs from your written direct, it indeed appears on page 44 of your written direct testimony. Correct?
A. Yes. Okay.

Now, I'm with you.
Q. Okay. Now, in the 2,000 column you have six different scenarios that sum up to a certain amount of savings in agricultural water usage. Right?
A. I would just describe it a little differently. I THE REPORTING GROUP Mason \& Lockhart
have six different conservation measures that produce different amounts of consumptive use savings --
Q. Right.
A. -- in agriculture.
Q. That's fair. The first three on the chart are M \& I, and then everything under eliminate net basin exports is agricultural?
A. That's correct.
Q. And there are six agricultural conservation scenarios. Right?
A. Yes.
Q. Now, when you add up in the 2,000 column all the agricultural ones, you get 1,685 cfs savings in peak summer streamflow under your direct testimony. Correct?
A. Yes. And just so I'm clear, are you referring to the column that's labeled . 6 Connectivity?
Q. Yes.
A. All right, yes. I will take your word for the math.
Q. That's the only column you have got that adds up to 2,000. Correct?
A. That's right.
Q. So that's -- it sums up to $1,685 \mathrm{cfs}$ in peak THE REPORTING GROUP Mason \& Lockhart

2776
summer streamflow savings. And, Dr. Sunding, you know that Georgia's agricultural water use is actually lower than $1,685 \mathrm{cfs}$; is that right?
A. I don't know that, no. I think that's wrong.
Q. Okay. And let's say even under your scenario, if you wanted to reduce agricultural water use by 50 percent in Georgia, that would imply that Georgia would have to use at least 3,370 cfs in peak summer streamflow. Correct?
A. If -- so if I wanted to reduce streamflow depletions by -- give me the question again.
Q. Sure.
A. Let me make sure I'm getting you.
Q. If you have a recommendation -- if you have a set of -- not recommendations, sorry. If you have a set of scenarios that total up to $1,685 \mathrm{cfs}$ benefit at peak summer streamflow, you would -Georgia would have to use at least twice that if you were targeting a 50 percent reduction. Right?

It's just simple math.
A. Well, yes. But the thing I'm thinking about, not all agricultural water use has the same impact on streamflow, as you know. Pumping right next to the stream has more connectivity than pumping THE REPORTING GROUP Mason \& Lockhart
further away. So I would have to think through that aspect of it.
Q. With the qualification you just gave, you would actually need to have more Georgia water use than double 1,685, correct, because you don't get one to one out of the groundwater. Right?
A. I think that's right, yes.
Q. All right. So if the charge here were, Georgia, you got to cut by 50 percent -- or you would have to actually cut more -- Georgia would have to use more than 3500 cfs for agriculture. Right?
A. Under the assumptions you just laid out, yes.
Q. Now, can you turn in your binder to the tab called Complaint -- Florida Complaint, and turn to page 21. Do you see the Prayer For Relief on page 21 of the Complaint?
A. I do.
Q. In the second paragraph Florida told the Supreme Court that it would like it to enter an Order capping Georgia's overall depleted water uses at the level then existing on January 3, 1992. Do you see that?
A. Yes.
Q. And you were working with Florida at the time this complaint got filed. Right?

THE REPORTING GROUP
Mason \& Lockhart
A. Yes. I didn't have a role in writing this, of course; but I had been doing work for Florida for a while before this was written.
Q. You were aware that Florida was seeking a return to January 1992 depleted water use levels in Georgia?
A. I'm not sure if I did or not.
Q. You have become aware of it during this case though. Right?
A. I have heard 1992 come up. My feeling is that's a -- that's largely a legal issue. I haven't -I haven't given that an excessive amount of thought.
Q. You haven't calculated anything to figure out what 1992 conditions were?
A. No. I have some testimony on that point in my first report, about the cost of reducing consumptive use relative to different baselines. And I did calculate the cost of achieving a given level of streamflow starting at 1992 levels.
Q. You anticipated where I was going. So, Dr. Sunding, you would agree with me that when you proposed the $1,000 \mathrm{cfs}$ reduction, you understand that that would have actually taken Georgia to a level of water use lower than 1992 THE REPORTING GROUP

Mason \& Lockhart

A. All right.
Q. So you -- you have some costs in this chart. And I just want to be clear. When you say cost per year, that's -- that's averaged out over a three-year period. Correct?
A. Well, it's a -- it's an average cost that's borne every year to achieve certain conservation savings in dry years. So I have tried to adjust for the fact that many of these conservation measures aren't needed every year.
Q. And you assume in your analysis that dry years occur --

MR. PRIMIS: Ken, bring it over here,
please.
BY MR. PRIMIS:
Q. You assume that --

MR. PRIMIS: Turn it around.
BY MR. PRIMIS:
Q. You assume that dry years occur once every three years. Right?
A. Yes. That was an assumption that I was given by the hydrology team for Florida.
Q. And so if you wanted to determine the cost of any of these measures here in your first expert report, in the dry year itself you actually need THE REPORTING GROUP Mason \& Lockhart
to multiply the estimate by 3. Correct?
A. Yes. For at least some of it.
Q. So it's the same principle in your direct testimony. True -- too, correct?

If you want to estimate the cost of achieving some of these streamflow benefits in the dry year, you have to multiply the cost estimate by 3. Correct?
A. Yes. Again, understanding that some of these measures in table 4 are permanent measures that would be undertaken every year; and some are measures that are just undertaken in dry years.
Q. And you would agree that sometimes droughts happen in back-to-back years. Right?
A. Absolutely.
Q. And if there are two consecutive years of drought, you have to take that one-year cost and then incur it two years in a row. Correct?
A. Yes.
Q. So I want to compare the dry year math from your first report to your direct testimony. Okay?
A. All right.
Q. Now, on page -- it's page 9 of your first report; but it's right here in this handy flier we gave out.

THE REPORTING GROUP
Mason \& Lockhart

For the first scenario, you estimate a cost per year for deficit irrigation of $\$ 64$ million. Right?
A. All right.
Q. Do you see that?
A. Yes.
Q. And that would get you a summer streamflow benefit of a thousand cfs. Right?
A. Yes.
Q. And if you multiply that by 3 to get the single dry year cost, it's actually $\$ 190$ million. Right?
A. Yes.
Q. So then if we go to the third page of your -- of the handout, we have the table from your direct testimony. Right?
A. Yes.
Q. And you have a total cost for the 2,000 scenario of $\$ 35.2$ million. Right?
A. Yes.
Q. And if you multiply that by 3 you get 105 million. True?
A. $\mathbf{3 5}$ times $\mathbf{3}$ is $\mathbf{1 0 0}$ million roughly, a little more. But I'm feeling uncomfortable with where I think you're heading. THE REPORTING GROUP Mason \& Lockhart
Q. That's part of the plan, Dr. Sunding.

So in February of 2016, for scenario 1, deficit irrigation, you said you could get a thousand cfs. Right?
A. Yes.
Q. And the cost that we just figured out with the multiplication was --
A. $\$ 64$ million.
Q. Times 3. And the dry year is 190 million. Correct?
A. Yes.
Q. And then in October of 2016, you said we could get $2,000 \mathrm{cfs}$ for a total of 105 million.
Correct?
MR. PERRY: Your Honor, I think
Mr. Primis is referring to the prefiled direct. Is that correct?

MR. PRIMIS: I'm sorry if I misspoke.
BY MR. PRIMIS:
Q. In your prefiled written direct in October of 2016, the single dry year cost to get 2,000 cfs is about $\$ 105$ million. Correct?
A. But, again, the reason -- part of the reason I'm uncomfortable with this is I think you probably know that some of the measures I'm talking about THE REPORTING GROUP

Mason \& Lockhart

	2799		2801
1	in the binder.	1	one-time impact would be in that drought year.
2	A. All right. I'm there.	2	Right?
3	MR. PRIMIS: It's page 54, just so	3	A. Yes.
4	everyone can follow along, of FX-784, that	4	Q. If we do that here, we end up with 24 million in
5	first tab.	5	indirect economic impact and 45 in induced
6	BY MR. PRIMIS:	6	economic impact in that dry year. Correct?
7	Q. Okay. Now, this section, Dr. Sunding, is called	7	A. Yes.
8	Indirect and Induced Impacts. Correct?	8	Q. If you sum those up, you get $\$ 69$ million in a dry
9	A. It is.	9	year of indirect economic impact under your
10	Q. And in paragraph 81, you observed that in	10	analysis. Correct?
11	addition to the direct economic cost of not	11	A. Yes.
12	growing various crops, that the irrigation	12	Q. You also tallied up some job losses that would go
13	cut-backs will also impact industries that	13	along with the agricultural reduction. Correct?
14	support agricultural activity. Correct?	14	A. Yes.
15	A. Yes.	15	Q. You estimate that with a 50 percent reduction in
16	Q. Then if we go to page 55 of your report, you	16	agricultural irrigation, there would be a loss of
17	actually provide some calculations that estimate	17	488 full-time jobs in the farming sector.
18	those impacts. Right?	18	Correct?
19	A. Yes. In table 9, for example, those are	19	A. So -- right. Those are job losses on farm.
20	displayed.	20	Q. Right. Okay. And those would be 488 full-time
21	Q. Right. That's what I was talking about.	21	jobs. And that's depicted in table 9. Right?
22	And for purposes of this exercise, you	22	A. Yes.
23	estimated the indirect economic and employment	23	Q. You also identify 64 jobs in indirectly-affected
24	impacts of a 50 percent reduction in agricultural	24	sectors and 93 jobs in induced economic impacts.
25	water use. Correct?	25	Right?
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	2800		2802
1	A. Let me just refresh my memory about how I did	1	A. Yes.
2	this.	2	Q. If we tally those up, we get approximately 650
3	Q. Paragraph 83 might refresh your recollection.	3	jobs?
4	A. Right. That's what I'm reading.	4	A. That sounds right.
5	All right. Yes, I think you characterized	5	Q. Now, again, these are annualized numbers?
6	that correctly.	6	A. I knew you were going to ask me that. That I
7	Q. So what you're doing here is you're looking at	7	can't remember if these are annualized or when
8	the indirect effects in terms of other industries	8	the impacts actually occur.
9	that could be impacted or other jobs that might	9	Q. Well, if they are annualized, you would, again,
10	be lost that aren't directly related to pulling	10	multiply by 3. And we calculated about fifteen
11	corn or cotton out of the ground. Right?	11	to 1600 jobs -- actually, no; I'm wrong. We
12	A. That's right.	12	calculate 1935 jobs lost in the dry year with the
13	Q. And table 9 reflects the numbers that you	13	three-time multiplier?
14	generated by doing that analysis. Right?	14	A. That's right. If that's how I calculated these
15	A. Yes.	15	impacts, that would be correct.
16	Q. You say also in paragraph 83 right after that,	16	Q. So if we lose 1935 jobs in that dry year from the
17	you estimate an additional $\$ 8$ million in indirect	17	50 percent cut in Georgia, I just want to compare
18	economic impact and $\$ 15$ million in induced	18	that to a number in Florida. Are you aware that
19	impact. Correct?	19	Florida's official records show that there are
20	A. I see that, yes, in paragraph 83.	20	only about 1700 licensed oyster harvesters in
21	Q. And like we did earlier with the single-year	21	Apalachicola Bay?
22	costs, these are annualized over a three-year	22	A. No. But that -- that sounds about right based on
23	period. Correct?	23	what I know about the industry.
24	A. That's right.	24	Q. And so the job loss you projected from a 50
25	Q. So you actually tripled them to find out what the	25	percent reduction in Georgia would actually
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

type, connectivity of the aquifer, and you're taking that all into account and saying under a certain year, this type of crop is the least expensive to eliminate. So let's start there. Right?
A. Yes. It's not exactly how I would say it, but the idea is correct.
Q. Now, when we talked about how you could implement such a thing where you have all these different moving parts, I was confused. I said, how are farmers going to know if it's my turn to reduce?

And one way you said that the State could do this is to adopt a cap and trade system. Right?
A. Yes.
Q. This would mean that either the Court or Georgia or someone else picks a cap, and then you assume that the efficient market will sort out who is going to water what crop. Right?
A. Yes. That there would be a cap established on the total amount of water used. And then farmers would move water around to maximize profits subject to that resource constraint.
Q. And once you have that resource constraint, farmers would efficiently act to reduce water use depending on the crop and soil type and

THE REPORTING GROUP Mason \& Lockhart
connectivity and all those other factors. Right?
A. Absolutely.
Q. Now, you're familiar with the difference between riparian states and prior appropriation states at a general level. Correct, sir?
A. I am, yes.
Q. You're aware that in prior appropriation states, water rights are segregated from ownership of the land?
A. In prior appropriation states, yes.
Q. And whereas in riparian states, water rights are tied to the property adjacent to the water. Correct?
A. Yes.
Q. You know Georgia is a regulated riparian state. Right?
A. Yes.
Q. And you also know that in a riparian state, the owner of the land doesn't have a stand-alone right to transfer the ownership of that water. Correct?
A. Yes.
Q. And you're not aware of a single riparian state that has a marketplace for trading water among irrigators. Correct?

THE REPORTING GROUP
Mason \& Lockhart
A. Not -- not a riparian state, but my mechanism doesn't necessarily involve trading across users.
Q. It would be a departure from a riparian regime to have farmers owning their water rights and trading them amongst themselves. Correct?
A. Yes. It would be easier for farmers to transfer within their own operations, which is part of what I have in mind. I mean, remember, farmers own multiple pivots in many cases; and they can move water around within their own operations to achieve the same kind of outcome I'm talking about.
Q. My question related to a cap and trade system where farmers trade amongst themselves. That would be a departure from a regulated riparian situation. Correct?
A. Yes. If Georgia wants to minimize costs, it will likely have to make some institutional improvements.
Q. The legal regime for property in Georgia would have to be changed. Correct?
A. I can't comment on the legal regime. But there would -- there would likely have to be some change in institutions.
Q. Let's stick with deficit irrigation, Dr. Sunding.

THE REPORTING GROUP
Mason \& Lockhart

And can I refer you to paragraph 49 of your direct testimony.
A. Sure.
Q. Can you read the second sentence of paragraph 49.
A. The second sentence of paragraph 49?
Q. Yes.
A. My gosh. I'm on the wrong report.
Q. We're -- just to be clear, we're talking about the Sunding direct written testimony, paragraph 49, second sentence.
A. All right. So it begins I found?
Q. Yes.
A. I found through my analysis --
Q. Don't read it out loud.
A. Oh, I'm sorry. I thought you wanted me to. Yes.
Q. So you're saying here that you have done an analysis, and you have determined that Georgia farmers apply much more water than they need to irrigate their crops. Right?
A. Some do is what the sentence says.
Q. And those some that do are effectively wasting water in your view. Correct?
A. Yes. They're applying water above a biological maximum.

THE REPORTING GROUP
Mason \& Lockhart

of water beyond which there's no additional beneficial plant growth.
Q. Dr. Sunding, just to make this crystal clear, your analysis and Dr. Hoogenboom's analysis show that Georgia farmers in the aggregate are underwatering compared to that maximum amount that you identified. Correct?
A. Yes. That question I like better.
Q. In addition to your preference to the question, do you agree with the assertion?
A. I do. It's just that you used the word optimal before, and you modified the question in a way that I will agree with.
Q. Dr. Sunding, can you turn to page 25 of your written direct testimony.

We have a figure 4 there. You actually have a figure 3 and a figure 4 . Correct?
A. I'm sorry. We're on which page now?
Q. Page 25 .
A. Yes.
Q. If we look at the bottom one, figure 4, the way your analysis worked was that red vertical line shows what you considered to be the maximum productive depth for the type of crop and soil and growth year depicted. Right?

THE REPORTING GROUP Mason \& Lockhart

2824
A. Yes. Again, that's the number that I got from Dr. Hoogenboom.
Q. So here, if you're growing peanuts on fine soil in 2011, this would show that the vast majority of farmers are to the left of the maximum productive depth and, therefore, underwatering. Right?
A. Yes, it does.
Q. And there's a few instances to the right of people you say would be overwatering?
A. That's correct.
Q. And then on the other one, you have more people in that particular instance who you considered to be overwatering; is that right?
A. Yes. It's just another example.
Q. Now, have you calculated the percentage of farmers using your analysis that are underwatering in Georgia?
A. I don't -- we might have calculated that sometime along the way; but I don't have it in my head now if I did.
Q. Are you familiar enough with your own analysis to agree that it's more than 80 percent of Georgia
farmers who would be underwatering under your analysis?

THE REPORTING GROUP
Mason \& Lockhart
A. That -- it could be true.
Q. And right now, we're talking about percentage of acreage, just to be clear. The percentage of acreage that is underwatered is higher than 80 percent. Correct?
A. That I don't know.
Q. Do you have any basis to disagree that it's 80 percent or even higher in other years?
A. You know, I would have thought it somewhere in the 60 to 80 percent range; but I -- again, I may have done that calculation at some point; but I don't have it in my mind now.
Q. Okay. We have had our experts do it, so we'll bring it up later in the trial.

Dr. Sunding, I want to talk now about your assertion that agricultural irrigation is, quote, clearly discretionary. Do you recall giving that testimony?
A. I do.
Q. You don't believe that farmers in ACF Georgia should exercise their discretion to stop irrigating altogether. Right?
A. I'm not sure I understand the question.
Q. Well, you're not of the view that all the farmers should exercise their discretion and should go THE REPORTING GROUP Mason \& Lockhart lot of other inputs that go into agriculture besides just water.
Q. Well, we're here talking about water. So as it relates to water, you would agree that natural precipitation exclusively if you're not going to do irrigation. Right?
A. Yes. I just think your question before was overstated.
Q. Precipitation varies from year to year. Right?
A. Of course, it does.
Q. Varies from season to season?
A. Yes, it does.
Q. And it can also vary regionally even within the ACF Basin within the same season. Correct?
A. It can, yes.
Q. You would agree that irrigation helps farms improve their yields. Correct?
A. In certain years. Not in every year.
Q. You would also agree that irrigation helps THE REPORTING GROUP

Mason \& Lockhar

A. For?
Q. Are you aware that Dr. Hornberger said that he had never run the 1996 Torak and McDowell model that he now relies on for the .6 connectivity value that you have used now for the first time?
A. Again, that's all part of their work.
Q. And just to be clear, when we're talking about the .6 model -- .6 factor, that comes from the modeling that was done in 1996 that Dr. Langseth reviewed. You know that; right?
A. But that's outside what I know. No. That's in their -- in their area.
Q. Dr. Sunding, I want to ask you now about the role of the Army Corps. You didn't consult with anyone from the Army Corps of Engineers in doing your analysis in this case. Right?
A. No.
Q. The reservoir and dam operations of the Army Corps are not part of your analysis. Correct?
A. That's correct.
Q. You haven't analyzed how the Corps would handle the additional streamflows that you say can be saved through its dam operations in a drought. Right?
A. No. That's -- that's not an economic question. THE REPORTING GROUP Mason \& Lockhart

That's a hydrological one.
Q. And that's not something that you have considered, whether the water you say would be saved would be passed through by the Army Corps. Correct?
A. It was certainly something I discussed with Florida's experts, and they assured me that the water would make its way to Florida. But beyond that, it's outside my area to do any modeling on this issue.
Q. So just from your own expertise, you don't know. You just rely on other people. Correct?
A. That's right, yes.
Q. And, Dr. Sunding, you haven't evaluated the cost that would be associated with the Army Corps supplementing streamflow through reservoir operations to achieve the values that you have calculated. Correct?
A. That's right.

MR. PRIMIS: No further questions.
MR. PERRY: Good afternoon, your Honor.
SPECIAL MASTER LANCASTER: Good
afternoon, Mr. Perry.
REDIRECT EXAMINATION
BY MR. PERRY:
Q. Good afternoon, Dr. Sunding.

THE REPORTING GROUP
Mason \& Lockhart

A. Good afternoon.

Q. I would like to start at a little bit of a higher level of generality than what Mr. Primis was. I don't want to obviously repeat everything in your prefiled direct, but could you help us understand, just as an initial matter, what an agricultural economist and an expert in natural resources economics does.
A. Sure. I can describe that. What we do in my profession is look at the economic impacts and economic costs of different measures to conserve natural resources. And water would be a prime example. Land would be another example. But we understand how a natural resource is used in the economy. And part of the field is to study what are the economic impacts of public policies to conserve natural resources.
Q. Now, this isn't the only case where you have looked at issues of natural resources and water; is it?
A. No. Definitely not.
Q. Could you describe for the Court a few other examples where agricultural irrigation has been limited because of the impacts on the environment or ecosystems. THE REPORTING GROUP Mason \& Lockhart
A. Sure. I could give examples of situations involving litigation and also other situations where agricultural water uses had to be limited to protect the environment. This is actually a very common issue across the United States where farming areas have overshot a level that's sustainable in terms of environmental conditions.

Some very good examples I could give would be the Klamath Basin in Oregon and just into the northern part of California, the Republican River in Nebraska, the Pecos River in Texas and New Mexico, others as well. But this is actually a very common phenomenon across the country.
Q. Now, with respect to those examples, did you draw on those examples in performing the work you did here?
A. I did. What I tried to do in my testimony is two things. I tried to show what would be the cost to Georgia of different conservation measures, but then also demonstrate that there have been programs adopted in other parts of the country that Georgia could model itself after that would actually make these measures feasible, sort of practical.
Q. Sir, can you give us a couple examples of the THE REPORTING GROUP Mason \& Lockhart

using way more than some norm. And so by doing such a disaggregated pivot-by-pivot analysis of water use, we were able to identify the fraction of growers who are using more than they would need possibly to grow their crop.
Q. Now, when you say more than they would need, how is that generally measured?

Is it inches, or how does one do that?
A. Yes. It's measured in terms of inches per acre over the course of a growing season.
Q. And do you know if Florida in its part of the ACF Basin has an absolute limitation on the number of inches that can be applied per acre?
A. It does.
Q. But Georgia does not?
A. That's my understanding.
Q. Okay. Pardon me, sir. And in drought years is it your observation that more or fewer inches per acre are applied?
A. Oh, a lot more. Water -- water demand goes up in a very dry year to replace the precipitation that is not coming.
Q. So why would a farmer apply too many inches per acre?
A. You know, in my original report I have this under THE REPORTING GROUP Mason \& Lockhart

2864

a section on management decisions or farmer behavior.

Why do people leave the light on when they walk out of the room? Why do they leave the faucet on when they're brushing their teeth?

This is not an uncommon finding when it comes to utilities and consumer behavior.

Remember, the water that farmers are using, the groundwater that they're using, is very, very inexpensive. They pay nothing for it beyond the energy cost of lifting it out of the ground. So they're just paying, you know, a few dollars per acre. And given that, they don't have much incentive to be careful.
Q. Some are; isn't that right?
A. Some are. You know, people are not robots. Some people are careful. Some people are less careful.

And what we're identifying in this conservation measure is some fraction of people -- it's not a majority; but it's some fraction who are not as careful as they should be.
Q. Now, from your work on agriculture and other contexts, you know that there are ways to save

THE REPORTING GROUP
Mason \& Lockhart
water that farmers employ when they're adequately motivated to do that. Isn't that right?
A. Yes. I see it in my work all the time.

Economics is fundamentally about incentives, so this is a question I have studied in the area of agricultural water use.

MR. PERRY: Your Honor, may I approach
to hand an exhibit to the witness?
SPECIAL MASTER LANCASTER: Certainly.
A. Thank you.
Q. Now, sir, I have handed you Joint Exhibit 154, which we have discussed at some length in this proceeding already. But what I would really like to do is ask you just to focus on the second page
as we discuss page 44 of your report. And in particular, the bullet points that are preceded by the sentence, EPD's initial analysis has suggested several options for further evaluation. Do you see that, sir?
A. Yes.
Q. Now, I want you to keep that in mind while we talk about what's on your table 4 on page 44. Okay?
A. Sure.
Q. So the next item on table 4 is -- on your table 4 THE REPORTING GROUP Mason \& Lockhart
on page 44 of your prefiled direct is irrigation permit buy-back. Do you see that?
A. Yes.
Q. Now, if you look at JX-154, which I have -- and
then you look across to see where it says temporary removal of land from irrigation, do you see that?
A. I do.
Q. All right. Now, temporary and permanent removal are both possible in concept. Right?
A. Absolutely.
Q. And do you see one bullet up on JX-154 where it says acquiring easements for permanent removal of irrigation?
A. I do.
Q. Is that the same concept that you're evaluating in table 4 just under the subheading Additional Agricultural Measures?
A. Yes. Easements are a very common mechanism in my experience for achieving reductions in irrigation.

Remember that what I'm talking about, either a permanent or a temporary buy-back of irrigation rights, that doesn't foreclose the possibility of farming. It's not like these acres shut down. THE REPORTING GROUP

Mason \& Lockhart

They just convert from one type of agriculture; namely, irrigated agriculture, to dry-land or rain-fed agriculture. And so the way one could do that is by acquiring an easement or a restriction on the land that would prevent farmers from irrigating in exchange for some payment of money.
Q. Are you aware of any federal programs that either temporarily or permanently pay farmers not to irrigate?
A. Absolutely.
Q. Can you describe those, please.
A. Sure. Well, the -- again, back to the Klamath Basin. That was a good example of a successful auction program where the farmers were paid to reduce their irrigation or curtail irrigation on certain acres in exchange for a money payment.
Q. And any other federal programs you can think of that put aside acreage for conservation and the like?
A. Of course. At a larger scale, the federal Conservation Reserve Program, which works through a market mechanism, that results in the retirement of millions of acres across the country every year. And other programs that are THE REPORTING GROUP

Mason \& Lockhart
similar would include EQIP and the Wetlands Reserve Program. So this is in my experience a very common type of a public policy.
Q. Now, the next item on your chart -- and I don't want to ask you to spend too much time on this; but it reads deficit irrigation. Do you see that?
A. I'm sorry. Where are we?
Q. I am back in your prefiled direct.
A. All right.
Q. That's why I was trying to refer you to your chart.

But it says deficit irrigation. It's just under the irrigation buy-back on page 24 of your table 4. Are you with me?
A. Yes.
Q. Very quickly, could you describe how that differs from eliminating excessive irrigation?
A. Sure. Eliminating excessive irrigation would prohibit farmers from irrigating above a biological maximum. The deficit irrigation is about reducing water application below the biological maximum. So what happens is farmers might apply a little bit less water and get a little bit less yield; but they're still applying THE REPORTING GROUP
some irrigation water.
Q. And then next you have got farm ponds. Do you see that, sir?
A. Yes.
Q. Describe what that means.
A. Farmers have farm ponds, small impoundments that they use for a number of purposes. The ones I'm looking at here are related to production of the rotation crops primarily.
Q. And so a restriction to reduce evaporation would have some effect?
A. Yes.
Q. And that -- is it your view that that would save water and thus reduce depletions in the river?
A. Yes, certainly. Farm ponds evaporate in the hot summer sun, and water is lost to the system -large amounts of water.
Q. Now, lastly, you have got switch high-value crops to deeper aquifers. And I would ask you, while keeping that in mind, to look at the exhibit I gave you, JX-154.
A. Yes.
Q. And do you see where in this, the same group of bullets, it says transferring water users to deeper aquifers? THE REPORTING GROUP

Mason \& Lockhart
A. I do, yes.
Q. And it's got surface water in Floridan Aquifer users?
A. Yes. This is what -- what was discussed at this meeting was the concept of transferring surface water users and then users on the Floridan Aquifer down to deeper aquifers below the Floridan.
Q. And when you say this meeting, you're referring to JX-154, which is titled Georgia Environmental Protection Division Stakeholder Meeting Summary. Right?
A. Yes. JX-154.
Q. Okay. Now, can you -- and, I'm sorry, back to your prefiled direct again, page 44, switch higher -- switch high-value crops to deeper aquifers. Just very briefly can you describe what that means.
A. Sure. What I'm envisioning here in this measure is switching a fraction of farmers that are producing high-value crops like pecans or farmers who run greenhouses or grow turf grass, switching 75 percent of them -- so not all, but 75 percent from surface water sources in the Floridan down to deeper aquifers. THE REPORTING GROUP Mason \& Lockhart

So it's the very same measure that was shown in JX-154.
Q. Now, sir, I would like to move up to the top part of the chart. And here, we'll be talking about municipal and industrial use, including but not limited to metro Atlanta.

So you have got municipal leak abatement as your first item there. Just a very short description of what that is and why it's important, please.
A. Sure. The term municipal leaks, I think -- I'm using it the same way Georgia's experts are using it -- this is water that leaks out of the distribution system in urban areas. So between the water treatment plant and the meter on the customer's home or business water leaks out of breaks in the pipe and gaps and whatnot. And that water is lost to the system.
Q. Okay. The next one is the lawn watering or municipal outdoor use, and it is reduced by 50 percent. Do you see that?
A. Yes.
Q. Before -- before I ask you about that, I would like to come back to a couple questions that Mr. Primis asked you about some of your columns THE REPORTING GROUP Mason \& Lockhart
here on your chart. So the very last column, the farthest to the right reads Incremental financial -- or fiscal cost, pardon me. What does that mean?
A. Well, we'll break it down adjective by adjective. Incremental refers to costs that would be related to any Order that the Court might issue here. So what I'm trying to reflect there is that Atlanta and other cities in the ACF Basin have already undertaken leak abatement programs. And what I'm considering is programs beyond what they're already doing.
Q. All right. And Mr. Primis also asked you to compare this one of three charts on pages 44 and 45 with some charts that were in your original report, right, where it said $1,000 \mathrm{cfs}$. Is that right?
A. Yes.
Q. How does this concept of incremental financial cost compare or differ from what you did in your initial 1,000 cfs chart that Mr. Primis was focused on?
A. Sure. The main difference is an issue that Mr. Primis and I talked about just a little bit. There is a distinction between fiscal cost, you THE REPORTING GROUP

Mason \& Lockhart
know, what's the actual dollar outlay that's required to achieve conservation savings, and welfare losses that might result from consumer impacts, aesthetics, quality of life. Those are not measures where dollars change hands, but they are impacts that economists consider routinely.
Q. And you did consider and evaluate that here in this report. Right?
A. I mentioned those numbers here in the report as in my first report.
Q. Now --
A. The welfare loss numbers.
Q. Right. Right. Specifically on municipal outdoor use, which I called lawn watering a bit ago, when you say welfare costs, you evaluated that in part by determining whether, through a survey, residents of metro areas in Georgia would undertake additional costs for lawn watering if it meant a particular outcome in terms of water flow. Do I have that right?
A. Yes. That -- I did a couple of things. I did the survey that you were mentioning and engaged whether or not urban residents of Georgia were willing to undertake conservation measures to benefit the Florida environment. But I also THE REPORTING GROUP

Mason \& Lockhart
looked at what urban consumers are actually paying for water. I mean, they're buying water from their local utility to water their lawns and shrubs and wash their cars, use for other purposes. And so I used that information on the actual transactions that are occurring to figure out what's the loss from preventing those transactions from occurring, from imposing an outdoor watering ban.
Q. Now, just pausing a minute to talk about your first expert report just for another minute.

When you put examples in that report for a thousand cfs, was that part of a series of data points that you made available to the State of Georgia on how each of these measures worked?
A. Absolutely. I turned over all my models for both urban and agricultural conservation costs. And I thought I made plain from the beginning that these models can be used to measure a whole range of outcomes. In the reports, each one I'm examining just particular combinations or points on a curve; but the underlying point is that my models evaluate a range of outcomes. And Georgia has had all that for some time.
Q. So when Mr. Primis infers from his comparison of THE REPORTING GROUP Mason \& Lockhart
your charts that your number or your methodology has somehow dramatically changed, is that fair?
A. No.

MR. PERRY: Now, your Honor, it's just
about 2:30, which is our typical time for a break.

SPECIAL MASTER LANCASTER: It's fine by me.
MR. PERRY: Okay. We'll have a short break.
(Time Noted: 2:30 p.m.)
(Recess Called)
(Time Noted: 2:40 p.m.)
SPECIAL MASTER LANCASTER: Ready?
MR. PERRY: Thank you, your Honor.
BY MR. PERRY:
Q. Dr. Sunding, do all farmers in Georgia irrigate?
A. No, sir. No. Certainly not.
Q. About what percentage do?
A. Well --

SPECIAL MASTER LANCASTER: Mr. Perry, do you want to just raise that microphone a little.

Thank you.
MR. PERRY: Is that better?
SPECIAL MASTER LANCASTER: Much. THE REPORTING GROUP Mason \& Lockhart

2876
A. Do you want to ask the question again?
Q. I will. What percentage of Georgia farmers in the Flint and Chattahoochee Basin irrigate?
A. It's about half.
Q. And have you looked to see the number of farmers with small farms or large farms that irrigate?
A. I have. The agricultural census that the USDA performs every five years has statistics on the fraction of farmers that irrigate over different size categories.
Q. All right. And do larger farms tend to irrigate more or irrigate less, or is there any statistically significant difference?
A. There -- larger farms, you know, over several hundreds or several thousand acres, tend to irrigate somewhat more; and some smaller farms tend to irrigate more. So there is somewhat of a pattern in the data. But there are farmers across every size category, significant numbers, that chose not to irrigate in the ACF Basin.
Q. Why would it be economic not to irrigate?
A. Well, to -- to understand -- you know, we have heard a lot in the questions from Mr. Primis about the benefits of irrigation. There are costs of irrigation as well. And when farmers THE REPORTING GROUP
Mason \& Lockhart
make a decision about whether or not to irrigate, they're making an economic choice. To irrigate, farmers have to, in the first instance, purchase equipment, very expensive equipment like a center-pivot system, to apply irrigation water. So there's a cost -- an upfront capital cost of irrigating that farmers would have to compare to the benefits of irrigating.

Another category of cost is the cost of the water, lifting it up out of the ground, if farmers are irrigating with groundwater.
Q. Would that be a pump?
A. A pump, exactly. So they have to pay an energy cost, and the cost of the well and the pump to get that out of the ground.
Q. Now, you mentioned, when Mr. Primis was up here, crop insurance. Is that -- is the premium for crop insurance federally subsidized?
A. It is. Crop insurance is not what we call actuarial fair, meaning that the payouts don't have an expected value equal to the premiums.
Q. Do farmers have the option to insure against some loss in yields and perhaps a loss of a crop in an extreme circumstance through crop insurance?
A. They do. There are federal programs that insure THE REPORTING GROUP Mason \& Lockhart 2878
against crop loss, including drought loss.
Q. And including yield and not to the entire crop?
A. Yes.
Q. So, sir, I would like to focus back now where we were before the break. That's on page 44 of your prefiled direct, table 4. And now, I would like to ask you to do something a little different.

I understand you have some markers up there, and I can see the tablet. I want to make sure the Court can see the tablet.

But if you don't mind, sir, I would like to have you rise and identify graphically what your 2,000 cfs actually means. And we can do it item by item on your chart; but if you could draw that out, I would appreciate it.
A. All right.

SPECIAL MASTER LANCASTER: Doctor, please keep your voice up.

THE WITNESS: I will.
SPECIAL MASTER LANCASTER: Thank you.
THE WITNESS: I'm used to teaching, so I can talk loud.

Can I move this a little bit --
MR. PERRY: With the Court's permission.
THE WITNESS: -- so you can see it? THE REPORTING GROUP Mason \& Lockhart
A. Is that all right?
Q. It's fine with me.

MR. PERRY: I want to make sure that the
Court --
MR. PRIMIS: Do you have a marker?
THE WITNESS: I do.
Can you see what I'm --
MR. PRIMIS: I'll make it over there if I need to.

THE WITNESS: Okay. Sure.
BY MR. PERRY:
Q. Please proceed, sir.
A. All right. So what Mr. Perry asked me to illustrate was how do these conservation measures add up to a 2,000 cfs reduction in depletions. And so I will draw it like this.

So on this axis, what I would like to show is months of the year. So we'll do this over a calendar year and start in -- start in January. And then we go through June and then on to December. So this is, you know, as we go throughout the calendar year.

And then what I would like to show on this axis is a reduction in consumptive use that results from implementing different measures.

THE REPORTING GROUP
Mason \& Lockhart

Okay. So just to get oriented what I'm showing here, so with a measure like leak abatement, which is one of the measures I'm talking about --
Q. Is that a municipal measure, leak abatement?
A. It is. This is fixing the leaky pipes in the distribution system.

The leaks in the pipes happen as a result of pressurization. The water in the urban system is under pressure to move it around. And so the leaks happen all-year-round because the system is under pressure all-year-round. So a program of leak abatement would result in a reduction in consumption that was about the same from one month to another, again, because the water is under pressure.

So this would be, say, leak abatement. So I'll just call that leaks.

And then a second measure would be reducing urban outdoor use, say, through an outdoor watering ban, like what Atlanta put in place in 2008.

So if that were to happen, there's not much irrigation in January. Nobody waters their lawn in January, at least they shouldn't be. But that THE REPORTING GROUP Mason \& Lockhart
irrigation, the outdoor water use, is higher in the summertime, so higher in, like, the June-July time frame.

So if you stopped water use, the reduction in depletions you would get would look something like that (witness drawing).
Q. And, again, that's a municipal type of measure. Right?
A. Yes.

So then let's move to the agricultural side and measures that reduce agricultural consumption, permanent or temporary buy-back, measures like deficit irrigation.

Crop water use also peaks out in the summertime. And so what that would look like is something like this (witness drawing).

And I drew it a little bit larger because there's more agricultural water use than urban.

So when I talk about a measure that improves streamflows by 2,000 cfs, I'm evaluating that at the peak month, which is June.
Q. Now, why would there be more use in June than, say, January?
A. Because both -- what has a temporal pattern is the outdoor water use and then the crop THE REPORTING GROUP Mason \& Lockhart

2882
irrigation because crops grow in the summertime, and they need more water. The plants use more water in the summer.
Q. Now, one related question, if I might, sir. Does this differ from year to year how your curves look?
A. Yes.
Q. And why is that?
A. Well, what would happen, say, if we looked at a year that was drier than the one I'm drawing up here, in a drier year, absent any kind of policy, both residential consumers and farmers have higher demand for water. So these curves would be higher.
Q. Could you help us by totaling out and showing graphically what the combination of those measures would be?
A. Sure. So what I would do is add these up month by month. So I'm going to add them up this way, you know, vertically. And what I would get would be something that would look like that. So this would be the total.
Q. And can you identify, just keeping in mind your chart that says $2,000 \mathrm{cfs}$-- it's table -- I should say your table, it's table 4, where that THE REPORTING GROUP

Mason \& Lockhart

2,000 cfs would fall.

A. It's right there. I'm labeling that as agricultural and outdoor water use.
Q. Okay. I'm sorry. What I was trying to ask was could you put a point on that drawing that shows where $2,000 \mathrm{cfs}$ would be.
A. Sure. The sum total of the reduction in consumption from these three measures in this example has a peak value of $\mathbf{2 , 0 0 0}$.

So when I talk about 2,000 in those tables that Mr. Perry is showing up there, this is what I mean. So 2,000 reduction in peak usage. But there are also reductions that happen in other times of the year.
Q. Now, we haven't talked about net basin exports; but you could easily -- we didn't put it on the chart yet, but you could easily factor that in, too. Right?
A. Yes. Sure. That would be another line like this red one down here.
Q. Okay, sir. Now, in various places in your prefiled direct testimony you talk about peak use. Is 2,000 the peak use there?
A. Well, 2,000 is the peak reduction. The actual usage could be much higher than that.

THE REPORTING GROUP
Mason \& Lockhart
2884
Q. That's a fair point. And you have used the term depletions; you defined it for me before. Is that 2,000 a depletions number?
A. Yes.
Q. And that means that that much river water wouldn't be used and, therefore, you would have that much more?
A. That's correct.
Q. Okay. Now, I would like to focus just for a moment on how this type of cap on depletions or consumption might be administered.
A. Can I sit?
Q. Sure. Sit back down.

MR. PERRY: And if I could approach, your Honor, I would like to hand out --

SPECIAL MASTER LANCASTER: Please.
BY MR. PERRY:
Q. Now, sir, what I have just handed you is our effort to capture your beautiful drawing on an exhibit. And it's Florida Exhibit 895.

But what I would like to talk about now, given your experience with all the other agricultural reduction measures you have talked about in other places, how this type of depletion or consumption cap could actually be managed. So THE REPORTING GROUP

Mason \& Lockhart
could you give us your thoughts on that, please.
A. Sure. Like I illustrate in these tables, I think a way that Georgia could -- could implement a consumption cap, again, Georgia has already considered itself as we have been through a few minutes ago in the last document you showed me.

What I have in mind here is a combination of permanent easements, permanent buy-backs, additional buy-backs of irrigation rights that could be put in place in dry conditions, and then limitations on amounts of water that farmers could use beyond that, if they chose, you know, not to take the buy-out and go ahead and continue irrigating.
Q. So --
A. So what -- you know, what I have in mind there would be to implement the deficit irrigation scheme. What Georgia could do is what the states do all over the country and tell farmers, well, look, you can't use 20 inches or $\mathbf{3 0}$ inches or 14 inches in this year given drought conditions. You only have 8 inches or 6 inches. Now, you use that the way you want, but you only have this much water per acre. And it's less than what you're used to and less than what you need to THE REPORTING GROUP Mason \& Lockhart
grow at the biological maximum.
Q. So, sir, let me ask my question just a bit differently than that, if I might. You talked about Newlands and Klamath and Imperial Valley and Republican River; and I would like to get a picture, given all of your experience, as to how an independent administrator of a depletion or a consumption cap might actually, as a practical and verifiable manner, go out and ensure that Georgia, using whatever measures they chose, including among your options, actually complies. So could you help us work through that issue?
A. Sure. The big issue there, I think I would see immediately, is how do you know that whatever measures you put in place on the ground are, in fact, reducing consumption by the amount that the Court requires. So there is an element of verification, and that involves a suite of measures that in my experience are pretty commonly done. You would want to look at how much water farmers are actually using, so back to the metering issue. You would want to be monitoring that. You would want to take a look at what is happening with respect to -- you know, look around the landscape and see what areas are THE REPORTING GROUP Mason \& Lockhart
being irrigated and which ones are not. But then beyond that, I would go and look at or I would think that the State would want to go and look at stream gages and actually check and see what's happening in the river and are you getting the responses that you think you should get that -given whatever consumption cap is in place that year.

So the combination of looking at what farmers and urban users are actually doing and then does that translate into environmental changes in the way that one would think.
Q. Okay. Sir, there's a concept that hasn't come up much yet in this trial; but I would like your help with it, adaptive management. What do those two words mean?
A. Sure. So adaptive management is a very common concept in environmental management situations. And what it involves is setting some goals, some environmental performance goals, and enacting measures to achieve those goals. And then you check and see, did things perform the way you thought? If not, then maybe we need some course corrections. Maybe we need other measures, tougher, looser, whatever. But it's adaptive. THE REPORTING GROUP Mason \& Lockhart

You don't just set a set of policies in place for all time and never revisit them. It's adaptive. You check and see how the environment is responding and go back and adapt as needed.
Q. So you mentioned in particular earlier Imperial Valley where farmers could move their water around. And there was a -- I think you said a water district. Thinking about your concept of adaptive management, in that context or other context, what does that actually mean in terms of verifying that the results are being achieved?
A. Right. So in -- in that case, they actually have an extensive verification program where they will look at satellite imagery. They look at water metering in the way I was discussing to make sure that compliance is being achieved.
Q. Now, sir, I would like to come back to some of the charts that Mr. Primis examined with you. And the first of those is under a tab in the binder he handed out called Sunding Demonstratives. It's titled Sunding M \& I Remedy Versus Total M \& I Consumption. Can you try to find that and let me know when you have.
A. I have quite a pile built up over here.

It must be in the back.
THE REPORTING GROUP
Mason \& Lockhart

All right. Yes, I have it.

Q. Now, when Mr. Primis was asking you about this, I think he referred to Dr. Flewelling a few times and Dr. Hornberger, too. But I think you wanted to explain in a little more depth when you were testifying about this what your response was to Mr. Primis's questions. So I would like to invite that explanation, if I might.
A. Sure. Well, the implication of Mr. Primis's question is that I'm asking for more reduction in consumption than is actually taking place, at least in most years. And I don't think that's accurate.
Q. Now, this chart doesn't include all of the relevant consumptive use; does it?
A. No, it doesn't. This chart doesn't include, for example, urban systems that are serviced by groundwater sources. This is only surface water. And groundwater is about 15 percent of the total water supply in this area.
Q. So in a hot and dry summer, what percent of urban consumption would be outdoor water use?
A. It's -- you know, it varies by sector. I would say multi-family residential will have a smaller outdoor percentage than businesses or single-family THE REPORTING GROUP Mason \& Lockhart

2890
residences. But it's in the neighborhood of $\mathbf{2 0}$ percent in this part of the country.
Q. Okay. Now, if you could turn with me, please, to the tab that's called -- that's marked -- that's labeled Florida Complaint.
A. All right.
Q. And there I would like you to turn with me in this tab to page 21, which was also a focus of some of Mr. Primis's questions.
A. Page 21?
Q. Yes, please, sir.
A. All right.
Q. Now, sir, I believe Mr. Primis was referring to what's labeled Prayer For Relief there. And there's an indication there of a date, January 3, 1992. Was 1992 a very wet year; do you know?
A. I don't believe so, but I don't know.
Q. And -- it wasn't a drought year though; was it?
A. No.
Q. All right. Now, in a nondrought year you're going to see substantially less consumption of water than in a severe drought year. Right?

MR. PRIMIS: Objection, your Honor. Leading.

THE REPORTING GROUP

```
BY MR. PERRY:
Q. What, if any, difference in the amount of water would you expect between a severe drought year and a nondrought year?
```

A. Well, as we discussed and what I believe is shown on the figure that we were just looking at, the amount of consumptive water use can vary considerably between average, wet, and dry years because the outdoor water use changes quite a bit between those scenarios.
Q. So let me focus just a minute on agriculture again. And when we're thinking about the amount of water used on a field, not just the acreage, it's the amount of water applied; is that fair?
A. That's right. Agricultural water demand is the product of the number of acres irrigated times the amount of water that's applied per acre.
Q. Could you explain what you would expect in terms of the amount of water applied per acre in a drought year as opposed to a normal or a wet year?
A. Sure. I actually have dry figures on this through my analysis. And this is what Georgia farmers are actually applying in different types of water years.

THE REPORTING GROUP
Mason \& Lockhart
2892

If you look at my direct testimony on page -on page 15, for example, if you look at table 1, I have derived figures here for average irrigation depths for different crops grown in the ACF Basin. And I have compared them between average or nondrought years and drought years.
Q. So let me just invite your attention to the totals at the bottom for average irrigation depth in a nondrought year. Do you see that?
A. Yes.
Q. And could you compare that for us with the average for a drought year.
A. Sure. The average depth across the range of crops grown in the basin in a drought year is 15 inches per acre. So, you know, 1-foot-3-inches per acre. And in a nondrought year, the average water use is only 9.1 inches per acre.
Q. Okay. Would you regard that as a significant difference?
A. Oh, yes.
Q. Now, Mr. Primis also mentioned Dr. Phaneuf. You know Dr. Phaneuf; don't you?
A. I do.
Q. And I believe he was attempting to discuss the way that either you or Dr. Phaneuf had referred THE REPORTING GROUP Mason \& Lockhart
to or valued the basin in Florida -- part of the ACF Basin in Florida. Do you remember those questions?
A. I do.
Q. All right. Could you focus with me for a moment on how an economist would look at a pristine natural area like the ACF -- or like Florida's part of the ACF Basin?
A. Sure. What we normally do to come up with an economic value for a natural area is to consider what we call ecosystem services, so a range of benefits to human beings that flow from those environmental resources.

For example, a forest could be used for cutting timber; that would be a commercial use. It could be used for hiking or bird-watching; that would be a recreational use. And it might also have some value as habitat for endangered species or, you know, other types of amenities.
Q. And you teach at California, Berkeley. Right?
A. I do.
Q. Now, has there been a change in the way that the faculty there in your department instruct students as to how to look at ecosystem services over the years?

THE REPORTING GROUP
Mason \& Lockhart
A. There has been. I'm the chair of the Department of Agricultural and Resource Economics at Berkeley. We are, I don't mind saying, by any measure the No. 1 department in the field in the world. We produce more graduates who go on to distinguished academic careers in environmental and resource economics than any other program.

Our faculty got together a few years ago and decided that we had enough misgivings about the valuation of what are sometimes called nonuse values -- so these values other than things like recreation and commercial activities -- that we were actually not going to include that in the graduate curriculum anymore. So we do not teach that because we don't think it's reliable enough, and there is not enough scientific consensus that those methods are worthwhile.
Q. But that doesn't mean, sir, that economists don't understand the value of a pristine natural area?
A. No. Definitely not. There are things that we can look to, like I have done here. For example, conservation investments that are made by a state or by nonprofit groups here like the Nature Conservancy or Trust for Public Land as being an indicator of value. THE REPORTING GROUP Mason \& Lockhart
Q. And you weren't here when Secretary Steverson was presented and Georgia decided not to cross him, but are you aware of all of the investments that the State of Florida has made to preserve the pristine nature of the river and bay?
A. Yes. I think I even included some of those statistics in my direct testimony. I think the number is something like almost half a billion dollars.

MR. PERRY: Your Honor, may I approach to hand out one more item?

SPECIAL MASTER LANCASTER: Certainly.
BY MR. PERRY:
Q. And, sir, what I believe I have handed you is a page from Mr. Primis's opening statement. And part of the text on that page is gray. It -- the question posed is apart from the survey, and then it begins in black text. Could you tell us what the survey is there and why graying out that text struck you as inappropriate?
A. Sure. Graying out that text changes the meaning of the question.

I conducted actually an extensive amount of work to understand attitudes in Florida and Georgia and Alabama toward the environmental THE REPORTING GROUP

Mason \& Lockhart
resources in the basin. And by that I mean both
gauging the public's awareness of these resources
and then whether or not they spend time and money
to recreate at different sites in the basin.
And so, again, I think this -- this question is disappointing because to me it reads other than the part of your work where you attempted to value the environment, did you value the environment?

But that -- that was the point of doing the survey.

MR. PERRY: Your Honor, I believe I have one more exhibit I would like to hand up. Just one.
BY MR. PERRY:
Q. Now, sir, this document is something that I'm fairly -- this document was a document used with Dr. Cowie just a couple days ago when she was here. And have you seen it before?
A. I have, yes.
Q. Now, the first page of the document is labeled UGA River Basin Science and Policy Center. Do you understand UGA to be the University of Georgia?
A. I do, yes.

THE REPORTING GROUP
Mason \& Lockhart
Q. Now, I would like to invite your attention, if I might, to page 24 of 34 . And there -- have you found that page yet, sir?
A. I have it, yes.
Q. Okay. There I asked Dr. Cowie, during the exam earlier this week, about the last two sentences there -- it's actually the last sentence. And in particular the sentence begins with, quote, the issue of what is practical will cost. Do you see that, sir?
A. I do.
Q. And then it ends with at least 3.5 million for each million gallons of water per day. Do you see that?
A. I do.
Q. Now, your report goes through in some level of detail, as we have discussed, a wide range of options for Georgia; and you assigned costs to them. Do any of your options approach that type of cost level?
A. No. They're far less than $\mathbf{3 . 5}$ million per mgd -per million gallons per day.
Q. All right. Thank you, sir.

MR. PERRY: Your Honor, just give me a moment while I gather my things to sit down. THE REPORTING GROUP

Mason \& Lockhart

SPECIAL MASTER LANCASTER: Sure.

 RECROSS-EXAMINATIONBY MR. PRIMIS:
Q. Hello, Dr. Sunding.
A. Hello.
Q. Mr. Perry gave you this slide from my opening. Do you remember that?
A. I can't see the slide.
Q. It's the one with the picture of you.
A. Yes.
Q. And just to be clear and also to be fair, when I asked you the same question today, Dr. Sunding, I introduced the survey. And I said, apart from the survey, have you attempted -- and then the rest of the question. You recall that. Right?
A. I recall you spoke those words today, yes.
Q. And so your sworn testimony reflects this entire question and the same answer. Correct?
A. Yes.
Q. Now, with regard to this survey, you did the survey; and then you gave it to Dr. Phaneuf. Right?
A. That's right, yes.
Q. And Dr. Phaneuf relied on it for his testimony. Correct?

THE REPORTING GROUP
Mason \& Lockhart

	2907
1	CERTIFICATE
2	I, Claudette G. Mason, a Notary Public
3	in and for the State of Maine, hereby certify
4	that the foregoing pages are a correct
5	transcript of my stenographic notes of the
6	Proceedings.
7	I further certify that I am a
8	disinterested person in the event or outcome
9	of the above-named cause of action.
10	IN WITNESS WHEREOF, I subscribe my hand
11	this 10th day December, 2016.
12	
13	
14	
15	/s/ Claudette G. Mason
	Claudette G. Mason, RMR, CRR
16	Court Reporter
17	My Commission Expires June 9, 2019.
18	
19	
20	
21	
22	
23	
24	
25	
	THE REPORTING GROUP Mason \& Lockhart

check [4]-2831:21,	2770:6, 2811:17	commercial [8] -	2692:4	Congressional [1] -
2887:4, 2887:22,	clips [3] - 2749:5	49:16, 2749:20,	compound [1] -	2700:14
2888:3	2751:8, 2811:25	9:22, 2750	2787:	connect [6] - 2704:19,
checking [1] - 2856:	clock [1] - 2782:12	50:16,	comprehend [2] -	712:6,
chief [1] - 2678:1	clog [1] - 2727:17	2893:15, 2894:12	2755:23, $2795: 4$	2712:14, 2712:20,
choice [1] - 2877:2	close [2] - 2698:18,	Commission [8]	concentrations [1] -	2810:8
choose [2]-2859:17,	2720	20:1	707:	connected [6] -
2859:25	closer [1] - 2747:11	1:17, 2721:20,	concept [10] -	2696:24, 2711:13,
chose [5] - 2734:9,	coinciding [2]	38:19, 2738:25	:14, 2813:11	11:19, 2711:22,
60:3, 2876:20,	728:10, 2728:16	2741:24, 2907:17	813:23, 2866:10,	2712:18, 2814:23
2885:12, 2886:10	cold	Committee [1]	2866:16, 2870:5,	connecting [1] -
CHRISTIAN	2699:17, 2699:2	2718:9	872:19, 2887:13,	2711:17
2675:22	collapse [3] - 2686:16	common [6] - 2850:5,	887:18, 2888:8	connection [7] -
CHRISTOPHER [1] -	2687:14, 2688:1	850:13, 2852:1,	conceptually [1] -	2678:5, 2698:2,
2675:21	colleague [3]	2866:19, 2868:3,	2851:22	2790:1, 2790:2,
chute [1] - 2737:8	39:24, 2740:	2887:17	concern [1] - 2697:16	2790:9, 2790:24,
Circuit [1] - 2900:18	2782:18	commonly [1] -	concerning [2] -	2820:25
circular [1] - 2862:20	colleagues [2] -	2886:20	2678:2, 2722:21	connections [1] -
circulation [2] -	2694:22, 2698:4	Compact [3] - 2743:9, 2855:18, 2903:15	concerns [1] -	2791:2
2689:6, 2727:9 circumstance	$\begin{aligned} & \text { collected [2] - } \\ & \text { 2857:12, } 2857: 2 \end{aligned}$	compare \qquad	concluded [1] -	2775:18
2877:24	colonization	2768:24, 2784:20	2780:1	connectivity [22] -
circumstances [2] -	2741:21, 2742:1	2:17, 2860:24	conclusion [4]	711:9, 2729:10,
51:2, 2852	color [1] - 2690:1	61:2, 2872:14,	685:15, 2709:8,	776:25, 2815:1,
citations [1] - 2730:21	Colorado [2] - 2854:1,	2:20, 2877:7,	2709:21, 2830:6	816:1, 2841:12,
cite	2854	2892	conclusions [4] -	841:14, 2841:15,
2720:25	Columbus [5]	compared [7] - 2731:7 2768:7	2682:6, 2709:4,	2842:16, 2842:24, 2843:15, 2843:18.
cited [3] - 2697:22,	2678:22, 2679:1,	$\begin{aligned} & \text { 2731:7, 2768:7, } \\ & \text { 2780:22, 2823:6, } \end{aligned}$	$2741: 13,2741: 15$	$\begin{aligned} & \text { 2843:15, 2843:18, } \\ & 2843: 22.2844: 2 . \end{aligned}$
$2721: 4,2722: 25$	2681:13, 2681:23,	2828:17, 2861:7,	conditions [13] -	2844:5, 2844:14,
2679:18, 2872:9	column [8]-2774:21	2892:5	2769:1, 2769:6,	2844:24, 2845:11,
claims [1] - 2798:	2775:13, 2775:18,	comparing [3]	72:22, 2778:15,	2845:22, 2846:8,
clar	75:22, 2789:4	56:5, 2768:6	805:13, 2806:23,	2846:14, 2847:4
739:10, 2	2808:16, 2808:19,	2835:	807:12, 2850:7	connects [1] - 2712:8
clarify [2]-2768:8,	2872	comparison [2] -	2861:12, 2885:10,	consecutive [1] -
2779:22	columns [3]	2768:18, 2874:2	2885:2	2784:16
Claudette [5] -	2841:10, 2844:12,	compensate [1] -	conducted [5] - $2752: 1,2793: 15$	$\begin{aligned} & \text { consensus [1] - } \\ & 2894: 16 \end{aligned}$
$2675: 14,2900: 7$	2871:25		$\begin{aligned} & \text { 2752:1, 2793:15, } \\ & \text { 2831:2. 2831:5. } \end{aligned}$	2894:16
2907:2, 2907:15,	combination [5] $2805: 12,2813:$	$\begin{aligned} & \text { compensated [1] } \\ & 2724: 22 \end{aligned}$	$\begin{aligned} & 831: 2,2831: 5, \\ & 895: 23 \end{aligned}$	$\begin{gathered} \text { Conservancy [2] - } \\ \text { 2852:19, 2894:24 } \end{gathered}$
2907:15	3:2	complaint [2]	nducting [1] -	Conservation
$\begin{aligned} & \text { clean [2]-2727:13, } \\ & 2753: 8 \end{aligned}$	2887:9	$2772: 20,2777: 25$	2704:15	2867:22, 2904:1
clear [21] - 2678:18,	combinations [2] -	Complaint [4] -	confess [1] - 2743:20	conservation [31] -
$2685: 18,2688: 4$	2859:3, 2874:21	$\begin{aligned} & 2777: 14,2777: 16 \\ & 2890: 5 \end{aligned}$	confident [2] - 2701:8,	$\begin{aligned} & 2748: 4,2757: 3, \\ & 2757: 12.2762: 20 \end{aligned}$
$2688: 24,2703: 13$	combined [2] 2771:6, 2856	complete [3] - 2725	2832:5	$\begin{aligned} & \text { 2757:12, 2762:20, } \\ & 2772: 9,2775: 1, \end{aligned}$
2		2860:22, 2903:11	$2725: 5,2831: 18$	2775:10, 2783:7,
$1,2$	2699:22, 2731:6,	completed [2] -	confronted [2] -	2783:9, 2797:3,
, 2797:9,	2750:8, 2863:22,	2680:7, 2698:9	2793:20, 2793:25	2798:7, 2805:17,
2798:15, 2798:20,	2899:2	completely [1] -	confused [3] - 2757:5,	2807:25, 2808:2, 2808:6. 2812:9.
2818:8, 2823:3,	commencing [1] -	2689:10	$\text { 2815:10, } 2845: 5$	$\begin{aligned} & \text { 2808:6, 2812:9, } \\ & \text { 2813:5, 2813:10, } \end{aligned}$
$\begin{aligned} & 2825: 3,2837: 24 \\ & 2847: 7,2898: 11 \end{aligned}$	2675:13 comment	$\begin{gathered} \text { complex [4]-2693:5 } \\ 2693: 12,2755: 14, \end{gathered}$	$\begin{aligned} & \text { confusing [1] - } \\ & 2779: 21 \end{aligned}$	2850:19, 2856:21,
clearly [4] - 2682:7,	2701:20, 2810:25,	2755:19	confusion [1] -	2859:4, 2862:22,
2684:7, 2820:23,	2817:22	compliance [2]	2773:23	864:20, 2867:19
2825:17	commerce	2855:22, 2888:1	Congress [7] -	2873:2, 2873:24,
CLERK [2] - 2745:5,	2679:6, 2679:25,	complies [1] 2886:11	$2675: 12,2677: 25,$	$\begin{aligned} & 2874: 17,2879: 14 \\ & 2894: 22,2903: 12 \end{aligned}$
2745:12	$\begin{aligned} & 2680: 6,2682: 7 \\ & 2682: 18 \\ & 2683: 3 \end{aligned}$	2886:11 components	$\begin{aligned} & 2678: 10,2717: 14, \\ & 2717: 17.2717: 19 \end{aligned}$	conservation-based
$\begin{gathered} \text { clip [5] - 2751:18, } \\ \text { 2751:19, 2754:6, } \end{gathered}$	$\begin{aligned} & \text { 2682:18, 2683:3, } \\ & 2683: 12 \end{aligned}$		UP :22	[1] - 2812:9

2792:11, 2792:13,	court [5] - 2713:3,	2746:7	Darst [1] - 2730:2	dec
2792:20, 2792:23,	2713:4, 2763:13,	cross-examination [4]	data [14] - 2688:3,	2841:22
2794:23, 2797:2,	2809:7, 2809:20	- 2697:5, 2708:15,	88:9, 2692:15,	dedicated [1] - 2753:6
2799:11, 2812:8,	Court [26]-2675:12,	2746:5, 2796:10	709:1, 2719:16,	deep [8]-2678:21,
2813:5, 2813:9,	2712:24, 2720:1,	cross-examine [1] -	2720:13, 2720:17,	2681:24, 2686:12,
2813:11, 2813:24,	2720:19, 2726:1	2796	4:8, 2831:22,	686:15, 2687:9,
2848:13, 2850:18,	2729:4, 2738:14	crossed [1] - 2899:13	834:1, 2857:5,	687:11, 2687:25,
2860:9, 2864:11,	2758:21, 2765:15,	crosswalk [1] -	74:13, 2876:18,	2710:20
2872:3, 2872:20,	2772:15, 2777:19,	2794:15	2902:15	deepening [3] -
2872:25, 2877:6,	2796:23, 2797:10,	CRR [2] - 2675:14,	database [5] -	2681:18, 2681:19,
2877:9, 2877:14,	07:1, 2807:11,	907:15	767:20, 2822:5,	2728:14
2897:9, 2897:20	2812:21, 2815:15,	crystal [1] - 2823:3	857:7, 2860:23,	deeper [5] - 2869:19,
costed [1] - 2787:23	32:10, 2849:22,	cubic [1] - 2696:22	2860:25	869:25, 2870:7,
costs [31] - 2683:25,	2853:21, 2856:7,	current [2]-2706:9,	dataset [1] - 2861:7	2870:16, 2870:25
2684:5, 2756:2,	2872:7, 2878:10,	2756:18	datasets [1] - 2740:16	Defendants [1] -
2756:5, 2772:16,	2879:4, 2886:17,	curriculum [1]	date [7]-2689:22,	2675:7
2780:12, 2782:22,	2907:16	2894:14	706:3, 2706:5,	defensive [1] - 2764:2
2783:2, 2787:9,	Court's [2]-2795:22,	curtail [2] - 2832:6,	2706:13, 2706:15,	defer [1] - 2773:13
2787:14, 2789:13,	2878:24	867:16	2719:2, 2890:15	deficit [16] - 2747:17,
2789:14, 2791:13,	cover [3] - 2718	curve [1] - 2874:22	dated [5] - 2706:14,	2785:2, 2786:3
2792:2, 2792:3,	2832:21, 2832:22	curves [2] - 2882:5,	2719:1, 2719:6,	2813:4, 2813:8,
2792:5, 2792:25,	covered [2] - 2728:6,	2882:	2733:9, 2764:8	813:12, 2813:23,
2793:10, 2793:13,	2857:16	customer	dates [1] - 2839:5	2813:24, 2814:4,
2797:16, 2798:16,	Cowie [2] - 2896:18,	2871:16	David [3] - 2676:4	2817:25, 2868:6
2800:22, 2817:17,	2897:5	cut [13] -	2744:24, 2745:17	2868:13, 2868:21,
2849:11, 2859:3,	craft [1] - 2700:25	$69: 14,2777: S$	days [6] - 2702:22	2881:13, 2885:17,
2872:6, 2873:15,	CRAIG [1] - 2675:20	$: 10,2781: 2$	760:12, 2760:17,	2902:16
2873:18, 2874:17,	creating [1] - 2688:20	89:24, 2794:4	2857:15, 2857:16	Deficit [1] - 2813:1
2876:25, 2897:18	Creek [2] - 2703:2,	799:13, 2802:17	2896:18	define [3] - 2748:12,
cotton [2]-2800:11,	2705:15	9, 2805:6	deadline [1] - 2740:15	2838:3, 2838:6
2861:19	crew [1] - 2743:17	2814:8, 2851:7	deal [1] - 2790:17	defined [1] - 2884:2
counsel [10]-2706:1	critical [1] - 2699:11	cut-ba	deauthorization [1] -	defining [1] - 2813:11
2706:3, 2707:6,	crop [21] - 2814:19,	$2789: 24,2803: \text { C }$	2700:14	definitely [6] -
2739:5, 2739:9,	2814:25, 2815:3,	cut-b	debate [1] - 2739:4	$2733: 22,2791: 6$
2741:9, 2806:19,	2815:18, 2815:25,	$2799: 13,2814:$	decade [3] - 2747:4,	2794:6, 2849:21,
2862:4, 2899:19,	2821:20, 2821:23,	cutoff [4] - 2736:1	2748:14, 2762:7	2859:13, 2894:20
2899:22	2823:24, 2827:16,	$2736: 13,2737:$	December [3] -	definitive [1] - 2903:6
counties [6]	28:16, 2854:18,	2737:8	2809:21, 2879:21,	degradation [2] -
2683:16, 2683:20,	2863:5, 2877:17,	Cutoff [1] - 2735:2	2907:11	2719:18, 2729:9
2683:21, 2683:24,	77:18, 2877:19,	cutoffs [1] - 2737:	decided [2] - 2894:9,	degree [1] - 2827:7
2684:4, 2684:6	77:23, 2877:24,	cuts [3] - 2737:7,	2895:2	deliverables [3] -
country [8]-2745:3,	78:1, 2878:2,	2759:19, 2809:	decision [2] -	2724:10, 2740:16,
2850:13, 2850:21,	2881:14, 2881:25	cutting [3] - 2712	2828:21, 2877:1	2740:21
2852:3, 2857:15,	crops [14] - 2799:12,	$2893: 15,2901: 3$	decisions [1] - 2864:1	delivered [1] -
2867:25, 2885:19,	2814:4, 2818:20,	cypress [1] - 2707:16	declaration [1] -	2721:16
2890:2	2829:2, 2832:15,		2809:10	delta [1] - 2713:17
$\begin{gathered} \text { County }[3]-2831: 6, \\ 2831: 8,2832: 8 \end{gathered}$	$\begin{aligned} & \text { 2861:17, 2861:18, } \\ & \text { 2869:9, 2869:18, } \end{aligned}$	D	Decline [1] - 2708:2	$\begin{gathered} \text { demand [6] - 2765:22, } \\ 2856: 11,2856: 19, \end{gathered}$
couple [9]-2713:23,	870:16, 2870:21,		2709:11, 2709:16,	2863:20, 2882:13,
$2722: 8,2733: 3$	882:1, 2892:4,	Dam [1] - 2713:5	2709:18, 2709:22,	2891:15
2757:16, 2772:7,	2892:14	dam [9] - 2681:6,	2710:15, 2836:6,	demands [1] -
2850:25, 2871:24,	cross [8] - 2697:5,	2692:2, 2692:15,	2836:14	2806:14
2873:21, 2896:18	2708:15, 2744:9,	2703:3, 2713:9,	declined [5] -	demonstrate [1] -
course [10]-2708:7,	2746:5, 2796:1,	2713:16, 2717:16,	$2806: 21,2835: 2$	2850:20
2708:24, 2713:2,	2796:10, 2895:2,	2847:18, 2847:23	2835:10, 2835:14,	demonstrative [7] -
2778:2, 2805:5,	2905:20	damage [1] - 2704:22	2835:20	2746:22, 2758:25,
2826:16, 2860:21,	CROSS [1] - 2746:7	dams [7]-2678:14,	declining [1] -	2761:4, 2767:9,
2863:10, 2867:21,	Cross [1] - 2676:2	2681:10, 2681:15,	2835:12	2774:3, 2774:16,
2887:23	CROSS	2681:18, 2681:20,	decreased [1] -	2795:19
COURT [1] - 2675:1	EXAMINATION	REPORTING	OUP :10	Demonstratives [3] -

2734:24, 2765:22, 2777:21, 2778:20, 2778:25, 2779:18, 2779:19, 2780:2, 2780:4, 2780:11, 2780:14, 2780:15, 2781:6, 2781:16, 2781:23, 2814:22, 2816:5, 2846:15, 2849:3, 2850:6, 2851:18, 2858:13, 2858:14, 2897:16, 2897:20
levels [19]-2696:4, 2707:23, 2708:7, 2734:14, 2747:6, 2756:18, 2778:5, 2778:20, 2779:1, 2779:14, 2780:4, 2780:9, 2781:1, 2781:11, 2781:18, 2781:23, 2781:24, 2782:3
Levels [1] - 2728:24
licensed [2] - 2802:20, 2803:2
life [1] - 2873:4
lifting [2] - 2864:11, 2877:10
Light [3]-2708:16, 2730:2
light [1] - 2864:3
Light's [1] - 2719:9
lightly [2] - 2701:14, 2701:18
likely [6] - 2735:21, 2738:19, 2739:19, 2804:5, 2817:18, 2817:23
likened [1] - 2701:12 limit [2] - 2745:2, 2854:6
limitation [1] 2863:12
limitations [1] 2885:11
limited [5] - 2686:24, 2708:24, 2849:24, 2850:3, 2871:6 line [30]-2690:25, 2732:25, 2733:1, 2736:7, 2749:3, 2751:5, 2751:8, 2751:9, 2752:16, 2752:18, 2753:10, 2754:4, 2767:24, 2768:10, 2768:16, 2770:3, 2770:6, 2770:7, 2797:25, 2811:15, 2811:17,

2811:21, 2811:23, 2819:24, 2819:25, 2823:22, 2827:20, 2834:20, 2835:16, 2883:19
lines [5] - 2734:6, 2737:24, 2790:5, 2827:18, 2845:12 link [1] - 2810:1 list [2] - 2697:20, 2728:13
listed [1] - 2684:4 litigation [1] - 2850:2
live [1] - 2763:13
living [1] - 2704:24
Ioan [2]-2828:21, 2829:7
loaning [1] - 2829:4 local [3]-2680:24, 2856:3, 2874:3
location [3]-2705:8, 2843:1, 2843:5
long-term [3] -
2709:19, 2856:11, 2856:19
look [57] - 2684:22,
2691:5, 2694:25,
2700:9, 2709:9,
2710:6, 2720:5, 2720:7, 2720:17, 2723:13, 2725:20, 2725:21, 2733:16, 2733:22, 2737:19, 2755:7, 2756:2, 2760:4, 2764:11, 2767:15, 2770:13, 2782:23, 2790:4, 2792:19, 2804:1, 2804:15, 2820:15, 2820:18, 2823:21, 2840:17, 2841:9, 2841:20, 2849:10, 2853:12, 2858:18, 2862:24, 2866:4, 2866:5, 2869:20, 2881:5, 2881:15, 2882:6, 2882:21, 2885:20, 2886:20, 2886:23, 2886:25, 2887:2, 2887:3, 2888:14, 2892:1, 2892:2, 2893:6, 2893:24, 2894:21, 2900:6
looked [19] - 2680:18, 2686:21, 2687:3, 2688:7, 2704:17, 2706:22, 2757:7, 2763:1, 2771:22, 2779:22, 2787:6

2814:22, 2830:12, 2849:19, 2861:20, 2874:1, 2876:5, 2882:9, 2901:14 looking [21] - 2684:15, 2684:18, 2693:9, 2700:6, 2717:13, 2732:19, 2764:17, 2769:21, 2789:6, 2789:9, 2800:7, 2812:16, 2814:25, 2822:24, 2832:13, 2844:6, 2858:2, 2859:2, 2869:8, 2887:9, 2891:6
looks [6] - 2692:23, 2707:16, 2720:12, 2859:5, 2859:6, 2859:8
loose [4] - 2688:17, 2717:3, 2755:4, 2832:25
looser [1] - 2887:25
Los [1] - 2856:13
lose [4] - 2708:7,
2802:16, 2803:5, 2803:24
Ioses [1] - 2804:7
loss [14]-2729:17, 2730:15, 2788:5, 2790:7, 2790:23, 2791:3, 2801:16, 2802:24, 2873:12, 2874:7, 2877:23, 2878:1
losses [4] - 2798:17, 2801:12, 2801:19, 2873:3
lost [4] - 2800:10, 2802:12, 2869:16, 2871:18
loud [2]-2818:14, 2878:22 low [13]-2686:8, 2695:24, 2704:13, 2714:22, 2715:6, 2715:24, 2716:13, 2827:12, 2828:5, 2841:10, 2843:10, 2843:19, 2860:8
Low [1] - 2707:9
lower [16] - 2681:19, 2695:25, 2696:4, 2704:19, 2707:14, 2710:10, 2712:18, 2734:22, 2776:3, 2778:25, 2782:6, 2828:12, 2901:15, 2901:16, 2901:18,
REPORTING

2691:19, 2714:16, 2726:3, 2726:6, 2726:9, 2739:7, 2740:8, 2742:10, 2742:15, 2742:18, 2742:22, 2743:2, 2743:8, 2743:11, 2743:16, 2743:21, 2743:24, 2744:7, 2744:13, 2744:16, 2744:22, 2745:21, 2746:6, 2782:16, 2795:7, 2795:14, 2796:11, 2796:13, 2796:15, 2820:11, 2848:21, 2853:8, 2853:11, 2865:9, 2875:7, 2875:13, 2875:20, 2875:25, 2878:17, 2878:20, 2884:16, 2895:12, 2898:1, 2900:1, 2900:3, 2900:11, 2900:14, 2901:2, 2901:11, 2901:20, 2902:11, 2902:18, 2902:22, 2903:2, 2903:13, 2903:17, 2903:21, 2903:24, 2904:3, 2904:8, 2904:14, 2904:20, 2904:25, 2905:8, 2905:19, 2905:22, 2905:24, 2906:2
Mat [1] - 2723:16 matched [2] 2857:11, 2857:21 matching [1] 2862:12
material [1] - 2728:6 math [8]-2766:22, 2775:21, 2776:21, 2782:8, 2782:10, 2784:20, 2788:11, 2791:5
mathias [1] - 2676:3 matter [6]-2675:10, 2678:6, 2753:16, 2756:9, 2762:8, 2849:6
matters [2] - 2774:12, 2795:16
maximize [1] 2815:21
maximizes [1] 2854:15 maximum [11] 2691:25, 2761:15, 2818:25, 2822:21, 2822:25, 2823:6,

2802:18, 2803:1,	2874:6, 2874:8	2840:13, 2840:15,	opportunities [1] -	2889:25, 2891:9,
2820:13, 2820:18,	occurs [3] - 2902:1,	2841:14, 2842:1,	2814:7	2905:14
2824:1, 2834:25,	2902:3, 2905:6	2842:9, 2842:13,	opportunity [2]	outlay [1] - 2873:
2838:4, 2838:15,	October [4] - 2786:12,	2842:17, 2843:5,	2690:23, 2795:25	outlet [4]-2679:4,
2838:22, 2838:25,	2786:20, 2833:1,	2848:1, 2858:12,	opposed [3] - 2715:6,	2682:1, 2682:12,
2839:6, 2840:16,	2844:7	2858:22, 2859:13,	2828:9, 2891:20	2682:17
2840:21, 2844:18,	$\begin{aligned} & \text { OF }[4]-2675: 1, \\ & 2675: 3,2675: 6, \\ & 2675: 9 \\ & \text { offer }[2]-2772: 17, \\ & 2829: 18 \\ & \text { offered }[1]-2844: 4 \\ & \text { offering }[3]-2748: 11, \end{aligned}$	2861:7, 2863:8,	opposite [1] - 2716:11	outline [1] - 2724:1
2851:19, 2861:9,		2866:12, 2867:1,	optimal [7] - 2822:7,	outlined [2]-2728:8,
2863:12, 2869:7,		2867:3, 2871:19,	2822:8, 2822:11	2765:2
2875:1, 2876:5,		2872:14, 2874:20,	2822:16, 2822:23,	output [1] - 2798:6
2884:3, 2891:16,		2880:3, 2880:14,	2822:24, 2823:11	outright [1] - 2730:18
$\begin{aligned} & \text { 2895:8, 2903:6, } \\ & 2905: 17 \end{aligned}$		$\begin{aligned} & \text { 2882:4, 2882:10, } \\ & 2883 \cdot 20 ~ 2887 \cdot 1 \end{aligned}$	option [1] - 2877:22	outside [6] - 2810:13,
Number [1] - 2676:8 numbered [1] - 2707:8 numbers [11]-		$\begin{aligned} & \text { 2883:20, 2887:12, } \\ & \text { 2895:11, 2896:13, } \end{aligned}$	options [11] - 2772:16,	2831:20, 2838:10,
	$\begin{gathered} 2754: 20,2798: 10 \\ \text { official }[1]-2802: 19 \end{gathered}$	2896:14, 2898:9	2859:15, 2859:18,	2853:3
	offset [4]-2793:1,	one-for-one [1] -	2859:21, 2859:25,	outstanding [1] -
```numbers [11]- 2773:25, 2798:12,```	$\begin{aligned} & 2793: 9,2794: 23 \\ & \text { often }[2]-2684: 14, \\ & 2686: 20 \end{aligned}$	2842:1	2865:18, 2886:11,	2763:17
$\begin{aligned} & \text { 2773:25, 2798:12, } \\ & 2800: 13,2802: 5, \end{aligned}$		one-time [1] - 2801:1	2897:18, 2897:19	outweigh [1] - 2701:9
2835:7, 2840:3,		one-to-one [2]	oranges [1] - 2789:7	overall [4] - 2727:8,
2840:6, 2844:4,2873:9, 2873:12,	Ogeechee [1] - 2696:8 old [3] - 2719:14,	2842:9, 2842:13	Order [2] - 2777:19,	2777:20, 2855:6,
		one-year [1] - 2784:17	2872:7	2901:18
$\begin{aligned} & \text { 2873:9, 2873:12, } \\ & \text { 2876:19 } \end{aligned}$	$2719: 15,2719: 16$	ones [6] - 2733:16,	order [5] - 2680:12,	overlaid [1] - 2822:3
numerical [2] -2804:12, $2843: 23$	olds [1] - 2686:13	2775:14, 2814:10,	2684:20, 2740:17,	oversees [1] - 2855:21
	omits [1] - 2751:19	2859:17, 2869:7,	2814:7, 2905:5	overshot [1] - 2850:6
$\begin{aligned} & \text { 2804:12, 2843:2 } \\ & \text { numerically }[1]- \\ & 2844: 9 \end{aligned}$		2887:	Oregon [1] - 2850:9	overstated [2] -
	$\begin{aligned} & \text { 2815:23, 2853:16, } \\ & \text { 2860:22, 2905:13 } \end{aligned}$	onset [1] - 2680:14	organisms [1] -	2804:5, 2826:14
$\begin{aligned} & \text { 2844:9 } \\ & \text { nut }[1]-2832: 15 \end{aligned}$		open [4]-2689:3,	2707:25	overstatement [1] -
$0$	$\begin{gathered} \text { one [102]-2679:19, } \\ 2682: 5,2682: 16, \end{gathered}$	2701:12, 2701:16,	organization [1] -	2835:13
		701:21	2697:10	overwatering [3] -
$\begin{aligned} & \text { oath [2]-2748:25, } \\ & 2753: 11 \end{aligned}$	$\begin{aligned} & \text { 2693:23, 2700:3, } \\ & \text { 2700:18, 2702:25, } \end{aligned}$	opened [1] - 2702:25   opening [2] - 2895:15,	oriented [1] - 2880:1   Original [1] - 2675:1	$\begin{aligned} & \text { 2821:19, 2824:10, } \\ & 2831 \cdot 1 \end{aligned}$
		$\begin{aligned} & \text { opening [2] - 2895:15, } \\ & \text { 2898:6 } \end{aligned}$	Original [1] - 2675:1 original [3] - 2840:16,	$2824: 14$   overwidening
object [1] - 2691:8 objection [5] -	$\begin{aligned} & \text { 2703:7, 2709:13, } \\ & \text { 2709:25, 2712:8, } \end{aligned}$	operating [3]	2863:25, 2872:15	2695:17
objection [5] - 2752:22, 2759:20,	$\begin{aligned} & \text { 2709:25, 2712:8, } \\ & \text { 2713:2, 2714:6, } \end{aligned}$	2688:16, 2814:20,	originally [1] -	overwintering [1] -
2761:24, 2846:22,	2715:24, 2716:6,	2862:14	2687:10	2853:6
	$\begin{aligned} & 2723: 4,2723: 14 \\ & 2724: 20,2726: 22 \end{aligned}$	operation [1] -	otherwise [2] -	own [8] - 2701:24,
2890:24		2677:10	2827:12, 2828:5	2767:12, 2817:7,
objections [1] - 2751:20	$\begin{aligned} & \text { 2724:20, 2726:22, } \\ & \text { 2729:4, 2729:6, } \end{aligned}$	operations [7] -	outcome [3] -	2817:9, 2817:10,
observation [1] 2863:18	$\begin{aligned} & \text { 2729:13, 2732:4, } \\ & \text { 2733:9, 2733:10, } \end{aligned}$	2716:16, 2730:14,	2817:11, 2873:19,	2824:22, 2837:20,
		$\begin{aligned} & \text { 2817:7, 2817:10, } \\ & \text { 2847:18, 2847:23, } \end{aligned}$	2907:8	$2848: 10$
observations [3] -	2738:19, 2739:19,	2848:16	outcomes [2] - 2874:20, 2874:23	owner [1] - 2816:19 ownership [2] -
$\begin{aligned} & \text { 2699:1, } 2706: 21, \\ & 2707: 12 \end{aligned}$	$\begin{aligned} & \text { 2738:19, 2739:19, } \\ & \text { 2747:17, 2747:20, } \end{aligned}$	opined [1] - 2691:10	outdated [2] -	$2816: 8,2816: 20$
	$\begin{aligned} & \text { 2752:12, 2753:2, } \\ & \text { 2753:3, 2760:1, } \end{aligned}$	opinion [17] -	2719:12, 2719:20	owning [1] - 2817:4
Observed [1] - 2728:1		2681:14, 2692:19,	outdoor [34] -	oxygen [1] - 2707:23
observed [4] - 2692:1,	$\begin{aligned} & \text { 2753:3, 2760:1, } \\ & \text { 2760:2, 2761:11, } \end{aligned}$	2703:11, 2705:10,	2766:11, 2771:5	oyster [8] - 2749:16,
2695:7, 2700:10, 2799:10	2762:15, 2764:8, 2767:13, 2770:19	709:12, 2717:7, $739: 24,2741: 22,$	$2771: 20,2787: 19$	2749:22, 2750:12,
obviously [3] -	2767:13, 2770:19, $2770: 20,2770: 24,$	$754: 21,2760: 16,$	2787:24, 2788:14,   2788:23, 2789:17,	2761:6, 2761:10, 2761:16, 2802:20,
2709:2, 2739:25,	2777:5, 2777:6,	761:20, 2810:12,	2789:25, 2791:14,	$\begin{aligned} & \text { 2761:16, 2802:20, } \\ & \text { 2803:1 } \end{aligned}$
		829:13, 2829:19,	2793:21, 2793:25,	oysters [2] - 2750:2
occur [5] - 2686:20,	2796:4, 2796:5,	2903:3, 2903:10,	2794:5, 2794:9,	2761:6
2732:18, 2783:12, 2783:19, 2802:8	2801:1, 2803:12,	2904:5	2836:21, 2837:7,	
occurred [6] -	2815:12, 2821:13,	$2748: 2,2748: 8$	$\begin{aligned} & \text { 2837:13, 2838:19, } \\ & \text { 2839:17, 2840:1, } \end{aligned}$	P
	2821:24, 2823:21,	$748: 9,2748: 1$		p.m [4] - 2795:11
$\begin{aligned} & \text { 2684:17, 2685:17, } \\ & \text { 2686:6, 2686:21, } \\ & 2765: 25,2905: 16 \end{aligned}$   occurring [4] -		$2748: 15,2750: 11,$	$3$	2875:10, 2875:12,
	2830:13, 2832:8,	2756:11, 2757:1,	874:9, 2880:20,	2906:5
	2832:25, 2836:25,	2757:10, 2762:11,	2881:1, 2881:25,	page [143]-2679:10,
2686:19, 2688:5,	2840:8, 2840:11 T	REPORTING	P : $3,2889: 22$,	$2679: 24,2680: 1$








Secretary [5] -	2866:5, 2866:7,	2791:1, 2834:11,	shows [8] - 2683:19,	2851:23, 2887:18
2677:25, 2717:1,	2866:12, 2868:6,	2835:6	707:17, 2732:18,	six [3] - 2774:21,
2717:23, 2718:5,	2869:3, 2869:23,	Service's [1] - 2692:13	761:15, 2762:19,	2775:1, 2775:10
$2895: 1$	2871:21, 2876:5,	serviced [1] - 2889:17	2823:23, 2834:10,	$\text { size }[3]-2852: 22,$
$\begin{gathered} \text { section [16] - 2724:24, } \\ 2725: 16,2726: 7, \end{gathered}$	2878:9, 2878:10,	$\begin{aligned} & \text { services [2] - 2893:11 } \\ & 2893: 24 \end{aligned}$	2883:5	2876:10, 2876:19
2728:1, 2728:23,	2886:13, 2886:25,	Session [1] - 2717:14	shrunk [1] - 2771	skip [1] - 2832:17
2731:15, 2735:10,	2887:4, 2887:22,	set [10]-2693:21	shut [1] - 2866:25	sleeve [3] - 2746:18,
2735:19, 2735:25,	2888:3, 2890:22,	05:17, 2748:7	side [3] - 2819:12,	2765:7, 2774:4
2737:20, 2739:14,	2892:9, 2897:9,	2776:14, 2776:16,	2843:19, 2881:10	slide [4]-2708:1
2739:15, 2739:23,	2897:14, 2898:8,	82:19, 2839:8,	significance [1] -	2759:23, 2898:6,
2740:18, 2799:7,	2904:24	2855:8, 2888:1	2679:14	2898:8
2864:	seeing [3] - 2711:5,	sets [2] - 2773:25,	significant [10] -	slides [3] - 2706:24,
sections [3]	2738:7, 2820:1	2843:1	2708:12, 2709:23,	2707:5, 2707:11
2677:16, 2679:9,	seeking [1] - 2778:4	setting [2]-2694:12,	2711:1, 2792:16,	slightly [1] - 2697:2
$2741: 11$	seem [1] - 2903:11	2887:19	2810:10, 2810:19,	slipped [1] - 2795:13
sector [12]-2798:21 2801:17 2803:6	segregated [1] 2816:8	settled [1] - 2854:4	2842:21, 2876:13,	Slough [11] - 2703:7,
2801:17, 2803:6,   2803:14, 2803:16	2816:8 selection [1] - 2846	settlement [1] -	876:19, 2892:1	2703:13, 2704:17,
2804:7, 2841:23,		Se	si	2704:19, 2711:11
2854:9, 2857:2,	2694:6, 2701:3,	2854:10	similar [7] - 2725:3,	$2736: 8,2736: 11,$
$2857: 5,2889: 23$	$2701: 25,2702: 4$	several [5] - 2691:12	2728:5, 2838:12,	2736:17, 2736:18
$\begin{aligned} & \text { sectors [1] - 2801:24 } \\ & \text { secure [1] - 2829:7 } \end{aligned}$	2702:5	2852:7, 2865	2851:14, 2851:22,	slough [7]-2703:19,
	s	76:		
$2725: 17,2$	2692:10, 2694:6	severe [4] - 2719:18,	similarly [1] - 2856:15	2727:3, 2729:11,
	702:4, 2702:	$390: 23$	similarly-generic [1] - 2856:15	2730:15, 2736:4
2699:15, 2702:14,	senior [1] - 2854:3	shade [1] - 2767:17	simple [2] - 2776:21,	$2688: 25,2689$
2702:18, 2703	sense [8] - 2706:23,	shall [2] - 2745:8,	861:	689:4, 2689:2
2710:21, 2712:17,	2752:10, 2752:20,	745:	simply [7] - 2682:19,	2693:6, 2693:13,
2712:20, 2730:16,	2844:16, 2855:13,	sh	691:15, 2691:23,	2695:14, 2696:23,
2731:6, 2731:10,	2856:7, 2859:17,	ships [1] - 2682:2	701:5, 2710:6	2702:14, 2702:18,
2735:22	2903:16	shoa	740:21, 2795:17	2707:20, 2711:8,
see [76] - 2688:10,	sentence [22]	shoaling [1] - 2688:3	simulated [1] -	2711:10, 2711:11,
2695:17, 2698:20,	2679:24, 2680:5	ort [4] - 2718:20	2692:1	2711:13, 2711:18,
2704:18, 2706:10,	09:18, 2725:19,	728.18, 2871:8	simulation [2] -	2711:19, 2711:21,
2710:25, 2725:16,	2726:12, 2726:13,	875:	2821:20, 2821:23	2711:25, 2712:4,
2728:25, 2732:11,	2727:19, 2730:10,	shortcut [1] - 2737:	single [15] - 2719:10,	2712:5, 2712:14,
2732:12, 2733:7,	2735:20, 2737:24,	shot [1] - 2732:1	$2728: 21,2746: 22$	2712:16, 2712:21,
2733:18, 2734:11,	2804:3, 2809:25,	show   [13] - 2678:10	785:10, 2786:21,	$2727: 7,2727: 10$
2736:2, 2736:6,	2811:13, 2813:17,	90:7, 2696:	787:5, 2787:11,	727:11, 2727:17,
2736:9, 2737:20,	2818:4, 2818:5,	$06: 7,2736: 22$	88:8, 2800:21,	2729:24, 2731:4
2738:3, 2756:15,	2818:10, 2818:21,	, 2819:	816:23, 2830:15,	slowly [1] - 2747:22
2761:9, 2762:5,	2839:16, 2865:17,	:8, 2823:	831:2, 2831:6,	small [7] - 2689:14,
2764:12, 2768:1,	2897:7, 2897:8	$24: 4,2850: 18$	2832:9, 2889:25	2689:21, 2699:14,
2771:1, 2777:15,	sentences [3] -	2879:17, 2879:23	single-family [1] -	2731:7, 2758:1,
2777:22, 2785:5	2679:11, 2741:10,	showed [4] - 2711:23	2889:25	2869:6, 2876:6
2792:19, 2795:13,	2897:6	14:25, 2760:10,	single-year [1] -	small-scale [2] -
$\begin{aligned} & \text { 2798:3, 2800:20, } \\ & \text { 2809:9. 2809:11 } \end{aligned}$	separate [1] - 2724:16	2885:6	$2800: 21$	2689:14, 2689:21
$\begin{aligned} & \text { 2809:9, 2809:11, } \\ & \text { 2809:17, 2809:19, } \end{aligned}$	$\begin{gathered} \text { series }[3] \text { - 2757:18, } \\ 2797: 12,2874: 13 \end{gathered}$	showing [8] -	sit [4] - 2804:8, 2884:12, 2884:13	$\begin{gathered} \text { smaller [5] - 2680:11, } \\ 2731: 13,2762: 24, \end{gathered}$
2810:12, 2810:17,		86:22, 2695:7	884:12, 2884:13,	
$2810: 21,2813: 2,$		32:25, 2741:19		Smith [7] 2733:6
2820:23, 2820:24,		2768:10, 2880:2,	site [1] - 2732:1	Smith [7] - 2733:6,
2821:11, 2829:25,		82:15, 2883:11	sites [2]-2698:20	2749:4, 2751:7,
		shown [10] - 2680:25	2896	
2839:11, 2839:18,		2684:10, 2716:25,	situation [3] -	
$2840: 18,2845: 13$	04:12,	2722:8, 2733:11,	2753:21, 2817:16,	sneaked [1] - 2795:14
2860:17, 2865:3,		68:21, 2769:12,	2852:1	cially [1] - 2756
2865:19, 2866:2,	$2790: 8,2790: 24$	2821:15, 2871:1.   REPORTING	tions [4] -	2814:19, 2814:20,




2677:15, 2682:4,	2743:23, 2744:3,	three-page [4] -	totally [1] - 2826:5	2899:2, 2899:7
2691:18, 2692:5,	2744:15, 2745:5,	2774:3, 2782:25,	totals [1] - 2892:8	tributaries [3] -
2720:14, 2721:5,	2745:11, 2745:12,	804:23, 2858:16	touched [1] - 2841:8	2699:16, 2713:23,
2722:6, 2722:10,	2745:16, 2853:10,	three-time [1] -	tougher [1] - 2887:25	2858:
2723:1, 2724:17,	2853:14, 2878:19,	2802:13	toward [1] - 2895:25	tributary [3] - 2699:17,
2738:14, 2741:14,	2878:21, 2878:25,	three-year [2] -	track [1] - 2795:20	2699:22, 2702:19
2741:15, 2742:19,	2879:6, 2879:10,	2783:5, 2800:22	tracking [2]-2751:1,	tricks [1] - 2747:19
2745:7, 2745:25,	2900:10, 2900:13,	threeridge [3] -	2779:16	tried [6]-2734:20,
2746:14, 2750:9,	2900:25, 2901:4,	2738:5, 2738:19,	trade [5]-2747:19,	2783:8, 2850:17,
2752:13, 2755:2,	2901:13, 2901:24,	2739:19	2747:24, 2815:13,	2850:18, 2857:5,
2755:12, 2755:18,	2902:14, 2902:21,	throughout [7]	2817:13, 2817:14	2859:13
2756:11, 2756:22,	2902:25, 2903:4,	2695:9, 2712:4	trading [3]-2816:24,	Trinity [1] - 2713:19
2759:1, 2759:8,	2903:16, 2903:20,	2770:1, 2859:21,	2817:2, 2817:5	tripled [1] - 2800:25
2759:11, 2761:15,	2903:23, 2904:2,	2861:22, 2862:3,	transactions [2] -	trouble [1]-2862:12
2763:8, 2763:11,	2904:7, 2904:12,	2879:22	2874:6, 2874:8	true [23]-2715:7,
$\begin{aligned} & \text { 2763:13, 2770:15, } \\ & 2770: 16,2770: 21, \end{aligned}$	2904:17, 2904:23, 2905:2, 2905:11,	$\text { tidal }{ }_{[2]}-2734: 14,$ $2735 \cdot 6$	transcript [8] -	2718:13, 2724:18,
$\begin{aligned} & \text { 2770:16, 2770:21, } \\ & \text { 2771:4, 2771:24, } \end{aligned}$	$\begin{aligned} & \text { 2905:2, 2905:11, } \\ & \text { 2906:1 } \end{aligned}$	$\begin{aligned} & 2735: 6 \\ & \text { tides [1] - 2734:25 } \end{aligned}$	2722:14, 2748:19,   2751:17, 2752:17,	$\begin{aligned} & \text { 2726:25, 2729:14, } \\ & \text { 2729:25, 2747:5, } \end{aligned}$
2772:17, 2774:18,	theme [1]-2859:13	tied [2] - 2782:22,	2754:2, 2763:11,	2752:11, 2752:12,
2775:16, 2778:16,	themselves [5] -	2816:12	2846:24, 2907:5	2754:16, 2756:4,
2781:18, 2784:4,	2694:21, 2702:24,	timber [3] - 2680:9,	TRANSCRIPT [1] -	2771:16, 2772:13,
$\begin{aligned} & \text { 2784:21, 2785:16, } \\ & \text { 2788:21, 2789:3, } \end{aligned}$	2707:3, 2817:5, 2817:14	2680:25, 2893:15	2675:9	2784:4, 2785:22,
$\begin{aligned} & \text { 2788:21, 2789:3, } \\ & \text { 2789:17, 2790:12, } \end{aligned}$	2817:14   therefore [2] - 2824:6	titled [3] - 2860:17,   2870:10, 2888.21	transcripts [1] - $2763 \cdot 17$	2792:16, 2792:21, 2808:17, 2811:11
2791:10, 2791:12,	2884:6	today [9] - 2677:12,	$\begin{aligned} & \text { 2763:17 } \\ & \text { transfer [2]-2816:20, } \end{aligned}$	2819:11, 2825:1,
2792:1, 2792:12,	thinking [3]-2776:22,	2692:17, 2700:16,	2817:6	2828:18, 2829:8
2792:18, 2794:3,	2888:8, 2891:12	2706:11, 2710:17,	transferring [2]	Trust [1] - 2894:24
2795:23, 2796:2,	thinks [2]-2822:19,	2729:14, 2898:12,	2869:24, 2870:5	truth [4]-2745:9,
2796:9, 2797:19,	2822:20	2898:16	transfers [1]-2758:3	2745:10, 2748:25
2797:20, 2798:11,	third [7]-2723:14,	together [4]-2682:11,	transition [1] -	try [7]-2686:17,
2798:13, 2798:19,	2774:8, 2774:15,	2743:6, 2840:6,	2829:10	2691:3, 2701:1,
2803:22, 2806:25,	2785:14, 2797:25,	2894:8	translate [3] - 2797:5	2715:18, 2779:22,
2807:1, 2807:11,	2812:17, 2859:8	ton [1] - 2683:22	2841:24, 2887:11	2814:9, 2888:22
2807:22, 2808:5,	thoughts [1]-2885:1	took [6]-2741:10,	transport [1] - 2684:1	trying [14]-2684:16,
$2808: 23,2812: 1$	thousand [21]-	2805:19, 2856:24,	transported [1] -	2748:7, 2779:8,
2812:23, 2818:2,	2712:3, 2757:7,	2857:10, 2857:20,	2683:17	2780:20, 2787:2,
2818:9, 2823:15,	$\begin{aligned} & 2759: 13,2759: 19 \\ & 2762: 20,2763: 1, \end{aligned}$	2904:3	trauma [1] - 2701:16	2813:15, 2860:2,
2825:18, 2829:17,	$\begin{aligned} & 2762: 20,2763: 1, \\ & 2763: 5,2779: 20, \end{aligned}$	$\begin{aligned} & \text { tools [2] - 2685:4, } \\ & 2851: 15 \end{aligned}$	treatment [1] -	$\begin{aligned} & \text { 2868:11, 2872:8, } \\ & \text { 2883:4, 2899:11, } \end{aligned}$
2839:11, 2839:16,	2780:10, 2781:13,	top [6] - 2709:18		$2900: 5,2900: 7,$
2840:9, 2840:22,	2781:25, 2782:5,	$33: 9,2782: 5,$	2732:25, 2733	2901:5
2841:3, 2841:18,	2785:8, 2786:4,	2809:19, 2834:20,	tree-line [2]-2732:	tucked [1] - 2774:3
2842:4, 2842:6,	2843:21, 2852:7,	2871:3	$2733: 1$	tupelo [7]-2696:8,
2844:6, 2850:17   2855:15, 2859:1	2859:9, 2874:13,	topic [2]-2690:7	$\text { trees }[8]-2707: 15,$	2696:9, 2729:20,
$\begin{aligned} & \text { 2855:15, 2859:18 } \\ & \text { 2883:22, 2892:1, } \end{aligned}$	2876:15, 2899:5	697:3	2707:16, 2729:20,	2759:25, 2760:10,
2895:7, 2898:17,	thousands [2] 2693:21, 2693:	topics [1] - 2742:12	$2750: 24,2759: 25$	2760:17, 2760:20
2898:24, 2899:7	threat [1] - 2697:23	Torak [3]-2846:12, 2846:20, 2847:3	2760:11, 2760:17, $2760: 20$	tupelos [2] - 2729:22, $2760: 24$
Texas [2]-2803:15,	three [22]-2703:1,	Total [1] - 2888:21	2760:20   tremendous	turf [1] - 2870:22
2850:11 text [6]-2706:7,	2733:4, 2746:15,	total [18] - 2743:3,	2694:6, 2714:	turn [33]-2682:2,
text [6]-2706:7,	2764:5, 2771:3,	2749:19, 2767:2,	tri [2] - 2743:9,	2702:12, 2734:3,
77:9, 2895:16	2774:3, 2775:6,	68:1, 2772:25,	2903:15	2735:8, 2737:17,
2895:21	2781:11, 2782:25	776:16, 2785:18,	te [2]-2743:	2749:3, 2751:5,
	2783:5, 2783:19,	2786:13, 2815:20,	2903:15	2752:16, 2754:2,
$2713: 24,2713: 25$	$\begin{aligned} & \text { 2788:7, 2800:22, } \\ & \text { 2802:13, 2804:23, } \end{aligned}$	2834:21, 2835:3,	trial [13]-2750:9	2755:1, 2756:12,
THE [44] - 2675:1,	2855:9, 2858:16,	2837:6, 2844:17,	2763:9, 2790:12,	2761:4, 2762:1,
2742:14, 2742:17,		8882:22, 2883:7,	2797:20, 2798:19,	
2742:21, 2742:24,	2861:20, 2872:14,	$905: 9$	2825:14, 2839:25,	2779:8, 2779:9,
2743:4, 2743:10,	2883:8		240:22, 2841•3	2783:17, 2797:18,





