

Obviously, you know Mr. Primis. We have Ms. Lewis and Mr. Pruitt at the counsel table today.

MS. LEWIS: Good morning.
SPECIAL MASTER LANCASTER: Good morning.
MS. ALLON: I have some witness binders that I would like to hand up with the Court's permission.

SPECIAL MASTER LANCASTER: Yes, ma'am. CROSS-EXAMINATION

BY MS. ALLON:
Q. Good morning, Dr. Hornberger.
A. Good morning, Ms. Allon.
Q. Dr. Hornberger, for this case you were asked to assess the impact of both increases and decreases in Georgia's consumptive use on state line flows into Florida. Is that correct?
A. Yes.
Q. And for that analysis you used reservoir modeling; is that correct?
A. As part of the analysis, yes.
Q. In your two different models that you developed, you had the data-driven ResSim model, and you had the Lake Seminole model; is that correct?
A. Yes.

THE REPORTING GROUP Mason \& Lockhart
Q. All right. Let's start with your data-driven ResSim model. Your data-driven ResSim model is based on the ResSim model that was developed and used by the United States Army Corps; is that correct?
A. Yes.
Q. You made some modifications to the Army Corps model; is that right?
A. Not the model itself, but to the reservoir inflows.
Q. Right. Your model uses a different flow input than the Army Corps model does?
A. Yes.
Q. But, otherwise, your data-driven ResSim is pretty similar to the Army Corps' ResSim model; isn't that right?
A. Yes.
Q. Your data-driven ResSim model uses the same reservoir operating rules as the Army Corps model. Right?
A. Yes.
Q. Now, you used your data-driven ResSim model to look at the impact of decreases in Georgia's consumptive use on the amount of flow that would cross the state line into Florida; is that

THE REPORTING GROUP
Mason \& Lockhart
correct?
A. We did the calculations.
Q. You used the model to simulate the impact of different consumption caps. Right?
A. We did the calculations.
Q. So you looked at what would happen in terms of flows into Florida, what the volume of the increase of those flows would be under different consumption cap scenarios; is that right?
A. We did those calculations, but they were not part of my opinion set.

MS. ALLON: Let's pull up demonstrative
No. 1.
BY MS. ALLON:
Q. Dr. Hornberger, if you look at the screen, this is a manifestation, so to speak, of a model run that you did in your data-driven ResSim model. Is that right?
A. Yes. It certainly looks like it.
Q. Okay. And if you read at the bottom, the run is called half add IBT add-back. Do you see that?
A. Yes, I do.
Q. And the description says, 50 percent, and then a parenthetical, add irr plus Ag pond, close parenthetical, plus 100 percent IBT. Do you see THE REPORTING GROUP

Mason \& Lockhart
that?
A. Yes.
Q. The consumption cap scenario that you were modeling in this run includes an elimination of 50 percent of agricultural irrigation in the Flint River Basin; is that correct?
A. It's $\mathbf{5 0}$ percent of what we estimated as a conservative lower bound on agricultural withdrawals.
Q. And this consumption cap also includes a 50 percent elimination of small farm ponds in the Flint River Basin; is that correct?
A. Yes.
Q. And this consumption cap scenario that you modeled also includes a 100 percent elimination of all interbasin transfers out of the ACF Basin; is that correct?
A. Yes.
Q. And you looked at what the benefit to Florida would be in terms of additional flows at the state line if these cutbacks were imposed. Is that right?
A. Yes.
Q. Your model simulated how much additional water would go to Florida if this specific cap was THE REPORTING GROUP

is that right?
A. Yes.
Q. And for this analysis of increased consumptive use, you modeled a scenario that involved projections for future water use for Georgia in the year 2050; is that correct?
A. Yes.
Q. All right. Let's take a look at your results from that modeling, and I want to turn to your expert report. It's in the binder in front of you. It's FX-785. And I want to turn specifically to page 53, table 11.

Now, Dr. Hornberger, table 11 in FX-785 shows the results of your data-driven ResSim modeling of the impact of Georgia's projected future water use on state line flows; isn't that right?
A. Yes.
Q. And specifically scenario 1, where it says, Future Increases in Water Consumption in Georgia. Right?
A. Yes.
Q. So let's just look at 2000 as an example. Your modeling using data-driven ResSim shows that if Georgia's water use rose to the levels that Florida is projecting, state line flows would be THE REPORTING GROUP Mason \& Lockhart

1938
decreased by 231 cfs in a year with hydrologic conditions similar to 2000. Is that right?
A. Yes.
Q. And you go through that analysis for nine different years in table 11; isn't that right?
A. Yes.
Q. But what you don't report in table 11 or anywhere else in your report is the magnitude of the increase in Georgia's consumptive use that caused the state line flow decline you identified; is that right?
A. Well, we had to produce that.
Q. You produced that after Georgia asked you for that at your deposition; isn't that right?
A. I don't recall. I thought that we had produced that with the report.
Q. In table 11, you say how much state line flows go down. Right?
A. In the scenario 1 , yes.
Q. But table 11 doesn't say anything about what the associated increase was in consumptive use that caused that decline?
A. It does not.
Q. And table 11 doesn't say anything about what the associated decrease was in water entering the THE REPORTING GROUP
Mason \& Lockhart
reservoirs. Right?
A. Table 11 doesn't show -- could you repeat that?
Q. Table 11 doesn't say anything about the decrease in water entering the reservoirs that generated the decrease in state line flows that you identified in table 11?
A. Yes.
Q. Now, we did get the information you were referring to and walked through it. And it's at GX-1100, which is in the binders you have in front of you; and I'll put it up on the screen as well.

Now, GX-1100 shows your values from table 11 for future use scenario where Georgia's consumptive use was increased to the levels that Florida projects for 2050. Right?
A. Yes.
Q. And the column that says table 11 , scenario 1 , Reduction in Outflow, that's reproduced from what we just looked at in table 11 in your report. Right?
A. Yes. It looks that way.
Q. Now, what GX-1100 also includes is the total reduction in inflow to the reservoirs over the same time period. Those are the columns that say THE REPORTING GROUP Mason \& Lockhart

June, July, August, September, and then the average. Right?
A. Yes.
Q. And we used your inflow data for the columns, and we accurately reproduced it in GX-1100, didn't we?
A. It looks that way, yes.
Q. Now, we can see two different things in GX-1100. We can see the magnitude of the decrease in flows caused by Georgia's projected increased water consumption for this scenario, and we can also see how much of that decrease actually materialized into a decrease in state line flows. Right?
A. Yes.
Q. In the column on the far right where it says Reduction in Outflow Over Reduction in Inflow, we also included the percent impact of the decreased inflow to the reservoir under this scenario on the decreased outflow into Florida. Do you see that?
A. Yes.
Q. Let's use 2002 as an example. Under your future use scenario that you're modeling, Georgia's projected increases in consumptive use lead to THE REPORTING GROUP

	1945		1947
1	A. It doesn't do calculations on all five.	That's what the Corps says. Right?	
2	Q. Your Lake Seminole model only simulates a single	2	A. Yes.
3	reservoir, Lake Seminole. Right?		Q. Your Lake Seminole model doesn't have the ability
4	A. Right. We used the data, the actual data for the	4	to adjust conditions at any other reservoir
5	other reservoirs as an input.	5	besides for Lake Seminole. Isn't that right?
6	Q. Lake Seminole is operated as run-of-river.	6	A. The conditions are adjusted according to the
7	Right?	7	recorded record. So according to the data, the
8	A. Basically.	8	data themselves adjust the Lake Seminole model.
9	Q. Which means pretty much that water just passes	9	Q. Dr. Hornberger, I would like you to turn to page
10	through rather than being held in storage; isn't	10	63 in your deposition transcript.
11	that right?	11	MS. ALLON: And I would like to ask
12	A. To a large extent.	12	Mr. Smith to play clip 28.
13	Q. Three of the other ACF reservoirs, Lake Lanier,	13	(Whereupon the video was played.)
14	West Point, and Walter F. George, collectively	14	BY MS. ALLON:
15	hold 100 percent of the system's storage	15	Q. Dr. Hornberger, you were asked that question; and
16	capacity. Right?	16	you gave that answer. Right?
17	A. Close.	17	A. Yes.
18	MS. ALLON: Your Honor, I'm going to be	18	Q. Your Lake Seminole model does not and cannot do
19	referring to JX-124 a few times in my	19	any type of calculation involving the other four
20	cross-examination. It's the Army Corps DEIS,	20	reservoirs in the ACF system; is that right?
21	and it's an extraordinarily lengthy document.	21	A. Yes.
22	The Court has a copy of the full exhibit.	22	Q. Now, let's go to tab 6 behind JX-124. It's
23	It's four binders. So I thought I would just	23	appendix E to volume 1 of the DEIS. Now,
24	excerpt some of it in the witness binder.	24	appendix E is the ResSim modeling report that the
25	But if the Court or if the witness would like	25	Corps prepared in connection with the DEIS; is
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	1946		1948
1	the full copy, we can provide it.	1	that correct?
2	So I'm going to start at tab 1 behind	2	A. That's what it says.
3	JX-124.	3	Q. And are you familiar with this document?
4	BY MS. ALLON:	4	A. Yes. I have looked at it, yes.
5	Q. Dr. Hornberger, you recognize this as the DEIS.	5	Q. Let's go to tab 7 behind JX-124, which is page 19
6	Is that correct?	6	of appendix E. And do you see section F where it
7	A. Yes, I do.	7	says System Operations?
8	Q. And you're familiar with this document. Right?	8	A. Yes.
9	A. Reasonably.	9	Q. And under section F, System Operations, the Corps
10	Q. It's the Draft Environmental Impact Statement	10	has said that the four large reservoirs in the
11	issued by the Army Corps in October 2015 as part	11	ACF are viewed as a system in which each
12	of their update and revision to the Water Control	12	reservoir has its role to play. Do you see that?
13	Manual for the ACF Basin; is that right?	13	A. Yes.
14	A. Yes.	14	Q. The Corps also says that, many interests and
15	Q. Let's turn to tab 4, which is page 2-63. And you	15	conditions must be continually considered and
16	can see the heading at the top of the page, the	16	balanced when making water control decisions. Do
17	Corps is describing the ACF Water Control	17	you see that?
18	Objectives and Guidelines. Do you see that?	18	A. Yes.
19	A. Yes.	19	Q. Okay. Now, in the next paragraph, the Corps
20	Q. And if you look three paragraphs down, the Corps	20	talks specifically about releases into Florida.
21	says, the reservoirs in the ACF Basin are managed	21	And the Corps says that releases are assigned to
22	and operated in accordance with authorized	22	Jim Woodruff but are supported by the upstream
23	project purposes and as an integrated system of	23	reservoirs through tandem balancing operations.
24	water resource projects in which each reservoir	24	Do you see that?
25	has a role to play.	25	A. Yes.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

A. Yes.
Q. And your data-driven ResSim model had a PBIAS closer to 0 . Right?
A. Yes.
Q. Now, when you acknowledged that you had made a mistake with respect to inadvertently switching the rows in your table 10, you actually submitted a revised table 10. Right?
A. Yes.
Q. But you didn't just switch the rows back the right way. Right?
A. I -- I don't think I understand the question.
Q. Let's pull up your revised table 10. It's in $\mathrm{JX}-158$. And it is attachment 1 to that JX. So it's the second to last page.
A. Right.
Q. Do you see your updated --
A. Yes.
Q. -- table 10?
A. Yes.
Q. In your updated table 10, your goodness of fit scores are based only on the June to September period for five specific years. Right?
A. Yes. That's what we did.
Q. Okay. They're not based on all 37 years of flow THE REPORTING GROUP Mason \& Lockhart

1958
data like the ones we just looked at. Right?
A. Correct.
Q. Just June through September of five specific years.
A. Yes.
Q. So your updated table 10 only looks at a subset of the flow record. Right?
A. Yes.
Q. And we did the math at your deposition. We can certainly walk through it again. But this subset that you looked through is only 5 percent of the original 37-year flow record that you had originally considered?
A. Yes.

I take that to be a question from the inflection.
Q. For the other 95 percent of the record from 1976 to 2012 that you didn't include in the analysis in updated table 10, the data-driven ResSim model showed superior goodness of fit than the Lake Seminole model. Right?
A. I don't -- I don't know. I don't have those numbers in front of me.
Q. Dr. Hornberger, why don't we take a look at your deposition, and perhaps that will refresh your THE REPORTING GROUP Mason \& Lockhart
recollection, at page 495.
MS. ALLON: And I'm going to ask
Mr. Smith to play clips $122,121,123$, and 124, please.
(Whereupon the video was played.)
BY MS. ALLON:
Q. Dr. Hornberger, were you asked those questions, and did you give those answers?
A. Yes.
Q. In your expert report you consistently used a set of nine dry years since 2000 as the hydrologic record for modeling purposes; isn't that right?
A. Yes.
Q. And for those nine years since 2000 that you have consistently used as the relevant flow record for your analysis, the data-driven ResSim model showed a better goodness of fit than the Lake Seminole model; isn't that right?
A. Yes.
Q. It had a -- ResSim had an NSE closer to 1 . Right?
A. Yes.
Q. And ResSim had a PBIAS closer to zero. Right?
A. Yes.
Q. Let's consider another dataset. For the June to THE REPORTING GROUP Mason \& Lockhart

September period only of the nine dry years since 2000 that you used for your modeling, the data-driven ResSim model showed superior goodness of fit than the Lake Seminole model. Right?
A. Yes.
Q. ResSim had an NSE closer to 1. Right?
A. Yes.
Q. And ResSim had a PBIAS closer to zero. Right?
A. Yes.
Q. And finally, if you look at all 37 years of flow data, which is the analysis that you originally did, the ResSim model showed superior performance to the Lake Seminole model; isn't that right?
A. Yes.
Q. Now, you did a model run of the Lake Seminole model where you looked at increases to Georgia's consumptive use. Right?
A. Yes. The model certainly wasn't designed for that, but we did do the run.
Q. And like the analysis that we just walked through in your data-driven ResSim model, you used your Lake Seminole model to evaluate the impact of projected 2050 consumptive use levels on state line flows. Right?
A. No. We didn't use it for that. We did the THE REPORTING GROUP Mason \& Lockhart

A. Yes.
Q. Specifically your Lake Seminole model computed 49 days of outflow from Woodruff Dam below 5,000 cfs in that scenario; isn't that right?
A. Yes.
Q. And the lowest value your model predicted was 4,256 cfs; isn't that right?
A. I believe that's right.
Q. Now, another consumption cap scenario that you looked at involved a 50 percent reduction in agricultural irrigation in the Flint River, a 50 percent reduction of small impoundments, and a 100 percent elimination of interbasin transfers out of the ACF Basin. Isn't that right?
A. Yes. Again, reduction of 50 percent Ag, but that is correct.
Q. For this scenario, your Lake Seminole model also simulated outflows from Woodruff Dam of less than 5,000 cfs. Isn't that correct?
A. Yes.
Q. And finally, the fifth consumption cap that you looked at is a 50 percent reduction in agricultural irrigation in the Flint River Basin and a 50 percent reduction of small impoundments. Is that right?

THE REPORTING GROUP Mason \& Lockhart

1970
A. Yes.
Q. And for this scenario, your Lake Seminole model also simulated outflows from Woodruff Dam of less than 5,000 cfs?
A. Yes.
Q. Dr. Hornberger, I would like to move to a different topic and talk about your analysis of what you call hydrologic changes in the ACF Basin. Now, you point to some hydrologic changes that you say are evidence of Georgia's consumptive use; is that right?
A. Yes.
Q. And it's your opinion that the data you collected on these hydrologic changes shows obvious impacts to the Apalachicola River in Florida from Georgia's consumptive use; is that right?
A. Data that I used. I didn't collect the data myself.
Q. The data that you used on these hydrologic changes, it's your opinion that data shows obvious impacts to the Apalachicola River in Florida from Georgia's consumptive use. Right?
A. Yes.
Q. Now, I want to just put up a list of the hydrologic changes that you observed. So we can THE REPORTING GROUP
Mason \& Lockhart
pull up demonstrative No. 6.
You talk about low flows days. And you look specifically at three difference gages, the Chattahoochee Gage, the Bainbridge Gage, and Iron City Gage. Is that right?
A. Yes.
Q. And you do analysis of recent droughts versus historic droughts, and you say that streamflow during recent droughts is actually lower than streamflow during historic droughts; is that right?
A. Yes.
Q. And you have an analysis where you talk about declines in basin yield since 1970; is that right?
A. Yes.
Q. And you also say that groundwater levels are declining. Right?
A. Yes.
Q. Okay. Let's talk about each of these four points starting first with the low flow days you identify at the Chattahoochee Gage. Now, when you talk about low flow days at the Chattahoochee Gage, you used 6,000 cfs as a threshold for low flows for that analysis. Right?

THE REPORTING GROUP Mason \& Lockhart

A. Yes.

Q. And your opinion is that since 1970, flows below $6,000 \mathrm{cfs}$ occur more frequently and for longer in the ACF Basin; is that right?
A. Yes.
Q. And you say that 1970 is when Georgia's water use escalated significantly. Right?
A. I believe that's a good point to identify as to where the increases began.
Q. And you conclude that, therefore, Georgia's water use is causing the reduced flows that you observe at the Chattahoochee Gage. Is that right?
A. In large part, yes.
Q. Let's talk about the flow metrics that you point to. If we turn in your report -- I'm sorry, in your direct testimony, which is in the witness binder, and I believe you have a loose copy of it as well. But it's the first tab in the witness binder. And I want to turn to page 23 and look at figure 3.

Figure 3 shows your analysis of the total number of consecutive days of flow below 6,000 cfs at the Chattahoochee Gage. Right?
A. Yes.
Q. Okay. And figure 3 is based on USGS gage data THE REPORTING GROUP
A. Yes.
Q. And you compare pre-970 to post-1970. Right?
A. Well, all the years, for the record, are on that figure.
Q. In the corresponding text of your direct where you discuss figure 3, the point of your analysis is that you compare pre-1970 to post-1970. Right?
A. Yes.
Q. And you say that since 1970, there have been more stretches of consecutive low flow days than pre-1970?
A. Yes.
Q. Now, looking at figure 3, the vast majority of consecutive days below 6,000 cfs that you observe -- that you identify occur in 2007 and 2012. Right?
A. The -- the largest bars are in 2007 and 2012, yes.
Q. 2007 and 2012 were both severe droughts in the ACF Basin. Right?
A. Yes.
Q. In figure --
A. They were severe hydrological droughts, yes. THE REPORTING GROUP Mason \& Lockhart

1974
show any years in that period with more than 10 consecutive days below $6,000 \mathrm{cfs}$. Is that right?
A. Yes.

MS. ALLON: Let's pull up cross
demonstrative No. 8, please.
Q. Dr. Hornberger, you recognize this as a clip in the USGS website. Right?
A. Yes.

MS. ALLON: And, your Honor, the demonstratives are all in the witness binder; and they're numbered if the Court would prefer to look at them in hard copy.

SPECIAL MASTER LANCASTER: Thank you.
MS. ALLON: There's a tab that says
Demonstratives, and they're all behind that tab. And same for the witness if that would be easier.

SPECIAL MASTER LANCASTER: Thank you. That saves me from asking you to produce copies of them.
BY MS. ALLON:
Q. And I'm on tab -- demonstrative No. 8 right now.

MR. SINGARELLA: Your Honor, we're seeing materials for the first time here this THE REPORTING GROUP Mason \& Lockhart morning, including these materials. SPECIAL MASTER LANCASTER: So am I. MR. SINGARELLA: I guess we're in it together, your Honor. SPECIAL MASTER LANCASTER: We are. BY MS. ALLON:
Q. Dr. Hornberger, this USGS website that we just took a clip out of, this is the same place that you got your underlying data for figure 3 . Right?
A. Yes.
Q. And what we did was we actually showed you on slide 8 the search that we ran to get the mean daily discharge for 1954 for the Chattahoochee Gage. Do you see that?
A. Is it on this?
Q. Yes. You can see the begin data is 1954, January 1 ?
A. I see it.
Q. Okay. Now, turning to slide 9, the next slide -SPECIAL MASTER LANCASTER: Counsel, it would be helpful if you used the joint exhibit numbers on these because I don't see them numbered as 8 or 9 .

MS. ALLON: Your Honor, they should have THE REPORTING GROUP

Mason \& Lockhart

	兂
Q. You're not offering the opinion that a decline in flows at one gage on a tributary of the Flint River translates to an equal or corresponding decline in state line flows; are you? A. No. It's an indicator. Q. And you didn't do anything to quantify the impact of Spring Creek flows on total state line flows into Florida; did you? A. In terms of a direct comparison as we were talking about earlier, no. Q. And as a result, you don't know how much or how little flows from Spring Creek influence flows at the state line. Right? A. No. That was -- as I said, it's an indicator. It's not my contention that there's a direct connection. Q. You're familiar with the terms gaining reach and losing reach. Right? A. Yes. Q. A gaining reach refers to a stream that overall has more flow downstream than it does upstream. Right? A. Yes. Q. It means as it flows down, it's gaining water? A. Yes. THE REPORTING GROUP Mason \& Lockhart	you don't show on this map any other gages in Spring Creek. Do you? A. I do not. Q. Okay. But there are other gages in Spring Creek. Right? A. I believe there is at least one upstream gage. Q. Let's look at slide 14. I'll put it on the screen, and it's also going to be the slide numbered 14 beyond the demonstrative tab in your binder. And what we did in slide 14 is we actually just took your map from your direct, but we added the Reynoldsville Gage which you can see is immediately downstream of the Iron City Gage at Spring Creek. Right? A. It is downstream of it, yes. Q. You don't know whether the -- the Reynoldsville Gage has ever experienced zero flow. Right? A. Oh, I would doubt that. The Reynoldsville Gage is affected by what we refer to as a backwater effect from Lake Seminole itself. Q. So as a part of your analysis of what you call low flows in Spring Creek, you didn't consider flows at the Reynoldsville Gage; did you? A. I did not. THE REPORTING GROUP Mason \& Lockhart
Q. And a losing reach refers to a stream that has overall less flow downstream than it does upstream. Right? A. Yes. Q. It means as it flows, it's losing water -- A. Yes. Q. -- right? You didn't do any analysis as to whether Spring Creek was a gaining or losing reach overall; did you? A. An analysis -- I mean, I looked at reports; but I, myself, did not do any calculations or analysis. Q. And your analysis of Spring Creek in your direct testimony is limited to one gage at the Iron City Gage. Right? A. Yes. Q. You didn't do anything to determine whether the flows you observed at that single gage at Iron City actually occurred at other gages in Spring Creek. Right? A. I did not. Q. Okay. Let's go back to your map on figure 2, page 12 of your direct testimony. And, again, if we look at the Iron City Gage on Spring Creek,	Q. And are you aware that the Reynoldsville Gage has never measured zero flow conditions? A. That would not surprise me. Q. Even in the drought years of 2007, 2011, and 2012 that you point to with respect to your analysis of the Iron City Gage? A. The inflection, right? That's correct. Q. And that means because Reynoldsville Gage has never reported zero flows during all of the low flow conditions that you point to at the Iron City Gage, Spring Creek was still a gaining reach. Right? A. As I said, the Reynoldsville Gage I believe is affected by Lake Seminole. So I would have to really do a very careful analysis to answer that question. Q. Well, Dr. Hornberger, before you said that a gaining reach was pretty simple. If there was more flow downstream than upstream, it was a gaining reach. Right? A. They would be for gages on a free-flowing river, not a gage that is partially affected by a backwater from a reservoir. Q. So your testimony is you cannot use the THE REPORTING GROUP Mason \& Lockhart

definition of gaining reaches and losing reaches that you just testified to with respect to the two gages on Spring Creek?

A. I could not do it with respect to a gage that is affected by -- materially affected by reservoir. And I believe that the Reynoldsville Gage is so affected.
 Q. You don't have any discussion in your direct testimony about the Reynoldsville Gage or any analysis about how it might be affected by a reservoir; do you?
 A. No.
 Q. Now, the second basis for your opinion about hydrological shifts in the ACF Basin is this analysis you did of recent versus historic droughts. Right?
 A. In what sense? Can you be more specific?
 Q. One hydrologic shift that you attribute to Georgia's consumptive use is your observation that recent droughts have caused greater streamflow decline than historic droughts. Correct?
 A. Correct.
 Q. And you say -- you attribute the difference in streamflows between the earlier drought and the THE REPORTING GROUP Mason \& Lockhart
 1994

more recent drought to Georgia's consumptive use. Right?
A. Yes. Yes.
Q. Now, let's look at page 20 of your direct testimony and specifically at table 1 . In table 1 you're comparing two sets of back-to-back drought years. Right?
A. Yes.
Q. 1954 and 1955 on the one hand and 2011 and 2012 on the other hand?
A. Yes.
Q. And you say, not in table 11 but in the text right around it, that the 1954 to 1955 drought is before the growth in Georgia's consumptive use; and the 2011 to 2012 drought is after there have already been moderate consumptive use levels. Right?
A. Yes.
Q. And you observed a difference of approximately 3,500 to $4,000 \mathrm{cfs}$ between streamflow in the earlier drought and the later drought?
A. Yes.
Q. And because you say that you rule out climate as a possible cause, your opinion is that the only remaining interpretation for that 3,500 to 4,000 THE REPORTING GROUP

Mason \& Lockhart
cfs difference in streamflow between the two sets of droughts is Georgia's consumptive use. Right?
A. Yes.
Q. But it's also true that the 1954 to 1955 drought is before there were any reservoirs in the ACF Basin, and the 2011 to 2012 drought is after the reservoirs were built. Isn't that right?
A. Yes.
Q. You don't dispute that the federal reservoirs in the ACF Basin have some influence on how much water flows through to Florida at the state line; do you?
A. No.
Q. But you attribute the entire difference in streamflow between the 1954 to 1955 drought and the 2011 to 2012 drought to Georgia's consumptive use. Right?
A. Yes. We have looked at the impact of the reservoirs in terms of the evaporation from the reservoirs, and it is a small amount.
Q. There is no discussion in your direct testimony of any analysis ruling out the reservoirs as a possible interpretation for any of the difference in streamflow between the two droughts; is there?
A. You're right.

THE REPORTING GROUP
Mason \& Lockhart
Q. Let's talk about what you call basin yield, and that's another shift that you identify. Basin yield is essentially the amount of precipitation that ultimately becomes streamflow. Right?
A. It's the -- yes, the fraction of rainfall over a basin that flows out as streamflow, yes.
Q. And you say that basin yield has declined in the ACF Basin. Right?
A. Yes.
Q. And you say the cause of that decline is Georgia's consumptive use?
A. Yes.
Q. And for this opinion you only looked at basin yield changes at a single gage. Right?
A. Yes.
Q. And that was the Chattahoochee Gage just below the state line. Right?
A. Yes.
Q. You didn't do any analysis of how basin yield might have changed in rivers outside the ACF Basin; did you?
A. I did not.
Q. Let's look at the analysis you did do. It's on page 27 of your direct testimony at table 4. In table 4 on page 27 in the middle column THE REPORTING GROUP
Mason \& Lockhart
A. Yes.
Q. I want to turn to demonstrative No. 23. Now, Dr. Hornberger, in your original report that you submitted on February 29, 2016, your basin yield values were .349, .330, .296, and .261. Is that right?
A. That's what the table says, yes.
Q. And you later revised your basin yield numbers in a July 19, 2016, supplemental memorandum. And there you reported that your basin yield numbers were $.343, .328, .301$, and .282 . Is that right?
A. Yes.
Q. And now in your direct testimony that you submitted to the Court a few weeks ago, your basin yield numbers are .329, .316, .289, and .270. Isn't that right?
A. Yes.
Q. For today, I'm just going to work off of the most recent set of numbers from your direct testimony, so the table 4 that's reproduced at the bottom of this slide. And you show average annual basis yield numbers for four periods, 1924 to 1970, 1971 to 2013, 1992 to 2013, and 2003 to 2013. Is THE REPORTING GROUP Mason \& Lockhart

1998
that right?
A. Yes.
Q. All three of the sets of data where you report post-1970 include and reflect data from recent droughts; isn't that right?
A. Yes.
Q. There's no subset in your analysis reported here that would show a period of basin yield that did not include a major drought. Right?
A. That's right. I think there are droughts included in all of those periods.
Q. Now, you recall at your deposition we had gone back to the underlying data so that we could see actually what it showed for some of the subsets that you didn't report. Do you recall that?
A. Vaguely.
Q. And you agreed at your deposition that the basin yield data that you relied on for your analysis actually showed an increase in basin yield over the period of 1971 to 1998 . Do you recall that?
A. That is the calculation you showed me, yes.
Q. So while your data showed an overall decline for 1971 to 2013, it actually showed an increase for the first 30 years of that period. Right?
A. Yes. One really needs to be careful what periods THE REPORTING GROUP Mason \& Lockhart
one picks. And so if you pick a period such as 1970 to 1999, you're not capturing a representative set of both wet and dry years. And so the periods that I picked, if one looks at the precipitation record, all have a balance between wet and dry years. And so it's not really a good calculation to just pick out a section where the basin yield is high because you don't have a representative set of wet and dry years.
Q. All of the data sets that you chose to pick out and report to this Court all show a decline in the basin yield; is that right?
A. Yes.
Q. Now, let's look at table 5 in your direct. It's on page 28. And page 28 of your direct on table 5 also discusses basin yield. Right?
A. Yes.
Q. Table 5 is basin yield presented by year in order of lowest basin yield. Right?
A. Yes.

MS. ALLON: Your Honor, I'm sorry. I'm back in Dr. Hornberger's direct testimony.

SPECIAL MASTER LANCASTER: Thank you.
MS. ALLON: On page 20. THE REPORTING GROUP
Mason \& Lockhart
2000
BY MS. ALLON:
Q. Now, in table 5 you include a selection of years with lowest basin yield at the top. Right?
A. Yes.
Q. And the basin yields that you present in table 5 range from 13.9 percent to 39.9 percent. Right?
A. Yes.
Q. And, again, in the text discussing this table, you contrast pre-and-post 1970 basin yields. Right?
A. Yes.
Q. And you agree that the low basin yield values before 1970 are not associated with Georgia's consumptive use. Right?
A. Yes.
Q. Now, let's turn to demonstrative No. 24. And in demonstrative 24 what we have done is on the left, we have reproduced the table 5 from your direct that we were just looking at. And on the right, we have reproduced the data from the backup sheet that was produced to Georgia along with your direct testimony supporting table 5 .

Now, according to your backup data, in 1932 there was a basin yield of 25.7 percent. Is that right?

THE REPORTING GROUP
Mason \& Lockhart

A. Yes.
Q. Okay. Now, let's take a look at the result of your PRMS recalibration. You didn't include them in your direct, so we'll have to go back to your expert report. They're at FX-785, page 68. Now, figure A. 4 on page 68 shows the results of your calibration for your PRMS model. Right?
A. Figure A. 5 you're pointing to?
Q. A.4.
A. A.4, yes.
Q. Now, the red line shows modeled flows from your PRMS model. Right?
A. Yes.
Q. The blue line shows observed flows from the Chattahoochee Gage.
A. Yes.
Q. And what the figure 4 -- A. 4 does is it shows a comparison between modeled and observed for the period 1935 to 1940. Right?
A. Yes.
Q. Okay. The X axis is the water year. Right?
A. Yes.
Q. And that just means that instead of the calendar Mason \& Lockhart

2010
possible between modeled results and observed data during your calibration period?

THE REPORTING GROUP

year, the water year goes from October 1 to September 30. Right?
A. Yes.
Q. It's a hydrologist's version of a fiscal year.
A. Good analogy.
Q. Now, the Y axis is the flow or discharge in cfs. Right?
A. Yes.
Q. Now, the Y axis scale looks like it goes from zero to 2. But you see there is a notation at the top over there that says times 10 to the 5th power. That means that the scale actually goes from zero to 200,000 cfs. Right?
A. Yes.
Q. Now, the time period that you reflect in figure A.4, the calibration period, is the time period during which your modelled results should most closely match the observed data. Right?
A. Yes.
Q. However, for your calibration period, there are times where the modeled flows are substantially different from the observed flows. There can be differences between your modeled results and your observed flows of several thousands of cfs. Right?

THE REPORTING GROUP
Mason \& Lockhart
A. There are differences. I would not characterize
them as substantial. I, as a hydrologist, would look at this figure and think that it is quite a good fit.
Q. All right. Well, let's look at a couple of examples. If you look in early 1936, do you see a sharp spike there?
A. Yes.
Q. Okay. That reflects a difference of at least 20,000 cfs between modeled and observed. Right?
A. My eye is probably not that finely calibrated, but certainly there is a difference.
Q. Let's look at early 1938. Do you see a sharp spike there?
A. Yes.
Q. And that also shows a difference between modeled and observed of at least 20,000 cfs. Right?
A. Probably, yes.
Q. Now, the difference between modeled and observed in the calibration period is not a result of Georgia's consumptive use. Right?
A. Right.
Q. And the difference that exists in the calibration period similarly exists in the post-1955 period. Right?

THE REPORTING GROUP
Mason \& Lockhart

A. Yes.

Q. Meaning there will always be some difference between your modeled and observed results that is not due to Georgia's consumptive use. Right?
A. There will always be some differences in modeled results on a day-to-day basis, without a doubt.
Q. That are not due to Georgia's consumptive use. Right?
A. Well, Georgia's consumptive use is not even included in the model. So all the model tells us -- the model tells us these differences. And you're right; we infer that over a long period the average of those differences give a clear indication of hydrologic change. That was the purpose of the modeling.
Q. Dr. Hornberger, is it fair to say that in your post-1955 period, there will always be some difference between your modeled results and observed results that is not due to Georgia's consumptive use?
A. Yes. In such a model, one can't attribute -- go to any given day and attribute what the difference between model and -- modeled and observed data. You can't -- you can't desegregate at that level. THE REPORTING GROUP
Mason \& Lockhart
Q. Why don't you take a look at your deposition transcript on page 326.

MS. ALLON: And I would like to ask
Mr. Smith to play clip 93.
(Whereupon the video was played.)
BY MS. ALLON:
Q. Were you asked that question, and did you give that answer?
A. Yes.

MS. ALLON: I'm about to start two sections of my cross-examination that relate to testimony that Dr. Hornberger has adopted from other Florida experts. Now, these opinions are the subject of a letter that was sent to your Honor several weeks ago; and I understand that your Honor has reserved judgment on those issues. But I just wanted to flag that my cross-examination may be a little bit unconventional because I have to cross Dr. Hornberger on work done by other experts. But I'm happy to proceed with that pending the Court's ruling.

SPECIAL MASTER LANCASTER: Please.
BY MS. ALLON:
Q. Now, Dr. Hornberger, in your testimony you offer THE REPORTING GROUP Mason \& Lockhart

2014
opinions quantifying Georgia's consumptive use. Right?
A. Yes.
Q. And you're relying on another Florida expert, Dr. Flewelling -- you're relying on his work as the basis for those opinions. Right?
A. Yes.
Q. You didn't repeat any of Dr. Flewelling's calculations for the conclusions he reached to independently see if you could verify them; did you?
A. I reviewed all of the work and -- but I -- you're right; I did not do independent calculations. I certainly reviewed it and checked it and accepted it.
Q. You didn't repeat any of his calculations to see independently if you got the same number. Right?
A. Not in bulk, that's correct.
Q. You didn't make any effort to go back to the underlying data and manipulate it in any way; did you?
A. I did not manipulate underlying data.
Q. You now offer the opinion that Dr. Flewelling's estimates of Georgia's consumptive use are conservative. Right?

THE REPORTING GROUP
Mason \& Lockhart

A. Yes.

Q. But you told me at your deposition that
if I wanted the detailed answer to how
Dr. Flewelling's estimates are conservative, I needed to ask Dr. Flewelling myself. Right?
A. Yes.
Q. You told me Dr. Flewelling is a much better source to ask questions about consumptive use. Right?
A. Yes. He did the calculations.
Q. Now, in addition to adopting Dr. Flewelling's consumptive use opinions, you also use his estimates as inputs in your modeling. Right?
A. Yes.
Q. If Dr. Flewelling's consumptive use calculations were too high, that would impact your conclusions about streamflow at the state line. Right?
A. No.
Q. Your testimony is that if Dr. Flewelling's consumptive use was too high, it would not impact your calculations of streamflow depletions at the Chattahoochee Gage?
A. Streamflow depletions that are calculated using the PRMS model did not depend upon Dr. Flewelling's estimates of consumptive use. THE REPORTING GROUP

Mason \& Lockhart
Q. I'm not asking about the PRMS model. I'm asking about the modeling you did that we talked about at the beginning of this cross-examination where you looked at increases and decreases to Georgia's consumptive use, and you assessed what impact those increases or decreases would have on state line flows. Is it your testimony that if Dr. Flewelling's consumptive use calculations were too high, that would have no impact on those conclusions?
A. No. Obviously when -- where we used it for those scenarios, the -- the results would scale.
Q. Now, one part of consumptive use estimates is irrigation depths. Right?
A. Yes.
Q. Dr. Sunding actually updated his irrigation depths after expert reports were submitted. Right?
A. I believe that is correct.
Q. And then Dr. Flewelling evaluated Dr. Sunding's adjustment and found that the new irrigation depths reduced Dr. Flewelling's consumptive use estimates -- agricultural consumptive use estimates by 6 to 7 percent. Isn't that right?
A. Yes.

THE REPORTING GROUP
Mason \& Lockhart
Q. And your testimony is that this impact is insignificant. Right?
A. It doesn't make any material difference to my conclusions. That's right.
Q. Now, I want to turn to slide 28 , please.

And slide 28 is taken directly from
Dr. Flewelling's spreadsheet underlying his consumptive use estimates. Dr. Flewelling calculated peak summer consumptive use in some years to be over 3,000 cfs. Right?
A. Yes.
Q. For example, in May of 2007 -- and that's what we highlighted in yellow -- Dr. Flewelling estimated agricultural consumptive use to be 3,867 cfs. Right?
A. Yes.
Q. Now, you can take my word for it or I can give you a calculator; but 6 to 7 percent of 3,867 cfs is about 232 to 270 cfs. Does that sound right?
A. Sounds about right.
Q. That difference, 232 to 270 cfs, that's what you were referring to when you testified that the difference was insignificant. Is that correct?
A. It is immaterial with respect to my opinions.
Q. That wasn't my question. My question was when THE REPORTING GROUP Mason \& Lockhart

2018
you referred to a difference, you were referring to that 6 to 7 percent difference, that 232 to 270 cfs difference, for your testimony that the difference was insignificant?
A. Significance is very difficult to assess depending upon what your comparison is. Obviously one could say $\mathbf{2 0 0}$ cfs is significant to someone if they're not getting 200 cfs. But in terms of evaluating impacts, it didn't have a material impact on my analysis. So in that sense, it was insignificant to me.
Q. Dr. Hornberger, I'm going to ask you to try to answer my question; and my question was a very narrow question. It was just when you said the difference was insignificant, is the difference you're referring to the one we just walked through of 6 to 7 percent equating to 232 to 270 cfs?
A. For May of 2007, yes, that's the calculation.
Q. Let's talk about small impoundments. Now, a small impoundment is basically a man-made body of water that farmers construct to store water. Right?
A. Yes.
Q. And you assume in your testimony that evaporation THE REPORTING GROUP Mason \& Lockhart
from small impoundments results in streamflow depletions. Right?
A. Yes.
Q. And, therefore, you include that in your calculation of consumptive use estimates?
A. Yes.
Q. And this is based on work originally done by Dr. Flewelling. Right?
A. Yes.
Q. You didn't do any independent analysis to evaluate evaporative water loss from small farm impoundments; did you?
A. By repeating Dr. Flewelling's calculations --
Q. Yes.
A. -- is that what you mean?

No. I reviewed them and did what we call spot checks. But, no, I did not get into the underlying data base and do massive amounts of computation.
Q. Now, Dr. Flewelling estimated incremental evaporation from small impoundments based on the surface area of the small impoundment. Right?
A. Yes.
Q. And the way he estimated the surface area is he looked at aerial imagery data for certain years. THE REPORTING GROUP

Mason \& Lockhart

Right?
A. Yes.
Q. He then used a regression to estimate the surface area for other years. Right?
A. Yes.
Q. Now, Dr. Flewelling gets to incremental evaporation by multiplying the surface area of the small impoundment by the ET deficit. Right?
A. Yes.
Q. So the greater the estimated cumulative surface area of the small impoundments, the greater the evaporative loss from them. Right?
A. Yes.
Q. Now, storage in small impoundments is increased by rainfall; is that right?
A. Yes.
Q. All else being equal, a small impoundment will have a greater surface area after a period of a lot of rain than a period with no rain. Right?
A. Yes.
Q. Dr. Flewelling estimated the surface area of small impoundments using aerial imagery from 1993, 2010, and 2014. Right?
A. I believe that's right.
Q. 1993 and 2010 were both preceded by relatively THE REPORTING GROUP
23 look at line 20 .
A. What page again?
Q. 248.
wet years. Correct?
A. I believe that's right.
Q. Okay. So for at least two of the three years that Dr. Flewelling directly estimated small impoundment surface area, he did so after relatively wet years. Right?
A. Yes.
Q. Dr. Flewelling could have used years after drought years instead of years after wet years. Right?
A. I'm not sure what of the aerial photography was available. If -- assuming that the aerial photography was available for other years, then that could have been done. But I don't know that those data are available.
Q. Since we don't have Dr. Flewelling with us in the courtroom, why don't we take a look at Dr. Flewelling's testimony on this topic. You have a binder that's called volume 2 in front of you, and that has in it Dr. Flewelling's deposition testimony. And if you turn to page 248 of that testimony, I'm going to ask you to look at line 20.

THE REPORTING GROUP Mason \& Lockhart

[^0]take out, the streamflow is depleted by 1 cfs . Right?
A. For irrigation, yes.
Q. Okay. But when you talk about groundwater pumping, you don't have the same one-to-one impact on streamflow. Right?
A. That is correct.
Q. For every 1 cfs of water you pump from groundwater, you're not going to see a reduction in surface water flows of that same 1 cfs . Right?
A. Not in many cases, that's correct.
Q. Now, you used the term impact factor in your direct testimony. Right?
A. Yes.
Q. And an impact factor is a way to take groundwater pumping data and convert it to streamflow depletions. Right?
A. Yes.
Q. And you also sometimes refer to it as a groundwater conversion factor. Right?
A. Yes.
Q. And in this case in your testimony, you offer some opinions about the appropriate groundwater impact factors. Right? THE REPORTING GROUP Mason \& Lockhart

A. Yes.

Q. Now, even though you're offering opinions about impact factors, you never independently ran a groundwater model for this case; did you?
A. I did not.
Q. You never ran any codes to calculate groundwater/surface water interaction; did you?
A. I did not.
Q. Now, Jones and Torak is a groundwater model of the ACF Basin that was developed by USGS. Isn't that right?
A. Yes.
Q. You have never used the Jones and Torak groundwater model for any impact work. Have you?
A. We rely on the reported results from the Jones and Torak model. But if your question is did I run a computer, then the answer is no. I did not do computation.
Q. Okay. Not just in this case. My question was in any of your expert work, you have never before run or used the Jones and Torak groundwater model; have you?
A. No.
Q. Now Dr. Langseth, he doesn't know how to run the Jones and Torak model either; does he? THE REPORTING GROUP Mason \& Lockhart
A. That's not true.

MR. SINGARELLA: Objection.
A. That is not true. That is simply not true. I know how to run the Jones and Torak model. I have run groundwater models. I have written a book on groundwater modeling. And it's absolutely outrageous to suggest that either I or Dr. Langseth doesn't know how to run the Jones and Torak model.
Q. Why don't we take a look at Dr. Langseth's deposition testimony on this topic. On page 7 of his transcript at line 15 I asked Dr. Langseth, is it fair to say that you personally don't have the capacity to run it; but there are others on your team who do?

And he answered, well, as I sit here right now, I don't know the specific command structure for running that model.

Do you see that?
A. Yes.
Q. Now, for his groundwater analysis in connection with this case, Dr. Langseth never did run a groundwater model himself. Right?
A. I believe that's correct.
Q. Dr. Langseth did not run any simulations from any THE REPORTING GROUP Mason \& Lockhart

2026
model in support of his affirn
this case. Is that right?
A. He didn't run the numerical groundwater models; that's correct.
Q. Instead of actually running the models,

Dr. Langseth extrapolated numbers from published results to come up with groundwater impact factors. Right?
A. Yes.
Q. And you used the groundwater impact factors calculated by Dr. Langseth?
A. Yes.
Q. You relied on Dr. Langseth for the impact factors?
A. There wasn't enough inflection in it.

Yes.
Q. And the reason you didn't do anything to independently verify Dr. Langseth's work was because Dr. Langseth did it. Is that right?
A. Could you repeat that again? I didn't get that question.
Q. The reason you said you didn't need to do anything to independently verify Dr. Langseth's work was because, in your words, Dr. Langseth did it?
A. Dr. Langseth was part of a hydrology team. And, again, we had many conversations. I reviewed the
work. He reviewed the work of others. I
certainly rely on Dr. Langseth's work and adopt it, if that's your question.
Q. Why don't we turn to your deposition transcript at page 238.

MS. ALLON: And I'm going to ask Mr. Smith to play clip 72.
(Whereupon the video was played.)
BY MS. ALLON:
Q. Were you asked those questions, and did you give those answers?
A. Yes.
Q. Now, you used the term short-term impact factor to mean the average percent of water that results in streamflow depletion over one year. Right?
A. Yes.
Q. And you say that you rely on 60 percent as a conservative estimate of the actual short-term impact factor. Right?
A. Yes.
Q. And in support of the 60 percent impact factor, you rely on Dr. Langseth's analysis. Right?
A. Yes.

THE REPORTING GROUP
Mason \& Lockhart
Q. And you also rely on a report that was written by Sorab Panday, who is Georgia's groundwater expert in this case. Right?
A. Amongst others, yes.
Q. And that report was written in 1998. Right?
A. Yes.
Q. Now, let's start with Dr. Langseth's analysis.

And I want to refer to his expert report so that we can see his discussion of impact factors first-hand. So Dr. Langseth's report is in volume 2 of the binders that you have in front of you, and I want to turn to page 36.

Are you there, Dr. Hornberger?
A. Yes.
Q. Okay. Now, if you look at the paragraph that starts among the issues, do you see that?
A. Yes.
Q. Now, I'm not going to read verbatim from the report, but do you see that Dr. Langseth performed a quantitative evaluation of the relationship between pumping and streamflow depletions?
A. Yes.
Q. And the question Dr. Langseth says he wanted to answer on page 36 is if pumping rates are changed THE REPORTING GROUP Mason \& Lockhart

Yes.
Q. Dr. Langseth said that the Jones and Torak model THE REPORTING GROUP Mason \& Lockhart

2030
Q. Now, Dr. Langseth relied on the Jones and Torak model to calculate an impact factor of 41 percent. Is that right?
A. Yes.
Q. Dr. Langseth relied on the Jones and Torak model to determine that pumping of 100 cfs from groundwater reduces surface water streamflow that year by 41 cfs. Is that right?
A. 100 to 41 , is that what you said?
Q. Yes.
A. Yes.
Q. Now, in your direct testimony, you say, I agree with Dr. Langseth that the short-term impact factor ranges from at least 41 percent to a more realistic, yet still conservative, 60 percent. Right?
A. Yes.
Q. And you used 60 percent as your impact factor. Right?
A. Yes.
Q. But in his expert report, Dr. Langseth never THE REPORTING GROUP Mason \& Lockhart
mentioned 60 percent as an impact factor. Did he?
A. I believe somewhere in his report I'm certain that he articulated why the . 41 was very conservative.
Q. That wasn't my question. My question was in his expert report, Dr. Langseth never mentioned 60 percent as an impact factor. Did he?
A. I'm not sure. But I -- you know, I would have to go back and -- he was certainly focused on the . 41 from the Jones and Torak. I don't know if he mentioned specifically 60 percent or not.
Q. Are you aware that on June 16, 2016, on the first day of Dr. Langseth's four days of deposition in this matter, he explained that 40.6 percent is the annual impact factor for pumping in the ACF portion -- in Georgia's portion of the ACF Basin?
A. I don't know that for a fact, but I will take your word for it.
Q. You're aware that Dr. Langseth drafted a supplemental memo on June 28, 2016. Right?
A. Yes.
Q. Okay. The memo is actually addressed to you? Right?
A. Yes.

THE REPORTING GROUP Mason \& Lockhart
Q. And that memo didn't mention anything about a 60 percent impact factor. Did it?
A. I would have to go back and reread it, but I don't recall if it specifically did or not.
Q. Are you aware that in July, the night before his next round of deposition, Dr. Langseth disclosed some additional notes and analysis?
A. I don't think I know that.
Q. And you have never seen those?
A. I -- I can't say for sure. I don't recall them.
Q. Would it surprise you to learn that those notes didn't mention anything about a 60 percent impact factor?
A. No.
Q. Now, we already talked about Dr. Langseth's testimony from his first day of deposition. On the second and third day, Dr. Langseth didn't mention anything about a 60 percent impact factor. But on the fourth day, Dr. Langseth did testify for the first time about an impact factor that was different than his original impact factor. Am I right?
A. I'll take your word for it.
Q. Are you aware that on his fourth day of deposition Dr. Langseth testified that he had THE REPORTING GROUP Mason \& Lockhart

particular average monthly flows correspond?
A. So this is 1954 and 1955, and it's October and November. And 1954 is the year with the lowest-ever recorded rainfall in the record.
Q. And how might these flow records help one to understand the issue of consumption, Georgia's consumption of these waters?
A. So what happens in a basin like this, you have so much rainfall coming in. And the rainfall then gets apportioned; and some of it flows into the rivers and flows out, in this case, to the Apalachicola River. But some of it is evaporated. So we talk about evaporation, or transpiration, is just that plants take water from the soil through their roots up through the plant; and it gets evaporated from the leaves. We refer to that as transpiration.

Another component is what I refer to as consumptive use, which is the additional return of water to the atmosphere due to human appropriation of water. And so one has to account for all of these things.

In the absence of any changes in consumptive use by human appropriation and in the absence of any changes in -- any systematic changes in THE REPORTING GROUP Mason \& Lockhart

2050
rainfall, we don't anticipate that there would be a change in flows, and particularly low flows in critical summer months.

So we look at these data. And basically the data themselves speak to the fact that there has really been a consumptive use impact.
Q. And, once again, with regard to the big board for the Chattahoochee flow record, over what time horizon do those records suggest that some kind of hydrologic change has occurred?
A. Well, certainly there's no doubt that starting in 1999 there are just very large differences that we see just by looking at the number of colored months on the board.
Q. Now, let's turn our attention to the Bainbridge board for a minute. How would one put together a board like that?

We'll call that one the small board.
A. Small board. So, again, we look at records from the Bainbridge Gage, which is here on the Flint River Basin. You will notice that this board is not as big because the USGS stopped recording flows in 1971 and didn't start again until 2001. So there's roughly a 30-year gap.

Nevertheless, we can for the Bainbridge Gage THE REPORTING GROUP Mason \& Lockhart
look at records before 1971 and records after 2001. And, again, we see -- for example, in 2011-2012 we have five months, or seven months. And we never had any occurrences except here in 1954, the lowest precipitation ever; and we did have three occurrences there.

So, again, it's pretty much the same story that we see a really large impact of consumptive use.
Q. And what is -- what is the meaning of the yellow highlighting on the small board?
A. Oh, thank you. So I had to pick a value for flows on the Flint at Bainbridge. And I looked at flows less than or equal to $\mathbf{2 , 5 0 0} \mathbf{c f s}$ average monthly values.
Q. Why did you pick that particular value?
A. So for two reasons. First of all, I recognized from the data that there were very few months where the flow dropped that low. And also, there's a 1999 report looking at critical low flows to be observed. And the suggested value was 2,506, I believe.
Q. So that's -- there is a threshold -- some type of threshold of 2,506?
A. Yes. This was basically to maintain a healthy THE REPORTING GROUP

Mason \& Lockhart
2052
ecosystem on the river.
Q. Could we perhaps turn to the Iron City Gage? Is that what it's called?
A. Yes.
Q. What is the Iron City Gage?
A. The Iron City Gage is here on the -- Spring Creek. And Spring Creek is -- drains -- as we heard this morning, drains into Lake Seminole. So it's one of the tributaries to Lake Seminole.
Q. And Mr. Berrigan in his opening had a slide showing the gage data from that particular gage.

MR. SINGARELLA: Your Honor, may I approach the witness and give him a copy of that?

SPECIAL MASTER LANCASTER: You don't have to stand.

MS. ALLON: I can go sit back down?
Thank you, your Honor.
MR. SINGARELLA: I'll bring one over here, too, sir.

Thank you.
And your Honor, I'm totally remiss for not introducing Devin O'Connor earlier today. So --

SPECIAL MASTER LANCASTER: Welcome. THE REPORTING GROUP

Mason \& Lockhart

	2053		2055
1	MR. SINGARELLA: She is a quite able	1	A. Oh, yes. So there are numerous recordings, as I
2	assistant to me, and I really appreciate her	2	think Ms. Allon indicated this morning, of zero.
3	being here today and sitting at the table	3	So the flow -- recorded flow is zero. It stopped
4	with me.	4	flowing.
5	BY MR. SINGARELLA:	5	Q. And what might the flows at Spring Creek, the
6	Q. Doctor, are you familiar with the data shown in	6	Iron City Gage, tell us about agricultural
7	this figure?	7	irrigation in that part of Georgia?
8	A. Yes. This is -- these are data from Spring Creek	8	A. It's -- it's very clear that the lowering of the
9	near Iron City.	9	groundwater due to pumping is seriously
10	Q. And what do these streamflow records show?	10	impacting -- seriously impacting that stream
11	A. Again, through the yellow highlighting, we're	11	segment.
12	showing low flows. I can't remember exactly the	12	Q. I would like to turn your attention, Doctor, to a
13	criterion we used; but all of them, except one of	13	figure we just received a week-and-a-half ago on
14	the numbers here, is below $\mathbf{1 0 0}$ cfs. And many are	14	October 26 from Georgia's expert, Dr. Bedient.
15	much less than that.	15	I'm going to put that up on the screen.
16	Q. And why were you focused on the Spring Creek	16	MR. SINGARELLA: May I approach, your
17	area?	17	Honor?
18	A. Well, the Spring Creek area, even though it's a	18	SPECIAL MASTER LANCASTER: Excuse me,
19	small basin, we would anticipate that it would	19	counsel.
20	manifest change, any impacts first. And in	20	MR. SINGARELLA: Yes, sir?
21	Spring Creek there is very heavy groundwater	21	SPECIAL MASTER LANCASTER: May I have
22	pumping for irrigation. And so I thought it was	22	one?
23	really important to look at this to see if -- to	23	MR. SINGARELLA: Oh, my gosh, I thought
24	see what the signals were telling us up in this	24	the one that I gave -- I'm so sorry, your
25	basin.	25	Honor.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	2054		2056
	Q. This was one of the gages that Ms. Allon	1	SPECIAL MASTER LANCASTER: Thank you.
2	questioned you about. Right?	2	MR. SINGARELLA: I seem to be making one
3	A. Yes.	3	faux pas after another today, your Honor. I
4	Q. Yes. Did you have occasion to look at the	4	will carry on.
5	frequency of low flow events --	5	MR. SINGARELLA:
6	A. Oh, yes.	6	Q. So this -- this particular plot was produced to
7	Q. -- at Spring Creek?	7	us on October 26 from Bedient demo 52-53.XLSX.
8	A. Yes, I did. And so when I looked at the	8	What would that mean, Doctor, that it's -- it's
9	analysis, I -- my analysis, I looked at low flow	9	an XLSX?
10	days. And prior to 1970, the lowest recorded	10	A. The XLSX means it's an Excel spreadsheet. So
11	flow was about 9 -- was 9 cfs, 9 cubic feet per	11	it's a computer spreadsheet.
12	second. And there were, as I recall, 100 --	12	Q. And have you had occasion to look at this chart
13	241 days where the flow was less than that	13	before your testimony today?
14	after 1970. And if you took $1 / 50$ of that	14	A. Yes. I did see this.
15	value -- that's the value for $1 / 50$ of that	15	Q. And what are your impressions of it?
16	value, which would be $\mathbf{0 . 1 8} \mathbf{~ c f s , ~ l e s s ~ t h a n ~}$	16	A. Oh, I think it, again, shows just what we've been
17	1 cfs.	17	talking about, the large increase of -- even in
18	And at 9 cfs, according to the USGS data --	18	the ' 80 's and certainly post-1998 in the
19	field data, the stream would be about 20 feet	19	occurrence, the number of days below these
20	wide. So you would get your boots wet if you	20	various thresholds.
21	wanted to walk across. But at 0.18 feet, any one	21	And so the top line is the blue line, 6,000.
22	of us could just step across. It's really	22	And one clearly sees that the number of days
23	reduced to a trickle.	23	below $\mathbf{6 , 0 0 0} \mathbf{~ c f s ~ h a s ~ - - ~ i t ~ h a s ~ j u s t ~ i n c r e a s e d ~}$
24	Q. And did you find other occasions where the flows	24	dramatically.
25	at Spring Creek were below 0.18?	25	Q. And where did Dr. Bedient get his information for
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

drought, two years in a row of lower than normal precipitation. And 2011-2012 are two years --back-to-back years with lower than normal precipitation.

So at the top, you can see I did a comparison of the June to September precipitation. So we see the June to September precipitation, and we see that 1954 is a low year. 1955, somewhat higher, 15.8 inches. And you see that the precipitation is somewhat higher in 2011-2012, even though these both represent back-to-back drought years.

The temperatures in the summer season for all of these years are pretty similar. So we wouldn't anticipate changes in evapotranspiration. And, yet, when we look at the June to September streamflow, we see on the order of 3,500 or larger, 4,000 cfs less flow in 2011-2012.
Q. What does that mean to you, sir?
A. Well, with no other explanation, no explanation due to rainfall coming in, that means that there must have been -- no change -- no change in temperature indicating a change in the evapotranspiration, this has to be due to an THE REPORTING GROUP Mason \& Lockhart
increase in consumptive use.
Q. Doctor, what steps did you take to assure yourself that this was a fair comparison?
A. Oh, yes. So, I mean, I looked at all -obviously looked at all the discharge records, looked at the precipitation records. And obviously every year is different. So it's not that they are perfectly overlapped. But in looking at all the data, these are quite reasonable years to make this comparison.
Q. Now, I know there's been so many numbers flying around. Is this the product of -- is table 1 the product of a modeling exercise?
A. No. These are data. These are just objective data taken from the Livneh dataset and the USGS discharge data.
Q. What's the Livneh dataset?
A. I'm sorry. The Livneh dataset is this gridded dataset that can be downloaded from the NOAA website. And it is basically the scaling of objective rainfall data to a grid to make it useful for watershed studies. And Livneh was the lead author of the -- of the data product.
Q. I have heard you mention grid a few times. What is the relationship between gridded climate data

THE REPORTING GROUP
Mason \& Lockhart
and rain gages?
A. So the rain -- so rain gages are a point measurement. So perhaps we have all seen rain gages. It's a cylinder. It's a bucket.

The way that NOAA uses it, makes the measurement, it's 8 inches in circumference. It captures the rain and records the rain. So it's a point measurement.

And the -- point measurements are great.
That's what we can do. It's about the only thing we can do. But, again, we all know from experience that it can even be raining on one end of Portland and not the other. And so there are some limitations with point measurements.

And so to overcome this, we like to use a whole series of rain gages and, basically for studies such as I have done, to interpolate to a gridded basis to account for -- we can never fully account for some of the variability in the rainfall field; but to the extent that we can, that's the best we can do.
Q. Earlier today you, in response to one of Ms. Allon's questions, referred to two different kinds of droughts. One I think you said was meteorological; and the other was hydrological, THE REPORTING GROUP Mason \& Lockhart

2064
if I have that right. Could you explain those two types of droughts and the distinction between them?
A. Yes. So when we talk about a meteorological or climatological drought, that has to do with rainfall coming in. It's, if you will, what nature gives us. And if nature doesn't give us too much, that's a meteorological drought.

From the table we were just looking at, we could see that the level of meteorological drought in 1954-1955 was slightly higher than 2011-2012; but 2011-2012 also had low rainfall.

On the other hand, a hydrological drought incorporates not only what nature gives us but what we take way, i.e., what human appropriation of water consumes. And that's reflected hydrologically.

And so the hydrological drought is reflected in the June to September streamflow on this table. In other words -- and that's part of my comparison. There is no reason to think that there's a more extreme meteorological drought in 2011-2012. In fact, quite the opposite. But nevertheless, there's a big hydrological difference. And so we could conclude that in THE REPORTING GROUP Mason \& Lockhart

2011-2012 there definitely was a hydrological drought, but we attribute that to consumptive use.
Q. And what is the importance of this distinction to this case?
A. The way I look at it, the meteorological drought, what nature gives us, is really fairly what we should be thinking of as the available quantity of water and not the hydrological response, which already incorporates everything that's been taken out.
Q. Doctor, I think you're aware that Dr. Bedient, an expert for Georgia, argues that the lower flows the last 16 years are because of low rainfall. What is your response to that argument?
A. One -- all one has to do is look at the rainfall for modern years. And you see that that -- that just doesn't make sense.

Dennis Lettenmaier -- Dr. Lettenmaier is another expert in this case; and he'll be testifying next week, I believe. And he is an expert on climate.

I have looked at the data. I have calculated what is called a standardized precipitation index. It's a technical term, but it's basically THE REPORTING GROUP

Mason \& Lockhart
a measure of the rainfall. And one can see that there really isn't any systematic change in rainfall. And Dr. Lettenmaier has done extensive analyses and come to the same conclusion.

So I certainly do not believe that the
differences between the 1954, the historical period, and the modern period can be explained by climate changes.
Q. Sir, what would you ascribe those changes to between those historic droughts and the modern droughts?
A. There isn't any conclusion that I think anyone who objectively looks at this can come to save that it is consumptive use in the ACF Basin.
Q. And for what purpose did you use -- I'm going to turn now to one of the models. For what purpose did you use the PRMS model that you -- that you had some questions on this morning?
A. So, again, the rainfall runoff models are tools that we use. And in this case, it's a tool that we use to detect change. And the way we do that is to follow the water.

So the model computationally keeps track of how much water is coming in. It does calculations as to how much water is going out by THE REPORTING GROUP

Mason \& Lockhart
evapotranspiration, by -- not by consumptive use because I only used it for natural conditions, evapotranspiration, how much is in the -- goes to the stream.

And so what I did was to calibrate that model. And, in particular, my calibration had a focus on low flows because we are most concerned in this case not with overall flows, not with peak flows caused by hurricanes, let's say, but by -- we're concerned with the low flows. And so I calibrated with particular attention to the low flows.

One can then use a calibrated model and extend that into the post -- post-calibration period, the post-impact period. And you get a calculation of what the flow would have been -it's a calculation -- an estimate of what the flow would have been had there not been increases in consumptive use.

And so what we can do with that is then look at those differences, look at that change detection. Did the change occur? Yes. If it did, we can use those -- that modelled output to calculate what the magnitude of that change is.
Q. I heard you use the word tools or tool there a

THE REPORTING GROUP
Mason \& Lockhart
2068
couple times. What does that term mean to a hydrologist?
A. So it's basically a methodology. It is a method of doing a calculation. Typically these are encoded in computer languages.
Q. Did -- to what extent did you apply different tools, different methodologies in your work for -- on this case?
A. So -- oh, of course, we -- as we just discussed, we looked at data very much, as much as we could in every way that we could think of to look at the data because we really believed that the data formed the bedrock. But -- we used the PRMS model; but we also looked at the calculation -- I looked at calculations that other people did.

And so Dr. Lettenmaier also exercised a model. He has a model that's called the variable infiltration capacity model or VIC. And he finds very similar things.

We looked -- I looked at -- there was a paper by Jaramillo and Destouni, J A R A M I L L O and DESTOUNI. These are the names of the people. This was a paper -- a report published in Science magazine, one of the top scientific journals in the world. And quite independently, THE REPORTING GROUP

Mason \& Lockhart


```
A. Right here at Chattahoochee, the Chattahoochee
        Gage, Chattahoochee, Florida, where the basin
        drains into Florida.
Q. And in your opinion, why isn't it there in 2012?
A. In my opinion, again, there is no reason to think
that the numbers like this for roughly 4,000 cfs
should be there except for consumptive use of
water in Georgia.
Q. And could you describe with reference to your findings here in table 8 -- describe what your findings are for 2011.
A. Oh, yes. So 2011 -- I'm sorry. So in 2011 it's a similar calculation, 4,200 cfs for the June to September, and a peak depletion of 5,300 cfs.
Q. And I think, Doctor, you understand that Florida is asking for a remedy from the Court on the order of 2,000 cfs. Right?
A. Yes.
Q. And how does -- that request from Florida, how does that relate to the overall depletions that you ascribed to the State of Georgia?
A. Well, in its -- from this table, it would be roughly half in drought years and certainly hydrologically feasible.
Q. And have you formed an opinion as to whether it's THE REPORTING GROUP Mason \& Lockhart
```

A. Yes. So, again, you know, what I wanted to do was -- in science, of course, you're always concerned about whether your results are consistent with anything that is related -- done by others. And so in this table you can see that Dr. Lettenmaier gave me the first things there. I already said the VIC, variable infiltration capacity, model is one that he uses. And I also mentioned Jaramillo and Destouni, which is a completely independent estimate. And Jaramillo and Destouni had produced their result in terms of an average from 1953 to -- it's either 2012 or 2011. I would have to check.

So we wanted to convert everything to a common basis. So we did that. We did the average from 1953 to 2012. And it's very THE REPORTING GROUP

Mason \& Lockhart
reassuring to me the similarity of all these numbers. That gives me high confidence that the results that I got from PRMS is very close to what we refer to as an ensemble average.

We -- in hydrology we find that if we have multiple models, the average of the ensemble of models is often a very, very good -- it's a very good forecast.
Q. Doctor, you mentioned a common basis that went into creating table 7. Could you just explain the differences in the numbers between table 7 and table 8 ?
A. Yes. So the -- good point. So in table 7 this is an average over what is a 60-year period roughly. So that 60-year average will include years in the 1970's and even the 1980's when the depletions would have been much smaller than they are in recent years. And so the numbers in table 7 reflect that. That is a long-term average.

And if we were to transpose those to the figures in table -- or the figures roughly in table 8, they would all be comparable.
Q. I would like to go back to your February 29 expert report, figure A.7, and have that pulled THE REPORTING GROUP

Mason \& Lockhart
up. That was in Ms. Allon's binder this morning.
And figure A. 7 -- appendix 7 -- let me just ask you a prefatory question, which is this is about the calibration of the PRMS. Why did you recalibrate the PRMS model?
A. So -- yes. So Ms. Allon referred to the USGS PRMS model. Often, and especially if you really are interested in the highest flows, that's what you focus on matching in a calibration procedure.

Because we were very interested in low flows, we wanted to have a balance between high flow calibration and low flow calibration. And we really focused strongly on getting the low flows to be representative as well as we could because we knew that that's really what this matter is all about.
Q. And did you accomplish that to your satisfaction?
A. Yes, yes. We worked at it and -- there is the exhibit, the figure that's up now. And what you see here is a statistic that is often used to indicate low flows, and it's called the 7-day low flow. So we look through the summer period, and we look for the week where the flow on average was the lowest. And that -- we refer to that as the 7-day low flow. And that's a statistic that THE REPORTING GROUP
Mason \& Lockhart

the state agencies as well, but definitely the Fish and Wildlife Service. And they basically looked at what flows -- what flows were needed to be protective of the ecosystem services.
Q. And which ecosystem services were the subject of those criteria?
A. So they were looking at aquatic habitat. They focused on things like, as I recall, mussels, other species.
Q. And what is your understanding with regard to the use of the word established here in the Flint River Plan with reference to those low flow criteria?
A. I think that the U.S. Fish and Wildlife Service put these criteria forward. They established them.
Q. And later on down in that finding, there is an interesting word, magnified, in that last sentence. Do you see that?
A. Yes.
Q. The effect is magnified. What is your understanding as to this finding here in the State of Georgia and their point about the magnification?
A. So, you know, natural systems, as we say, the THE REPORTING GROUP Mason \& Lockhart

2082
climate -- rainfall is -- we have low rainfall years; and we have high rainfall years. So we will always have hydrological drought even corresponding to meteorological drought. But what is happening there is referring to the fact that it gets magnified. The impacts get magnified of hydrological drought due to human appropriation of water, i.e. -- and consumptive use, basically what I call consumptive use. Water is taken out and, therefore, it's not available to flow in the stream.
Q. And are your findings consistent, inconsistent with the State of Georgia's finding here in No. 3?
A. Totally consistent.
Q. Let's perhaps turn our attention to the low flow criteria being referred to here.

MR. SINGARELLA: May I approach, your Honor?

BY MR. SINGARELLA:
Q. This document is FX-599 marked as a trial exhibit. It was featured in Mr. Perry's opening.

What are these -- do you know, sir, whether these are the guidelines referred to in the Flint River Plan?
A. Yes, I believe they are.
Q. The ones having been established by the federal agencies?
A. Yes. And I also see them as correct that they were coordinated with U.S. Geological Service, the Biological Resources Division, EPA, and the agencies of Alabama, Florida, Georgia as well as the Nature Conservancy.
Q. And what is the significance of that to you?
A. Well, I think that people agreed that these were -- these established criteria were very reasonable measures, metrics to use for evaluating where we needed to be.
Q. And could I invite your attention to that first sentence. I don't want to belabor it, but there is a reference to the final version. Do you see that, sir?
A. Yes, yes. In the first sentence they're providing the enclosed final version.
Q. I don't know if it needs interpretation, but what is your interpretation of that first sentence?
A. Typically, I think of a final version as being one that is not going -- that they don't envision revisiting. It's the final version. It's what they believe, what they put out there.

THE REPORTING GROUP
Mason \& Lockhart
2084
Q. I'm sorry to belabor it, but there has been apparently some debate over that in this case.
A. Ah.
Q. Let me invite your attention to the last sentence of the second paragraph here on the screen. Do you see how the authors refer to these guidelines as having some relevance to flow regime features?
A. Yes, yes.
Q. What does that mean to a hydrologist?
A. So flow regime features really means having appropriate flows, particularly at critical times. They refer to structure and function of the riverine ecosystem. And so there are -- I'm not a biologist. There are critters that need a certain amount of flow at certain times of the year to flourish, and that's what they're referring to.
Q. And then further on down in that same sentence, there's a reference to maintaining the structure and function of the riverine ecosystems. Do you see that?
A. Yes.
Q. And what -- what does that mean to you, sir?
A. Well, you know, structure and function of riverine ecosystems -- ecosystems, as we know, THE REPORTING GROUP

Mason \& Lockhart

```
        are complex. They're built up of food webs of
        different species. They can be damaged. We can
        have die-offs of species. There can be bad
        things that can happen to riverine ecosystems
        when, you know, proper flow is not maintained.
Q. And to what riverine ecosystems do these guidelines apply?
A. So this is -- this is for the ACT and ACF Basin Interstate Water Allocation Formula. That's what the title is. So it's certainly for the ACF.
Q. All three rivers?
A. All three rivers, I think.
Q. Top to bottom?
A. Top to bottom.
Q. Okay. And in this sentence here that you have been describing to us, it seems that there is some connection between two disciplines. Are you familiar with that connection in your discipline?
A. Oh, yes, very much so.
Q. And what is that?
A. Well, the connection -- I mean, in many cases it's even a two-way connection. But certainly there is a one-way connection, and that is that hydrology has a significant impact on aquatic ecosystems. You can pick any aquatic ecosystem THE REPORTING GROUP Mason \& Lockhart
2086
```

you want, and hydrology has a large impact. And so there is just this connection, a natural connection.

I -- people talk about wetlands protection. There's a whole range of things that hydrologically are, you know, connections to ecosystems. So this is --
Q. And is that -- do you understand that connection to have relevance to the riverine ecosystem of the Apalachicola River?
A. Yes. I believe that -- I know I have spoken with

Dr. Allan, who I think has represented
opinions -- expert opinions -- he's an
ecologist -- that there is a connection and an important connection to the ecosystem.
Q. Can we turn to another slide from Mr. Perry's opening.

MR. SINGARELLA: We'll hand this out.
BY MR. SINGARELLA:
Q. Are you familiar with the information on Mr. Perry's slide?
A. Yes. I have looked at this.
Q. And could you please describe it, sir.
A. Yes. So this is, again, these guidelines for natural flow regime; and this is for the

THE REPORTING GROUP
Mason \& Lockhart

Apalachicola River at Chattahoochee. The slide that I'm looking at is 1929 to 1953. And these -- the period of record used for the calculation is 1929 to 1953. And what is boxed in in red is what the criteria say for one-day minimum at -- that shouldn't be exceeded. Okay?

In other words, it's a minimum one-day that should not be exceeded in all the years.
Q. At what frequency can it be exceeded?
A. According to the -- these guidelines, never. It's not supposed to be exceeded. This is -this is a very hard criterion.
Q. And based on your understanding of the guidelines, what happens when these criteria are exceeded, these floors?
A. In terms of regulation, I couldn't tell you. I don't know how these are -- or if they're enforced. But from what I know about, for example, what Dr. Allan has reported, there aren't good things that come from exceeding these.
Q. What do you mean by that?
A. Well, there are -- there are critical habitats.

And some of them -- for example, they have these beautiful cypress forests; and they need to be THE REPORTING GROUP Mason \& Lockhart

2088

inundated. I traveled down there and had the opportunity to look at some of this, and they're absolutely gorgeous. But if they don't receive high flows at certain times, they get -- they get taken over by other species. And so there -there can be ecological change, ecological harm.

But I know that Dr. Allan has talked about mussels -- endangered species being endangered as well.
Q. Can we turn to the next slide of Mr. Perry's opening.

MR. SINGARELLA: We're going to hand this out.
A. It's the back side, Paul -- Mr. Singarella.
Q. Oh, it's on the back side of what we already handed out.

I'll be. That's great.
Doctor, what does this slide from Mr. Perry's opening tell us?
A. So what Mr. Perry had assembled in his opening was to look at the discharge records from the U.S. Geological Survey. And he recorded the single-day lowest flow which, you will recall, was the table on the other side told you the critical values that were not to be exceeded THE REPORTING GROUP Mason \& Lockhart

	2093		2095
1	with reference to your board the relevance of the	1	of the ResSim versus how the Corps operates its
2	yellow highlighting with regard to this State of	2	reservoir system. And the ResSim model simply
3	Georgia criterion?	3	calculates wildly incorrect values for the
4	A. So, again, basically it is showing the frequency	4	volumes of water in the upstream reservoir. So
5	with which this criterion is violated. And as I	5	even with the ResSim model, if you are getting
6	said, yes, there was a very severe drought in	6	close to the right outflow measured, it's for the
7	1954-'55; and we do see the criterion having been	7	wrong reason. And so the Lake Seminole model
8	violated there. But, again, what we see from all	8	really is to me the true reflection of how the
9	these yellow-colored blocks is just a tremendous	9	Corps operates.
10	increase in the number of times that -- the	10	Q. I would like to invite your attention to a
11	number of months in which that criterion is	11	pleading in this case.
12	violated, at least one time since 1998 when they	12	MR. SINGARELLA: May I approach, your
13	started the Bainbridge Gage back up.	13	Honor?
14	Q. The -- let's turn back to another topic from this	14	BY MR. SINGARELLA:
15	morning, which is -- which is the different	15	Q. Now, earlier today Ms. Allon seemed to be arguing
16	models -- the two different models, the data	16	that the Army Corps was the cause of the low
17	ResSim model and the Lake Seminole model. And	17	flows in the summertime of 2011 and 2012.
18	Ms. Allon suggested, Doctor, that you actually	18	I would invite you, Doctor, to turn to page
19	decided to refer to an inferior model. Doctor,	19	11 of the State of Georgia's pretrial brief in
20	why would you have done that?	20	this matter. Are you with me, sir?
21	A. I didn't.	21	A. Yes.
22	Q. What did you do?	22	Q. And do you see the second paragraph that begins
23	A. I relied on the Lake Seminole model. The ResSim	23	with the words, through its operation?
24	model is a planning tool. It requires historical	24	A. Yes.
25	data to actually exercise it. And in operation, THE REPORTING GROUP Mason \& Lockhart	25	Q. Could you just read that sentence to yourself, THE REPORTING GROUP Mason \& Lockhart
	2094		2096
1	when the Corps is actually operating, they have	1	sir.
2	information on the day. And so what I wanted to	2	A. Yes.
3	do was to discern as best I could how the Corps	3	Q. And, sir, what is your opinion on this topic?
4	exercised discretion that it is granted in the	4	Is it -- is it the Corps that hurt Georgia
5	operating rules.	5	during the summers of 2011 and 2012 or the State
6	So if -- when I think about it, let's say on	6	of Georgia itself?
7	July 1, 1984, what information the Corps had was	7	A. I don't believe that the Corps operates to
8	the reservoir levels in all the upstream	8	provide minimum values of flow. They certainly
9	reservoirs, their expected flows into the	9	have restrictions as to what they do. But the
10	reservoirs. And then they had the RIOP to	10	low flows -- the streamflow depletions are
11	calculate what they could release, the minimum	11	just -- to me, I have absolutely no doubt that
12	flows they had to release.	12	this is largely due to consumptive use of water
13	And so the Lake Seminole model is just a one	13	by -- in Georgia.
14	box input-output model taking account of the data	14	Q. And Ms. Allon strongly suggested that there has
15	that the Corps actually would have had when they	15	not been fundamental change of the hydrology of
16	made their decision to operate.	16	the Georgia portion of the ACF Basin. What is
17	And we then used what I refer to as a	17	your response to that?
18	one-step-ahead prediction model and said, well,	18	A. I think that it's -- it's just clear, as I said,
19	okay, let's see if the RIOP rules, given all the	19	to anyone that looks at the objective data that
20	data they had, actually produced the flows that	20	there has been fundamental hydrologic change.
21	they really did produce. And that then allowed	21	There just isn't anything around that.
22	me to assess, in effect, the extra flow that the	22	Q. Thank you, Doctor.
23	Corps released over and above the minimum that	23	MR. SINGARELLA: Thank you, your Honor.
24	the RIOP had.	24	SPECIAL MASTER LANCASTER: Recross?
25	Dr. Shanahan has done an extensive analysis THE REPORTING GROUP	25	MS. ALLON: Very brief, your Honor. THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

	2105		2107		
1	it. And that's why we had to do this water	1	J A S ON, CYPHERS.		
2	balance that I talked about. So we take into	2	MR. LEOPOLD: May I approach, your		
3	account the natural values of precipitation,	3	Honor?		
4	of evapotranspiration. And what's left over	4	SPECIAL MASTER LANCASTER: Please.		
5	is what we can't explain by those natural	5	DIRECT EXAMINATION		
6	processes. And so it's the -- the only thing		BY MR. LEOPOLD		
7	left to explain that difference is increased		Q. Mr. Cyphers, I handed you your prefiled direct		
8	consumptive use because humans are taking water out of the system.	8	testimony submitted in this case. Do you adopt		
9		9	this as your sworn testimony here today?		
10	SPECIAL MASTER LANCASTER: Counsel? MS. ALLON: Nothing further, your Honor. MR. SINGARELLA: Nothing else, your	10	A. Yes, sir.		
11		11	MR. LEOPOLD: Thank you. I tender the		
12		12	witness.		
13	Honor.	13	MR. ALLEN: Good afternoon, your Honor.		
14	SPECIAL MASTER LANCASTER: Thank you. THE WITNESS: Thank you, sir.	14	SPECIAL MASTER LANCASTER: Good		
15		15	afternoon.		
16	THE WITNESS: Thank you, sir. SPECIAL MASTER LANCASTER: Thank you,	16	CROSS-EXAMINATION		
17	especially for telling me what a riverine	17	BY MR. ALLEN:		
18	estuary is.	18	Q. Good afternoon, Mr. Cyphers.		
19	MR. PRIMIS: Your Honor, is this a good time for the afternoon break?	19	A. Good afternoon.		
20		20	Q. My name is Winn Allen. I'm one of the State of		
21	SPECIAL MASTER LANCASTER: Certainly.	21	Georgia's lawyers in this case. I have a few		
22	(Time Noted: 2:26 p.m.)	22	questions to ask you this afternoon about your		
23	(Recess Called)	23	written direct testimony, if that's okay.		
24	(Time Noted: 2:37 p.m.)	24	Mr. Cyphers, you worked at the Northwest		
25	MR. LEOPOLD: Good afternoon, your Honor. THE REPORTING GROUP	25	Florida Management District in September of 2012. THE REPORTING GROUP Mason \& Lockhart		
	2106	2108			
1	SPECIAL MASTER LANCASTER: Good	1 Correct?			
2			A. Yes, sir.		
3	Counsel, for the record, before we	3 Q. That was a few months after you started there, I			
4	start, the reference that I was trying to	4	believe. Correct?		
5	find and couldn't is on page 20 of	5 A. That's correct. I believe I started in June.			
6	Dr. Hornberger's direct testimony. It's	6 Q. Okay. I would like to show you a document from			
7	table 1. And he had described it as bedrock	7 that time frame.			
8	data. That's just for the record.	8	MR. ALLEN: Your Honor, may I approach?		
9	MR. LEOPOLD: Thank you very much, your	9	SPECIAL MASTER LANCASTER: Please.		
10	Honor.	10	BY MR. ALLEN		
11	Your Honor, Florida would like to call	11	Q. Here you go, sir.		
12	Mr. Brett Cyphers to the stand.	12	SPECIAL MASTER LANCASTER: Thank you.		
13	THE CLERK: Please raise your right hand.	13	BY MR. ALLEN: For the record, I have		
14			14 just handed the witness a copy of GX-455. 15 BY MR. ALLEN:		
15	Do you solemnly swear that the testimony				
16	you shall give in the cause now in hearing	16 Q. Mr. Cyphers, do you see in the To: line your name 17 is listed?			
17	shall be the truth, the whole truth, and				
18	nothing but the truth, so help you God?		A. I do.		
19	THE WITNESS: I do.	19 Q. And do you see also Jon Steverson?			
20	THE CLERK: Please be seated.	20	A. Yes, sir.		
21	Pull yourself right up to the microphone and please state your name and spell your	21 Q. And at this time, Mr. Steverson was the executive 22 director of the Northwest Florida Water			
22					
23	last name.	23	Management District. Correct?		
24	THE WITNESS: Sure. My name is Brett	24	A. That's correct.		
25	Jason Cyphers. It's spelled B R E T T, THE REPORTING GROUP	25	Q. In the From: line there is a -- the first name is THE REPORTING GROUP		
	Mason \& Lockhart		Mason \& Lockhart		

for 10,000 cfs supplemental flows during the dry months?
A. Not that I -- not that I'm aware of.
Q. Not that you're aware of.

You're also not aware of any Florida expert that's asking for 7,000 cfs during June. Correct?
A. I'm not sure what they're asking for.
Q. Sir, looking at the same place at the bottom of page 2 of GX-455, scenario 1 and scenario 2 include some volume calculations. Do you see that, where it reports some acre-feet?
A. I do.
Q. And scenario 1 is $1,190,000$ roughly acre-feet. Do you see that?
A. I see that number; yes, sir.
Q. And scenario 3 is $1,789,884$ acre-feet. Do you see that?
A. I see that.
Q. Sir, are you aware that those numbers are greater than the entire conservation volume of Lake Lanier?
A. No. No.
Q. And do you see, sir, that at the end of scenario 3 it says -- in a little bracketed THE REPORTING GROUP Mason \& Lockhart
section it says, this is likely not a reasonable alternative given volume requirements and should not be evaluated further. In reality none of these scenarios are viable given estimated storage requirements.

Do you see that, sir?
A. I do.
Q. And you recall, sir, having some discussions, I believe, with Mr. Lewis about how augmenting flows in this way would require Florida to build a reservoir I think -- I think he said the size of Calhoun County. Is that right, sir?
A. That was my understanding based on my conversation, yes.
Q. Or Florida would have to construct somewhere between 8,000 to 10,000 ASR wells?
A. That was my understanding, yes.
Q. Okay. Thank you, sir.

I want to shift to a different topic now. Sir, in your prefiled testimony, you say that most of the irrigated acreage in the Florida portion of the ACF Basin is in Jackson County. Right, sir?
A. Agricultural, yes.
Q. Okay. And on page 10 of your written direct, you THE REPORTING GROUP Mason \& Lockhart
cite FX-862a. And I would like to show you that document and ask you some questions about it, if I might.

MR. ALLEN: Your Honor, may I approach?
SPECIAL MASTER LANCASTER: Sure.
BY MR. ALLEN:
Q. All right. Sir, if you would turn with me, please, to page 54.

MR. ALLEN: And, again, for the record, we're looking at FX-862a, and I'm on page 54.
BY MR. ALLEN:
Q. Just let me know when you're there, sir.
A. I'm on 54 now.
Q. Okay. It's a table A-4 that says Historical and Projected Irrigated Acreage by County. Do you see that?
A. I do.
Q. And, sir, you're aware that this report was prepared by the Balmoral Group under contract with FDACS. Correct?
A. Yes, sir.
Q. And, sir, on page 54 of FX-862a, do you see a line that says Jackson County -- or just says Jackson?
A. I do.

THE REPORTING GROUP

 Mason \& LockhartQ. And you will see, sir, that in 2002 the document reports 13,374 irrigated acreages in -- irrigated acres in Jackson County. Do you see that?
A. I do.
Q. And then if you look over at 2015, do you see it reports 32,378 ? Do you see that, sir?
A. I do.
Q. So we can agree, sir, that at least according to this document, irrigated acreage in Jackson County more than doubled between 2002 and 2015?
A. I'm not sure about that calculation. I know that it doubled between -- I believe it was 1987 and 2015, I believe.
Q. Okay. But if we just looked at the numbers from 2002 and 2015, do you agree with me that if you multiply 13,374 by 2 , you get a number that's less than 32,378 ?
A. Indeed.
Q. And, sir, if you look at the same county, Jackson County, year 2012, do you see that?
A. Ido.
Q. And you see 2012 for Jackson County lists 21,508 irrigated acres. Do you see that?
A. I do.
Q. And, again, in 2015 now, there's 32,378. Do you THE REPORTING GROUP
Mason \& Lockhart


```
And then it says -- there is a sentence there about the letter was sent to the District asking directly about the lack of MFL's in the district.
The District's response was that the law only required the creation and submittal of a priority list, not the actual creation of any MFL's.
Do you see that, sir?
A. I do.
Q. And then the next sentence says, it then became blatantly obvious that the Northwest Florida Water Management District had no intention of following the law and implementing the MFL's.
Do you see that, sir?
A. I do see that.
Q. And at the time you made it in February 2012, that was an accurate statement. Correct, sir?
A. That was my perception of it, yes, sir.
Q. Okay. Thank you, Mr. Cyphers. I have no further questions for you at this time.
```


REDIRECT EXAMINATION

```
BY MR. LEOPOLD:
Q. Good afternoon, Mr. Cyphers.
A. Good afternoon.
Q. You were asked about Florida's agricultural water use permit. Do you recall that?
THE REPORTING GROUP
Mason \& Lockhart
2130
```

A. I do recall that.
Q. Can you describe for the Court generally how water use permitting is done within the Northwest Florida Water Management District?
A. Sure. It's a little different than public supply is done in northwest Florida in general. First, you would have a farmer that would come into the district, contact us seeking information about a permit, looking for a permit application. We would either try to do a preapplication on their property or at the district. That's to give an idea of what they're looking for, how much water they're looking to use, the conditions nearby. It gives us a decent idea to do a rough analysis on whether or not it's an appropriate use of water in that place and the kind of work they will have to do to show us that the use is appropriate in that area.

At that point sometimes an applicant will decide not to pursue the permit. In some cases they move forward. Sometimes that requires their own modeling. Aquifer performance tests are sometimes required. Those can be quite expensive, so that's kind of the limiting factor for some applicants.

THE REPORTING GROUP
Mason \& Lockhart

At that point we get a little more -- I hate to use the term nitty-gritty with the data. We'll ask for specific acreage data. We'll input soil type information, climatic information, harvesting, planting seasons, whether or not frost-freeze protection is appropriate for that crop.

And then we'll plug those data into what's called that AFSIRS model I mentioned a little while ago. I apologize for not being clear on the acronym there. So I will just say AFSIRS, what I say is the smart guys.
Q. And, Mr. Cyphers, do you recall what the AFSIRS acronym stands for?

I think it's on page 14 of your testimony.
A. Thank you. I'm sorry. You'd think being in government, I would be better with acronyms.
Q. Paragraph 37.
A. Sure. It's the Agricultural Field Scale Irrigation Requirement Simulation model. That's a mouthful.
Q. And if the District decides to grant an agricultural water use permit, what -- what are the requirements of those permits?
A. So in this instance, getting to kind of the end THE REPORTING GROUP Mason \& Lockhart 2132
of that AFSIRS process -- I guess that kind of logs in there what maybe you're getting at -- it produces a water quantity that's reasonable to meet maximum yield for a grower in 8 out of 10 years. And then two dry years, it would not be enough to meet the maximum yield for that crop in that soil for that time.
Q. So why doesn't the District give farmers 100 percent in dry years?
A. Essentially we're trying to preserve the resource. And we understand that as things get a little drier, we want to make sure that we're racheting back on the use of the resource to make sure that we're not unintentionally impacting other legal existing users or natural systems.
Q. Do you know what the standard is, sir, to grant one of these permits?
A. Yes. It's in -- statutes refer to the three-pronged test. It's -- it means a use has to be reasonable, beneficial, in the public interest, and it can't impact another legal existing user.
Q. And can you give your understanding, if you can, for the Court what's included in the reasonable beneficial standard?

THE REPORTING GROUP
Mason \& Lockhart
A. Sure. And, sir, I'm going to try to find my way to --
Q. If you want to reference page 30 of your written direct.
A. Okay. It isn't on page 30. Do you mean paragraph 30?
Q. Excuse me, paragraph 30 and 31 .
A. All right. So I want to make sure I've got it. And there are a lot that are actually in -- and I think we have the applicant's handbook here; and it lists all the various things we have to do. One is to make sure that the actual purpose for which the water is to be used is considered appropriate under the circumstance. And in the case of agriculture, that would mean an appropriate amount of water for an appropriate crop for the soil type and climatic conditions of the district.
Q. Does it have anything -- does the standard have anything to do with environmental values?
A. Certainly. And that also stretches into not impacting legal existing users. A legal existing user is not just considered a person, but it's also considered natural features as well.

So if your withdrawal perspective or THE REPORTING GROUP Mason \& Lockhart
post-permitting has an impact on, say, another well nearby or a wetland or stream or something like that, we would have to constrict your ability to use your permit that you wanted for that area.

That's how we -- that's how we permit, hopefully to avoid that in the first place. But we make conditions on the permit that in case there's an impact in any way, that we're able to ratchet back that use.
Q. And counsel for Georgia asked you about Florida's water use in the basin. Do you recall that?
A. Can you repeat the question?
Q. Counsel asked you about Florida's total water use in the basin?
A. Yes.
Q. And he asked you about how you know, if you do, whether it's impacting the Apalachicola River?
A. Yes. I remember.
Q. Do you know, sir, whether Florida's water use has any impact on the Apalachicola?
A. I'll reiterate it, as I did for Mr. Allen, is the amount is so small and it's so spread out over the course of -- of the area of the basin that when you look at the total amount of water -- you THE REPORTING GROUP

Mason \& Lockhart
know, just speaking with my staff, folks that are hydrologists, scientists, are saying that the use, even if you took $\mathbf{1 0 0}$ percent of it, you know, wouldn't show up in the gage records for the river.
Q. And referring back to the AFSIRS model, which you have discussed, for granting agricultural permits, do you recall when Florida first started using that model to grant permits?
A. I believe it was 1991.
Q. And do you recall whether it was used in any other context?
A. I know that we developed it -- when I say we, the University of Florida, I believe, was the actual place of its -- of its genesis. But we started using it in 1991. I believe it was the basis in the comprehensive study between Georgia, Alabama, and Florida in the ' 90 's to use potentially in common.
Q. And I would like to reference Joint Exhibit 6, which is the ACF comprehensive study.

MR. LEOPOLD: May I approach, your
Honor?
BY MR. LEOPOLD:
Q. Now, Mr. Cyphers, is this the study that you were THE REPORTING GROUP

Mason \& Lockhart
referring to just now?
A. Yes, sir.
Q. And this was cited in your testimony, sir?
A. Yes, sir. I believe it was.
Q. And if you would, look at page 117 of the document, please.
A. 117?
Q. That's right.
A. Is it one of these red tags that you have here? Okay.
Q. And do you recall, sir, the purpose for which AFSIRS was referenced in this document?
A. It seems like it's trying -- it's pointing to appropriate irrigation levels produced by it for the Lower Apalachicola area, southern Georgia, northern Florida, southern Alabama.
Q. Would you explain for the Court, please, what the comprehensive study is to your knowledge?
A. Generally speaking, my understanding is this is a compilation of work between the three states in looking at various agricultural argument issues.
Q. Thank you, Mr. Cyphers.

Does the District monitor water use within the Florida portion of the ACF Basin?
A. It monitors use throughout the entire district THE REPORTING GROUP

Mason \& Lockhart
but, yes, the basin as well.
Q. And how does it do that?
A. Well, I have an entire -- I guess, first, it's required in their individual permits -- the conditions of permits. We also have an entire bureau at the District whose job it is to audit pumpage reports, inspect wells going in, operations throughout the basin.

The area where agriculture takes place is actually relatively small. So it's easy for us to physically cover those areas. But we all have office staff that audit those reports that look for anomalies and potential overuse.
Q. And if your staff finds an anomaly in the audit, what happens then?
A. Usually the first -- the first thing they would do is contact -- whether it was a public supply utility or an agricultural user, they would contact them to find out if there was some sort of measuring mistake, arithmetic error, something like that. Maybe something is broken. Maybe there's been a large accident. That's usually the first step.

If it's found that it's not anomalous, it's an actual over-pumping of water, then we work THE REPORTING GROUP Mason \& Lockhart
with the permittee to reduce that use or get that use within their permitted allowable cap.

Sometimes it's -- it's very easy to do so. We have really good growers. We have good utilities. But sometimes we have to take compliance, regulatory action where we send notices of violation. Sometimes we have to fine farmers and utilities.
Q. And has the District fined any individual water users in the ACF Basin?
A. Certainly. It's not often; but I think in terms of fines, it's only -- maybe a few dozen times, 24, 25 times.
Q. Okay. Now, moving on, sir, beyond the permitting process, is there anything else that the Water Management District does for water use conservation and agriculture?
A. Of course. We start with the Mobile Irrigation Lab program, which we do with the Department of Agriculture and Consumer Services. Its job is to work with growers.

Specifically in this basin -- they have them throughout the state, but ours is -- works in the basin almost exclusively in Jackson County. Their job is to work with the growers, help them THE REPORTING GROUP Mason \& Lockhart
analyze their farms, and then suggest potential improvements to those farms. We manage to save about a quarter of all Ag use from the work that those Mobile Irrigation Labs have done.

And in conjunction with that, we make that a requirement for those that also want to take advantage of agricultural best-management practice, cost-share projects with us. That's where we pay part of the dollars to, say, do a center-pivot irrigation system retrofit. We would remove, let's say, end-guns, do drop-nozzle irrigation, those sorts of things.

We also are doing an investigation of the Claiborne Aquifer in the basin to see if we can go to someplace other than the Floridan Aquifer for agricultural use.

We're also moving from the study phase of the sod-based crop rotation. And that's where you plant two seasons of grass; and then behind it you would plant, say, peanuts or cotton or something like that. And that, we're just now moving to contract with four growers in the basin to get them to do that. They will save 50 percent, sometimes 60 percent in water use as well as nutrient use with those types of THE REPORTING GROUP Mason \& Lockhart projects.
Q. And, Mr. Cyphers, you mentioned center-pivots. How many center-pivot irrigation systems are in Florida's portion of the ACF Basin?
A. I believe the number is 440 .
Q. And do you know how many of those have gone through the program you have discussed?
A. The number that's gone through the Mobile Irrigation Lab program twice -- that's where they go out. The scientists evaluate their operation, provide a report, offer suggestions, and go back out to follow up with them once they take some -some of the suggestions. That's about 60 percent of the -- of those systems in the basin.
Q. And, Mr. Cyphers, do you have any knowledge of how many center-pivot systems exist in Georgia?
A. I know our staff counted all of our systems in Florida, Georgia, and Alabama once. I think it's over 9,000.
Q. And if you would, I would like to refer you back to paragraph 55 of your testimony.

MR. LEOPOLD: Mr. Walton, if we could pull up that page on the screen, please, paragraph 55.

Actually, and scroll down to the next page, if you would, Mr. Walton.

THE REPORTING GROUP
Mason \& Lockhart

BY MR. LEOPOLD:
Q. And, Mr. Cyphers, how is it that you know or have an idea of how many center-pivot irrigation systems may be in Georgia?
A. Well, the figure here that was produced for now Secretary Steverson, but then he was the executive director of the District, when he was giving U.S. Senate committee testimony, my staff at that time and also since, because they update these things, took aerial satellite imagery and hand-identified every single center-pivot irrigation.

In Florida we were able to identify those by mapping them with FSAID, F S A I D, work as well as our own staff who know where the wells are and permits are for the basin.
Q. And can you -- is that -- can you describe what this figure is that we're looking at in your testimony?
A. Sure. You can see the confluence of the Chattahoochee and Flint Rivers forming the border between Alabama, Florida, and Georgia. The lower part of the -- of the state line, you see the red dots above and below. Essentially, the red dots represent a center-pivot irrigation unit.

THE REPORTING GROUP
Mason \& Lockhart

```
Q. Thank you, Mr. Cyphers.
And can you -- can you describe for the
Court, if you can, a little bit about the ACF
Basin, given your familiarity with it.
```

A. In -- in Florida -- I'm obviously a Florida guy; so I know -- I know my territory. These are small rural communities. Jackson County is the one you see right on the border of Alabama as well as the Georgia border. That's where you can see almost all the agriculture takes place in the basin.

As you move down in the basin, mostly you have small rural communities. They're not farm communities; they're mostly, you know, foresters and rural folks like that. And where you end up is down in that Apalachicola and Carrabelle area at the bay.
Q. And how much water use is there in Florida's portion?
A. I -- I think the total use permit -- actual use is somewhere around 42 million gallons of water a day. I think they're permitted to 69 million gallons of water a day, but we haven't reached those numbers.
Q. And can you describe, if you would, as you did in

THE REPORTING GROUP
Mason \& Lockhart
your testimony the geography of the basin?
A. Sure. I mean, you move from more of a -- more relief, higher areas, as you -- as you start in the top part of the basin. As you move down, as others have more aptly described, Lee Edmiston being one of them, the areas get lower and the habitat becomes a little bit more lower, more marine, more estuarine.
Q. And what about the landings of the basin?
A. Well, again, you can see there's the agriculture area in that part of Jackson County. I would also note that of the entire basin, about a third of it -- 609,000 acres I believe is my testimony -- is in conservation ownership. That's between state, federal, and private groups like the Nature Conservancy that own that property. So that's unavailable for use, whether it be urban, although I hesitate to chuckle when I say urban in Apalachicola Basin, or agriculture.
Q. Okay. And, Mr. Cyphers, do you recall a question that counsel asked you about MFL's and reservations?
A. I do.
Q. Can you explain your understanding of the THE REPORTING GROUP Mason \& Lockhart
difference between an MFL and a reservation?
A. Sure. In this case -- I guess that's probably part of the misconception in terms of MFL's versus reservations in the basin. In the basin they created the reservation because that was the only real avenue for protection of the water resource available to the District. The MFL process -- and I have been pretty clear about the District's policy since I've been there, that it's important to, if lawful, to do.

But in this case, we wouldn't be able to do that -- I would never even try to do an MFL on the Apalachicola River because an MFL is a regulatory and planning construct. So the whole point is to determine what the level at which you withdraw more causes significant harm. But I can't do that on the Apalachicola River because all of the impact, all of the consumption and harm is taking place in Georgia and impacting Florida. And I can only do it where I have some sort of regulatory authority; and obviously, I have no regulatory authority in Georgia.
Q. So then why did the District enter reservations on the river?
A. That was -- that was the best we could do under THE REPORTING GROUP Mason \& Lockhart
the circumstance in terms of preserving that water.

Now, it's not the only thing. Obviously, you saw the conservation programs that we have invested in for the last decade, you know, in terms of the best-management practice, cost-share, and the studies and investigation and the Mobile Irrigation Labs. But in terms of producing any actual water in the river, we can't -- that's the best we can do.
Q. Okay. Thank you, Mr. Cyphers.

MR. LEOPOLD: No further questions.
Your Honor, I failed to introduce my colleague Ben Stearns. He's been helping me with this exam.

SPECIAL MASTER LANCASTER: Welcome.
MR. ALLEN: No further questions, your Honor.

SPECIAL MASTER LANCASTER: Mr. Cyphers, the counsel for Georgia handed you two documents, GX-526 and GX-529. And did I understand your testimony to be that 526 is the memo from you and that 529 is the attachment to the memo?

THE WITNESS: Yes, sir.
THE REPORTING GROUP
Mason \& Lockhart

SPECIAL MASTER LANCASTER: Well, help me here because the memo is dated February 3, 2012; and the attachment is dated February 3, 2013.

THE WITNESS: That's a -- that's a bit of a mystery for me. It may have been a lag in terms of me sending it to the folks listed here and when I maybe got permission from the executive director to deliver the memo itself.

SPECIAL MASTER LANCASTER: But the memo -- 526 is the memo?

THE WITNESS: Yes, sir.
SPECIAL MASTER LANCASTER: And 529 is the attachment?

THE WITNESS: Yes, sir. And it may -it may have been a function of it didn't go through in some sort of technical aspect when we tried to e-mail it to these parties. I'm not -- I'm just not sure about that part.

SPECIAL MASTER LANCASTER: It doesn't matter. Okay.

MR. ALLEN: One thing to clarify on that?

SPECIAL MASTER LANCASTER: Please. THE REPORTING GROUP

Mason \& Lockhart

MR. ALLEN: GX-529 has a number of attachments. The last page, Page 529, your Honor, the memo is reproduced. So that might help a little bit in terms of -- it's also at the end of GX-529.

SPECIAL MASTER LANCASTER: Thank you.
MR. ALLEN: You're welcome.
SPECIAL MASTER LANCASTER: Anything further?

MR. LEOPOLD: Nothing from Florida, your Honor.

SPECIAL MASTER LANCASTER: You may be excused.

THE WITNESS: Thank you, sir.
MR. PERRY: Good afternoon, your Honor.
SPECIAL MASTER LANCASTER: Mr. Perry?
MR. PERRY: Our expectation today was that Dr. Hornberger might take all day, and happily it didn't take all day. And we had Mr. Cyphers ready in case of that eventuality. He's now testified. We have witnesses -- I think one is Georgia's witnesses -- for Monday morning. But for the next hour, we haven't prepared a witness because we didn't anticipate the day would finish.

THE REPORTING GROUP Mason \& Lockhart

SPECIAL MASTER LANCASTER: So are you suggesting that we should recess, Mr. Perry?

MR. PERRY: In a long-winded way, I am, your Honor.

SPECIAL MASTER LANCASTER: That's a wonderful suggestion. Thank you.

Let me remind counsel, I'm sure you're aware, that tomorrow is a holiday and this office is closed, and that Tuesday of next week the Bankruptcy Court will be sitting; so that we will have a four-day week next week as well.

I suggest, as I have before, that you use Alec's list of restaurants. The weather forecast for the weekend is great weather, so take your umbrellas. I suggest that you relax, enjoy, and be ready to roll on Monday.

Thank you very much.
MR. PRIMIS: Thank you, your Honor.
SPECIAL MASTER LANCASTER: Thank you.
Have a good weekend.
(Time Noted: 3:35 p.m.)
(Proceeding adjourned to Monday, November 14, 2016, at 9:00 a.m.)
(End of day)
THE REPORTING GROUP
Mason \& Lockhart

CERTIFICATE

I, Claudette G. Mason, a Notary Public in and for the State of Maine, hereby certify that the foregoing pages are a correct transcript of my stenographic notes of the Proceedings.

I further certify that I am a disinterested person in the event or outcome of the above-named cause of action.

IN WITNESS WHEREOF, I subscribe my hand this 6th day of December, 2016.
/s/ Claudette G. Mason
Claudette G. Mason, RMR, CRR
Court Reporter
My Commission Expires
June 9, 2019.

THE REPORTING GROUP
Mason \& Lockhart

'	2030:13, 2036:25,	2087:2, 2087:4	1993 [2]-2020:23,	2003 [2] - 1926:10,
	2053:14, 2054:12,	1932 [4]-2000:23,	2020:25	:25
'98 [1] - 2033:10	2071:20, 2119:19,	2001:1, 2001:4	1996 [5] - 2033:21,	$2006[7]-1980: 19$
	2132:8, 2135:3	1935 [1]-2009:21	2035:6, 2036:13,	2036:15, 2036:19,
1	104 [1] - 1955:3	1936 [1] - 2011:6	2036:20	2125:22, 2126:3,
/s [1] - 2149:15	10:17 [1] - 1985:25	1937 [1] - 1926:13	1997 [2]-2125:8,	2126:8, 2126:11
Is 1 - 2149.15	10:30 [1] - 1986:2	1938 [1]-2011:13	2125:10	2007 [12]-1933:11,
0	11 [17] - 1937:12,	1939 [1] - 1926:16	1998 [6]-1974:9,	1934:17, 1973:17,
0	1937:13, 1938:5,	1940 [1] - 2009:21	1998:20, 2028:5,	1973:19, 1973:21,
0 [1] - 1957:3	1938:7, 1938:17,	1941 [1]-2001:11	2035:6, 2036:18,	1974:4, 1980:19,
0.18 [3]-2054:16,	1938:20, 1938:24,	1945 [1] - 1926:10	2093:12	1992:4, 2017:12,
2054:21, 2054:25	1939:2, 1939:3,	1950 [1] - 1974:25	$\begin{aligned} & 1999 \text { [5]-1999:2, } \\ & 2033: 10,2048: 16, \end{aligned}$	$\begin{aligned} & \text { 2018:19, 2123:13, } \\ & \text { 2123:22 } \end{aligned}$
	1939:18, 1939:20	$1953 \text { [4] - 2074:21, }$ 2074:25, 2087.2	$\begin{aligned} & \text { 2033:10, 2048:16, } \\ & 2050 \cdot 17 \text { 2051•?n } \end{aligned}$	$2008 \text { [2] - 1980:19, }$
1	$\begin{aligned} & \text { 1939:18, 1939:20, } \\ & \text { 1979:19, 1979:20, } \end{aligned}$	$\begin{aligned} & 2074: 25,2087: 2, \\ & 2087: 4 \end{aligned}$		$\begin{aligned} & 2008[2]-1980: 19, \\ & 2123: 22 \end{aligned}$
$\begin{aligned} & 1[32]-1931: 13, \\ & 1937: 18,1938: 19, \end{aligned}$	1994:12, 2095:19	$1954 \text { [17] - 1974:6, }$	2	2009 [1] - 1926:13
1939:18, 1946:2,	$\begin{aligned} & 117 \text { [2] - 2136:5, } \\ & 2136: 7 \end{aligned}$	$\begin{aligned} & \text { 1976:14, 1976:17, } \\ & \text { 1977:12, 1977:18, } \end{aligned}$	$\begin{aligned} & 2[14]-1933: 18, \\ & \text { 1986:14, 1990:23, } \end{aligned}$	$\begin{aligned} & 2010 \text { [2] - 2020:23, } \\ & 2020: 25 \end{aligned}$
1952:6, 1953:7,	11:46 [1]-2042:7	1978:13, 1979:1,	010:10, 2021:19,	$2011 \text { [16] - 1934:23, }$
1953:22, 1956:1,	$\begin{gathered} 12 \text { [2]-1986:13, } \\ 1990: 24 \end{gathered}$	$\begin{aligned} & 1979: 5,1994: 9 \\ & 1994: 13,1995: 4 \end{aligned}$	2028:11, 2036:3,	$\begin{aligned} & 1980: 19,1992: 4 \\ & 1994: 9,1994: 15 \end{aligned}$
1956:25, 1957:14,	$120 \text { [2] - 1941:16, }$	$\begin{aligned} & \text { 1994:13, 1995:4, } \\ & \text { 1995:15, 2049:2, } \end{aligned}$	2110:6, 2110:18,	1995:6, 1995:16,
$\begin{aligned} & \text { 1959:20, 1960:6, } \\ & \text { 1976:18, 1994:5, } \end{aligned}$	2097:21	2049:3, 2051:5,	$\begin{aligned} & \text { 2110:19, 2111:1, } \\ & \text { 2113:10, 2116:16 } \end{aligned}$	2073:11, 2073:12,
1994:6, 2010:1,	$121 \text { [1] - 1959:3 }$	2061:8, 2066:6	2,000 [8] - 1983:23,	2074:22, 2090:13,
2023:1, 2023:8,	122 [1] - 1959:3	1954-'55 [1] - 2093:7	1984:14, 2073:17,	2095:17, 2096:5,
2023:10, 2054:17,	123 [3] - 1959:3,	1954-1955 [3] -	2097:5, 2097:11	2102:4, 2123:25
2060:18, 2062:12,	2097:18, 2097:21	2060:25, 2064:11,	2097:25, 2098:20	2011-2012 [9] -
2094:7, 2100:11,	124 [1] - 1959:4	2103:4	2099:5	2051:3, 2061:2,
2106:7, 2110:19,	12:50 [1] - 2042:9	1955 [8]-1974:6,	2,500 [7] - 1980:16,	1:10, 2061
2110:22, 2113:10,	13 [7]-2003:12,	1979:6, 1994:9,	1982:9, 1983:7,	2064:12, 2064:23,
2113:14	003:16, 2003:19,	1994:13, 1995:4,	1983:11, 1983:12,	$2012[33]-1935: 4$
1,000 [3] - 1967:6,	$\begin{aligned} & 2004: 1,2005: 5, \\ & 2005: 15,2005: 21 \end{aligned}$	$\begin{aligned} & \text { 1995:15, 2049:2, } \\ & \text { 2061:8 } \end{aligned}$	2051:14, 2092:21	1955:21, 1958:18,
1967:15, 2098:18		1957 [1] - 1926:1	2,506 [3] - 2051:22,	1973:18, 1973:19,
1,190,000 [1] -	$\begin{aligned} & \text { 13,374 [2] - 2116:2, } \\ & 2116: 16 \end{aligned}$	$1963[2]-2001: 1$	2051:24, 2092:19	1973:21, 1974:5,
2113:14	$13.9[1]-2000: 6$	2001:20	2-63 [1] - 1946:15	
1,500 [4]-2097:11,	$\begin{aligned} & 13.9[1]-2000: 6 \\ & 1389[1]-1942: 7 \end{aligned}$	$1966 \text { [1] }$	20 [10]-1994:4,	1982:8, 1982:24,
2097:25, 2098:20,	$14[5]-199$	$1969 \text { [1] - 2002: }$	1999:25, 2021:23,	1992:4, 1994:9,
2099:5	1991:9, 1991:11,	$1970 \text { [12] - 1971:14, }$	2022:2, 2033:17,	1994:15, 1995:6,
$\begin{aligned} & \text { 1,789,884 } \\ & 2113: 17 \end{aligned}$	$2131: 15,2148: 24$	$\begin{gathered} 1970[12]-1971: 14, \\ 1972: 2,1972: 6, \end{gathered}$	$\begin{aligned} & \text { 2035:2, 2054:19 } \\ & \text { 2060:16, 2100:11 } \end{aligned}$	1995:16, 2002:22,
$1 / 50 \text { [2] - 2054:14 }$	142 [1] - 1925:1	1973:11, 1974:9,	2060:16, 2100:11, 2106:5	2003:2, 2072:18,
$\begin{aligned} & 1 / 50[2]-2054: 14, \\ & 2054: 15 \end{aligned}$	15 [2]-2025:12,	1974:25, 1997:24,	20,000 [4] - 2011:10,	2073:4, 2074:21,
$10 \text { [22] - 1925:13, }$	2111:2	1999:2, 2000:9,	2011:17, 2110:23,	2074:25, 2095:17,
1953:4, 1953:5,	15.8 [1]-2061:9	2000:13, 2054:10,	2112:22	
1955:13, 1955:15,	$1500 \text { [3] - 1941:2, }$	$\begin{aligned} & \text { 2054:14 } \\ & \text { 1970'c }[11-2075 \cdot 16 \end{aligned}$	200 [2]-2018:7,	2116:20, 2116:22
1955:24, 1956:5,	$\begin{aligned} & 1941: 7,1941: 13 \\ & 153[1]-1935: 3 \end{aligned}$	$1971 \text { [5] - 1997:25, }$	2018:8	2117:7, 2124:1,
1956:8, 1956:17,	$159[1]-1943: 15$	1998:20, 1998:23,	200,000 [1] - 2010:13	$2129: 15,2146: 3$
1957:7, 1957:8,	$16 \text { [2] - 2031:13, }$	$2050: 23,2051: 1$	$\mathbf{2 0 0 0}$ [11] - 1933:25,	2013 [7] - 1997:25,
1957:13, 1957:19,	$16 \text { [2] - 2031:13, }$ $2065: 14$	$1976 \text { [2] - 1955:21, }$	1934:8, 1937:22,	1998:23, 2109:15,
1957:21, 1958:6,	$171 \text { [1] - 2039:23 }$	1958:17	1938:2, 1959:11,	2111:23, 2146:4
1958:19, 1975:1,	$19 \text { [5] - 1948:5, }$	$1980 \text { [1] }$	1959:14, 1960:2,	2014 [1] - 2020:23
1978:17, 1979:15,	$\text { 1982:18, } 1997$	1980's [1] - 2075:16	1974:15, 1980:15,	2015 [7] - 1946:11,
$\begin{aligned} & \text { 2010:11, 2114:25, } \\ & 2132: 4 \end{aligned}$	2001:1, 2048:15	$1984 \text { [1] - 2094:7 }$	2123:11, 2123:17 2001 [2]-2050:23,	2116:5, 2116:10,
2113:1, 2114	1924 [1] - 1997:24	1991 [2]-2135:10,	20	2116:25, 2117:7
2117:3	1925 [3] - 1979:17,	2135:16	1941:15, 1941:20,	$2016 \text { [7] - 1925:13, }$
100 [13]-1931:25,	1979:22, 1980:2	1992 [4]-1966:2,	1980:19, 2116:1,	$2031: 13,2031: 21$
1932:15, 1945:15,	$1928 \text { [1] - 1926:3 }$	1966:11. 1966:19	OÛ1^:10, 2116:15:	$2148: 24,2149: 11$

chapter [1]-2091:5	Claudette [4] -	1940:16, 1996:25,	2059:5	Congress [1] -
characterize [1] -	1925:14, 2149:2,	2092:14	comprehensive [6] -	1925:12
2011:1	$2149: 15,2149: 15$	columns [2] -	2118:2, 2118:6,	conjunction [1] -
charge [1] - 2043:20	clear [8] - 1985:6,	1939:25, 1940:4	$\begin{aligned} & 2118: 21,2135: 17 \\ & 2135: 21.2136: 18 \end{aligned}$	2139:5
$\begin{array}{r} \text { chart }[3]-2056: 12, \\ 2111: 18,2112: 10 \end{array}$	$\begin{aligned} & \text { 2012:13, 2055:8, } \\ & \text { 2096:18, 2125:20, } \end{aligned}$	$\begin{aligned} & \text { combining [1] } \\ & 2058: 18 \end{aligned}$	$\text { 2135:21, } 21$ computation	connection [14]
Chattahoochee [33] -	2126:7, 2131:10,	coming [6] - 2049:9,	2019:19, 2024:18	1989:16, 2025:21,
1971:4, 1971:22,	2144:8	11, 2061:22	computationally [1] -	085:17, 2085:18,
1971:23, 1972:12,	clearly [3] - 203	64:6, 2066:24	2066:23	2085:21, 2085:22,
1972:23, 1973:1,	2056:22, 2089:20	2070:16	computed [2] -	2085:23, 2086:2,
1976:14, 1977:11,	CLERK [5] - 1927:18,	command [1] -	1966:15, 1969:2	086:3, 2086:8,
1978:3, 1979:21,	1927:25, 2040:25,	2025:17	computer [7] -	2086:14, 2086:15
1983:17, 1996:16,	2106:13, 2106:20	commencing [1] -	2024:17, 2042:20,	connections [1] -
2009:17, 2015:22,	climate [9] - 1994:23,	1925:13	2042:22, 2056:11,	2086:6
2042:25, 2043:25,	2058:14, 2058:15,	Commission [1] -	2068:5, 2071:1,	consecutive [13] -
2044:1, 2046:4,	2059:15, 2059:17,	2149:17	2071:6	1972:22, 1973:12,
2046:13, 2046:14,	2062:25, 2065:22,	commit [2] - 2079:16,	con [1] - 1966:25	1973:16, 1974:10,
2046:16, 2046:17,	2066:8, 2082:1	2079:23	concentrating [1] -	1974:20, 1975:2,
2046:18, 2047:5,	climatic [3] - 2006:10,	committee [1] -	2004:24	1977:5, 1977:17,
2047:10, 2047:13,	2131:4, 2133:17	2141:8	concept [1] - 2124:3	1977:20, 1978:2,
2050:8, 2057:3,	climatological [1] -	common [3] -	concern [1] - 2103:12	1978:7, 1979:12,
2073:1, 2073:2,	2064:5	4:24, 2075:9	concerned	1980:1
2087:1, 2141:21	clip [8] - 1943:15	2135:19	067:7, 2067:10,	Conservancy [2] -
check [3] - 1978:18	12, 1955:3	communities [3]	074:12	2083:8, 2143:16
1978:23, 2074:22	1975:6, 1976:8,	142:7, 2142:13	concerns [1]	conservation [7] -
checked [1] - 2014:14	13:4, 2027:9	2142:14	2079:11	2070:21, 2097:10,
checks [1] - 2019:17	2039:25	comparable [2] -	conclude [2] -	2098:17, 2113:21,
chiefly [1] - 2043:5	clips [1] - 1959:3	2069:3, 2075:23	1972:10, 2064:25	2138:17, 2143:14,
Chipola [6] - 2005:3, 2005:6, 2121:13	close [10] - 1931:24,	compare [7] - 1973:3,	concluded [3] -	$2145: 4$
2005:6, 2121:13,	1945:17, 1951:25,	1973:8, 1981:20,	2035:22, 2103:12,	conservative [6] - 1932•8, 2014-25
2125:15, 2126:9,	$\begin{aligned} & 1952: 6,1952: 14 \\ & 1952: 17,2008: 25 \end{aligned}$	1981:23, 1987:15,	2104:20	$\begin{aligned} & \text { 1932:8, 2014:25, } \\ & 2015: 4.2027: 20 \end{aligned}$
chose [2] - 1999:11,	2040:14, 2075:3,	2003:25, 2069:22	conclusion [4] -	2030:19, 2031:5
2104:18	2095:6	$974: 6,2005: 18$	$2066: 12,2069: 2$	conserves [1] -
chuckle [1] - 2143:18	closed [1] - $2148: 9$	006:17, 2008:21	conclusions [5] -	2038:11
circle [2] - 1983:22,	closely [2] - 1953:11,	022:	014:9, 2015:16	consider [2] -
1984:9	2010:18	comparing [1] -	16:10, 2017:4,	1959:25, 1991:23
circumference [1] -	closer [13] - 1953:6	994:6	100:	considerable [1] -
2063:6	953:7, 1953:8,	comparison [10] -	condition [1] -	2072:22
circumstance [2] -	53:21, 1953:24	1982:1, 1989:9	2121:14	consideration [2] -
2133:14, 2145:1	1956:1, 1956:2,	09:20, 2018:6,	conditions [24]	2036:11, 2037:6
cite [5] - 2004:13,	1956:24, 1957:3	061:5, 2062:3	1933:1, 1933:4	considered [9] -
33:17, 2033:21,	1959:20, 1959:23,	62:10, 2064:21,	1933:6, 1933:10,	1933:5, 1948:15,
2036:24, 2115:1	1960:6, 1960:8	2089:16, 2103:6	1934:8, 1934:17,	1958:13, 1978:6,
cited [2] - 1953:15,	cloud [1] - 2038:18	compilation [1] -	934:22, 1935:4,	2037:4, 2091:22,
2136:3	Coast [1] - 2104:13	136:20	1938:2, 1941:14,	2133:13, 2133:23,
City [17] - 1971:5,	codes [1] - 2024:6	compiled [1] - 2112:1	1941:20, 1947:4,	2133:24
1986:12, 1986:18,	colleague [1] -	completely [3] -	1947:6, 1948:15,	consisted [1] -
1988:2, 1988:6,	2145:14	1962:8, 1962:12	1961:15, 1963:14,	2044:10
1990:15, 1990:20,	collect [2] - 1970:17	2074:19	1992:2, 1992:11,	consistent [4] -
1990:25, 1991:14,	2046:7	complex [2]	067:2, 2077:9,	2074:13, 2082:12,
1992:6, 1992:12,	collected	$2070: 10,2085:$	2130:13, 2133:17,	2082:15, 2089:22
2044:19, 2052:2,	1970:13	compliance [5]	2134:8, 2137:5	consistently [2] -
2052:5, 2052:6,	collectively [1]	$1983: 16,2089: 11$	conducted [1] -	1959:10, 1959:15
2053:9, 2055:6	1945:14	2089:18, 2089:20	1935:24	constrain [1] - 2038:3
Claiborne [1] -	collects [2]-2041:19,	2138:	confidence [1] -	onstrained [2] -
2139:	2046:7	component [4]	2075:2	2037:14, 2037:20
claims [1] - 2097:10	colored [2] - 2050:13	2043:1, 2049:18	confluence [1] -	constrict [1] - 2134:3
clarify [1] - 2146:23	2093:9	2059:9, 2059:11	2141:20	construct [3] -
class [1] - 2070:11	column [4]-1939:	REPORTING	OUP sed [1] - 2091:7	2018:22, 2114:15,

large [13]-1945:12,	2051:14, 2053:15,	1984:6, 1984:8,	2009:4, 2011:3,	2092:12, 2099:25,
1948:10, 1972:13,	2054:13, 2054:16,	1984:12, 1984:13,	2011:5, 2011:6,	2100:16, 2101:7,
2007:1, 2042:23,	2061:18, 2077:10,	1984:17, 1984:23,	2011:13, 2013:1,	2101:24, 2112:19,
$\begin{aligned} & \text { 2043:1, 2050:12, } \\ & \text { 2051:8, 2056:17, } \end{aligned}$	$\begin{aligned} & \text { 2089:14, 2089:15, } \\ & 2116: 17 \end{aligned}$	$\begin{aligned} & \text { 1985:9, 1989:4, } \\ & \text { 1989:7, 1989:13, } \end{aligned}$	$\begin{aligned} & \text { 2021:17, 2021:23, } \\ & \text { 2025:10, 2028:15, } \end{aligned}$	$\begin{aligned} & \text { 2113:9, 2115:10, } \\ & \text { 2120:10, 2128:7, } \end{aligned}$
2077:24, 2086:1,	Lettenmaier [6] -	1995:11, 1996:17,	2039:22, 2041:15,	2130:9, 2130:12,
2101:16, 2137:22	2059:19, 2065:19,	2009:13, 2009:16,	2041:20, 2050:4,	2130:13, 2136:21,
largely [1] - 2096:12	2066:3, 2068:16,	2015:17, 2016:7,	2050:19, 2051:1,	2141:18
larger [3] - 1979:6,	2074:15	2021:23, 2022:2,	2053:23, 2054:4,	looks [9] - 1931:19,
2061:18, 2077:16	letter [2]-2013:14,	2025:12, 2038:23,	2056:12, 2057:19,	1939:22, 1940:7,
largest [1] - 1973:19	2129:2	2039:10, 2044:2,	2059:4, 2061:16,	1950:22, 1958:6,
last [10] - 1928:3,	level [13] - 2002:7,	2056:21, 2108:16,	2065:6, 2065:16,	1999:4, 2010:9,
1957:15, 2045:25,	2012:25, 2044:11,	2108:25, 2109:6,	2067:20, 2067:21,	2066:13, 2096:19
2065:14, 2072:16,	2047:21, 2047:23,	2115:23, 2120:12,	2068:11, 2069:24,	loose [1] - 1972:17
2081:18, 2084:4,	2064:10, 2069:3,	2141:23	2070:3, 2070:12,	lose [1] - 2002:16
2106:23, 2145:5,	2071:18, 2071:25,	lines [3] - 1953:4,	2072:18, 2076:22,	losing [12]-1989:18,
2147:2	2102:18, 2104:23,	2003:4, 2036:5	2076:23, 2080:12,	1990:1, 1990:5,
$\begin{gathered} \text { law }[4]-2124: 16, \\ 2124: 21.2129 \cdot \end{gathered}$	2144:15 levels [12]	Linsley [2] - 2071:2, 2071:10	$\begin{aligned} & \text { 2088:2, 2088:21, } \\ & \text { 2089:10, 2090:4, } \end{aligned}$	1990:9, 1993:1, 2002:17. 2002:25.
2129:12	1939:15, 1960:23,	list [4]-1970:24,	2090:12, 2097:23,	2003:4, 2004:20,
lawful [1] - 2144:10	1966:3, 1966:11,	2124:25, 2129:6,	2098:16, 2102:3,	2004:22, 2005:7,
lawns [1] - 2059:13	1971:17, 1994:16,	2148:14	2104:18, 2110:17,	2005:22
lawsuit [2]-2109:14,	2089:4, 2094:8,	listed [5] - 2001:8, 2001:14, 2002.4	$\begin{aligned} & \text { 2116:5, 2116:19, } \\ & \text { 2119:3, 2128:15, } \end{aligned}$	$\begin{aligned} & \text { loss [2] - 2019:11, } \\ & 2020: 12 \end{aligned}$
2109:18	$\begin{aligned} & \text { 2110:10, 2124: } \\ & 2136: 14 \end{aligned}$	$\begin{aligned} & \text { 2001:14, 2002:4, } \\ & 2108: 17,2146: 7 \end{aligned}$	2134:25, 2136:5,	lost [1] - 2060:14
lawyers [1] - 2107:21	2136:14	lists [3] - 2116:22,	2137:12	low [66] - 1954:7,
lead [2] - 1940:25,	2109:1, 2109:3,	2124:22, 2133:11	looked [49] - 1931:6,	1971:2, 1971:21,
2062:23	2114:9	literally [1] - 1962:20	1932:19, 1933:21,	1971:23, 1971:24,
learn [1] - 2032:11	LEWIS [2]-1925:21, 1929:4	litigation [7] - 1943:22, 19	$\begin{aligned} & \text { 1935:17, 1936:11, } \\ & \text { 1939:20, 1948:4, } \end{aligned}$	1973:12, 1974:1, 1974:3, 1974:5
least [13] - 1980:1,	LFO [4] - 2089:2	2007:21, 2007:24	1953:19, 1954:7,	1974:8, 1974:20,
2011:17, 2021:3,	2090:22, 2091:12	2008:6, 2008:9,	1956:18, 1958:1,	1977:15, 1978:7,
2030:18, 2089:7,	life [3]-1963:1,	2034:13	1958:11, 1960:16,	1978:13, 1979:12,
2089:8, 2093:12,	1963:3, 2101:14	lived [1] - 2101:14	1969:10, 1969:22,	1979:25, 1980:12,
2104:6, 2116:8,	light [1] - 2045:1	Livneh [4]-2062:15,	82:5, 1986:10	1980:23, 1981:14,
2117:7, 2119:21	likely [1] - 2114:1	62:17, 2062:18,	990:11, 1995:18	1981:19, 1987:1,
leaves [1] - 2049:16	limit [1] - 2124:11	2062:22	1996:13, 2003:20,	1987:18, 1987:22,
Lee [1]-2143:5	limitations [2] -	load [1] - 2002:16	2016:4, 2019:25, 2034:20, 2051:13,	1988:5, 1991:23, 1992:10, 2000:12
left [5] - 1983:22, 2000:18, $2004 \cdot 9$,	1950:9, 2063:14 limited [1] - 1990:15	local [1] - 1987:22 location [1] - 2029:1	2054:8, 2054:9,	$\begin{aligned} & \text { 1992:10, 2000:12, } \\ & \text { 2039:3, 2050:2, } \end{aligned}$
2000:18, 2004:9,	$\begin{aligned} & \text { limited [1]-1990:15 } \\ & \text { limiting [1] - } 2130: 24 \end{aligned}$	location [1] - 2029:1 logs [1] - 2132:2	2057:20, 2057:24,	2051:19, 2051:20,
legal [5] - 2121:16	limits [1] - 2118:18	long-term [1] -	2060:21, 2062:4,	2053:12, 2054:5,
2132:15, 2132:21,	line [65]-1929:16,	2075:19	062:5, 2062:6,	2054:9, 2057:18,
2133:22	1930:25, 1932:21,	long-winded [1]	2065:23, 2068:10,	2061:8, 2064:12,
lengthy [1] - 1945:21	1933:24, 1934:7,	2148:3	2068:14, 2068:15, 2068:20, 2069:1	2065:14, 2067:7,
LEOPOLD [12] - 2105.25, 2106•9	1934:16, 1934:21, $1935 \cdot 3,1935 \cdot 9$	look [80] - 1930:23, 1931:15, 1933:16	2069:7, 2069:9,	$\begin{aligned} & \text { 2067:10, 2067:11, } \\ & \text { 2072:22, 2076:10, } \end{aligned}$
$\begin{aligned} & 2105: 25,2106: \\ & \text { 2107:2, 2107:6 } \end{aligned}$	1935:20, 1936:20	1937:8, 1937:22,	2077:3, 2078:24,	2076:12, 2076:13,
2107:11, 2129:21,	1937:16, 1937:25,	1942:1, 1946:20,	2081:3, 2086:22,	2076:21, 2076:25,
2135:22, 2135:24,	1938:10, 1938:17,	54:20, 1955:10,	1, 2103:3	2077:4, 2077:9,
2140:22, 2141:1,	1939:5, 1940:13,	1958:24, 1960:10,		077:10, 2077:15,
2145:12, 2147:10	1941:15, 1941:24,	1965:16, 1971:2,	looking [34] - 1952:8, 1968.7 1973:15	2078:3, 2078:10,
less [24] - 1941:7,	1942:1, 1942:11, 1943:14. 1949:8	1972:19, 1974:24, 1975:12. 1978:9	$\begin{aligned} & \text { 1968:7, 1973:15, } \\ & \text { 1974:21, 1977:9, } \end{aligned}$	$\begin{aligned} & \text { 2079:1, 2079:14, } \\ & \text { 2080:16, 2080:19, } \end{aligned}$
1966:6, 1966:12,	1960:24, 1965:24,	1982:4, 1982:12,	1979:15, 2000:19,	2081:12, 2082:1,
1967:10, 1967:17,	1980:10, 1981:12,	1986:14, 1988:19,	004:5, 2048:11,	082:16, 2090:2,
1968:25, 1969:18,	1982:25, 1983:1,	1990:25, 1991:7,	50:13, 2051:20,	095:16, 2096:10,
1970:3, 1977:15,	1983:2, 1983:6,	1994:4, 1996:23,	2064:9, 2077:19	2100:5, 2100:21
1990:2, 2048:9,	1983:12, 1983:14,	1999:15, 2001:18,	2064:9, 2077:19,	low-flow [1] - 1954:7
2048:14, 2048:19,	1983:25, 1984:2	REPORTING		Lower [3] - 2002:10,

2147:18	1952:1, 1952:10,	2034:9, 2034:14,	2, 2025:6	2121:8, 2121:1
million [3]-2119:17,	1953:6, 1953:9,	2034:22, 2035:6,	2033:11, 2033:20,	morning [27]-1927:2,
2142:21, 2142:22	1953:10, 1953:12,	$2035: 8,2035: \text { S }$	2042:20, 2042:22	1927:4, 1927:5
mind [1] - 2119:20 minimal [2] - 2006:	$\begin{aligned} & \text { 1953:16, 1953:18, } \\ & \text { 1953:21, 1954:2, } \end{aligned}$	$\begin{aligned} & \text { 2035:12, 2035:15, } \\ & \text { 2035:16, 2035:23, } \end{aligned}$	$\begin{aligned} & 2060: 5,2060: 8, \\ & \text { 2062:13, 2069:3 } \end{aligned}$	$\begin{aligned} & \text { 1927:9, 1927:12, } \\ & \text { 1928:18, 1928:19 } \end{aligned}$
2124:4	1954:4, 1954:9,	2036:10, 2036:14,	2078:14, 2130:2	929:4, 1929:5,
minimum [14]-	1954:10, 1954:14,	2036:17, 2036:23,	modelled [2] -	929:12, 1929:13,
4:2, 1935	1954:15, 1954:16,	2036:24, 2037:5,	2010:17, 2067:23	76:1, 2040:9,
1964:19, 1964:23,	1954:17, 1954:20,	2037:7, 2060:9	models [32] - 1929:22,	0:11, 2040:13
1965:7, 1965:9,	1954:24, 1956:1,	2066:17, 2066:2	51:22, 1952:8	44:18, 2052:8
1965:14, 2038:23,	1956:2, 1956:20	2067:6, 2067:13,	54:8, 1954:21	055:2, 2060:6
2039:9, 2087:6	1956:22, 1956:24,	2068:14, 2068:17	7:12, 2008:1	60:23, 2066:18,
2087:7, 2094:11	1957:2, 1958:19,	2068:18, 2069:16,	25:5, 2026:3,	76:1, 2091:24
2094:23, 2096:8	1958:21, 1959:16,	2069:21, 2069:24,	26:5, 2029:5	093:15, 2098:11
minute [4]-2003:22,	1959:18, 1960:3,	2070:2, 2070:8	29:9, 2029:13	2098:13, 2147:23
2050:16, 2074:7,	1960:4, 1960:12	2070:9, 2070:1	29:21, 2035:2	most [8] - 1983:7
2099:23	1960:13, 1960:15,	2071:6, 2071:12	36:6, 2036:8,	97:20, 2010:17,
mischaracterizing [1]	1960:16, 1960:18,	2071:13, 2074:17,	36:9, 2036:12	2046:24, 2060:2
- 1967:25	1960:21, 1960:22,	2076:5, 2076:7	36:20, 2066:16	2067:7, 2104:16,
misconception [1] -	1961:6, 1961:8	2077:6, 2077:1	66:19, 2069:4	2114:21
2144:3	1961:10, 1961:14,	77:12, 2078:2	69:5, 2070:3	mostly [2]-2142:12,
mistake [2]-1957:6,	1961:15, 1961:16,	2078:3, 2078:4	70:24, 2071:	2142:14
2137:20	1961:18, 1961:21,	2078:19, 2078:21,	$: 6,2075:$	mountains [1] -
mistaken [1] - 2080:25	1961:22, 1962:2,	2093:17, 2093:19,	093:16, 2118:	2046:11
misunderstood [1] -	1962:3, 1962:6	93:23, 2093:24,	moderate [1] -	mouthful [1] - 2131:21
2041:3	1962:11, 1962:16, 1962.18, 1962:19	:13, 2094:14,	1994:	move [5] - 1970:6,
$\begin{gathered} \text { Mobile }[4]-2138: 18, \\ 2139: 4,2140: 8, \end{gathered}$	$\begin{aligned} & \text { 1962:18, 1962:19, } \\ & \text { 1963:7, 1963:11, } \end{aligned}$	2095:5, 2095:7	moderately [1] 2079:16	$\begin{aligned} & 2130: 21,2142: 12, \\ & 2143: 2,2143: 4 \end{aligned}$
2145:8	1963:18, 1963:20,	98:2, 2098:17	modern [4]-2065:17	moving [3]-2138:14,
Model [1] - 2071:3	1963:24, 1964:3, 1964:8, 1965:18	2098:24, 2099:5,	2066:7, 2066:10	2139:17, 2139:22
model [260] - 1929:23,	1964:8, 1965:18, 1965:21, 1965:22,	2118:2, 2118:6, 2118:9, 2118:13,	2089:17	$\begin{gathered} \text { MR [98] - 1927:5, } \\ \text { 1927:9, 1927:17, } \end{gathered}$
$\begin{aligned} & \text { 1929:24, 1930:2, } \\ & \text { 1930:3, 1930:8, } \end{aligned}$	1966:5, 1966:9,	$2118: 21,2119: 15,$	2038:18	$\begin{aligned} & \text { 1927:9, 1927:17, } \\ & \text { 1928:6, 1928:10, } \end{aligned}$
1930:9, 1930:11,	1966:15, 1966:19	131:9, 2131:20	modifications [1]	28:12, 1967:24,
1930:12, 1930:15,	1967:9, 1967:13,	2135:6, 2135:9	1930:7	1975:24, 1976:3
1930:18, 1930:20,	1968:11, 1968:23,	modeled [32]	moment [2] - 2117:14,	025:2, 2040:9
1930:22, 1931:3,	1969:2, 1969:6,	1932:15, 1933:20,	26:24	2040:12, 2040:19,
1931:16, 1931:17, 1932:24, 1934:4,	$\begin{aligned} & \text { 1969:17, 1970:2 } \\ & \text { 1987:3, 2006:3, } \end{aligned}$	$\begin{aligned} & \text { 1935:22, 1937:4, } \\ & \text { 1954:3, 1962:5, } \end{aligned}$	$\begin{gathered} \text { Monday }[3]-2147: 23, \\ 2148: 17,2148: 23 \end{gathered}$	$\begin{aligned} & \text { 2040:23, 2041:1, } \\ & \text { 2041:5, 2041:22, } \end{aligned}$
1932:24, 1934:4,	2006:8, 2006:13,	1965:17, 1966:2,	$\text { nitor }[1]-2136: 2$	2042:5, 2042:10,
1934:12, 1934:19,	2006:18, 2007:2	66:24, 1967:20,	nitorin	2042:14, 2042:18,
1934:25, 1935:16	2007:3, 2007:7	8:5, 1968:15,	2048	2044:24, 2045:10,
1936:8, 1936:13,	2007:8, 2007:17,	8:18, 2006:22	onitors [1] - 2136:25	2045:15, 2045:20,
1936:24, 1941:12,	2007:18, 2007:20,	009:	onth [2]-2048:19,	2045:23, 2046:2,
1941:17, 1942:7,	2007:23, 2007:25	9:13, 2009:20	103:15	052:12, 2052:19,
1942:10, 1942:13,	2008:2, 2008:1	10:23	nthly [5] - 1982:14,	053:1, 2053:5
1942:14, 1942:15,	2009:9, 2009:14,	2011:10, 2011:16,	982:19, 2049:1,	2055:16, 2055:20,
1942:19, 1942:20,	$\begin{aligned} & \text { 2012:10, 2012:11, } \\ & \text { 2012:21, 2012:23, } \end{aligned}$	$\begin{aligned} & \text { 2011:19, 2012:3, } \\ & \text { 2012:5, 2012:18, } \end{aligned}$	2051:15, 2111:21	$2055: 23,2056: 2,$ 2056:5, 2079:18
$1943: 21,1943: 25$, $1944: 5,1944: 7$	2015:24, 2016:1,	$12: 23,2098: 6$	onths [21] - 1935:19,	05
1944:5, 1944:7, 1944:13, 1944:18,	2024:4, 2024:9	098:14, 2098:20,	67:7, 1967:16,	2082:20, 2086:18,
1944:21, 1944:24,	2024:14, 2024:16,	2098:23, 2099:2	048:18,	2086:19, 2088:12,
1945:2, 1947:3,	2024:22, 2024:25,	modeling [28]	$: 23,2048: 25,$	2090:5, 2090:7,
1947:8, 1947:18,	2025:4, 2025:9, 2025:18, 2025:23,	1929:20, 1932:4,	50:3, 2050:14,	2091:2, 2091:5,
1949:10, 1949:13,	2025:18, 2025:23, 2026:1, 2029:16,	$\begin{aligned} & \text { 1933:14, 1935:8, } \\ & \text { 1935:24, 1937:9, } \end{aligned}$	051:3, 2051:18,	2091:9, 2091:11,
1950:3, 1950:9,	2029:22, 2029:25,	$37: 14,1937: 23$	089:6, 2093:11,	
1950:13, 1950:19 1950.23, 1951:1	$2030: 1,2030: 6$	1940:24, 1941:11,	101:24, 2108:3,	095:14, 2096:23,
1951:4, 1951:7,	2030:9, 2033:16	1941:19, 1947:24,	$\begin{aligned} & \text { 111:8, 2112:23, } \\ & \text { 113:2 } \end{aligned}$	2099:9, 2105:12,
1951:8, 1951:23,	2033:22, 2033:2^1	nen.1n ${ }_{\text {nnen.n }}$	UP orium [2] -	2105:19, 2105:25,

rather [1] - 1945:10	reassuring [1] -	2050:19, 2051:1,	references [1] -	2062:25
rating [1] - 2047:22	75:	53:10, 2057:5,	2033:1	relatively [3] -
Ray [2] - 2071:2,	recalibrate [1] -	2062:5, 2062:6,	referred [11] -	$2020: 25,2021: 6$
$\begin{gathered} \text { 2071:10 } \\ \text { reach } 1101-196 \end{gathered}$	2076:5 recalibra	$\begin{aligned} & \text { 2063:7, 2088:21, } \\ & 2101: 25,2135: 4 \end{aligned}$	1977:22, 2003:16,	$\begin{array}{r} 2137: 10 \\ \text { relax [1] - } \end{array}$
1962:7, 1989:17,	2007:16, 2008:4,	recross [1] - 2096:24	2063:23, 2076:6,	release [6] - 1964:19,
1989:18, 1989:20,	2008:12	Recross [1] - 1926:2	82:17, 2082:24,	1964:23, 2039:3,
1990:1, 1990:9,	recalibration [2] -	RECROSS [1] -	2092:11, 2092:20,	2039:14, 2094:11,
1992:13, 1992:19,	2008:20, 2009:5	2097:	2103:2	2094:12
1992:21, 2005:8,	receive [1] - 2088:3	red [7]-2003:4,	$\begin{gathered} \text { referring }[10]-1939: 9, \\ \text { 1945:19, 1955:24. } \end{gathered}$	released [3] - 1966:20, 2035.5, 2094-23
	re	$2087: 5,2136: 9$	2017:22, 2018:1,	releases [15] - 1934:2,
2142:23	1983:11	2141:23, 2141:24	2018:16, 2082:5,	1948:20, 1948:21,
reaches [8] - 1993:1,	recent [9]-1971:7	redid [1] - 2007:14	84:17, 2135:6,	1953:17, 1964:4,
2002:25, 2003:5,	1971:9, 1993:15,	REDIRECT [2] -	2136:1	1965:1, 1965:6,
2004:20, 2004:23,	1993:20, 1994:1,	2041:4, 2129:20	refers [5] - 1989:20,	$1965: 9,1965: 13$
2005:22, 2041:18	1997:21, 1998:4,	redirect [1] - 2097:3	1990:1, 2036:23,	1966:12, 1967:17,
read [5] - 1931:20,	2057:23, 2075:18	Redirect [1] - 1926:2		1988:20, 1988:23, 2038:21. 2039:9
	recess [1] - 2148:2 Recess [3] - 1986:	redone [1] - 2008:17	$2010: 15,2075: 19$	2038:21, 2039:
reading [2] - 2110:16,	$2042: 8,2105: 23$	reduced [5] - 1964:23	reflected [6] -	1949:15, 1962:17,
2122:13	recognize [5]	72:11, 2016:22,	1977:20, 1980:4	1963:4
reads [1] - 2128:22	1946:5, 1975:6	2037:14, 2054:23	2005:10, 2005:25,	relevance [6] -
ready [3] - 2126:1,	1977:10, 1979:20,	reduces [1] - 2030:11	2064:16, 2064:18	2058:21, 2060:4,
2147:20, 2148:17	2079:25	reducing [2]	reflecting [1] -	2070:7, 2084:7,
real [3] - 1963:1,	recognize	2037:10, 2038:16	1950:15	2086:9, 2093:1
1963:3, 2144:6	2051:17, 2059:22	reduction [13] -	reflection [1] - 2095:8	relevant [1] - 1959:15
realistic [1] - 2030:19	recollection [2]	933:22, 1936:9	reflective [1] -	reliability [1] - 2058:1
reality [2] - 1954:11,	1942:21, 1959:1	1939:24, 1942:4,	1954:11	reliable [3] - 2007:12,
2114:3	record [26] - 1947:7,	942:10, 1968:15,	reflects [1] - 2011:9	2058:4, 2058:5
realized [1] - 1956:8	58:7, 1958:12,	68:19, 1969:10,	refresh [1] - 1958:25	reliance [1] - 2034:21
really [24]-1992:16,	1958:17, 1959:12,	1969:12, 1969:15,	regard [6] - 2048:5,	relied [9] - 1951:6,
1998:25, 1999:7,	1959:15, 1973:4,	$\begin{aligned} & \text { 1969:22, 1969:24, } \\ & \text { 2023:9 } \end{aligned}$	$\begin{aligned} & \text { 2050:7, 2069:12, } \\ & \text { 2069:16, 2081:10, } \end{aligned}$	$\begin{aligned} & \text { 1998:18, 2026:13, } \\ & 2030: 5,2030: 9 \end{aligned}$
	$47: 2$	Reduc	2093:2	2044:15, 2044:21,
2053:23, 2054:22,	49:4, 2050:8	1939:19, 1940:1	regime [4] - 2084:7,	2090:2, 2093:23
58:19, 2065	069:19, 2087:3,	re	2084:10, 2086:25,	relief [1] - 2143:3
2066:2, 2068:12,	899:12, 2103:5,	935:21, 2123:11	2092:15	rely [10] - 2024:15,
2071:18, 2076:7,	06:3, 2106:8	refamiliarize [1] -	region [1] - 2125:2	2027:4, 2027:19,
2076:13, 2076:15,	108:13, 2115:9,	080:1	regression [1] -	2027:24, 2028:1,
2077:25, 2078:10,	20:6, 2125:19,	refer [17] - 1991:20,	2020:3	033:9, 2043:2,
2084:10, 2094:21,	126:6, 2127:3,	:16, 2023:20,	regulation [2]	2058:7, 2059:15,
2095:8, 2103:4,	2127:	28:8, 2043:6,	2079:5, 2087:16	2078:13
2138:4	recorded [8] - 1947:7	2049:17, 2049:18,	regulations [4] -	relying [2] - 2014:4,
$\begin{gathered} \text { reason }[9]-1954: 19, \\ 2026: 17.2026: 22 \end{gathered}$	2041:15, 2044:12, 2049:4. 2054:10.	2058:16, 2070:5,	2077:2, 2079:9,	2014:5
2026:17, 2026:22,	$\begin{aligned} & \text { 2049:4, 2054:10 } \\ & \text { 2055:3, 2077:23 } \end{aligned}$	2075:4, 2076:24,	2079:11	remaining [1] - 1994:25
$\begin{aligned} & \text { 2039:13, 2064:21, } \\ & \text { 2073:5. 2092:11 } \end{aligned}$	$\begin{aligned} & \text { 2055:3, 2077:23, } \\ & 2088: 22 \end{aligned}$	2084:6, 2084:12,	regulatory [6] -	1994:25
2095:7, 2098:5	recorder [1] - 2044:9	2093:19, 2094:17,	2078:14, 2118:13,	remedy [3]-2073:16 2097:5, 2099:1
reasonable [10]	recording [1] -	reference [11]	2144:21, 2144:22	remember [4] -
1981:6, 1981:18,	2050:22	2072:15, 2073:9,	reiterate [1] - 2134:22	2053:12, 2072:9,
2062:10, 2074:1, 2074:3. 2083:12.	recordings [1] $2055 \cdot 1$	2080:16, 2081:12,	relate [2]-2013:11,	$2100: 5,2134: 19$
2074:3, 2083:12,	$\begin{array}{r} 2055: 1 \\ \text { records } \end{array}$	2083:16, 2084:19,	$\begin{aligned} & \text { 2073:20 } \\ & \text { related [6] - 2002:20, } \end{aligned}$	remind [1] - 2148:7 remiss [1]-2052:22
$2132: 20,2132: 24$	1955:19, 2041:16	$106: 4,2133: 3$	2029:17, 2041:12,	remove [1]-2139:11
reasonably [1] -	2041:21, 2041:25,	2135:20	2042:21, 2047:21,	repeat [7] - 1939:2,
1946:9	2045:11, 2047:7,	Referenced [1] -	2074:13	1968:2, 2014:8,
reasons [5] - 1954:1,	2047:8, 2047:12,	1926:8	relates [1] - 2079:13	2014:16, 2026:20,
1954:13, 1954:23,	2047:23, 2048:12,	referenced [1] -	relationship [3] -	2097:20, 2134:13
2051:17, 2103:3	2049:5, 2050:9,	REPORTI	OUP :21, 2035:24,	repeating [1] -

1929:5, 1929:9,
$1968: 1,1975: 13$ 1975:18, 1976:2, 1976:5, 1976:21, 1977:2, 1977:6, 1985:16, 1985:22, 1986:3, 1999:24, 2013:23, 2040:8, 2040:11, 2040:17, 2040:21, 2042:3, 2042:12, 2044:22, 2044:25, 2045:3, 2052:15, 2052:25, 2055:18, 2055:21, 2056:1, 2090:25, 2091:8, 2092:5, 2096:24, 2099:11, 2099:21, 2100:8, 2100:19, 2101:2, 2101:11, 2102:3, 2102:6, 2102:16, 2102:20, 2102:22, 2103:11, 2103:19, 2104:1, 2104:19, 2104:22, 2105:10, 2105:14, 2105:16, 2105:21, 2106:1, 2107:4, 2107:14, 2108:9, 2108:12, 2111:16, 2115:5, 2145:16, 2145:19, 2146:1, 2146:11, 2146:14, 2146:21, 2146:25, 2147:6, 2147:8, 2147:12, 2147:16, 2148:1, 2148:5, 2148:20
species [5] - 2081:9, 2085:2, 2085:3, 2088:5, 2088:8 specific [11] -
1932:25, 1957:23, 1958:3, 1964:22, 1968:13, 1993:17, 2007:25, 2025:17, 2060:21, 2124:18, 2131:3
specifically [17] 1937:12, 1937:18, 1943:22, 1948:20, 1968:7, 1969:2, 1971:3, 1974:25, 1981:2, 1986:14, 1994:5, 2007:20, 2031:12, 2032:4, 2035:14, 2037:4, 2138:22
specified [1] - 2089:8 spell [2] - 1928:2, 2106:22
spelled [1] - 2106:25
spike [8] - 1984:3, 1984:11, 1984:12, 1984:20, 1985:1, 1985:7, 2011:7, 2011:14
spindle [1] - 2044:12 spoken [1] - 2086:11 spot [1] - 2019:17 spread [2] - 1968:8, 2134:23
spreadsheet [5] 1965:20, 1966:24, 2017:7, 2056:10, 2056:11
Spring [38] - 1967:22, 1968:6, 1968:14, 1968:20, 1986:12, 1986:19, 1986:21, 1986:24, 1987:5, 1987:8, 1987:12, 1987:16, 1987:17, 1987:22, 1988:6, 1988:12, 1989:7, 1989:12, 1990:9, 1990:14, 1990:20, 1990:25, 1991:2, 1991:4, 1991:15, 1991:23, 1992:12, 1993:3, 2044:20, 2052:6, 2052:7, 2053:8, 2053:16, 2053:18, 2053:21, 2054:7, 2054:25, 2055:5
springs [1] - 2118:11
stack [1] - 2078:20 staff [7] - 2119:5,
2135:1, 2137:12, 2137:14, 2140:17, 2141:8, 2141:15 stage [3] - 2044:9, 2047:16, 2047:22 stand [2] - 2052:16, 2106:12
standard [3] -
2132:16, 2132:25, 2133:19
standardized [1] 2065:24
stands [2] - 1964:16, 2131:14
Stanford [3] - 2071:3, 2071:9, 2071:11 start [11] - 1930:1, 1946:2, 1985:12, 2013:10, 2028:7, 2040:15, 2050:23, 2102:1, 2106:4, 2138:18, 2143:3
started [6] - 2043:3, 2093:13, 2108:3, 2108:5, 2135:8, 2135:15
starting [3] - 1971:21, 2048:15, 2050:11
starts [3] - 2028:16, 2046:10, 2091:6 state [53]-1928:2, 1929:16, 1930:25, 1932:21, 1933:24, 1934:7, 1934:16, 1934:21, 1935:2, 1935:9, 1935:20, 1936:20, 1937:16, 1937:25, 1938:10, 1938:17, 1939:5, 1940:13, 1941:15, 1941:24, 1942:11, 1949:8, 1960:23, 1961:19, 1962:7, 1965:24, 1980:10, 1981:12, 1982:25, 1983:12, 1983:25, 1984:6, 1984:12, 1984:17, 1984:23, 1985:9, 1989:4, 1989:7, 1989:13, 1995:11, 1996:17, 2015:17, 2016:7, 2029:5, 2038:23, 2039:9, 2044:2, 2081:1, 2106:22, 2125:2, 2138:23, 2141:23, 2143:15
STATE [2] - 1925:3, 1925:6
State [17] - 1925:15, 1925:17, 1925:20, 1927:10, 2073:21, 2078:13, 2080:6, 2081:23, 2082:13, 2090:15, 2093:2, 2095:19, 2096:5, 2107:20, 2120:14, 2125:7, 2149:3
state-of-the-art [1] 2029:5
statement [5] 1946:10, 2045:18, 2045:25, 2127:16, 2129:16
states [1] - 2136:20
STATES [1] - 1925:1
States [3] - 1930:4, 2043:18, 2043:20
station [3] - 2043:22, 2043:23, 2043:24 stations [4] - 2043:7,
statistic $[4]-1953: 8$,
$2057 \cdot 19,2076 \cdot 20$,
2057:19, 2076:20, 2076:25
statistically [1] 2070:4
statute [1] - 2124:6
statutes [1] - 2132:18
Stearns [1] - 2145:14
STEARNS [1] -
1925:19
stenographic [1] 2149:5
step [3] - 2054:22, 2094:18, 2137:23
steps [1] - 2062:2
Steverson [3] 2108:19, 2108:21, 2141:6
still [8] - 1979:5, 1992:12, 2030:19, 2040:12, 2071:24, 2104:7, 2117:14
stopped [2] - 2050:22, 2055:3
storage [9] - 1945:10, 1945:15, 1950:5, 1961:20, 1962:7, 1962:9, 2020:14, 2039:1, 2114:5
store [2] - 2018:22, 2039:2
stored [1] - 2060:13
story [1] - 2051:7
straight [1] - 1982:9
stream [13] - 1989:20,
1990:1, 2002:16,
2002:25, 2003:5,
2043:12, 2043:20, 2054:19, 2055:10, 2067:4, 2082:11, 2121:17, 2134:2
streamflow [39] 1971:8, 1971:10, 1987:16, 1993:21, 1994:20, 1995:1, 1995:15, 1995:24, 1996:4, 1996:6, 2006:4, 2006:9, 2015:17, 2015:21, 2015:23, 2019:1, 2022:22, 2023:1, 2023:6, 2023:17, 2027:17, 2028:21, 2029:2, 2029:17, 2030:2, 2030:11, 2035:25, 2041:15, 2041:16, 2041:21, 2041:24, 2053:10, 2061:17, 2064:19,

2089:23, 2096:10, 2118:4
streamflows [3] 1993:25, 2006:14, 2118:11
streams [4]-2002:14, 2002:16, 2002:17, 2099:18
Street [1] - 1925:12
strengths [1] 1950:18
stretches [2] 1973:12, 2133:21
strong [1] - $2103: 9$
strongly [2] - 2076:13, 2096:14
structure [4] 2025:17, 2084:12, 2084:19, 2084:24
students [1] - 2008:16
studied [2] - 2080:3, 2092:4
studies [4] - 2060:2, 2062:22, 2063:17, 2145:7
study [7] - 1987:4, 2041:9, 2135:17, 2135:21, 2135:25, 2136:18, 2139:17 sub [3] - 1967:22, 1968:6, 1968:13
sub-basins [3] 1967:22, 1968:6, 1968:13
Subject [1] - 2109:6
subject [3] - 2013:14, 2077:21, 2081:5
submit [1] - 2111:25 submittal [1] - $2129: 5$ submitted [10] 1935:25, 1936:3, 1952:22, 1956:7, 1957:7, 1997:6, 1997:16, 2016:17, 2034:18, 2107:8
subscribe [1] 2149:10
subset [3] - 1958:6, 1958:10, 1998:7
subsets [1] - 1998:14
substantial [1] 2011:2
substantially [1] 2010:21
suddenly [1] 2101:18
suggest [5] - 2025:7, 2050:9, 2139:1, 2148:13, 2148:16
suggested [3] -

[^0]: A. Yes, I see that.
 Q. And do you see at line 20 Dr. Flewelling was asked, you could have compared years after drought years instead of years after wet years. Right?

 And his answer was, that's correct.
 Do you see that?
 A. I do.
 Q. You don't have any basis to disagree with Dr. Flewelling's testimony on this point; do you?
 A. I do not.
 Q. Now, I want to talk about your groundwater opinions. And I understand that some of these opinions were adopted from another Florida expert, Dr. Langseth. Is that correct?
 A. That's correct.
 Q. Now, much of Georgia's agricultural irrigation is done through groundwater pumping. Is that right?
 A. Yes.
 Q. Now, when you irrigate from surface water, there's a one-to-one impact on streamflow. Right?
 A. Yes.
 Q. Meaning for every cfs of surface water that you THE REPORTING GROUP Mason \& Lockhart

