

24	2419
River during summer months; is that right? A. This analysis is about seasonal, not annual. Maybe you want to restate. Q. I'm reading actually directly from your testimony on the same page. A. Okay. Where are you -- point me to the lines, please. Q. Page 17, paragraph 30. I found that changes in annual rainfall patterns cannot explain -- A. Okay. Q. -- the decreased flows -- A. Okay. Q. -- in the Apalachicola River during summer months. A. Okay. Q. Is that your testimony? A. Thank you. I mean, the annual rainfall patterns -- the patterns is the key part, which really means seasonal. It doesn't mean annual flows. Annual precipitation -- although that hasn't changed either. So the statement is correct. Q. Now, you looked at precipitation over three different drainage areas in the ACF Basin. Right? THE REPORTING GROUP	compared to the period before 1970; is that right? A. That is correct. Q. If the blue line is higher in a particular month, that means there was more rain in that month before 1970 as compared to after 1980; is that right? A. That's correct. Q. And if the red line is higher in a particular month, that means there was less rain in that month before 1970 compared to after 1980; is that right? A. Correct. Once again, you're making the fatal statistical error of saying nothing about significance. Q. Let's look at April. For April, all three results show the blue line is higher than the red line; is that right? A. I'm not sure I can agree to that. But my eyes aren't quite good enough to go see that. April -- it seems to be the case, yes. Q. For May, all three areas show the blue line is higher than the red line; is that right? A. And you see light gray for all those; that's correct. THE REPORTING GROUP Mason \& Lockhart
A. That's correct. Q. There's the Chattahoochee, which you call the Georgia ACF; the Sumatra, which you call the entire ACF; and incremental, which is the Florida ACF. Is that right? A. That's correct. Q. Okay. Now, the blue line shows average rainfall in the period before 1970; is that right? A. That's correct. Q. And the red line shows average rainfall in the period after 1980; is that right? A. That's correct. Q. And when you compare the two, you can see whether for each month less or more rain has fallen in the period after 1980 as compared to the period before 1970; is that right? A. We also analyzed statistical significance. And if you look down there on the legend, it explains that if it's the black bar, it's statistically significant. Otherwise, it's not. Q. I'm going to ask my question again because you didn't answer it. By comparing the red line and the blue line you can see whether for each month less or more rain has fallen in the period after 1980 as THE REPORTING GROUP Mason \& Lockhart	Q. For July, all three areas show the blue line is higher than the red line; is that right? A. In light gray, yes. Q. For August, all three results show that the blue line is higher than the red line; is that right? A. Let's go back for a minute. Did you put July in there or did you conveniently omit it? Q. Dr. Lettenmaier, my question was for August all three results -- A. Okay. I need to -- Q. -- show -- A. I need the previous question. Was July one of the questions? I'm losing track of your questions. Q. I would like you to answer my question first. My question was for August do you agree that all three results show that the blue line is higher than the red line? A. That's correct. Q. Okay. And I asked you about July, but we can go back and ask about it again. For July, all three results show that the blue line is higher than the red line; isn't that right? A. I don't think that's correct for the incremental area, but I would have to go into my -- I'm just THE REPORTING GROUP Mason \& Lockhart

we get $8,274 \mathrm{cfs}$. Isn't that right?
A. As the unit conversion goes, yes. But that has nothing to do with streamflow.
Q. You didn't do any analysis to calculate how much less streamflow there would be in the ACF Basin if 8,274 less cfs of rainfall fell each day during April, May, July, and August; did you?
A. No. But I can give you a bounding estimate.

MS. ALLON: I have nothing else.
Thank you, your Honor.
SPECIAL MASTER LANCASTER: Thank you. Ms. Wine?

REDIRECT EXAMINATION
BY MS. WINE:
Q. Good morning again, Dr. Lettenmaier.
A. Good morning.
Q. I just want to back up a little bit to make sure that everybody has the big picture regarding your experience and your testimony here today.

So I introduced you earlier as a hydroclimatologist. Could you please explain what a hydroclimatologist is.
A. Sure. So the hydro part generally refers to hydrologist. And my technical training is in hydrology, which is basically saying how water THE REPORTING GROUP Mason \& Lockhart
gets in the rivers. The climate part has to do with the interaction between climate and hydrology. So, hence, hydroclimatology.
Q. And the interaction of climate and hydrology, does that mean that you look at climate factors in whether or not they are impacting a hydrological system?
A. That's correct.
Q. And how long have you been working in this field?
A. Well, my Ph.D. was 1975. The hydroclimatology part started in the ' 80 's. So back about 30 years.
Q. And what work have you done over the course of your career generally, apart from this case, to look at the impact of climate factors on hydrological systems?
A. Oh, I would lose track of the number of individual studies; but of the $\mathbf{3 0 0}$ or so papers I have written, at least 50 deal with that topic or various systems in the U.S., including the ACF as well as globally.
Q. And I just want to be clear about what your opinions are in this case. In this case, you have concluded that climate factors such as precipitation and temperature are not the cause THE REPORTING GROUP Mason \& Lockhart
of the decrease in streamflow in the Apalachicola River; is that correct?
A. That's correct.
Q. And you have further formed the opinion that seasonal changes and drought are not the cause of the decreases in streamflow in the Apalachicola River; is that correct?
A. That's correct.
Q. Okay. Now, I would like to walk through the methods that you used to arrive at those opinions. First, what climate factors did you consider in your analysis?
A. So the climate variables that we considered were actually of two types. The ones that are directly measured, and that's precipitation and temperature; and then certain other variables that affect hydrology, such as solar radiation, humidity and so on, which are derived from the observed variables.
Q. So, first of all, let's take the observed variables, precipitation and temperature. Why are those two variables that you looked at?
A. Well, so precipitation is the proximate cause or driver of streamflow. I mean, everybody at a very high level understands that if it rains THE REPORTING GROUP

Mason \& Lockhart
more, there is more runoff or streamflow than if it rains less. Precipitation is measured at a number of gages across the U.S. which are archived by NOAA, some 12,000 of them.

The other proximate factor that controls runoff in streamflow is what's called evapotranspiration, which is basically just the water that's returned to the atmosphere via plants, evaporation off the bare soil, and so on. That's somewhat more complicated because it in turn depends on a number of factors, one of which is temperature but also, and more importantly, solar radiation, and so on. And, hence, those factors we derive.

So we're looking at precipitation, which gets measured directly, and the other factors that influence evapotranspiration. And effectively runoff is the balance or difference between those two, precipitation minus evaporation. Precipitation minus evaporation in the long term is runoff.
Q. Okay. And I just want to make one thing clear.

When you talk about the proximate cause or the primary drivers of streamflow, you're talking about among the climate factors that could impact THE REPORTING GROUP

Mason \& Lockhart

here that -- you have got another one here. And I won't attempt from memory to say which in particular they are.

This is 1954; I can tell you that. And in the '30's, we have got three years clustered in here. So by no means of the imagination are these recent years in any way unprecedented.

Plotted down here is Professor Bedient's plot of the number of days in each year where the flow was below. And the blue lines, which are the highest bumps, is $\mathbf{6 , 0 0 0} \mathbf{c f s}$. It turns out the other ones are just smaller amounts.

What you see is, is if you go along here for these earlier droughts back in the ' 20 's and '30's -- and this is all at Chattahoochee Gage -there were 40, 50, about 60 in 1954, the drought of record, days on which the flow was below 6,000 cfs. That has just shot up during the recent drought until now where we have 180 days, even higher than that, we're up to $\mathbf{2 5 0}$ days, over half of the year where the flows are below $\mathbf{6 , 0 0 0}$.

There is simply no way that you can explain that by the fact that the precipitation was here about 10 inches below the long-term average. Something is going on here that is not related to THE REPORTING GROUP Mason \& Lockhart
the precipitation variability.
Q. Thank you. Now, sir, I would like to talk in a little bit more detail about your analysis of temperature and evapotranspiration. So for your temperature analysis, is it correct that you used the same seven gridded datasets that you did for the precipitation analysis?
A. Yes, we did.
Q. And I think you already said earlier that to the extent there was any trend in temperature and evapotranspiration, it was one that would actually suggest an increase in streamflow and not a decrease in streamflow; is that right?
A. Well, you have to be a little careful in the interpretation because, as I said, solar radiation is the primary driver of evapotranspiration. So if you look at the different datasets, most of them show -essentially all of them show either downward trends or no trend in temperature when you take the entire 100 years.

Okay. That perhaps is a little deceptive; but it follows what we know about climate in the -- across the U.S. and the Southeast in particular in that there was a warming period THE REPORTING GROUP Mason \& Lockhart
through the '30's. Then the temperatures dropped through about the '60's or so, and then they started sort of coming back up a bit.

So if you take the whole period over the ACF, you actually get downtrends.

If you look at post-1970 where the regional trend has come up a bit, some of the datasets -and it's about a quarter to a third -- show statistical significance. The others don't show anything.

Now, from the standpoint of solar radiation, it's this temperature range that is more important. One of the datasets shows a decrease in the temperature range post-1970. And the reason is that the minimum temperatures are going up more rapidly than the maximum, so the range narrows. That implies less solar radiation.

That's only in one of the datasets. Most of them -- in which case you get reduced evapotranspiration, which would imply more runoff. Most of the datasets say no statistical significance, which implies neutral with respect to runoff.
Q. Thank you.

SPECIAL MASTER LANCASTER: Excuse me, THE REPORTING GROUP Mason \& Lockhart 2452
counsel. How much longer do you think you'll be?

MS. WINE: I probably have about 10 minutes. Would you like to take a break now?

SPECIAL MASTER LANCASTER: I think we should.

MS. WINE: Okay. That would be great.
(Time Noted: 10:28 a.m.)
(Recess Called)
(Time Noted: 10:40 a.m.)
BY MS. WINE:
Q. Dr. Lettenmaier, before the break we were talking about your temperature analysis. And I just want to ask you a question about a term you used in your prefiled direct testimony. The term is warming hole. Do you recall using that term?
A. Yes, I do.
Q. And what does that term mean?
A. So this is a term that's been used by a number -in a number of other studies far predating my work on this case. And it simply refers to the fact that over the southeastern U.S. there has been less or actually no warming than over the rest of the country. And I think somebody actually thought the term doughnut hole maybe was THE REPORTING GROUP Mason \& Lockhart

	2453		2455
1	better.	1	treatment control experiment where the model is
2	But if you go look at -- there is a figure, I	2	actually the control relative to climate, because
3	think in my report -- and I don't remember if	3	nothing -- the climate is the same in the model
4	it's in prefiled direct -- where it shows an	4	as it is in the observations. And then the
5	absence of statistically significant changes in	5	observations are actually the treatment.
6	temperature over an area of the Southeast, which	6	Anything that man has done other than climate
7	actually pushes sort of west of the Great Plains	7	that would affect the streamflow are recorded in
8	and up into sort of the corn belt.	8	the observations.
9	And the Southeast is almost the southeast	9	So by looking at the difference, we can go
10	quadrant of the U.S.	10	see what man's effect on that basin has been.
11	Q. So the warming hole or the doughnut hole is	11	Q. And so in your modeling work for the climate
12	actually a hole in the southeastern part of the	12	variables, you used the same variables that we
13	country where we're not seeing the warming trends	13	actually see -- saw in actuality; is that
14	that we might be seeing elsewhere?	14	correct?
15	A. Exactly. And, again, I'm from the West; and very	15	A. That's correct. It's the gridded data.
16	substantial warming has been observed. We have	16	Q. Okay.
17	actually written on that about the effect on the	17	A. The gridded data essentially.
18	snow pack. So in the Southeast it's much more	18	Q. And what model did you use in order to do this
19	muted, if present at all.	19	rainfall --
20	Q. And what is the relevance of this warming hole to	20	A. So --
21	your conclusions here in this case?	21	Q. -- analysis -- rainfall runoff analysis?
22	A. Well, it's simply consistent with our finding	22	A. So there's two models. One, we looked at
23	that there's not been much going on with	23	Dr. Hornberger's results from PRMS. We simply
24	temperature.	24	were provided with his output. We did nothing
25	Q. In the area of the ACF Basin?	25	else with that.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	2454		2456
1	A. In the area of the ACF.	1	The variable infiltration capacity, or VIC
2	Q. Okay. Now, sir, you were asked a number of	2	model, which was developed by my group when I was
3	questions this morning regarding your residual	3	at University of Washington and Princeton
4	analysis; is that correct?	4	University some 20-plus years ago, is used in
5	A. That's correct.	5	four of the datasets. It's a slightly different
6	Q. And am I correct that your residual analysis was	6	form.
7	looking at rainfall runoff, and it was looking at	7	So there were a total of five different
8	the difference between modeled streamflow, so	8	datasets from which we were able to calculate
9	what you would expect streamflow to be, versus	9	residuals. Four of them based on VIC, one of
10	observed streamflow, what the streamflow actually	10	them based on PRMS.
11	was. Is that what your residual analysis was	11	Q. And this VIC model that you used, as you just
12	looking at?	12	said, it was developed a long time ago not for
13	MS. ALLON: Your Honor, these are all	13	purposes of this litigation?
14	leading questions.	14	A. That's correct.
15	These are all leading questions, your	15	Q. Okay. And were -- there were some questions this
16	Honor.	16	morning about whether the results of your
17	MS. WINE: I'm just trying to summarize	17	rainfall runoff modeling and Dr. Hornberger's
18	from this morning.	18	rainfall runoff modeling analysis were
19	BY MS. WINE:	19	consistent. In your view were they consistent?
20	But let me just ask you; can you please explain what your residual analysis looked at in terms of streamflow.	20	A. If you look on an annual basis -- and whichever
21		21	figure it is; and we may want to go pull it up --
22		22	but the panels that show on an annual basis PRMS
23	Sure. So let me put it in a slightly different way than I was able to earlier on. You can view	23	residuals and they show VIC residuals for
24		24	something called the Livneh dataset -- it happens
25	the residuals analysis as being analogous to a	25	the Livneh datasets were used as the inputs to
THE REPORTING GROUP			THE REPORTING GROUP
Mason \& Lockhart			Mason \& Lockhart

from Dr. Hornberger's prefiled direct testimony.
Is this a table that you're familiar with?
A. Yes, I am.
Q. And, sir, could you explain what is being depicted in this table.

And, again, if you need to use the pointer, if the Judge is okay with that, you can come around.
A. Sure. I think that would be best.

MS. WINE: Is that okay, your Honor?
SPECIAL MASTER LANCASTER: As long as he keeps his voice up.

MS. WINE: Okay.
BY MS. WINE:
Q. Please speak loudly, Dr. Lettenmaier.
A. Okay. Usually that's not a problem, but -people are usually telling me to quiet down.

I think it's easiest to look at the lowest part of the table, first, all of which is for annual. And what this is showing are two droughts, 1954 and 1955, way back in the record, and 2011-2012, more recently. And what you see, annual precipitation, 1954, 30.8. That was the drought of record in terms of precipitation; about $\mathbf{4 0}$ for the subsequent year, which also, if THE REPORTING GROUP

Mason \& Lockhart
2462
you remember the previous plot, is right down near that orange line. We look at the annual streamflow, 14,000 in 1954. And then the second year where you would expect it to be affected by the very dry year, it was still 11,000, okay. These are the two combined years that I believe are the driest of record.

Now, if you look at 2011-2012, with higher precipitation, below normal by about 8 inches or so in both cases, and you look at the -- and you look at the streamflow, you find 9796 the first year, 7599 the second. They're way lower even though the precipitation was higher.

The upper lines or entries here are basically the same thing except they compare summer, defined as the four-month period June through September, precipitation, '54-'55, 2011-2012. And it shows basically the same thing.

I mean, if you look at the first year, 1954, a little -- close to $9,000 \mathbf{c f s}$ in the summer flow. And the second year following the exceptionally dry 1954 is 9500.

Now, look at 2011. It's only about 60 percent of the same amount given -- even given that the precipitation was higher. And if you THE REPORTING GROUP

Mason \& Lockhart
look at the following year, which is only 3.3 inches below the long-term -- I'm sorry. I may not have that quite right. But it's only slightly below the long-term mean. It's got about the same. Way lower flows for the same low precipitation.

So what Georgia's experts have tried to argue is that, well, this is all about just dry periods. Dry periods, low streamflow. Of course, that's true. Low precipitation, low streamflow. But how much is the question?

And what's happened is the signal has been greatly amplified during these dry periods. This is just another way of looking at the previous visual which showed the number of years below a threshold. Same signal. These recent droughts have a way bigger streamflow response, meaning low streamflow response, than the ones earlier on record.
Q. And, sir, what does that way bigger response tell you about whether or not it's climate variables such as rainfall and temperature that are impacting the lower streamflows that we're seeing?
A. We have already established that there's nothing THE REPORTING GROUP Mason \& Lockhart

2464

exceptional about these recent droughts. So something has to be amplifying the signal. And, you know, Georgia has made an argument about land cover change, other kinds of land cover change, for instance, urban. We don't dispute that urbanization increases streamflow. But that actually makes the problem better. The problem would be even worse if there weren't an urban contribution. So it doesn't explain it.

The only thing that's leftover realistically -- you could argue reservoirs; and you could very quickly figure out that the reservoirs would have to be huge compared to what they are to hold back the water and keep it out of the stream. The only other thing is Georgia's consumptive use.
Q. Thank you, sir.

RECROSS-EXAMINATION

BY MS. ALLON:
Q. Dr. Lettenmaier, I would like to turn to page 2 of your direct testimony.
A. Yes, I have it.
Q. And in paragraph 2 e at the bottom of the page --
A. Yes?
Q. -- you testify that between 1950 and 2015

THE REPORTING GROUP
Mason \& Lockhart

Georgia's water use has reduced streamflow on the Apalachicola River. Do you see that?
A. I see that.
Q. Now, let's turn to Dr. Hornberger's analysis of consumptive use in his direct testimony at page 37, figure 7.
A. Yes.
Q. And if you look at Dr. Hornberger's analysis of consumptive use, he does not show any meaningful change in Georgia's consumptive use as between pre-and-post 1950; does he?
A. I'm totally confused by your statement. The graph is labeled consumptive use, and it's going up very substantially post-1970. I'm not sure -I don't understand.
Q. If you look at 1950, which is the year --
A. Yes?
Q. -- that you say Georgia's water use began reducing streamflow on Apalachicola River, my question is do you see that Dr. Hornberger identifies any shift in Georgia's consumptive use beginning in 1950?
A. Well, beginning -- there's a huge increase in the consumptive water use I see in that figure. I'm not quite sure where you're going. THE REPORTING GROUP Mason \& Lockhart

2466
Q. My question was looking at 1950 --
A. Yes?
Q. -- does 1950 show any change in consumptive use as between 1949 and 1950, 1950 and 1951; any years around those periods do you see a change in consumptive use in Dr. Hornberger's figure 7?
A. That's not what you asked earlier.

Around 1950 and the decade before that and after that it's fairly constant at a very low level.
Q. And let's turn to page 3 of Dr. Hornberger's written direct.
A. Page which, 3?
Q. Yes. And I want to call your attention specifically to paragraph (e) where he says Georgia consumption of ACF water has escalated significantly. Do you see that he says since about 1970?
A. That's correct.
Q. Okay. And do you see in the following sentence he says, irrigation in the Georgia portion of the ACF was not prevalent prior to 1970. Do you see that?
A. I see that.
Q. Are you aware that you are the only Florida
expert who claims there has been an impact from Georgia's consumptive use before 1970 ?
A. I haven't claimed that.
Q. Dr. Hornberger, you said before -- Dr.

Lettenmaier, you said before that you hadn't reviewed Dr. Hornberger's direct testimony. Do you recall that?
A. That's correct.
Q. And you didn't know what his estimate of Georgia's consumptive use was; is that correct?
A. That's correct.
Q. And --
A. I know -- excuse me. I know in general terms. I don't know what he put in his testimony.
Q. You weren't able to say whether your peak estimate of streamflow decline is even within 5,000 cfs of Dr. Hornberger's estimate; is that right?
A. Your -- that's what I said here?

I don't think so.

Q. Are you able to tell the Court whether your peak estimate of streamflow decline is within 5,000 cfs of Dr. Hornberger's estimate?
A. I don't know what Dr. Hornberger's estimate is. Is that the previous figure? THE REPORTING GROUP Mason \& Lockhart

I would need to look back at it.

MS. ALLON: I have nothing further, your Honor.

MS. WINE: I have nothing further.
SPECIAL MASTER LANCASTER: Doctor, excuse me.

THE WITNESS: Oh, sure.
SPECIAL MASTER LANCASTER: You will forgive me for not looking directly at you; but I have chided others about speaking into the microphone, so I'm going to have to be speaking into the microphone rather than addressing you.

What do you mean by statistical significance?

I'm a layman.
THE WITNESS: Sure, okay. So the concept of statistical significance is simply to be able to establish with some probability that a result is not just due to random chance. Okay?

So to give you an example, you give me a coin which may or may not be biased. Maybe it's a weighted coin; maybe it's a fair one. I flip it 100 times. I get 60 heads. Now,

THE REPORTING GROUP

Mason \& Lockhart

A. That's correct.
Q. And your testimony discusses the Army Corps operation of those reservoirs. Right?
A. Among other things, yes.
Q. You're aware that Florida retained another expert, James Barton, on Army Corps reservoir operations; aren't you?
A. Yes, I understand that they did.
Q. And are you aware that Mr. Barton actually worked for the Army Corps for nearly 30 years?
A. I was aware he worked for the Army Corps for a long time, yes.
Q. And are you aware that Mr. Barton actually managed reservoir and dam operations for the Army Corps?
A. I'm -- I'm not sure of his exact job; but I knew it was something of that sort in any case.
Q. And you don't have any reason to think that the description he put in his expert report is in any way inaccurate. Right?
A. That's correct.
Q. And are you aware that Mr. Barton has been involved with planning and making decisions about how to actually operate reservoirs?
A. Not off the top of my head, but that does not THE REPORTING GROUP Mason \& Lockhart
surprise me. I can accept that.
Q. Are you aware that when Mr. Barton worked for the Army Corps, he actually decided how much water to release and what level to hold the reservoirs to?
A. I'm -- I don't know his job function to that specificity.
Q. Dr. Shanahan, you don't have 30 years experience working for the Army Corps operations. Do you?
A. I have -- I have not been an employee of the Army Corps. I have worked for them, but certainly not continuously for $\mathbf{3 0}$ years.
Q. You have never been employed by the Army Corps. Right?
A. I have never been an employee. I have worked on a number of projects completed for the Army Corps of Engineers and have written computer models of operating systems, for example, for the Army Corps of Engineers.
Q. You don't have any experience managing reservoirs anywhere; do you?
A. No. That would not be the -- that would not be the kind of work that I do. I tend to do more analysis and modeling work.
Q. Before this case, you had never testified as an expert on reservoir operations; had you?

THE REPORTING GROUP
Mason \& Lockhart
A. No. My prior work did not involve testimony.
Q. So you would agree that Mr. Barton has more experience with real world reservoir operations than you do?
A. I suppose he does, yes.
Q. And you would agree that Mr. Barton has more direct experience working with Army Corps reservoir and dam operations than you do?
A. I suppose he does. I mean, we have different kinds of experience. But for that particular type of work, I assume he does.
Q. Now, let's talk specifically about the Corps models. You offer opinions about ResSim, the Corps' computer model for simulating reservoir operations. Right?
A. I do, yes.
Q. And are you aware that Mr. Barton has actual firsthand experience using ResSim for reservoir operations?
A. I'm not aware of that.
Q. You didn't have any experience with ResSim before this case; did you?
A. Not ResSim per se. As I said, I have actually written models of that sort; so I have experience with other very similar models. THE REPORTING GROUP

Mason \& Lockhart
Q. And even in the context of your work on this matter, you had never actually run ResSim yourself. Right?
A. No. We had other folks who were doing the day-to-day runs.
Q. Now, Florida isn't calling Mr. Barton to testify in this case; but we had the opportunity to depose him. So I would like to ask you about some of his opinions on Army Corps reservoir operations in the ACF Basin. Are you aware that Mr. Barton testified that ResSim is widely used because the model is very dependable?
A. I don't recall that specific testimony.
Q. Are you aware that Mr. Barton testified that ResSim is widely used because the model is reliable?
A. Again, I don't recall that specific testimony. Can you point me to a document or --
Q. Okay. Well, we can take a look at Mr. Barton's deposition transcript in a moment. But you disagree with Mr. Barton, Florida's expert on Army Corps operations, that ResSim is reliable; don't you?
A. Certainly I -- I disagreed with his opinions regarding the applicability of ResSim. Whether I THE REPORTING GROUP

Mason \& Lockhart

2485	248
A. Again, let me look at the context. Well, the answer appears to be -- appears to be correct within the specifics of the example he gives on the preceding page. I would not agree with that as a general characterization, however. Q. All right. Thank you. Dr. Shanahan, your opinion is that the Army Corps uses its discretion to release more water into Florida than is required by the 5,000 cfs minimum flow under the RIOP; isn't that right? A. Well, recognizing that $\mathbf{5 , 0 0 0} \mathbf{c f s}$ is just one part of the year and one particular set of conditions. But my -- my opinion is based on reviewing the data records and so forth that the Corps routinely releases more than the minimum. Q. Your opinion is that the Corps deliberately releases more than the minimum; isn't that right? A. Yes. Q. Your opinion is that the Corps consistently and routinely releases more than the minimum; isn't that right? A. Yes. That's what my evaluation of the historical data indicated. Q. Dr. Shanahan, in your direct testimony and in the two expert reports you have submitted in this THE REPORTING GROUP	Q. Now, your opinion is that the Corps has what you call significant incentive to use discretion to make releases in excess of the minimum based on the need to protect threatened and endangered species downstream; isn't that right? A. Yes. Among other things, yes. Q. Dr. Shanahan, in your direct testimony and in your two expert reports in this matter, you don't cite to any statement from the Corps itself saying that they release more than the minimum because of an incentive to protect downstream fish and wildlife; do you? A. No, I don't believe I do. Q. And you never spoke to anyone at the Army Corps who told you they were incentivized to release more than the minimum based on the need to protect downstream fish and wildlife. Right? A. No. That was an inference I reached by reading the biological opinion prepared by U.S. Fish and Wildlife Service. Q. You can't point to a single statement by the Army Corps where they say they are incentivized to release more than the minimum to protect downstream fish and wildlife; can you? A. No. I don't believe I have seen that -- that THE REPORTING GROUP Mason \& Lockhart
matter, you don't cite to any statement from the Corps itself saying that they use their discretion to release more than the minimum. Do you? A. I -- I know there is a document where the Corps discusses releases more than the minimum and their intent to do so. But I can't recall if that is cited in those -- in the reports or the testimony. Q. You never spoke to anyone at the Army Corps who told you they use their discretion to release more than the minimum; did you? A. Not in those words. However, I have had a discussion with the operator at Jim Woodruff Dam; and at that point they were releasing more than the minimum. Q. Did the operator at Jim Woodruff Dam tell you that the Corps uses its discretion to release more than the minimum? A. As I said, he did not use the term discretion; but obviously if they're releasing more than the minimum, they're using their discretion. And, you know, in their discussions of the RIOP, they make very specific reference to their discretionary releases. THE REPORTING GROUP Mason \& Lockhart	specific statement in the document. Q. Now, you say that the Corps often releases significantly more water than the minimum. Right? A. That's correct. Q. And when we're talking about times that the 5,000 cfs minimum is in place, your opinion is that these releases in excess of the 5,000 minimum show that the Corps uses its discretion to deliberately release more than required to protect downstream fish and wildlife. Right? A. That they deliberately released more than the minimum to protect downstream fish and wildlife, among other possible purposes. Q. Your support for this opinion is your analysis of the recorded flow values at the Chattahoochee Gage. Right? A. That's correct. Q. And you say that the recorded releases show that the Corps routinely released flows well above $5,000 \mathrm{cfs}$ when the $5,000 \mathrm{cfs}$ was in place. Right? A. Correct. Q. Now, you don't quantify the number of days with releases above 5,000 cfs in your testimony; but THE REPORTING GROUP

5,000 cfs at Woodruff Dam when that minimum flow target is in effect; don't you?
A. Yes. As I understand it, they have -- you know, they have controls on how much goes through the turbine; and those are not necessarily precise.
Q. So some portion of the releases you identified, the ones we just looked at as being in excess of 5,000 cfs, at least some of those days may be a result of this inherent imprecision and not a deliberate exercise of the Corps to protect downstream fish and wildlife; isn't that right?
A. Well, I -- the Corps understands the degree of imprecision, I believe. They recognize that it exists. And so I believe they account for that in their releases. And as I said, you know, it -- that would benefit fish and wildlife -that conservatism in their operations would benefit fish and wildlife.

You know, it's not necessarily being done specifically and only for protection of fish and wildlife; but it's certainly being done and the Corps would understand the benefit to fish and wildlife of being conservative and releasing additional water.

When you actually look at the record, they THE REPORTING GROUP Mason \& Lockhart
released a very considerable sum of additional water even over 2012, for example, that we were just looking at.
Q. Dr. Shanahan, I'm going to try to ask you to answer my question because my question was very narrow; and you didn't answer it.

My question was do you agree that some portion of the releases we just looked at where you quantified days with releases in excess of $5,000 \mathrm{cfs}$, at least some of those days the excess release may have been a result of the inherent difficulty with making a precise release of 5,000 cfs at Woodruff Dam?
A. Some maybe, but recognize that that's a -- that's a small increment. That uncertainty is a small increment; so it would not particularly affect, you know, the majority of these bars that you see in the chart.
Q. But you haven't done any analysis to be able to tell the Court which portion of those days or how much of those excess releases we just looked at were caused by the practical difficulty of achieving an exact 5,000 cfs release?
A. Well, I would say -- I would say I have. In fact, you asked me about this during my THE REPORTING GROUP Mason \& Lockhart
deposition. And I indicated that the Corps has a -- in some of the reports have indicated that they released 5,050 cfs to basically account for this uncertainty. So if you look at this chart, the error bars are in 50 cfs intervals, so you might affect that very first interval. But it's only -- the difference is $\mathbf{5 0} \mathbf{~ c f s ; ~ s o ~ i t ' s ~ n o t ~}$ going to appreciably alter the chart that you see there.
Q. Your testimony is on each of the days you identified as having flows in excess of 5,000 cfs, 50 of those cfs may have been caused by the practical difficulty of achieving a precise release?
A. That's -- that's what I gathered from what the Corps has published. It's --
Q. You also agree that the Corps makes releases in excess of 5,000 as a margin of safety so as not to go close to or below the minimum. Right?
A. Yes. That's what we were just discussing, the 50 cfs is that margin of safety.
Q. Let's turn to JX-124.

MS. ALLON: And, your Honor, this is the very large exhibit that we looked at before and that I have excerpted. THE REPORTING GROUP Mason \& Lockhart

BY MS. ALLON:
Q. If you look at tab 1, you can see that this is the DEIS. Dr. Shanahan, do you see that?
A. Yes, sir. A very slimmed-down version.
Q. And you're familiar with Army Corps' DEIS. Right?
A. Yes.
Q. Let's turn to tab 9. And do you see behind tab 9 where it says table 2.1-6?
A. Yes, I do.
Q. You're familiar with the RIOP's maximum fall rate rules. Right?
A. Yes.
Q. The fall rate rules are part of the RIOP just like the 5,000 minimum cfs is. Right?
A. Yes.
Q. And the fall rate schedule in table 2.1-6 limits how fast flow can come down from a previous day's high. Right?
A. I don't think that's exactly right.
Q. Well, it says when the Corps comes down from higher flow, sometimes they have to come down slowly. Right?
A. Well, yes. I mean, too abrupt a change in flow would be harmful to the downstream biological THE REPORTING GROUP

Mason \& Lockhart

	2497		2499
1	populations. But I believe this is based on -- I	1	population. So they tend to keep a pretty steady
2	believe it's based on daily averages; and I don't	2	rate. So the fall rate doesn't come into play
3	know that you have given me enough to	3	very much at all.
4	double-check that here.	4	Q. Dr. Shanahan, do you recall giving a deposition
5	So it's not the previous day's high, which is	5	in this case?
6	what you asked. It's based on -- I believe it's	6	A. I do.
7	based on the daily average number. So it's not	7	Q. And there was a court reporter. Right?
8	quite what you asked in your question.	8	A. Yes.
9	Q. Table 2.1-6 says that the Corps can only go down	9	Q. And you were under oath?
10	so many feet of river height per day. Right?	10	A. Yes.
11	A. That's correct.	11	Q. And you did tell the truth. Right?
12	Q. So if the Corps enters a time where the 5,000 cfs	12	A. Yes.
13	minimum is in effect, it might not immediately be	13	MS. ALLON: Your Honor, may I hand up a
14	able to drop its releases to 5,000 cfs because of	14	copy of the witness's deposition transcript?
15	the maximum fall rate rules. Right?	15	BY MS. ALLON:
16	A. That could happen.	16	Q. Dr. Shanahan, could you please turn to page 315
17	Q. And the consequence of this is that you would	17	of your deposition transcript. And at line 23, I
18	have more days above 5,000 cfs while the Corps	18	asked you, for any of these analyses reflected in
19	drops down in accordance with the maximum fall	19	figures 3 through 8, did you consider whether any
20	rate. Right?	20	of the days where releases were in excess of
21	A. Yes. That -- that could be possible.	21	$5,000 \mathrm{cfs}$ were a result of the maximum fall rate
22	Q. You haven't done any analysis to determine	22	schedule under the RIOP?
23	whether any of the days you identified as having	23	Answer. No.
24	had releases in excess of 5,000 cfs were a result	24	Were you asked that question, and did you
25	of the maximum fall rate schedule of the RIOP.	25	give that answer?
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	2498		2500
1	Right?	1	A. Yes. But as I said in my prior answer today, I
2	A. No, that's not correct. I have -- Dr. Bedient, I	2	have subsequently done an analysis to look at
3	believe -- either Dr. Zeng or Dr. Bedient, maybe	3	some specific claims made by Dr. Zeng and
4	both of them, made claims regarding the maximum	4	Dr. Bedient. So I have done work now since then
5	fall rate. And so I have done a detailed review	5	to look at their very specific claims about
6	of those. And what I have found actually is that	6	maximum fall rate and tested -- basically tested
7	they seem to exercise discretion even during the	7	their claims.
8	fall rate. They will keep a lower fall rate than	8	And Dr. Zeng has a place in his testimony
9	they're required to, so they will let the water	9	where he points to certain actual files and says,
10	go down even more gradually. So there is	10	if you look at these, you will see it supports
11	discretion in their application of the fall rate	11	that the -- the notion that the maximum fall
12	as well.	12	rate -- excuse me -- no, excuse me. No, that --
13	But I guess the other point I would make is	13	that's not about the maximum fall rate; that was
14	when you look at those -- for example, the graphs	14	about the maximum head limit.
15	that I have in my report of what the flow looks	15	But elsewhere he or -- he or Dr. Bedient made
16	like over time, the fall rate only comes into	16	aims about the maximum fall rate. And I
17	play when the flow rate changes. And the Corps	17	evaluated those specific claims and found that
18	tends to keep the flow at a pretty even level.	18	they didn't hold up.
19	And, for example, in those bar charts where	19	Q. So this new analysis that you're describing you
20	you saw flows clustered around a certain, you	20	did after you received the written direct
21	know, level, that's reflecting the fact that the	21	testimony from Dr. Zeng and Dr. Bedient; is that
22	Corps keeps the water level at a pretty constant	22	your testimony?
23	rate. And there's good reason for that. I mean,	23	A. Yes. They had some new -- some new things to
24	up and down would be problematic downstream for	24	evaluate in there; so I took a look at those.
25	the wildlife, the fish, and the biological	25	Q. Now, one category of special operations that can
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

A. Yes, U.S. Army Corps of Engineers.
Q. And if you look about halfway down, do you see where it says -- the last word in the sentence, USACE selected? Do you see that?

It's right after --
A. Yes.
Q. Okay. And the Corps has said that it selected ResSim as the tool most capable of faithfully representing District water management practices. Do you see that?
A. I do; but then they -- you know, on line 35 they also point out that -- they say, ResSim falls under the category of engineering models used in planning studies.
Q. Dr. Shanahan, do you see that the Corps said, at the culmination of a three-year model development and verification process, it selected ResSim as the tool most capable of faithfully representing District water management practices. Do you see that?
A. I do. But I think we have to be careful in understanding the context in which they are describing this. And they're describing it in the planning process that I just described. They use this to evaluate possible alternative THE REPORTING GROUP

Mason \& Lockhart
2518
operating plans. And it's -- they're really asking different questions than, for example, Dr. Bedient was asking when he used ResSim.
Q. You don't disagree that in what you call the planning process, the Corps has said that ResSim is the tool most capable of faithfully representing District water management practices; do you?
A. No. I think it's a -- it is a good tool. It is a good tool that's available for that planning type of analysis. But that does not mean that the kind of purpose for which Dr. Bedient put it is appropriate.

I -- you know, I don't want that to be misconstrued. ResSim is like any model. Any model entails certain approximations, certain assumptions. You basically have to tailor your model to what you want to do with it.

And they are using ResSim for a particular purpose. They're using it for -- at a planning level studies with a simulated, long history and evaluate kind of overall differences. But it is not appropriate, for example, to answer the question that I was looking at is what happens at low flow? What happens at 5,000 -- you know, THE REPORTING GROUP Mason \& Lockhart
when the rule says 5,000 cfs and the Corps of Engineers is discharging more? It's not an appropriate tool to look at that question.
Q. But as we have said before, you agree the Corps knows more about its own model than you do. Right?
A. Well, I -- I assume they do. But they have not -- I haven't heard their opinion of how Dr. Bedient used it. And I don't -- I don't -they have not used it in the same way he has to answer the kind of specific questions that he has.

MS. ALLON: Your Honor, I have nothing
further.
Thank you.
THE WITNESS: Excuse me. REDIRECT EXAMINATION

BY MR. QURESHI:
Q. Good afternoon, Dr. Shanahan.
A. Good afternoon.
Q. You had some questions there at the end about ResSim and modeling, and we'll certainly get to those. But I would like to start by understanding what tools you used in your analysis, sir.

THE REPORTING GROUP
Mason \& Lockhart
A. I actually used comparatively simple tools. The primary tool that I used was the Microsoft Excel spreadsheet program. And what I did was I obtained the actual records that are published by the U.S. Geological Survey as far as flows in the river. And the Corps has really an astoundingly complete record of the inflows and outflows and reservoir elevations for the entire history of when these projects have been in place.

So I used those actual historical records and then basically did bookkeeping. I looked at where the inflows were coming into the system and were -- you know, what happened to those and how they came out of the system. So it was really a bookkeeping operation done on Microsoft Excel.
Q. Okay. And over what time horizon did you evaluate these historical records, sir?
A. It varied a little bit. The Geological Survey records date back to the late 1920's. And for certain comparisons, I used that entire record. But primarily I used -- I looked more specifically at the period from 1980 to the present, which is a period over which the operating rules are more or less similar to what they are today, as far as I know. And I THE REPORTING GROUP Mason \& Lockhart

	2525			2527
	the remaining 35 percent of the storage is in	1		storage in that downstream reservoir.
2	these two reservoirs. And they drain a much	2	Q.	ank you, Dr. Shanah
3	larger area. And so the amount of water that's	3		Dr. Shanahan, when you were discussing the
4	going into those reservoirs in an average year is	4		ater that is in the basin and making its way
5	much greater.	5		into Florida, were you excepting from your answer
6	So West Point, there is enough water that	6		the water that's consumed in the Georgia portion
7	goes in to fill and empty its bucket, if you	7		the basin
8	like, seven times a year. W. F. George, it's	8	A.	I didn't -- accepting or excepting?
9	over 10 times a year. So that contrasts with one time a year up here.	9	Q.	ecluding. The water that's consumed in Georgia
10		10		n't make it to Florida?
11	The other thing that's different here is	11	A.	That's right. Consumptive use basically is water
12	Buford -- Lake Lanier lies just upstream of	12		at disappears and would not make it to Florida.
13	the Atlanta metropolitan area. So it's really	13		kay. Sir, having understood your description of
14	got a very large -- the largest municipal and	14		e system geography, can you explain how your
15	industrial demand in the basin, very large and	15		view of the historical record is consistent
16	insistent demand for water immediately	16		with the explanation you just provided?
17	downstream. In contrast, there really aren't	17	A.	Well, yes. As I said, I looked at really the --
18	anywhere near the kind of large demands in	18		ou know, how the system has actually been
19	area B. So you have a situation where you have	19		operated in the past. And in hydrology, we very
20	got relatively -- you know, comparatively	20		pically do that and look at that as an
21	plentiful water compared to the storage available	21		indication of how things will go in the future.
22	and not anywhere near the same kind of demand on	22		And so I looked at the Corps operations, and
23	those reservoirs.	23		hat you find is that West Point and W. F. George
24	And for that reason, the Corps is able to	24		sically pass water during the dry time of year.
25	basically dispense that water more freely. And THE REPORTING GROUP Mason \& Lockhart	25		So during the summer and the fall, they do not THE REPORTING GROUP Mason \& Lockhart
	2526			2528
1	they discuss how in their documents the fact that	1		increase their storage, at least not on a
2	they draw on those reservoirs really much more	2		month-to-month or seasonal basis. They basically
3	quickly than they would draw on the upper	3		let whatever water that comes in, passes through
4	reservoir because it has so much more storage	4		those reservoirs. And in addition, they release
5	available.	5		some of their storage. And so that's quite
6	Now, finally there is area A; and that's in	6		nsistent with this architecture
7		7		And then as well, the water that comes out of
8	Georgia, so the majority of the land area. And	8		ea A, as I said, simply as a matter of
9	this is what is known as an unregulated basin.	9		hydrology has to go to Florida.
10		10	Q.	Dr. Shanahan, during your cross-examination you
11	But it has very, very little storage within it.	11		re asked questions about Corps discretion and
12	It's -- as I said earlier, it's what I call a	12		whether or not the Corps would actually release
13	run-of-the-river reservoir. The river basically	13		ore than 5,000 cfs into the Apalachicola River.
14	runs right through it. So this whole area here	14		Based on your understanding of Corps operations
15	has really no storage capacity. The water that's	15		and the historical record, why might have the
16	generated in that -- you know, from that area	16		Corps released more than 5,000 cfs in the past?
17	goes down to Lake Seminole; and it basically has to run through.	17	A.	Well, certainly the -- when you look at what the
18		18		Army Corps has written about their system
19	There is no capability to hold it back in	19		erations, they talk about the fact that it's --
20	that basin. So that water, you know -- if any	20		s something of a balancing act, that they have
21	extra water is generated within this area, that	21		multiple authorized purposes; and they're
22	has to go to Florida. There is not a way to hold	22		attempting to meet those purposes. So the Corps
23	that water back and prevent it from going to	23		has a number of reasons why they would want to
24	Florida. And it will go to Florida relatively	24		release water.
25	quickly because there is such -- there is no	25		For example, one of the authorized purposes
	THE REPORTING GROUP			THE REPORTING GROUP
				Mason \& Lockhart

is hydropower. We talk about how valuable the hydropower is to this region, how it reduces electricity costs. And the nature of the hydropower is really a -- is really beneficial. And so they have those incentives.

But then as well, I discussed this -- I have discussed the fact that there are sensitive species in the downstream waters, in the waters in Florida, and that the Corps has been through a lengthy process of consultation and interaction with the U.S. Fish and Wildlife Service. And so they do have an incentive to enhance those biological populations -- to enhance conditions for those. And, in fact, the U.S. Fish and Wildlife Service has found that there are impacts even below 10,000 cfs. So they have incentive to try and release, you know, more water than 5,000 cfs.
Q. Sir, counsel for Georgia challenged you to locate statements from the Corps in which it discusses its discretion and its incentives. And I know we have JX-124 in our cross-examination binders, but as counsel pointed out, that only contains excerpts and not all of the excerpts.

MR. QURESHI: So with the Court's THE REPORTING GROUP Mason \& Lockhart
permission, I would like to hand out additional pages from 124.
BY MR. QURESHI:
Q. In particular, Dr. Shanahan, I would like to direct you to page 6-35 of JX-124. And I would ask you to review lines 9 through 16.

After you have had an opportunity to do so, please explain how this discussion is consistent with your understanding of how the Corps operates.
A. Yes. This language is really some very specific language as to how the Corps interprets how much water they have to release from the projects. And they distinguish what they call mandatory minimum flow requirements and then nonmandatory flow targets and goals.

And so there are certain absolute minimum flow requirements. The -- for example, the -there is a requirement to release a certain amount of water from Buford Dam up at -- up at Lake Lanier in order to preserve the water quality in the reach of the Chattahoochee River downstream of Atlanta where a lot of wastewater from the Atlanta treatment plants come in. They need that water to basically assimilate the THE REPORTING GROUP
Mason \& Lockhart
wastewater. So there's a requirement in the Corps' mind, and they define a number of those.

But then they also have what they call nonmandatory flow targets. One example, for example, downstream -- just upstream of Lake Seminole on the Chattahoochee River there is a nuclear power plant, Farley nuclear power plant. And if the flow in the river drops below $\mathbf{2 , 0 0 0}$ cfs in the Chattahoochee River at that downstream location, Farley runs into some difficulties in withdrawing, circulating water for their cooling down their nuclear power plant from the river. And so, you know, the Corps, for example, says that they consider that -- I forget what -- I think the language they use is they give that serious consideration. They don't want the water to drop down to a level that would be problematic for the Farley nuclear power plant. So that's not a requirement per se; but that's a judgment the Corps makes. And they use their discretion to -- to meet that requirement.
Q. Similarly, Dr. Shanahan, you refer to the biological opinion and information in that document that might support your belief that the Corps would release more than 5,000 cfs and, in THE REPORTING GROUP Mason \& Lockhart
fact, has. I would like to show that document now. It's JX-168.
A. Okay.
Q. Dr. Shanahan, I'll refer you to pages 43 and 44 and ask you to read the paragraph on low flows to yourself and then explain how this is consistent with your belief that additional water into the system will be released into Florida, particularly during drought years.
A. Okay. Just one correction. I think you identified this as JX-168. But --
Q. I'm sorry. It's JX-72.
A. That's right, yes. That's what I have anyway.
Q. Thank you. It's on page 43, sir.
A. Yes. I'm -- could you just repeat your question?
Q. Sure. Could you explain how this discussion is consistent with your understanding that additional basin inflow will make its way into Florida, particularly during drought years?
A. Okay. This is a good discussion of the fact that -- as they say here, extreme low flows are likely among the most stressful natural events faced by riverine biota. And they go on to explain why it is so stressful and basically why it is so important to have higher flows. And THE REPORTING GROUP Mason \& Lockhart
they say, you know, given the physical and biological harshness of extreme low flow conditions, decreasing the magnitude, increasing the duration, or increasing the intra-annual frequency of low flow events is likely to cause detrimental effects on native riverine biota.

So they make quite clear that low flow is bad. More frequent low flow is bad. Longer period of low flow is bad. So they obviously have stressed in this document the importance of maintaining higher flows.
Q. Thank you. Dr. Shanahan, are you familiar with the work that Georgia's expert, Dr. Bedient, has performed in this matter suggesting that the Corps will always release 5,000 as a target into the Apalachicola?
A. Yes, I am.
Q. Okay. And have you had an opportunity to review some of the demonstrative exhibits that Dr. Bedient prepared?
A. Yes.

MR. QURESHI: Your Honor, I would like to show him one of those.
BY MR. QURESHI:
Q. This is Bedient demo 5 in the left-hand corner. THE REPORTING GROUP Mason \& Lockhart

2534
And, Dr. Shanahan, I would like for you to explain to us what analysis you performed on this particular exhibit?
A. As I recall, Dr. Bedient used demo 5 and demo 6 to try and make the point that the flow was basically 5,000 cfs coming from Woodruff Dam during low flow periods in 2001 and 2012. And certainly, when you look at his exhibit and given the scale that is used for the vertical axis on that exhibit, it looks like the flow is right about 5,000 cfs.

And so I looked at this and -- looked at it more carefully and specifically the graph on the lower right on both pages. I blew up that low flow period. And as you can see, my axis on the first page goes from 4700 to 5500. So I'm really looking at just a period of when the flow was around 5,000 cfs. And as you can see, the flow is consistently greater than $\mathbf{5 , 0 0 0}$ cfs. On the first page it's shown as around 5100 and at times much greater. Similarly, on the next page, it's shown as around 51 to 5200, and at other times much greater.

I guess one caution with this is, as you see, the -- at the top of this it says Source

THE REPORTING GROUP
Mason \& Lockhart

Provisional Data in GX-143. So GX-143 is a database that Georgia EPD had put forward that they say they maintain. It's -- it's not a published database. It's -- what they say it is is the provisional data that the U.S. Geological Survey collected.

So the USGS will make measurements. They will come out with an initial estimate of what flow is. But then they will go through quality assurance procedures and so forth and update that. So the record that's published on the internet that hydrologists use is, for the most part, data that has a little A after the number, which means accepted. Sometimes there's a little E, which means estimated. And it's only the most recent data that gets a P, which is provisional.

Well, this record is something that they have indicated is the provisional data. The provisional data aren't -- you know, stay on the internet for a very short while and then disappear. So there is not a complete record of provisional data to compare this with.

But I have found excerpts of the USGS provisional data, and these numbers are not the THE REPORTING GROUP

Mason \& Lockhart
2536
same. So even though it's portrayed as the U.S. Geological Survey provisional data, it is not, at least for the instances when I found the data.

The database also that was provided is somewhat curious. I mean, it has gaps in it. It's kind of piecemeal. It's in two different pieces. But I guess the other thing that's really quite curious is Dr. Bedient indicates that he used that database. However, we have received the Microsoft Excel files that Dr. Bedient, you know, has his data in. And when we compared those data with the data that are in GX-143, which is what he contends is the source of his data, there are differences there as well.

So to be honest, I don't quite know what this database is. It's not an official published database. And I think the problems that I have found points out why people don't use those kinds of databases. They use the official databases that are published by the U.S. Geological Survey. They're available to everyone. Anyone can go and check your work by looking at the official database.

I don't quite know what this database is that they're using.

THE REPORTING GROUP
Mason \& Lockhart

A. Okay.
Q. And we're going to come back to that. I just want to know is that something you have said in the past?
A. It's always good to check and confirm that.
Q. Please do. GX-248, tab 4.
A. Okay.
Q. Page 1.
A. Okay. Yes. Thank you. You have read that correctly.
Q. That's in the first paragraph -- I'm sorry, the first sentence of the second paragraph. Correct?
A. That's right.
Q. Okay. We're going to come back to that report, Dr. Kondolf. Right now, I want to walk through your analysis of the various portions of the Apalachicola River that you address in your direct testimony. Okay, sir?

Now, on page 4 of your written direct you have a map of the entire Apalachicola River. Correct?
A. Yes. That's correct.
Q. Okay. And just to make things easy, because I'm going to refer to that a lot, we have included a demonstrative which is essentially just a much THE REPORTING GROUP Mason \& Lockhart
larger picture of that river right from your testimony. It's behind the demonstrative tab in the back. And it's the first picture. And I have also put it on the screen so we can all follow along.

Now, as we look at the map, Dr. Kondolf, you have divided it into different sections. Correct?
A. That's correct. This map shows the different sections which I adopted from the U.S. Geological Survey categories.
Q. Okay.
A. Their divisions.
Q. And you have little numbers as you go along the river. Do you see on the screen I'm pointing at 100 ; is that right?
A. That's right.
Q. And just to -- to level-set what that means is that's the number of miles from Apalachicola Bay that you're at in the river. Correct?
A. That's correct.
Q. Now, you have what you call here the upper riverine or the upper reach; is that right?
A. That's right.
Q. And that extends from about river mile 106, which THE REPORTING GROUP Mason \& Lockhart
is right at the Jim Woodruff Dam at the state line, and that goes down to about river mile 80. Correct?
A. That's about right. Yes.
Q. Okay. And then you have a middle reach which extends from about river mile 80 down to river mile 42. Correct?
A. I forget exactly if it's $\mathbf{4 0}$ or $\mathbf{4 2}$. But somewhere around there.
Q. Down around Wewahitchka?
A. That's right.
Q. And that's the middle reach. Correct?
A. That's right.
Q. And then you have the lower riverine reach or the lower reach, which goes from about 42 to 20 . Correct?
A. Right. To approximately 20, right.
Q. And then everything south of 20 , which is where that Sumatra Gage is that's been mentioned in court previously, that's called the tidal region. Correct?
A. Right. The river itself is classified as tidal. The floodplain is not tidal down to about river mile 12.
Q. So let's start with the upper reach of the THE REPORTING GROUP Mason \& Lockhart

Apalachicola River. It's the portion that's right beneath Jim Woodruff Dam and, as you say, goes doing to about mile 80. Okay?

And I want to start, if you could turn to tab 3 in your book, tab 3 has a GX-72 behind it. And this is a document that we looked at on the first day of trial with Mr. Ted Hoehn. Have you seen this document before?
A. No, I haven't.
Q. You haven't. Now, Mr. Hoehn created this presentation called Apalachicola River Damage. Do you see that?
A. Yes.
Q. And the picture on the front page of this document, that's Jim Woodruff Dam. Correct? Do you recognize that?
A. I assume it is. I -- I don't know the dam. I assume it is the dam.
Q. Okay. And you can see water coming through the dam and some people watching. Correct?
A. Uh-huh.
Q. Now -- do you agree?
A. Yes.
Q. Okay. Now, this dam sits right at the

Florida-Georgia border. Correct?
THE REPORTING GROUP
Mason \& Lockhart
A. That's correct.
Q. And it signifies where the Apalachicola River begins. True?
A. That's right. Technically the river began where the Chattahoochee and Flint came together a little bit upstream, which is now under the reservoir. But for all intents and purposes the river begins here now.
Q. Okay. We won't quarrel -- the river begins pretty darned close to the dam in that picture?
A. That's correct. Absolutely.
Q. Okay. So before the water comes into Florida from Georgia it has to go through this dam. Right?
A. That's correct.
Q. Now, it was the Army Corps of Engineers that built Woodruff Dam. True?
A. Yes. The Army Corps of Engineers built Woodruff Dam.
Q. Okay. Now, let's go two pages back in this same document, GX-72. And the slide there is titled Damage in Upper River. Correct?
A. That's right.
Q. And as a fluvial geomorphologist, that's something that you would study. Correct? THE REPORTING GROUP Mason \& Lockhart

2562
A. Damage to -- in the upper river?
Q. Yes. Correct.
A. Well, it refers here to down-cutting of the channel; and that's certainly the kind of thing that I study, yes.
Q. Okay. Let's start on that. You -- you say in paragraph 17 of your testimony that Woodruff Dam caused incision of the Apalachicola River channel bed immediately downstream from the dam. Is that right?
A. That's correct.
Q. And incision is another name for down-cutting, which is what Mr. Hoehn put in his presentation here. Correct?
A. That's right.
Q. And just to use some laymen's terms, if you have incision or down-cutting of the riverbed, that means that the dam had the effect of lowering the riverbed. Correct?
A. Well, the way this happens is that the dam traps sediment. And the river has a natural sediment load. And because the dam does not reduce flood flows, you still have the same energy of the water coming out of the dam. And without the sediment, then there's excess energy; and the bed THE REPORTING GROUP Mason \& Lockhart
tends to erode. And that's why the -- the bed erodes and drops down. So that's what gives you the down-cutting or incision.
Q. Okay. Thank you for that, Dr. Kondolf. And I just want to be clear on this point though that the area immediately beneath the dam, because of the process you just described, erodes; and the riverbed gets lower. Correct?
A. Yes. That happened after the dam was constructed. Typically with dams, the response occurs pretty much right after the dam is built, and it's most intense immediately downstream of the dam. Over time the riverbed usually equilibrates.
Q. Okay. Dr. Kondolf, you agree with Mr. Hoehn that the down-cutting of the channel or the lowering of that riverbed underneath Jim Woodruff Dam was about 5 feet. Correct?
A. Yes. I think the maximum was about 5 feet. That's correct.
Q. And that 5 -foot reduction in the level of the riverbed goes for the first 20 miles of the Apalachicola River. Correct?
A. It -- it decreases as you go downstream.

Also just a minor point, but just to clarify, THE REPORTING GROUP
Mason \& Lockhart
2564
the reduction is actually in the water surface that is measured, that 5 -feet reduction. It's measured in the water surface. The bed, I'm sure, has gone down as well; but the bed itself is a -- has a lot more variation. So we usually refer to the water surface.
Q. That's a good clarification. I want to make sure I have got this straight. The riverbed can actually reduce by more than 5 feet in places and less than 5 feet in other places; but what you're looking at, when we say a reduction in 5 feet, that means the river level goes down 5 feet in the river. Correct?

The water level goes down 5 feet?
A. It would -- we would refer to a water level decline of 5 feet, yes. And as I was also starting to say, as you go downstream from the dam, the amount of incision decreases. So it's 5 feet directly below the dam. It gets less as you go downstream. It disappears entirely by river mile 65.
Q. Okay. That's an important point. There is effect of down-cutting and a reduced river level all the way from the dam down to river mile 65. That's what you just said; correct?

THE REPORTING GROUP
Mason \& Lockhart

A. Yes.
Q. You referenced earlier in your testimony that the Corps dug a 9-by-100 foot navigation channel in the river. Correct?
A. That's right.
Q. And here you describe that as large-scale, intensive channel dredging. Right?
A. That's correct.
Q. The Corps then, after it finished digging out that channel, would carry out maintenance dredging. And that went up to through 2000. Right?
A. Right. In here I say through 2004, but that was really just the last year that they had the permit. The dredging on any large scale, the last year was 1999. They didn't do any in 2000; and they did some in 2001, but were -- I think the barge ran aground.

Yes, so they did an initial dredging that -essentially that creates a hole in the riverbed. And then the river begins to fill that in with sediment. So you have to go back and continue doing it because there's natural recovery of the riverbed that would happen unless you continued to dredge.

THE REPORTING GROUP Mason \& Lockhart
Q. So they dredged the channel. It starts to fill in, and then they dredged it again?
A. That's correct.
Q. And you said that the last permit to dredge expired in 2004. Right?
A. That's right.
Q. Now, just to be clear, that's a permit issued by the State of Florida. Correct?
A. That's correct.
Q. And prior to 2004 the State of Florida continuously authorized the Corps to dredge in the Apalachicola River through these permits. True?
A. Well, the -- the dredging began before any environmental legislation and before any permits were, you know, required or possible. The -- as of the -- 1970 was the environmental legislation. Then the Corps had to get permits from the State of Florida. I guess there was some legal question whether they really needed to; but -and beginning with those first permits, the State did raise a lot of issues about environmental impacts and began putting requirements on the Corps and eventually -- eventually did not renew their permit.

THE REPORTING GROUP Mason \& Lockhart
Q. If I heard your testimony correctly, from the 1970's until 2004 Florida granted permits to the Army Corps to conduct dredging. Maybe subject to restrictions, but Florida granted those permits. Correct?
A. Correct. Subject to restrictions and requirements for mitigation projects and things like that, but yes.
Q. Now, until the '70's the Corps would dispose of this sand that got dredged both on the floodplain and on channel banks. Correct?
A. That's right.
Q. And this dredged material was virtually all sand. Right?
A. Yes. Mostly all sand, yes.
Q. And when the Corps pumped that sand onto the floodplain, it would be near the river channel bank or directly in sloughs. Isn't that right?
A. Some -- some was deposited on the river channel banks. In some cases in a large deposit area, some cases smaller piles. And there was some that was put actually in sloughs and some that was put along the riverbank near sloughs.
Q. Now, Dr. Kondolf, you included an aerial picture that you took of one of these dredge spoil piles, THE REPORTING GROUP Mason \& Lockhart it looks like. Correct?
A. Yes. These are --
Q. Hang on.
A. Sorry.
Q. Let's just get to there. It's on page 16 of your report. And it's figure 4. And do you -- are you there?
A. Yes.
Q. Okay. Now, that picture is one you took in April of 2008. Right?
A. That's correct.
Q. On the right-hand side there's a big pile of sand. And that one is Sand Mountain. Correct?
A. That's right.
Q. And just -- maybe this might be a term the Court is not familiar with. Everyone down in Apalachicola knows about Sand Mountain. Right? Correct?
A. Yes.
Q. It's famous?
A. Locally famous.
Q. Yes. And then across the river on the left-hand side of your picture is something called Site 39. Right?
A. That's right.

THE REPORTING GROUP
Mason \& Lockhart

2589	2591
A. I'm not sure if -- I think the Corps or the State has done some stabilization in the past. But -but there's -- when you go there today, it doesn't appear to be stabilized. So -- Q. Can you move the microphone a little closer to your mouth? It's a little hard to hear. A. Yes. Q. And I just want to make sure I heard you right. You're not aware of any current stabilization or remediation efforts on Sand Mountain. Correct? A. No. Q. Okay. Now, I want to talk about the extent and scope of this dredging that the Army Corps did in the Apalachicola River. You have figures in your expert report that you didn't include in your written direct testimony. Isn't that right? A. I'm sure I did. The expert report was a lot longer, so I think there were figures there that I didn't put in the direct testimony. Q. There were charts and tables that were attached to your expert report that aren't in the official direct testimony. Right? A. That sounds right. Q. Okay. Let's take a look at some of those. I want to start with tab 5 which Florida has marked THE REPORTING GROUP Mason \& Lockhart	Q. And this chart comes from a report drafted by Helen Light. Correct? A. That's correct. Q. Now, Ms. Light has been mentioned in various points throughout this trial. Other witnesses have commented on her work. You would agree that Ms. Light is an authority on the issues of water level decline due to channel change in the Apalachicola River. Correct? A. Yes. Q. This chart, figure C, shows that 96 percent of the dredging in Apalachicola happened between 1956 and 1999. Correct? A. That's correct. Q. And in ' 56 the Corps dredged over 2.5 million cubic yards of sand out of the river. Correct? A. That's right. Q. And in 1998, which is much more recent, the Corps dredged over a million cubic yards of sand out of river. Right? A. It looks like that, yes. Q. Now, I had trouble understanding how much volume a million cubic yards is. So I asked my trusted colleague, Mr. Avallone, if he could find something to put it in perspective. And what he THE REPORTING GROUP Mason \& Lockhart
as FX-796. And that's your expert report. And I would like to have you flip all the way to the back. You have some charts that are labeled figures A through some later letter. And in particular, I want to get you to figure C. And I'll give you a minute because the pages aren't numbered. A. Okay. Q. Are you there? A. That's right. Q. Let me wait for the Court. SPECIAL MASTER LANCASTER: Sorry. I'm not following. Where you are? MR. PRIMIS: It's figure C. It's all the way at the back, there's a series of alphabetical charts. SPECIAL MASTER LANCASTER: Okay. MR. PRIMIS: Okay. And it's also on the screen if you want to just confirm we're looking at the same thing. BY MR. PRIMIS: Q. Now, this chart at figure C in your expert report, that shows dredging over time in the Apalachicola River. Correct? A. That's correct. THE REPORTING GROUP Mason \& Lockhart	came up with, figure 3 -- I'm sorry, tab 3 in the book. And I'm going to ask you to put your finger -- maybe it's not tab 3. It's demonstrative 3. And put a pen on something in the charts because I'm going to come back to this. So in demonstrative 3 we have a dump truck that I'm told can hold 20 cubic yards of dirt. Do you have any reason to disagree that that's approximately what 20 cubic yards of dredged material would look like? A. Seems about right, yes. Q. Seems fair? A. Yes. Dump trucks vary in size, but I presume that's a 20-cubic-yard dump truck. Q. That's a 20. So sticking with that dump truck analogy, in 1998 the Army Corps dredged enough sand out of the river to fill 50,000 of those 20-cubic yard dump trucks; didn't they? A. Well, you have done the math; but I'm sure it's a lot. Q. A million divided by 20 is 50,000 . Now, I want to look at the next chart from your expert report which, as a reminder, is THE REPORTING GROUP

A. That's right.
Q. Okay. I want to talk about a few of those. The first one you identify is straightening of the river. Correct?
A. Yes.
Q. And what you mean by straightening of the river is when we saw all those bends in the river, the Corps would actually cut off those bends in places and make the river straight. Correct?
A. Yes. There were a number of places in this area affected where the Corps would -- well, there were a limited number of these, but they were important. They cut off meander bends, and then there were some in which they did what they call bend easings, which was sort of a partial bend cutoff.
Q. Now, Dr. Kondolf, we -- I wanted to illustrate what it looked like for the Court, so we went back to Google Maps. And can you turn to the demonstrative tab -- and it's No. 6.

And we included a red arrow. It's a little hard to see with the lighting. It might be easier to see on the computer screen. But you have an area there called Battle Bend which we pointed out in the red arrow. Do you see that? THE REPORTING GROUP Mason \& Lockhart
A. Yes.
Q. And what the Corps did at Battle Bend --

MR. PRIMIS: You can take that away.
BY MR. PRIMIS:
Q. -- it wanted the river to be straight there, so it cut off Battle Bend so the water would stay in the Apalachicola River. Right?
A. The Apalachicola River formerly flowed through Battle Bend, this big meander. And in order to straighten the river, make it easier for barges and so on, the Corps cut a new channel so that the river now flows through a shorter channel; and Battle Bend itself has been abandoned. That's what we call an oxbow now.
Q. Now, you would agree that -- and you call those meander bends; is that right?
A. Yes.
Q. And that's because the water would meander through the bend and then get linked back up with the river?
A. Well, that's just a standard term in geomorphology for a big river bend of this kind.
Q. You would agree that the Army Corps cutting off this meander bend reduced the river's hydraulic complexity. Right? THE REPORTING GROUP Mason \& Lockhart
A. Yes --
Q. And --
A. -- it would.

Sorry. Yes, it would.
Q. And you also agree that cutting off meander bends and straightening the river like this would reduce the Apalachicola River's habitat diversity. Correct?
A. Yes. By -- by having less connection with the -with this longer, more complex channel, it would reduce that diversity.
Q. And that's due to activities by the Army Corps in straightening the river. Correct?
A. That's true. All these navigational activities, navigational dredging, these other activities, were undertaken to benefit navigation to the upstream states. I think that's important to recognize. That's very clear in all the documents that that's the reason for this.
Q. Is the answer to my --
A. To allow large ships to go up there, large barges.
Q. Is the answer to my question, yes, the dredging to straighten this river and blocking off meander bends was done by the Army Corps of Engineers. THE REPORTING GROUP Mason \& Lockhart Correct?
A. That's correct.
Q. Now, Dr. Kondolf, I want to leave straightening; and I want to talk about sloughs. Okay?
A. Okay.
Q. Now, flipping back again to your American Rivers paper at tab 4, I would like to go to page 18 at this time.

Do you see on page 18 of tab 4, which is GX-248, there is a section called Cutting Off and Filling Sloughs?
A. Yes.
Q. Okay. Could you take a moment and read that paragraph to yourself, and then I will ask you some questions about it.
A. Okay.
Q. Okay. Dr. Kondolf, you, again, reference here something called natural conditions. Do you see that?
A. Yes.
Q. And that's before the manmade changes to the river. Right?
A. That's correct.
Q. And you make the point that the flow in the river, when it would go over the banks, was THE REPORTING GROUP
Mason \& Lockhart

Q. And that's in the second sentence of paragraph 48?
A. Yes.
Q. And it also had the effect of raising the level at the mouth of Swift Slough. Correct?

You're aware of that?
A. The bed elevation at the mouth of Swift Slough.
Q. Yes.
A. Yes.
Q. You agree with that?
A. I'm -- I'm not sure where exactly the sand deposits are in Swift Slough. They might not be directly right at the mouth.

And the mouth is kind of a difficult term. I like to use inlet because the water is flowing into Swift Slough.

I think on Swift Slough the main deposits may be farther -- farther away from the river. But -- but certainly the effect is similar, to reduce the connection.
Q. You understand -- and I take it you're not disputing that in order to connect Swift Slough, it takes more water now than it did in, say, 2000. Correct?
A. I forget the sequence, but there's -- the level THE REPORTING GROUP Mason \& Lockhart

2610
has gone up and down over time. And it seems to
have stabilized. From 2006 to about 2013 it seemed to be about the same.
Q. And you understand that it increased from 2000 to 2006. You know that; right?
A. I know that that exists. I would need to consult the data to remind myself exactly what. But there certainly has been fluctuations.
Q. All right. Now, let's take a look at a map of Swift Slough. And I have got that in the demonstrative tab at No. 7. And I'll put it on the screen as well.

Do you see the little stream that comes off the river in the top right?

I'm sorry. You're not there yet.
A. Okay.
Q. Are you there, Dr. Kondolf?
A. Yes.
Q. So we took this from Google Maps. And you would agree that the stream that comes off the Apalachicola River in the top right marked by the arrow is Swift Slough. Right?
A. It appears to be; correct. There is no river mile markers here, but the shape of the river looks about right.

THE REPORTING GROUP
Mason \& Lockhart
Q. Well, if you can see where my pointer is, do you see it says Swift Slough actually in the river -in the stream?
A. Okay.
Q. Do you see that?
A. So if it's labeled by Google, it has to be right.
Q. We can all agree on that. Correct?

So then what we then did was we wanted to take a look at Swift Slough in an aerial photography. I'm just using this to show everyone where it is, but in the next demonstrative we actually used Google Earth and got a picture of Swift Slough and, once again, marked it with a red arrow. Is that consistent with your understanding of where Swift Slough meets the Apalachicola River?

I actually included the prior map so you would be able to locate the two as looking the same.
A. Yes. Again, it looks certainly plausible. Looks like the right form of the river and so on. So I -- I don't have any reason to think you would switch photos or anything like that.
Q. I will represent I'm not pulling a fast one on you.

THE REPORTING GROUP
Mason \& Lockhart
A. Okay.
Q. This is a photograph of the prior slide. Okay,
sir?
A. Okay.
Q. So what we did was we zoomed in a bit, because Google will let you do that.

And if we can go to the next demonstrative, do you see the red arrow? That is Swift Slough. It's just a closer picture. Right?
A. Yes.
Q. And do you see there's a sand formation right at the mouth of Swift Slough?
A. Yes.
Q. And you understand that's the type of thing that can require more water to connect that slough. Right?
A. Yeah. I guess it depends on how the sand deposit is configured, but along -- right there I see that it seems like there's a channel behind it which might provide connection. But sort of the classic case would be a pile of sand of -- a little farther in across the channel.
Q. Okay.
A. But -- but I agree; I do see that deposit of sand at the mouth.

THE REPORTING GROUP
Mason \& Lockhart
Q. We're going to zoom in one more time from Google Earth, and we'll go to the next demonstrative. And do you see this is -- what's the word you wanted to call it, the inlet?
A. Yes. The inlet to the slough.
Q. All right. So the red arrow shows the inlet to Swift Slough. And what you have there is a little sandbar. Correct?
A. That's correct.
Q. And that is the type of thing that can require more water to connect Swift Slough. Right?
A. Well, what I see here wouldn't necessarily because you see that water can flow around the back of that and get into Swift Slough. As I say, I think the -- I think the real blockage in Swift Slough is a little farther away from the river.
Q. Okay, sir.
A. The one that would really control. But --
Q. But you agree there is blockage of Swift Slough due to sand and aggradation. Correct?
A. Yes. I -- that's my understanding from -- I haven't been back up to the blockage; but that's my understanding that there is -- that there is one there.

THE REPORTING GROUP
Mason \& Lockhart
Q. Now, Dr. Kondolf, I want to switch now to river widening. That's another thing the Army Corps did through its dredging program. Correct?
A. The Army Corps, as far as I know, did not attempt directly to widen the river. In fact, they would not have wanted the river to widen. But that was a consequence of some of the dredging and disturbance that they did.
Q. Thank you for clarifying that.

You would agree with me that one effect of all the work the Army Corps did on this river was to widen it in places. Correct?
A. That was a consequence of their activities.
Q. Now, can you turn to page 20 of your direct testimony, which is behind tab 2.
A. Okay. Page 20?
Q. Yes. And in -- I'm sorry. I'm in the wrong place. Page 8, paragraph 20.

Now, in the fourth sentence there you say that the Corps' dredging program was intended to create a deeper, wider channel to allow barges. Do you see that?
A. The fourth line, yes.
Q. Yes. Now, a minute ago you said widening was just a consequence; but here you say it was one THE REPORTING GROUP Mason \& Lockhart
of the intentions of the Corps. Correct?
A. Okay. Let me clarify, I guess, your -- in this context, I'm referring to a navigational channel. So that would be the channel that the Corps actually excavated. And they wanted a 9-foot deep 100-foot wide navigational channel.
Q. So if I hear you right, we have two types of widening, one that was intentional, the river navigation channel; and then you have the consequence of other dredging which had the effect of widening the channel in other places. Correct?
A. Well, it's different. The -- by digging this deep hole in mostly a sand bed, the walls would tend to collapse; and you would get erosion out to the margins. There are other things they did that would tend to erode the banks. And that would cause the channel as a whole to widen.

So what we would -- the kind of channel we were looking at on this Google Maps imagery, the channel I referred to here, I should have included the word navigational channel because that's what they were trying to create, a large enough navigational channel for these barges. Mostly they were going after the depth, but they THE REPORTING GROUP
Mason \& Lockhart
also wanted a certain width.
Q. Dr. Kondolf, let's go back to your expert report in tab 5. And I want to look at the extent of the widening of the channel.

In particular, it's figure F, which is all the way at the back of your expert report.
A. Okay.
Q. You're there?
A. Yes.
Q. Now, the purpose of this chart is to show the distance between the tree line on each side of the river at each river mile marker. Correct?

And in particular, the change in the tree line over time. Right?
A. That's -- that's right. The changes in the tree line width from 1941 to 2004.
Q. And what this shows is that from 1941 to 2004, that in the upper reach the river has widened by 14 percent or 82 feet. Correct?
A. This figure comes from a report by Helen Light and others in 2005. And the way this is labeled is that the entire nontidal river averaged 14 percent wider in 2004 than it did in 1941.
Q. That's actually a good clarification. Thank you for that.

THE REPORTING GROUP
Mason \& Lockhart

2559:10, 2559:23,	2371:18, 2372:7,	2533:12, 2533:13,	2556:18, 2569:1,	2552:7
2562:3, 2562:12,	2373:3, 2375:11,	2533:20, 2534:1,	2569:2, 2569:5,	dry [7]-2462:5,
2562:17, 2563:2,	2377:6, 2378:18,	2534:4, 2536:8,	2569:17, 2569:22,	2462:22, 2463:8,
2563:3, 2563:16,	2382:5, 2383:2,	2536:11, 2537:2,	2570:6, 2570:11,	463:9, 2463:13,
2564:4, 2564:12,	2384:4, 2384:9,	2537:4, 2537:7,	2570:14, 2570:22,	2527:24, 2632:6
2564:14, 2564:23,	2384:22, 2385:2,	2537:13, 2539:16,	2570:25, 2576:1,	due [19]-2384:22,
2564:24, 2565:2,	2385:5, 2385:25,	2540:12, 2541:4,	2576:10, 2576:12,	2409:2, 2409:5,
$\begin{aligned} & \text { 2565:7, 2566:21, } \\ & \text { 2567:8. 2567:14 } \end{aligned}$	$\begin{aligned} & \text { 2386:5, 2386:13, } \\ & \text { 2390:7, 2390:15, } \end{aligned}$	$\begin{aligned} & \text { 2541:12, 2542:18, } \\ & \text { 2543:4, 2544:4, } \end{aligned}$	$\begin{aligned} & \text { 2576:15, 2578:14, } \\ & \text { 2580:20, 2581:7, } \end{aligned}$	$\begin{aligned} & \text { 2412:17, 2440:4, } \\ & \text { 2444:17, 2468:20, } \end{aligned}$
2567:21, 2571:5,	2391:8, 2391:13,	2544:21, 2548:7,	2581:11, 2581:15,	2469:12, 2469:13
2575:11, 2575:14,	2391:20, 2391:21,	2554:12, 2554:21,	2581:19, 2582:14,	2469:15, 2506:2,
2575:16, 2575:17,	2392:5, 2392:7,	2555:23, 2557:15,	2583:3, 2589:13,	2523:7, 2576:1,
2575:19, 2575:21,	2392:13, 2392:17,	2558:6, 2563:4,	2590:23, 2591:12,	2591:8, 2603:12,
2580:19, 2584:16,	2394:7, 2394:14,	2563:15, 2567:7,	2593:17, 2593:22,	2613:21, 2624:8,
2595:24, 2596:13,	2394:19, 2394:25,	2568:15, 2568:21,	2594:7, 2595:1,	2624:16, 2625:13
2598:24, 2599:17,	2396:5, 2396:18,	2570:21, 2576:8,	2595:16, 2595:21,	dug [2]-2571:23,
2605:19, 2610:1,	2397:8, 2398:8,	2577:6, 2577:23,	2596:1, 2596:13,	2581:3
2626:2, 2626:17,	2400:17, 2404:8,	2578:15, 2583:24,	2596:17, 2597:20,	dump [7]-2575:1,
2627:23, 2627:24,	2406:19, 2407:7,	2586:10, 2588:13,	2598:8, 2598:16,	2592:7, 2592:14,
2628:2	2407:13, 2409:10,	2595:3, 2596:20,	2598:23, 2599:1,	2592:15, 2592:17,
down-cutting [15] -	2412:17, 2413:7,	2597:9, 2597:24,	2600:16, 2600:18,	2592:20, 2594:15
2562:3, 2562:12,	2415:9, 2420:8,	2598:1, 2600:19,	2603:15, 2603:23,	dumped [2] - 2571:23,
2562:17, 2563:3,	2425:2, 2427:2	2601:17, 2604:3,	2606:10, 2606:13,	2573:2
2563:16, 2564:23,	2428:1, 2428:12,	2604:17, 2608:1,	2608:13, 2608:14,	DUNLAP [1] - 2369:24
2566:21, 2567:14,	2429:15, 2437:11,	2610:17, 2614:1,	2608:17, 2614:3,	duration [1] - 2533:4
2567:21, 2575:14,	2447:23, 2452:12,	2616:2, 2617:14,	2614:7, 2614:20,	during [30]-2373:11,
2575:16, 2575:17,	2455:23, 2456:17,	2620:3, 2621:14,	2615:10, 2617:12,	2390:2, 2417:1,
$\begin{aligned} & \text { 2575:19, 2575:21, } \\ & 2598: 24 \end{aligned}$	$\begin{aligned} & \text { 2458:16, 2460:9, } \\ & \text { 2460:16, 2460:25, } \end{aligned}$	$\begin{aligned} & \text { 2622:21, 2623:1, } \\ & \text { 2624:2, 2625:10, } \end{aligned}$	$\begin{aligned} & \text { 2618:22, 2619:5, } \\ & \text { 2619:12, 2619:14, } \end{aligned}$	2417:13, 2429:7, 2433:25. 2449:18
downhill ${ }_{[1]}-2523: 5$	2461:1, 2461:15,	2625:24, 2627:8,	2620:20, 2621:10,	2459:1, 2463:13,
download [1] -	2464:20, 2465:4,	29:18, 2630:12,	22:6, 2623:12,	481:11, 2482:17,
2515:18	2465:8, 2465:20,	2630:16, 2630:25,	2626:8, 2633:1,	2489:16, 2489:23,
downloaded [1] -	2466:6, 2466:11,	2631:13, 2632:18	2633:12, 2633:21,	2494:25, 2498:7,
2541:8	2467:4, 2467:6, $2467: 17,2467 \cdot 23$	2634:3, 2634:17	2634:6	2516:6, 2521:8,
downs [1] - 2548:1 downstream [29] -	$\begin{aligned} & \text { 2467:17, 2467:23, } \\ & \text { 2467:24, 2472:23, } \end{aligned}$	drafted [1] - 2591 drain [1] - 2525:2	drew [1] - 2459:6 drier [2]-2415:5,	2521:16, 2521:17,
2487:5, 2487:11,	2474:6, 2474:10,	drainage [1] - 2417:24	2438:6	$\begin{aligned} & \text { 2527:24, 2527:25, } \\ & \text { 2528:10, 2532:9, } \end{aligned}$
2487:17, 2487:24,	2474:25, 2475:8,	drained [1]-2552:9	driest [3]-2462:7,	2532:19, 2534:7,
2488:11, 2488:13,	2476:3, 2476:18,	drains [1] - 2524:10	2521:1, 2521:18	2538:15, 2606:9,
2491:24, 2492:4,	2478:7, 2485:7,	draw [5] - 2376:24,	driver [3]-2431:24,	2619:12, 2632:6
$\begin{aligned} & 2492: 12,2493: 11, \\ & 2496: 25,2498: 24 \end{aligned}$	$\begin{aligned} & \text { 2485:24, 2487:7, } \\ & \text { 2494:4, 2496:3, } \end{aligned}$	$\begin{aligned} & 2422: 25,2512: 1, \\ & 2526: 2,2526: 3 \end{aligned}$	$2433: 10,2450: 16$	Dyche [1]-2555:16
2501:20, 2525:17,	$\begin{aligned} & 2498: 2,2498: 3 \\ & 2499: 4,2499: 16 \end{aligned}$	dredge [15]-2570:24,	$\begin{gathered} \text { drop }[4]-2497: 14, \\ 2513 \cdot 16.2531 \cdot 17 \end{gathered}$	E
$\begin{aligned} & \text { 2527:1, 2529:8, } \\ & \text { 2530:23, 2531:5, } \end{aligned}$	$\begin{aligned} & 2499: 4,2499: 16 \\ & 2500: 3,2500: 4 \end{aligned}$	71:8, 2572:1,	$\begin{aligned} & \text { 2513:16, 2531:17, } \\ & \text { 2565:14 } \end{aligned}$	eager [1] - 2624:2
2531:9, 2538:10,	2500:8, 2500:15,	2572:11, 2572:25,	dropped [2]-2451:1,	early [7] - 2435:18,
2540:24, 2553:7,	2500:21, 2504:21,	73:14, 2573:22,	2511:5	2440:24, 2513:19,
2562:9, 2563:12,	2506:8, 2506:9,	81:25, 2582:4,	drops [4]-2436:4,	2513:22, 2513:24,
2563:24, 2564:17,	2506:24, 2507:8,	2582:11, 2583:25,	2497:19, 2531:8,	2514:5, 2548:15
2564:20, 2597:8,	$\begin{aligned} & \text { 2507:9, 2510:5, } \\ & 2512: 7.2512: 22 \end{aligned}$	2595:13	2563:2	Earth [6] - 2585:13,
2623:25	$2513: 7,2514: 5,$	dredged [16]-2582:	drought [9] - 2371:23,	2587:4, 2611:12,
downtrends [1] - 2451:5	2514:11, 2515:7,	$\begin{aligned} & 2582: 2,2583: 10, \\ & \text { 2583:13, 2585:5, } \end{aligned}$	$\begin{aligned} & \text { 2431:5, 2448:22, } \\ & \text { 2449:16, 2449:19, } \end{aligned}$	2613:2
downward [7] -	2516:20, 2517:15,	2591:15, 2591:19,	2461:24, 2532:9,	easier [3] - 2448:7,
2373:5, 2373:10 2408:13, 2408.22	$\begin{aligned} & \text { 2518:3, 2518:12, } \\ & \text { 2519:9, 2519:19, } \end{aligned}$	2592:10, 2592:18,	2532:19, 2632:6	$\begin{gathered} \text { 2601:23, 2602:10 } \\ \text { easiest }[1]-2461: 18 \end{gathered}$
$\begin{aligned} & \text { 2408:13, 2408:22, } \\ & \text { 2450:19, 2473:2, } \end{aligned}$	$2521: 13,2522: 5$	$\begin{aligned} & 2594: 16,2596: 9, \\ & 2599: 22,2600: 3, \end{aligned}$	droughts [9] 2446:24, 2446:2	easings [1] - 2601:15
2620:7	2522:14, 2522:18,	2600:13, 2605:7,	447:4, 2449:14,	east $\left.{ }^{1}\right]-2441: 22$
dr [1] - 2426:12	2527:2, 2527:3,	2605:17	2461:21, 2463:16,	east-west [1] -
Dr [195]-2371:17,	$\begin{aligned} & 2528: 10,2530: 4 \\ & 2531: 22,2532: 4 \end{aligned}$	REPORTING	OUP :1, 2472:9,	2441:22

