

		1682			1684
1		certain way averaging over a certain time period,	1		this particular data, I'm relying on the analysis
2		it happens to show decline. If you choose a	2		of Dr. Kimbro which does show that, at the very
3		different time window, you can show an incline or	3		least, the shelling in that time period was --
4		decline. It's a very arbitrary approach to	4		was comparable to the long-term average.
5		drawing a trend line and not really a valid way	5	Q.	Can we go back to Dr. White's chart with the
6		of describing a statistically meaningful pattern.	6		lines here. One of the other things that you
7		The approach that Dr. Kimbro took is really	7		state in your direct testimony is that
8		better because in that way, you can include	8		Dr. Lipcius, you say, skewed the results because
9		confidence intervals and actually say with	9		he -- because he included the very aggressive
10		statistical certainty what was happening.	10		high shelling that Florida did after Hurricane
11	Q.	Just for madam court reporter, if you would.	11		Elena. Do you recall that?
12		But the question being whether Florida's	12	A.	Yes. I wouldn't say he skewed it because he
13		reshelling activity prior to the collapse was	13		included that, but merely the way he calculated
14		increasing or decreasing, you would want to look	14		that line gave very high weight to -- to that
15		to that reshelling activity prior to the	15		particular datapoint, and that if you calculate
16		collapse. Would you agree with me, sir?	16		the line in that way, it inevitably leads to
17	A.	Yes. And as Dr. Kimbro's analysis showed, it was	17		showing a decline from that unusually high point
18		not different from historical norms.	18		in the mid-1980's down towards the 2010's.
19	Q.	Yes. We took care of that yesterday. And you	19	Q.	And if I can direct you in your written
20		were here, and you saw that that was entirely	20		testimony, please, to paragraph 70 which is on
21		inaccurate.	21		page 15, and if you would read that to yourself,
22		Now, with this particular chart the way you	22		sir. This is where you describe how you think
23		have done it, by including 2014, the blue line	23		Dr. Lipcius made the curve look like there was a
24		makes it looks like Florida's shelling efforts	24		decrease in shelling by including the
25		have increased or were on the uptake before the	25		extraordinary reshelling efforts in 1986 and
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart
		1683			1685
1		collapse. Correct?	1		1987. Correct?
2		If you take out the data from 2014, the line	2	A.	Yes.
3		changes, yes.	3	Q.	And it is the case, is it not, that when that
4		It's -- are you trying to communicate to the	4		fishery collapse took place after the hurricanes,
5		Court that Florida's efforts on reshelling prior	5		Florida did engage in some extraordinary
6		to 2012 were increasing?	6		reshelling efforts. Right?
7	A.	Well, if you redo that analysis, only including	7	A.	It's my understanding that that is why there were
8		data up to 2012, yes; it still shows that the --	8		really high reshelling numbers for those years.
9		the blue line shows that it's increasing,	9		Right.
10		although as I said before, I don't rely on that	10	Q.	That's what you testified to. Right?
11		type of curve to make a statistical judgment	11	A.	Yes.
12		about what was happening or not. That's not an	12	Q.	And part of the reason Florida engaged in that
13		appropriate way to charge a trend or not.	13		extraordinary reshelling effort during that
14	Q.	Can we look at our shelling exhibit that we used	14		period is because they wanted the oyster fishery
15		before, please.	15		to come back. This was an important restoration
16		Now, the Court has seen this a number of	16		effort. Right?
17		times before. I'm not sure if you saw it	17	A.	It is my understanding that because there was
18		yesterday. But this is based on the official	18		considerable habitat destruction, they had to add
19		Florida state records about the amount of	19		shell to create a new habitat, yes.
20		shelling that was taking place. And I just want	20	Q.	And the habitat wasn't very good during this
21		to ask you to confirm that in your expert	21		current collapse either, was it, in 2012-2013?
22		analysis, what this shows is that Florida's	22		You have seen documents attesting to that?
23		shelling was increasing prior to 2012, the	23	A.	I'm aware that there were some places where there
24		collapse?	24		was poor habitat and some places where there was
25	A.	Without doing a statistical analysis of my own on	25		good habitat, although I want to clarify that
		THE REPORTING GROUP			THE REPORTING GROUP
		Mason \& Lockhart			Mason \& Lockhart

	1694		1696
1	d shell doesn't just stay there forever		te of the oysters in Apalachicola Bay in
2	It gradually dissolves in the water essentially.	2	Dr. Powell's study.
3	nd so this dead shell and erosion rate is the		Q. And, once again, if you say 50 percent or so,
4	reat which that shell will break up and		would be 50 percent of shell remaining,
5	dissolve and disappear over time.		u draw the line across, that hits around six
6	Q. But it is a gradual process, is it not, from when		years or so. Does that seem about accurate?
	e shell breaks up and erodes over time?		A. Roughly, yes.
8	A. That's right. It is a -- it's a -- it takes		MR. ECHOLS: And we can take that down.
9	several years is my understanding.		R. ECHO
10	Q. And if you, hopefully, will take my word for it,		part of the work that you and Dr. Kimbro did
11	asked Dr. Lipcius to, again, create a graph so	11	reaches conclusions about the extent of predation
12	could see just how long this lasts	12	by the rock snail; is that true?
13	MR. ECHOLS: And if we could have that		A. That's right.
14	demonstrative, please, of that shell erosion	14	Q. And the basic way predation by the rock snail
15	rate.	15	orks is it lands on a live oyster and kills it,
16	MR. LEOPOLD: Your Honor, I just want to	16	either by boring a hole in the top or going
17	note for the record that this exhibit was not	17	through the lip part and then eating the meat
18	ared in advance with counsel	18	out. Is that about right?
19	MR. ECHOLS: This is graphing the	19	A. That's right.
20	parameter, your Honor, in Dr. Kimbro's report	20	Q. And when it does this, the shell is left behind,
21	so we can all understand it a little bit	21	we have talked about before is typically
22	better	22	called a gaper or a box. Does that sound right?
23	BY MR. ECHOLS:	23	A. That's right. And that's also how it was
24	Q. And if it's totally off, please let the Court	24	resented in the model, yes.
25	know. But what I tried to do is in the best, THE REPORTING GROUP Mason \& Lockhart	25	Q. And so what happens when you have large-scale THE REPORTING GROUP Mason \& Lockhart
1695			1697
1	most accurate way make it easier for us to	1	edation by rock snails, you should have a lot
2	understand what this dead shell erosion rate	2	of shell left on the floor of the bay; should you
3	meant. And at least based on our running the	3	not?
	graphing calculator, we came up with a curve that	4	A. Certainly right after the predation you would
	shows we have got percent of shell remaining on	5	certainly see a lot of shell, yes.
	the left-hand side; and then we have got years	6	Q. Is it your understanding, sir, that this she
	across the bottom.	7	would typically disappear, be washed away by
	And so if this is accurate and if we're	8	des or something like that; or would you expect
	reading it correctly, would that suggest, for	9	hat it would remain?
10	instance, that after two years you should have about 80 -some percent shell remaining based on the erosion rate?	10	A. That's a little bit beyond my expertise as an
		11	ster field biologist. I know in discussing
12		12	ings with Dr. Kimbro in developing the model,
13	A. Yes	13	hat it's certainly possible for tidal currents
14	And that's -- I mean, that's not inconsistentwith your understanding; is it?	14	to move things around. Certainly, there's --
15		15	things can be silted over and things like that.
16	That's right. You know, this -- this particular parameter is one I obtained from a published study by Dr. Eric Powell. So it seems to be correct.	16	Q. You wouldn't expect that if you have a
17		17	bstantial amount of dead shell at the bottom of
18		18	e bay, that it's just going to wash away in any
19		19	short amount of time; would you?
20	This is one that you didn't have to do an experiment to figure out because you could just go to the academic literature, and it's already been published about what the dead shell erosion rate is. Right?	20	A. Again, that is really beyond my expertise, not
21		21	being somebody who spends time in the field in
22		22	Apalachicola Bay
23		23	Q. Well, this dead shell, at least you -- is a good
24		24	substrate, you know, if conditions are good for
25		25	spat to land on and then grow up to be adult
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

	1702		1704
1	travel throughout the bay and settle on a	1	there for 30 years, is not a good representation
2	different reef. So they're connected. I	2	of what to expect for the rest of the bay;
3	wouldn't call them independent or something like	3	they're individual ecosystems. He goes on and
4	that. But I would certainly agree that reefs at	4	says, it's difficult to make a statement of one
5	different parts in the bay exposed to different	5	size fits all.
6	salinity conditions would be expected to have	6	And if we look over, as we continue to the
7	different patterns of change over time.	7	next page, he says, specifically, as a matter of
8	Q. So you wouldn't agree that -- that different	8	fact, it's impossible. It shouldn't be done.
9	oyster reefs are different as far as the level of	9	I take it you are not in agreement with
10	growth and amount of oysters depending on where	10	Mr. Berrigan?
11	they are in the bay and the salinity conditions	11	A. I'm sorry. I just want to be clear about what
12	that they're exposed to?	12	we're looking at here. Is this Dr. Berrigan's --
13	A. I'm sorry. Could you restate that question? I'm	13	Mr. Berrigan's deposition?
14	not sure I -- I'm unsure what you're asking.	14	Q. Yes. This is Mr. Berrigan's sworn testimony in
15	Q. Sure. No. You used, at least originally, Cat	15	deposition back when I deposed him. And he also
16	Point Bar only as the reference for your model.	16	testified to this on the stand on Friday.
17	Correct?	17	A. Right. And it's not possible to have a hard copy
18	A. That was the dataset that the model was	18	of this?
19	describing. Yes.	19	I know, having looked at the deposition
20	Q. And despite that others may have testified that	20	before, there is a broader context of these
21	it's impossible to draw conclusions from one reef	21	statements. I would like to review that, if
22	to the entire bay, you disagree with that?	22	that's possible.
23	A. I -- I'm not sure I have seen any testimony that	23	Q. Is it too small for you to read on the screen?
24	says that specifically. I know, for example,	24	A. No. I'm sorry. For example, I can't see the
25	Dr. Kimbro testified yesterday --	25	question that was asked or -- I know there's
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	1703		1705
1	Q. Slower.	1	other information around this time in the
2	A. Dr. Kimbro testified yesterday that different	2	deposition.
3	reefs are different in salinity and other	3	Q. I'll let you --
4	factors. And as long as you account for those	4	MR. LEOPOLD: Your Honor --
5	factors when drawing conclusions, you can	5	ECHOLS:
6	certainly extrapolate patterns from one bar to a	6	Q. The way this process works, your counsel will
7	different bar.	7	have a chance to ask you questions after. So I'm
8	Q. And with apologies, I don't have this in hard	8	sure, to the extent there is something else that
9	copy; but just to make sure that I'm not doing	9	I'm missing, he will refer you to it.
10	this on my own, I'm putting in front of you what	10	MR. LEOPOLD: Your Honor, we would
11	is -- has been said --	11	request that counsel give the witness the
12	MR. ECHOLS: Do you have that --	12	entire transcript so he can have it during
13	Berrigan?	13	this section of questioning.
14	BY MR. ECHOLS:	14	MR. ECHOLS: I'm actually done, judge.
15	Q. And, again, apologies; I don't have the hard	15	BY MR. ECHOLS:
16	copy, but we'll blow it up.	16	Q. Let's go back to harvesting and paragraph 165 of
17	If you look at the very bottom of page 148 --	17	your direct testimony.
18	we'll make it big here so you can see it -- there	18	A. Yes.
19	is an answer that he says, I probably identified	19	Q. And your testimony to this Court is that based on
20	it quite often.	20	your model, the harvest rates preceding and
21	And this is in the deposition testimony. And	21	during the collapse were consistent with or lower
22	we used this when Mr. Berrigan was here on	22	than historical harvest rates. Is that accurate?
23	Friday, so it's also in the trial testimony.	23	A. Yes.
24	And Mr. Berrigan there was explaining that	24	Q. And if we look at our chart that we have used a
		25	couple of times on landings --
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

	1710		1712
1	And that's the analysis that I performed. So	1	A. Yes.
2	my analysis of the data is able to provide the	2	Q. And if I could direct you, please, to page 12.
3	actual estimate of what was happening with the	3	MR. ECHOLS: And if we could, please,
4	harvest. And, yes, it shows that there was no	4	blow up the chart, the Lipcius dem 3.
5	increase.		BY MR. ECHOL
6	Q. And I think, as you previously at least described		Q. And this is part of the analysis that you are
7	it to me, that you, because you're using the	7	responding to; is that right?
8	scientific method, don't look to anecdotes and		A. That's right.
9	speculation about overharvest that might be out	9	Q. And so the Court understands what you're
10	there that people would say?	10	responding to in your written direct, what
11	A. That's right. The model has to use actual	11	Dr. Lipcius did is look at eight -- one, two --
12	scientific data. It has to have a mathematical	12	nine different bars in Apalachicola Bay, four of
13	relationship. There's not a good way to plug in	13	which we have heard a lot of discussion about
14	sort of anecdotal reports and things of that	14	because they're the generally-harvested,
15	nature.	15	productive bars, North Spur, Dry Bar, Cat Point,
16	Q. And anecdotal reports, you don't take those into	16	and East Hole. And he also looked at some bars
17	account or plug them in even if they're in	17	that are less harvested and some, as we talked
18	official Florida state documents year after year.	18	about with Mr. Sutton, and others had been
19	Right?	19	reshelled. And those we have as the nonmajor
20	A. If there's no data or mathematical results, it's	20	fish bars. And you understand the analysis that
21	not possible to translate that into something	21	Dr. Lipcius did here; do you not?
22	that can actually describe what's happening with	22	A. Generally speaking, yes. I didn't look at the
23	the oyster population.	23	exact code he used to produce this analysis, but
	Q. I want to change topics again, please, sir. If I	24	generally speaking, yes.
25	could refer you back to your written direct, THE REPORTING GROUP Mason \& Lockhart	25	Q. Well, you critiqued it and said he was mistaken. THE REPORTING GROUP Mason \& Lockhart
	1711		1713
1	paragraph 114, page 30. Now, here, sir, in your	1	You didn't look at his analysis?
2	written direct you are, again, criticizing or	2	A. I critiqued it based on the possibility of a
3	critiquing something that Dr. Lipcius had in his	3	compounding factor in the analysis that he hadn't
4	report; is that accurate?	4	counted for.
5	A. That's right.	5	Q. And you say that the compounding factor is he
6	Q. And what you say is that you looked at his	6	failed to take into account salinity. Right?
7	analysis of how oysters increased or declined in	7	A. That's right. As we were discussing earlier,
8	abundance on reefs that were harvested and reefs	8	bars at different places in the bay have
9	that were not harvested. Right?	9	different environmental conditions. And it
10	A. That's right. I -- it's my understanding from	10	happens that the way the bars for this analysis
11	looking at the numbers that the reefs that	11	were selected, the so-called major harvested bars
12	Dr. Lipcius was looking at, the ones that he	12	are further away from the mouth of the river; so
13	calls the sort of unharvested bars, those are	13	they all tend to be -- they all tend to have
14	bars that actually do have harvest; but	14	higher salinities in general and be less
15	they're -- some of them were summer bars or	15	influenced by the river. And most of the bars
16	things like that. They were not perhaps the most	16	colored in blue, the nonmajor harvested bars, as
17	heavily-targeted bars.	17	he calls them, are more influenced by the river.
18	Q. So that we're not speaking in the abstract, let	18	So that environmental factor alone would be
19	me give the Court and you the specific analysis	19	expected to lead to differences among the bars
20	that I'm referring to.	20	independent of any other factor that could be
21	MR. ECHOLS: And for the record, this is the	21	happening.
22	submitted direct testimony of Dr. Lipcius,	22	Q. And I'm going to go back to your direct
23	Georgia's oyster expert.	23	testimony as soon as we make sure that it's
24	BY MR. ECHOLS:	24	clear what this shows. What this analysis
25	Q. And you have read this; have you not?	25	shows is that for the harvested bars, the more
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

Q. Right. And the salinity was higher at this lightly-harvested bar that was doing better than at Cat Point, Dry Bar, East Hole, and North Spur. Correct?
A. Well, again, I don't know what the harvest rate of Hotel Bar is. I made the calculation at Cat Point Bar and Dry Bar, but I haven't made an actual calculation of the harvest rate at Hotel Bar. So, you know, I wouldn't want to characterize that one way or the other.
Q. Is it your understanding, sir, that part of the reason that we look at salinity, Dr. Kimbro looked at salinity is because there's the issue of predators, like the rock snail, being attracted to higher salinity locations. Right?
A. That's correct.
Q. And is it your understanding, sir, based on your knowledge of oyster -- I'm sorry, of rock snail biology, that the rock snails are attracted to salinity anomalies as opposed to absolute salinity?
A. I'm sorry. Could you -- could you say that again, please?
Q. Sure. What you didn't show the Court in this analysis is the salinity at these different

THE REPORTING GROUP Mason \& Lockhart
locations. You have the salinity anomaly, which is some difference apparently from the average. Is it your understanding that the way rock snails migrate is that they may be in one location that's relatively high salinity, but they find another location that's higher; and so they want to go to the better, higher saline bar? Is that your understanding of the way rock snails operate?
A. My understanding is that they have particular salinities where they're most, you know, physiologically suited.
Q. And you studied the rock snail and the oyster, I take it, and the interactions between them as long as Dr. Lipcius has, for 35 years. Right?
A. I have been working on them with Dr. Kimbro and his research team for the past few years.
Q. How many is that? How many years?
A. Since 2014. It's about two years.
Q. And you do understand, although you have numerous places in your direct testimony where you're criticizing and calling Dr. Lipcius's work as being mistaken or misleading, that he's a tenured professor at the Virginia Institute of Marine Sciences?

THE REPORTING GROUP Mason \& Lockhart
A. That's my understanding, yes.
Q. And you yourself are tenured, too, I take it?
A. Yes, that's right.
Q. And it is the case that Dr. Lipcius has reviewed and signed off on some articles that you and your graduate students have written. Right?
A. That's right. He was the -- what we call the handling editor at the journal; so he sent out the papers to different peer reviewers and then reviewed their positive assessments of the paper and judged that was acceptable to accept the paper for publication. That's right.
Q. And I take it you, as well, just like

Dr. Lipcius, were involved in the most successful oyster restoration ever conducted worldwide that was done in Chesapeake Bay?
A. No, I was not.
Q. Let's go to our last topic, please. Let's go back to your written direct testimony.

If I could direct you, please, to page 47. And now, your general conclusion, sir, is that Georgia water consumption contributes to the decrease of biomass of oysters. Right?
A. That's right. The low flow conditions in 2012 led to a rapid decrease in oyster biomass. THE REPORTING GROUP

Mason \& Lockhart
Q. You don't say in your expert report that your analysis shows that Georgia water consumption caused the collapse. Do you?
A. I don't specifically use that word.
Q. And your model doesn't show that?
A. The model shows that low flows led to a decline, and that had there been higher flow, the decline would have been mitigated; and there would have been considerably more oyster biomass on the reef.
Q. And the reason that the oyster biomass would be lower is because there were three different things that you said could be happening, the predation, the lowered recruitment, and is it the dermo disease? Are those the three aspects of it?
A. Those were the three aspects of oyster biology in the model that depended on salinity. That's right.
Q. And you, sir, did not calculate or determine any relative impact of either of these three aspects, whether it was predation or disease or recruitment failure. Right?
A. I didn't specifically make that calculation.
Q. So --

THE REPORTING GROUP
Mason \& Lockhart

answer.
A. Again, I'm not part of the analysis that calculates those things. I have no knowledge of what factors lead through any scenario. I focused on what happens to the flow and the salinity.

MR. ECHOLS: I have no further questions, your Honor.

MR. LEOPOLD: Your Honor, I can proceed with my direct examination or take our morning break. Whatever you prefer.

SPECIAL MASTER LANCASTER: Why don't we take a break.
(Time Noted: 10:23 a.m.)
(Recess Called)
(Time Noted: 10:36 a.m.)
SPECIAL MASTER LANCASTER: Counsel.
MR. LEOPOLD: Thank you, your Honor. REDIRECT EXAMINATION
BY MR. LEOPOLD:
Q. Dr. White, thank you for your testimony today. I just have a few questions for you.

You testified earlier as to your state-space integral projection model; is that right?
A. That's correct.

THE REPORTING GROUP
Mason \& Lockhart

Q. Would you please explain to the Court how that model was developed and operates?
A. That's right. So the overall goal of the analysis was to understand what factors in oyster biology or in harvesting led up to the collapse of the oysters in 2012. And so we developed a -or I developed a biological model that included all of the major biological factors that we knew about for oysters. So the model described the change over time from year to year, from week to week in the oysters on oyster bars. So it includes factors like predation, oyster growth and oyster reproduction, a lot of known factors, most of which we were able to get parameter values and mathematical relationships for from Dr. Kimbro's expert report, from the work he was doing in the bay, and from other published sources.

There are other factors that we didn't have an independent scientific estimate of that would be expected to affect oyster biology. The No. 1 of one of those is the harvest rate. As I think I had said earlier, there is not an independent fishery -- independent estimate of the harvest rate in the bay. I mean, the harvest THE REPORTING GROUP Mason \& Lockhart
could have been a factor leading up to the collapse.

And so what the model does is it predicts -at each week in time over this 20-year time span from 1992 to 2012, it predicts how many oysters are on the bar of each size. So from small oysters all the way up to legal-size oysters and beyond. And it makes that prediction based on all these known factors, the growth and mortality that I described. And then it has to estimate how much harvest would have been taking place in order for that model prediction to match the observed data.

So essentially let's say in the year 2000, it would predict how many oysters there were of a -of, say, you know, 3 inches, 4 inches. And it would calculate the harvest rate that would be necessary to get the observed number of oysters of those sizes. It then sort of spits out that number, and so we can see how the harvest rate would have changed over time.
Q. Thank you, Dr. White.

And why was it important for you to rely on fishery-independent data to calculate that rate?
A. Right. The -- in the fisheries world, there are THE REPORTING GROUP Mason \& Lockhart

1729
two types of data we consider. There is fishery-dependent data that are collected by the fishermen themselves. So these are things like landings data or the number of boats that go out and things like that. Fishery-dependent data are not always as reliable because they're not collected in a scientific manner. So the number of trips that are made or the number of oysters that are landed, they depend on how many oysters are in the bay; but they also depend on things like the market price for oysters, which can go up and down. They depend on -- the price of gasoline can affect how many boats trips you want to take.

So fishery-dependent data aren't collected in a scientifically consistent method. So there are problems -- potential problems in inferring patterns of actual oyster abundance from those type of data.

Fishery-independent data are collected in a scientific way. You have exactly the same kind of sampling effort at every single instance. So from the data that that has collected, there's actually a remarkably good time series of oyster abundance from that time leading up to 2012. THE REPORTING GROUP Mason \& Lockhart

represents.

Q. And you're not suggesting, are you, doctor, that as an outcome in this case, that Georgia should not use any water?
A. No. That wasn't the purpose of that scenario.
Q. So this was just a scenario you simulated to see what would happen to salinity in the bay if nobody in Georgia ever used any water. Right?
A. That's correct.
Q. You wanted to see what the maximum change would be. Right?
A. That's correct.
Q. And in your written direct testimony in paragraph 4 -- and we can put that up on the screen -- you actually identified that maximum change in salinity across all your scenarios. Right?
A. That's correct.
Q. And you maintained that Georgia's water consumption has a total impact on salinity in the bay of up to 8 parts per thousand. Right?
A. That's what the results of the model were; correct.
Q. And you maintained that the largest impact on salinity is in east bay. Right?

THE REPORTING GROUP
Mason \& Lockhart
1747
A. That's generally what I saw, yes.
Q. All right. Now, 8 parts per thousand, parts per thousand is how salinity levels are measured. Right?
A. Yes.
Q. And salinity is the measure of salt dissolved in water. Correct?
A. Correct.
Q. And 8 ppt means that in every kilogram of water, 8 grams are salt. Right?
A. Correct.
Q. And that means that out of a thousand grams of water, 8 grams are salt. Correct?
A. Correct.
Q. And to put this in context, these salinity levels are being measured in a bay where salinity levels range from zero ppt near the source of fresh water inflow. Right?
A. Yes.
Q. And salinity levels range up to 35 ppt near the Gulf of Mexico. Correct?
A. That's correct.
Q. And that's because the Gulf of Mexico is saltwater. Right?
A. Correct.

THE REPORTING GROUP
Mason \& Lockhart
Q. All right. And the highest change that you found between salinity levels resulting from Georgia's water use and a scenario in which nobody used any water at all was 8 ppt. Right?
A. That's correct.
Q. All right. And the only modelled results that include changes in salinity as high as 8 ppt came from the no withdrawal scenario. Correct?
A. That's correct.
Q. And it's true, isn't it, that these changes of up to 8 ppt were not seen throughout the entire bay?
A. That's correct.
Q. All right. Dr. Greenblatt, in your written direct you include an attachment 2 which has figures and tables from your expert report. Correct?
A. Yes.
Q. All right.

MS. DeSANTIS: Your Honor, may I approach with a demonstrative 3 ?
BY MS. DeSANTIS:
Q. And, Dr. Greenblatt, as we distribute this, I'm going to represent that I'm handing to you what is attachment 2 to your written direct testimony. The only modifications that we have made is we THE REPORTING GROUP Mason \& Lockhart
1749

A. That's correct.
Q. And that represents changes in salinity of about 1 to 4 ppt. Right?
A. Correct.
Q. All right. And we see white areas, too. Right?
A. I'm not sure there's white areas on this one.
Q. There's a few. Right?
A. Those are outside of the model domain.
Q. Okay. There is one over here?
A. There may be some small white areas.
Q. There are some small white areas in this map that show changes in salinity of less than 1 ppt. Right?
A. Correct.
Q. All right. Move on to your future scenario. You ran simulations for an increased future withdrawal scenario. Right?
A. Correct.

MS. DeSANTIS: Mr. Primis is telling me this microphone is working better.

MR. PRIMIS: Does your Honor agree?
MS. DeSANTIS: Does this one work for you?

THE REPORTING GROUP Mason \& Lockhart

1759
I just have to keep my head turned to the left.

All right. Is that better?
BY MS. DeSANTIS:
Q. Okay. You ran simulations for an increased future withdrawal scenario. Correct?
A. Correct.
Q. And, again, you used inputs from Dr. Hornberger. Right?
A. Yes.
Q. And Dr. Hornberger relies on Dr. Flewelling's assessment of future consumptive use. Correct?
A. Yes.
Q. And you have not assessed the assumptions in Dr. Flewelling's future scenario. Right?
A. That's correct.
Q. And you haven't assessed his assumptions regarding the percentage of increase in irrigation withdrawals in Georgia. Right?
A. Correct.
Q. And you didn't look into Dr. Flewelling's assumptions about future municipal and industrial water use in Georgia. Right?
A. Correct.
Q. And you didn't look into Dr. Flewelling's

THE REPORTING GROUP
Mason \& Lockhart
assumptions about the increase in interbasin transfers in Georgia. Correct?
A. Right.
Q. And you didn't independently verify whether any of Dr. Flewelling's future scenario assumptions regarding irrigation, municipal and industrial water use, or interbasin transfers were correct. Right?
A. I did not evaluate his work.
Q. All right. But you do know that Dr. Flewelling's projections of future withdrawals assume a . 4 percent increase in agricultural consumption. Right?
A. I don't recall the details of his future scenario.
Q. You don't know that they include a .4 percent increase in agricultural consumption?
A. I don't recall the details of his future scenario.
Q. All right. You don't know that it includes a 50 percent increase in any other consumption?
A. I don't know the details.
Q. You just took those assumptions and used them in your modeling. Correct?
A. I relied on his expert evaluation in that THE REPORTING GROUP Mason \& Lockhart

scenario.

Q. All right. Let's turn to figure 3-17, which is on page 38 of demonstrative 3 . And figure 3-17 compares bay salinity under the future withdrawal scenario to bay salinity under Georgia's simulated water use from May through October of 2007. Right?
A. Yes.
Q. And the white areas of the map again indicate where changes in bay salinity, if any occurred, were less than 1 ppt. Right?
A. Correct.
Q. And it appears that the entire map is white for every low flow month in 2007. Right?
A. That's correct.
Q. And this means that for 2007 , at no point from May through October of 2007 would an increase in Georgia's consumptive use have increased salinity in the bay by more than 1 ppt?
A. That's what we see in this year.
Q. All right. Let's move on to figure 3-18 on page 39.

MS. DeSANTIS: And, Mr. Smith, if we could, could we please blow up the months of May, July, and August.

THE REPORTING GROUP
Mason \& Lockhart

	1770	1772	
1	scenario to Georgia's use for October -- for May	1	remedy, if it made any difference in salinity
2	through October 2008. Right?	2	levels in the bay, would make a difference of
3	A. Yes.	3	less than 1 ppt. Right?
4	Q. All right. And the white areas of the map,	4	A. That's correct.
5	again, indicate where changes, if any occurred,	5	Q. And August of 2009 was the only month in 2009
6	under Florida's proposed 50 percent cut remedy	6	where Florida's proposed remedy would have
7	would be less than 1 ppt. Right?	7	impacted salinity more than 1 ppt in the bay.
8	A. Yes.	8	Right?
9	Q. All right.	9	A. That's correct.
10	MS. DeSANTIS: Let's blow up May of	10	MS. DeSANTIS: Let's blow up August 2009
11	2008.	11	please, Mr. Smith.
12	BY MS. DeSANTIS:	12	BY MS. DeSANTIS:
13	Q. Are you there, doctor?	13	Q. All right. It looks like there's a -- there's a
14	A. Yes.	14	small purple area near the mouth of the river.
15	Q. All right. And in May 2008, if the proposed	15	Right?
16	remedy resulted in any change at all, it would	16	A. Correct.
17	have been less than 1 ppt. Correct?	17	Q. Can you see --
18	A. That's correct.	18	MS. DeSANTIS: Can the Court see that
19	Q. All right.	19	dot?
20	MS. DeSANTIS: Let's blow up August of	20	SPECIAL MASTER LANCASTER: Yes.
21	2008.	21	BY MS. DeSANTIS:
22	BY MS. DeSANTIS:	22	Q. All right. And that impact of more than 1 ppt
23	Q. The same is true for August. Correct?	23	was limited to near the mouth of the river.
24	A. That's correct.	24	Right?
25	Q. Florida's proposed remedy in August of 2008, if	25	A. That's correct.
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
	1771		1773
1	it made a difference, would result in a salinity	1	Q. All right. Let's turn now to figure 3-14 on
2	change of less than 1 ppt. Correct?	2	page 35 of demonstrative 3.
3	A. That's correct.	3	MS. DeSANTIS: And put that up on the
4	Q. And the same is true for September 2008.	4	screen.
5	Correct?	5	BY MS. DeSANTIS:
6	A. Correct.	6	Q. And figure 3-14, likewise, compares bay salinity
7	Q. And the same is true for October of 2008.	7	under the 50 percent cut remedy scenario with
8	Correct?	8	salinity levels under Georgia's simulated water
9	A. That's correct.	9	use for May through October 2010. Right?
10	Q. All right.	10	A. Yes.
11	MS. DeSANTIS: Let's put figure 3-13 on	11	Q. And as shown on these maps, at no point in 2010
12	page 34 up on the screen.	12	would Florida's remedy have decreased the
13	BY MS. DeSANTIS:	13	salinity in the bay by more than 2 ppt. Right?
14	Q. And this shows the same comparison for May	14	A. That's correct.
15	through October of 2009. Correct?	15	Q. All right. Let's move on to figure 3-15 on
16	A. That's correct.	16	page 36 of demonstrative 3 .
17	Q. And the white areas of the map indicate where	17	MS. DeSANTIS: And let's put that up on
18	changes, if any occurred, under Florida's	18	the screen as well.
19	proposed remedy scenario were less than 1 ppt .	19	BY MS. DeSANTIS:
20	Right?	20	Q. Figure 3-15 compares salinity under the remedy
21	A. That's correct.	21	scenario with bay salinity under Georgia's water
22	And 2009 was a high flow year so, again, you	22	use as simulated by you for May through October
23	would see different patterns.	23	2011. Right?
24	Q. And in May, June, September, and October of 2009	24	A. Correct.
25	Florida's proposed remedy, the 50 percent cut	25	Q. And in two of these low flow months, June and
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

1775
A. Correct.
Q. And these are small areas of impact limited to near the mouth of the river. Right?
A. That's correct.
Q. And the white areas on all these maps show where changes, if any, occurred under Florida's remedy scenario were less than 1 ppt. Right?
A. Correct.
Q. All right. And, again, doctor, these figures are showing what changes in salinity in the bay would occur if Georgia cut its agricultural water use in half. Right?
A. Essentially. But, again, not for all months.
Q. And the white areas of the map showing where changes, if any, occurred under Florida's proposed remedy scenario were less than 1 ppt. Right?
A. Correct.
Q. All right.

MS. DeSANTIS: Let's put 2012 scenario
up. And that is page 37.
BY MS. DeSANTIS:
Q. All right. Doctor, we're looking at 3-16 on

THE REPORTING GROUP Mason \& Lockhart
July, there are some areas where the salinity difference is between 2 and 3 ppt. Right?
.
A. Correct.
Q. All right. And, doctor, you're aware that 2012 was the year of the oyster collapse. Right?
A. Yes.
Q. And in 2012, the year of the oyster collapse, if Georgia had eliminated 50 percent of its agricultural water use, the impact on salinity in the bay would be what is shown in figure 3-16. Right?
A. That's correct.
Q. And, in fact, as shown on the maps in figure 3-16, for almost all of the low flow months in 2012, the change of salinity in the bay is less than 1 ppt . Right?
A. For three of the six months.
Q. The change of less than 1 ppt is shown in the white areas on these maps. Correct?
A. That's correct.
Q. All right. And just to be clear, these are the changes in salinity in the bay that your modeling shows would result under Florida's remedy scenario. Correct?
A. That's correct.
Q. And your maps in figure 3-16 show your modeled salinity changes throughout the bay. Correct?
A. That's correct.
Q. Including at Cat Point. Correct?
A. Yes.
Q. Including at Dry Bar. Correct?
A. Correct.
Q. Including at east bay Station. Correct?
A. Yes.
Q. And including at St. Vincent Sound. Correct?
A. Yes.
Q. All right. And you maintain that Cat Point and Dry Bar are the main oyster bars. Right?
A. I know they're the commonly-studied oyster bars. I don't know about main oyster bars.
Q. All right. Let's put up your direct testimony at page 13, please.

MS. DeSANTIS: Page -- Dr. Greenblatt's direct testimony at page 13.

BY MS. DeSANTIS:
Q. Doctor, you indicate here -- and I'm looking at the top of paragraph 26 -- that -- you say, average salinity has been over 25 ppt of the bay oyster bars, paren, Dry Bar --

MR. PRIMIS: You have got to slow down.
THE REPORTING GROUP
Mason \& Lockhart

BY MS. DeSANTIS:

Q. -- and Cat Point. Do you see that?
A. Yes, I see that.
Q. All right.

MS. DeSANTIS: Mr. Smith, can you please
put figure 3 from Dr. Greenblatt's written direct testimony on page 13 and figure 3-16 slide -- side by side on the screen.
BY MS. DeSANTIS:
Q. Okay. Now, doctor, I am just using your figure 3 on page 13 of your written direct to help orient us to the locations of Dry Bar and Cat Point. All right?

Can you see those on the map?
A. Yes.
Q. All right. And looking at your table 3 -looking at your figure 3 and then looking at your figure 3-16, it looks like Cat Point and Dry Bar are shown in white in the months of 2012. Right?
A. That's correct.
Q. And that means that in 2012, the year of the oyster collapse, if the remedy scenario proposed by Florida had been in place, changes in salinity at Cat Point and Dry Bar would be less than 1 ppt. Correct?

Mason \& Lockhar
A. That's what this simulation showed.
Q. All right.

MS. DeSANTIS: I have no more questions. Thank you.

MR. QURESHI: Your Honor, I'm happy to proceed now; or would you like to take your lunch break?

SPECIAL MASTER LANCASTER: Why don't you go ahead.

> MR. QURESHI: Thank you.

REDIRECT EXAMINATION
BY MR. QURESHI:
Q. Good afternoon, Dr. Greenblatt.
A. Good afternoon.
Q. I had some questions about your reliance on information provided by Dr. Hornberger and Dr. Flewelling.
A. Yes.
Q. Is that standard practice in your field?
A. It is standard practice in my field. So oftentimes, when we're looking at complex problems, there's -- it requires expertise of many different experts. And so it -- it's frequently done that one expert will do an evaluation or do a modeling study and provide THE REPORTING GROUP Mason \& Lockhart

1779
those results to another expert, as was the case in this matter.
Q. Who is Dr. Hornberger?
A. Dr. Hornberger was the hydrologist who used the analysis of Dr. Flewelling and then developed the alternative scenarios that I used in my modeling.
Q. What steps did you take to verify the information you received from the hydrologists?
A. I reviewed their reports so that I was comfortable with the data that they used and the methods that they used. And in Dr. Flewelling's report, there was some question over some of the data he used. And I reviewed some of his primary sources so that I was comfortable with the difference in the methods so that I was comfortable with the values that Dr. Flewelling used.

Dr. Hornberger then also reviewed Dr. Flewelling's work. And in addition to taking Dr. Flewelling's results, he did his own analysis. So he did a second analysis, and he was able to compare that to the analysis that Dr. Flewelling did. And he found that he got similar results.

And that's another common thing that's done THE REPORTING GROUP
Mason \& Lockhart
in my field where doing two different analyses by different methods, when they result in similar answers, that validates the results.
Q. Okay. And what independent steps did you take to verify the information you received from them?
A. I did a low flow analysis similar to what Dr. Hornberger did. So what -- what I did was I looked at how flows have changed over time in the Apalachicola River.

And it might be easier for me to explain this from a figure.
Q. Are you referring to a figure in your expert report?
A. I'm sorry. I think it's figure 5 in my PFD. It's a figure showing -- oh, no. I'm sorry. Figure 2, a figure showing flows.
Q. I believe it's behind tab 2 of the binder that you were provided. That's your expert report.
A. Yes. Figure 1.2 in my expert report.

So Dr. Hornberger and I both did low flow analyses, but we did it slightly differently; and we both arrived at the same conclusion, which is that low flows have become more frequent in recent years.
Q. Just give us one second.

THE REPORTING GROUP

 Mason \& LockhartA. Yes. I'll wait for you to get there.
Q. I believe that page it's on is not numbered, but it is -- it may be the 28th page. It's, again, figure 1-2.
A. Correct. Right.
Q. Thank you, Dr. Greenblatt.
A. So to understand how flows have changed over time, I looked at measured flows. These flows were measured at the USGS Chattahoochee Flow Gage on the Apalachicola River. This is the first gage after the river enters the State of Florida. And it encompasses the flow for most of the watershed in the Apalachicola-Chattahoochee-Flint Basin.

So I looked at daily measured flows from the period of 1970 to 2015. And in order to do my low flow analysis, I defined a value of low flow. To do this, I did a statistical evaluation that is very commonly done in my field where I identified the flow that's what we call the 10th percentile flow. So it's the flow that was exceeded 90 percent of the time. And then I proceeded to count the number of days where flow was below this value over this period of -- of record of $-\mathbf{-}$ in the measured data.

THE REPORTING GROUP Mason \& Lockhart

And what I can see from this figure is that the frequency of low flows -- and these are focused -- this graph is focused on the dry season months. Increases in recent years are in the later part of the record.

So we have more low flow days, and they occur in more years. And that conclusion, again, is similar to the conclusion that Dr. Hornberger reached.
Q. Dr. Greenblatt, you also had some questions about the changes in salinity; and you made a comment about absolute changes. What did you mean by that?
A. To look at the changes in salinity, the number on its own is not a meaningful metric for salinity. What matters is how the changes in salinity affect the ecosystem. And although I'm not an expert and I'm not offering opinions on how the change affects the ecosystem, there have been -we have heard that from Dr. White and Dr. Kimbro that there are changes and impacts to the ecosystem based on changes in salinity.

MS. DeSANTIS: Objection, move to strike testimony. The witness is proffering testimony from other experts outside of her THE REPORTING GROUP Mason \& Lockhart
area of expertise.
SPECIAL MASTER LANCASTER: You may proceed.

MR. QURESHI: Thank you, your Honor.
BY MR. QURESHI:
Q. Dr. Greenblatt, there was some discussion about sea level rise and how you evaluated sea level rise in connection with your modeling. Can you explain in more detail the relationship you determined existed between sea level rise and salinity in Apalachicola Bay.
A. Yes. I did a data-based evaluation of sea level rise and salinity -- and, again, it might be easier if we could look at a figure.
Q. It's at -- this is figure 5 of your prefiled direct.
A. Thank you.
Q. On page 17.
A. The salinities have been measured in Apalachicola Bay at several locations. And so I used the measured salinity data as well as measured data of sea level or the water depth that's been measured in Apalachicola Bay for about 50 years. And once we get our figure --
Q. This is figure 5 on page 17 ?

THE REPORTING GROUP Mason \& Lockhart
A. Yes. If we could blow up the top, I think that would be helpful.

So what we're looking at here is a plot that relates sea level to salinity. So along the horizontal axis is sea level, and we can see that it varies from minus 4 to about 10. So 14 -about 14 centimeters. And along the vertical axis is salinity at two locations, at Cat Point and Dry Bar.

And what this graph shows is that for the 14-centimeter change in sea level, we really see no change and no consistent change or consistent pattern in the measured salinity. So based on this graph, it -- what it tells me is that there's no discernible relationship between salinity and sea level.
Q. And as a general matter, Dr. Greenblatt, can you explain the difference between sea level and sea level rise?
A. Yes. Sea level is a measured value for the water depth; and sea level rise is the rate at which -or the rate at which that is increasing over time.
Q. If we look at another figure in your prefiled direct, in particular -- sorry. It's a figure in THE REPORTING GROUP

Mason \& Lockhart
1785
your expert report relating to sea level. I would like to put that on the screen and have you explain to us what it represents.
A. This is a graph that was developed by NOAA. This is the same sea level data that I had used, but it's presented in a slightly different manner. This is monthly average sea level for the period of record, so about 50 years.

And what this graph shows is that there is a wide variation in sea level from month to month. It varies by about $\mathbf{2 0}$ centimeters over the period. So from one month to another month we see a wide variation in sea level. So given that sea level varies all the time, it's going up and down from month to month and year to year, and that we don't see a discernible relationship between sea level and salinity, I conclude that there's -- there isn't a discernible relationship between the two.
Q. In your discussion of sea level rise in your prefiled direct, there's a discussion of sedimentation. What is sedimentation?
A. Sedimentation is when particles such as silts and clays that are in the water fall and settle out onto the bay bottom. And sedimentation is THE REPORTING GROUP

Mason \& Lockhart

important in this context because what drives sedimentation is flow patterns in the bay. And something like sea level rise will affect -- will change the flow patterns in the bay.

So when the flow patterns in the bay change, sedimentation will change. And so any consideration of the impact of sea level rise on salinity would need to take into account these changes because when sedimentation happens and the depth of the bay changes or the size of the inlet changes, then flow patterns change. And that will in turn affect salinity.
Q. Okay. And --

SPECIAL MASTER LANCASTER: Sorry.
MR. QURESHI: That's fine, your Honor.
I can move on to a different topic or
take a lunch break if that is an appropriate time to do so.

SPECIAL MASTER LANCASTER: Why don't you move on to your new topic.

MR. QURESHI: Okay.
BY MR. QURESHI:
Q. Dr. Greenblatt, can you explain to the Court what tools you relied upon to undertake your analysis?
A. I developed a numerical model of hydrodynamics THE REPORTING GROUP

Mason \& Lockhart
1787
and salinity to undertake my analysis.
Because the Apalachicola Bay is a complex system and there's a lot of factors that affect the salinity patterns we see in the bay, these factors include the freshwater inflow, tides, wind, the shape or what we call the bathymetry of the bay. All of these things react in a complex way to affect salinity and salinity patterns. So in order to evaluate the salinity patterns for both existing conditions and, importantly, for future conditions where the only way we can evaluate it is with some sort of predictive tool, I developed a hydrodynamic model that includes these factors.
Q. And in your field of study, how common is it to use the model to evaluate changes in flow?
A. It's very common.
Q. Okay. Can you explain the type of model you used to perform this flow analysis?
A. I used a model called the Regional Ocean Modeling System. It's called a ROMS model.

So this -- I would like to think about modeling as thinking about the modeling platform and then the model application. And so the modeling platform -- I like to compare it to THE REPORTING GROUP

Mason \& Lockhart
making cookies. And I think of the modeling platform as the oven. And there are several modeling platforms that are accepted in my field, and all work about the same way; whereas, what goes into the model you can think of as the ingredients, the wind and the bathymetry and the data that we use. And -- and so that is the model that I used.
Q. And have you evaluated other models that were used by Georgia's experts to evaluate similar issues?
A. I did evaluate Georgia's model. And Georgia's expert developed a model that's very similar to mine. He used a different modeling platform -so a different oven -- but it works about the same way.

And he, in fact, used modeling input that I used and ran it through his model; and he came out with the same answer. So that's another validation. That's a way to validate a model when two different modelers can use the same inputs and come out with a similar answer.
Q. And who created the model that you relied upon?
A. It was created by an engineering firm called Intera Consulting.

THE REPORTING GROUP
Mason \& Lockhart
1789
Q. And what steps did you take to verify the appropriateness of this model?
A. I reviewed the reports. So this model -- they developed this model prior to this matter for the Water Management District in Florida. So this model was available to me as a potential tool when I was retained on this matter.

So I reviewed the reports written about this model. I had discussions with the modelers that developed it. And I actually went and visited with them and sat with them. And I had one of my colleagues sit with the modeler and go through the input file. So I have a high degree of confidence in this model as a tool to support my opinions.
Q. Okay. I would like to move on now to your modeling results and, first, ask you to describe the relationship between flow and salinity in Apalachicola Bay.
A. So what my modeling shows is as fresh water increases, salinities decline in the bay. So that's what it shows generally. And then specifically I looked at how that decline varies in different flow scenarios at different locations and at different times in the bay. THE REPORTING GROUP Mason \& Lockhart
Q. Okay. And there was reference in your cross-examination about that you're characterizing as the remedy scenario as a very conservative scenario. Why did you call it a very conservative scenario?
A. It's my understanding that since that scenario was developed for the modeling that I submitted in my expert report last winter, that there's been additional valuations of remedy scenarios and that there's other scenarios that may result in a greater -- other scenarios that could be done, I think, for the -- I don't know the details of them, but that could result in greater reduction, which would be more freshwater inflow, which would result in lower salinities or larger changes from the existing conditions.
Q. You mentioned Dr. Flewelling's work and your reliance on it. Did you evaluate other sources of information that consider the amount of water being used by Georgia compared to the amount that Dr. Flewelling computed was being used by Georgia?
A. I did. There are several reports that were developed by USGS that estimate the -- among other things, the agricultural consumptive use. THE REPORTING GROUP

Mason \& Lockhart
1791
And so Dr. Flewelling, in developing his evaluations, he did review these reports; but his -- his consumptive use -- agricultural consumptive use differs from these reports for a couple of reasons. One, there's two factors -general factors that go into the development of consumptive agricultural use. One is the irrigated acres and one is irrigated depth.

And so what Dr. Flewelling found in reviewing this work and all of the available data that he reviewed is that the irrigated acres were -- were underestimated in some of these reports. And he relied on aerial photos to get the most updated estimates of irrigated acres. His irrigation depths also differ from what's done in these reports for two reasons. For one, he relies on some metering data which became available in the late 2000's. This is data that measures water he found, agricultural water. So he used these data to back-calculate irrigation depths for years prior to that data being available. He also calculated crop-specific irrigation depths. So that's why his numbers differ and are a more thorough analysis.

The USGS reports also rely on the data that THE REPORTING GROUP

Mason \& Lockhart
was reported to them by Georgia. They didn't do an independent analysis of these data.
Q. In addition to evaluating the influence of Apalachicola River flow on the salinity in the bay, did you consider any other watersheds that might have an impact on salinity in the bay?
A. There is a small watershed called Tate's Hell that's located in -- adjacent to east bay. And I did consider the impacts of fresh water and flows that would come from this watershed. And in evaluating the relative amount of freshwater flow from these watersheds to the Apalachicola River, I found that it was very small, on the order of 1 to 5 percent.

And I was able to do that evaluation both based on model flows in these watersheds, so I compared the flows that were in the model coming out of the creeks in this watershed to the flows in Apalachicola River. And they were on the order of a few percent.

I also looked at the watershed area. So it's very common in my field to use watershed area as a surrogate for flow when we don't have measured flows. So the watershed area of the creeks in Tate's Hell that -- that provide some fresh water THE REPORTING GROUP

Mason \& Lockhart
1793
are about 1 percent or 2 percent of the total watershed area in Apalachicola Bay.

And finally, although I didn't do a sensitivity analysis myself on the flows in Apalachicola -- in Tate's Hell, Georgia's expert, Dr. McAnally, did do an evaluation of the impacts of this freshwater inflow. And what he found is that for a change of $\mathbf{3 0}$ percent in these flows in these small watersheds in Tate's Hell resulted in a change in simulated salinity of less than 1 percent. So they had very little impact on salinity in the bay.
Q. Okay. Dr. Greenblatt, a few more topics to cover. And the next one I would like to move on to is the testing you did to confirm that your model matches actual data.

Are you familiar with the concept of an uncertainty analysis?
A. I am familiar with that concept.
Q. What is it?
A. An uncertainty analysis is a means of looking at uncertainty in all of the parameters that go into your model and then understanding how that uncertainty would affect your results. It also provides a way to put uncertainty bounds on your THE REPORTING GROUP

Mason \& Lockhart
modeled predicted estimates. It doesn't change your estimates; it just puts bounds on those estimates.
Q. And are there other ways to put bounds on your estimates or to evaluate how well your model fits actual data?
A. Yes. Typically what's done in a model is to do what I call goodness of fit statistics. So you run a series of statistical tests to look at how well your model simulations match measured data. And I -- I did run those tests and -- including a statistical test of error.

And to understand how my results compared, I -- I looked at -- I used a document developed by the Army Corps of Engineers. This was not for Apalachicola Bay, but for a project in Louisiana. And although there's no guidance values, there were recommended values in that document on acceptable error statistics. And my error statistics were well within that range that was cited in that document.
Q. How many different testing stations or nodes did you evaluate in reaching your conclusions?
A. Well, the model is -- the original model that was developed by Intera calculated the data that was THE REPORTING GROUP

Mason \& Lockhart
1795
collected at 37 locations throughout the bay. So that's a significant dataset for model calibration. So to -- in the -- then the calibration is the process of comparing the metrix data to the modeled predictions and making any adjustments that are necessary in the model in order to have the best fit. So the modeled predictions were compared to measured values of salinity and water level and velocity at these 37 locations, and then the statistics were performed to test the goodness of fit.
Q. Dr. Greenblatt, if we could turn to your prefiled direct testimony for a moment, in particular on page 15. I would like to discuss with you paragraph 29.

I would like you to read that to yourself and then explain to us what you mean by the last sentence in paragraph 29.
A. So this -- this paragraph is providing a general summary of what I found in my modeled results. And the last sentence -- what that means is that if I had a different remedy scenario that resulted in more freshwater inflow, then I would see lower salinities in Apalachicola Bay in my modeling. To the extent of how they would THE REPORTING GROUP

Mason \& Lockhart
change, I wouldn't know without running the model. But that's what we would see. With increased freshwater inflows, you would see lower salinity.
Q. The exact amounts you would need to compute in your model, but the general relationship is established?
A. That's correct.
Q. Okay. We talked when we were looking through the various remedy scenarios that were in that -- the handout that was provided, can you explain generally why the amounts vary according to months?
A. The amounts will vary according to months based on -- based on the flow patterns. So both the existing conditions and the remedy or the future scenario, depending on what we're comparing it to, you're going to see different patterns. For each year and each month there's going to be different flows in that month.

And the model looks at time-varying flows. So we had flows -- so even though we have a low flow month, there may be a period in that month where flows are higher. And then what I presented is an average for each month. THE REPORTING GROUP Mason \& Lockhart
Q. If we could please turn to page 38.

SPECIAL MASTER LANCASTER: Let's take a noon recess, counsel.

MR. QURESHI: Thank you, your Honor.
SPECIAL MASTER LANCASTER: Sorry.
(Time Noted: 11:58 a.m.)
(Recess Called)
(Time Noted: 1:05 p.m.)
SPECIAL MASTER LANCASTER: I hope you
haven't been standing there waiting since we left.

MR. QURESHI: No, your Honor.
Before I begin, I would like to introduce my colleague --

SPECIAL MASTER LANCASTER: Please.
MR. QURESHI: -- Stijn van Osch.
MR. OSCH: Good afternoon, your Honor.
BY MR. QURESHI:
Q. Dr. Greenblatt, before we broke, we were referring to the charts you were shown during your cross-examination. Do you recall that?
A. I do.
Q. What do these charts tell us about the absolute values of salinity at any particular point in time?

THE REPORTING GROUP

Mason \& Lockhart

		1798		1800
		These charts show us the results of the modeled	1	experts causes you to conclude that decreased
2		predictions looking at differences in salinity	2	flows in the bay cause higher salinity?
3		between the various scenarios that I ran in my	3	THE WITNESS: Decreased flows in the
4		odel. So at any point in time they show a	4	river that come into the bay --
5		monthly average value of the salinity difference	5	SPECIAL MASTER LANCASTER: Yes.
6		for each of the months for each of the years.	6	THE WITNESS: -- do lead to higher
7		But the particular salinity that would exist at a	7	salinities; that's correct. That's what the
8		specific location in the bay is not depicted on	8	model shows.
9		these charts?	9	SPECIAL MASTER LANCASTER: Is that a
10		Not the particular salinity at a particular point	10	correct summary of your testimony?
11		in time. These are monthly average values.	11	THE WITNESS: Yes.
12	Q.	And, doctor, we would -- can you remind us who	12	SPECIAL MASTER LANCASTER: Thank you.
13		are the ecologists you worked with in evaluating	13	Any other questions, counsel?
14		the impact salinity changes would have?	14	MR. QURESHI: No, your Honor.
15		The ecologists are Dr. Kimbro and Dr. White and	15	MS. DeSANTIS: No, your Honor.
16		Dr. Glibert.	16	SPECIAL MASTER LANCASTER: Thank you.
17	Q.	addition to salinity, your testimony and	17	THE WITNESS: You're welcome.
18		expert report also discussed residence time.	18	MS. WINE: Florida is calling our next
19		What is residence time?	19	witness, Mr. Tommy Ward.
20	A.	Residence time is the time a particle remains in	20	Mr. Ward is a third-generation oyster
21		a certain water body. So the longer the	21	dealer. He and his family have owned and
22		residence time, the longer a particle remains in	22	managed the largest privately-leased oyster
23		here. And typically, if flows are lower,	23	bars in Apalachicola Bay for over 60 years.
24		sidence times are higher.	24	THE CLERK: Please raise your right
25		What impact would persistent low flows have on THE REPORTING GROUP Mason \& Lockhart	25	hand. THE REPORTING GROUP Mason \& Lockhart
		1799		1801
1		sidence time and salinity?	1	Do you solemnly swear that the testimony
2	A.	ersistent low flows would increase residence	2	you shall give in the cause now in hearing
3		time; and they would reduce salinity -- I'm	3	shall be the truth, the whole truth, and
4		sorry, increase -- low flows would be to	4	nothing but the truth, so help you God?
5		increased salinity.	5	THE WITNESS: I do.
6		Okay. And what impact would persistent low flows	6	THE CLERK: Please be seated.
7		have on residence time?	7	Pull yourself right up to the microphone
8		They would lead to longer residence times.	8	and please state your name and spell your
9	Q.	Okay. Counsel for Georgia questioned you about	9	last name.
10		the remedy scenario and suggested it involved a	10	THE WITNESS: My name is Thomas Lee
11		50 percent cut in all agriculture. Do you	11	Ward. TH-- THOMAS, LEE, WARD.
12		understand that the remedy scenario actually	12	DIRECT EXAMINATION
13		involves cuts in water use at specific points of	13	BY MS. WINE:
14		time in the year and only for specific crops?	14	Q. Good afternoon, Mr. Ward.
15	A.	I understood that in general. I don't know the	15	A. Good day.
16		details of the remedy scenario, but I know it's	16	MS. WINE: Your Honor, may I approach
17		not a straight 50 percent cut.	17	the witness to provide him with his
18	Q.	Okay. Thank you, Dr. Greenblatt.	18	testimony?
19		SPECIAL MASTER LANCASTER: Counsel?	19	SPECIAL MASTER LANCASTER: Please.
20		MS. DeSANTIS: No further questions,	20	A. Thank you.
21		your Honor.	21	Q. Mr. Ward, I have just handed you your prefiled
22		SPECIAL MASTER LANCASTER: Dr. Greenblatt,	22	direct testimony in this matter. Do you
23		am I correct in understanding that your oven	23	recognize that document?
24		model, as you called it, based upon the	24	A. Yes, ma'am.
25		information that you had from the other	25	Q. And do you adopt it as your own, sir?
		THE REPORTING GROUP		THE REPORTING GROUP
		Mason \& Lockhart		Mason \& Lockhart

them, you know, before they got half an inch.
Q. So none of that reshelling and spreading of spat has allowed your bars to recover since 2012?
A. No, ma'am. My bars have not recovered.
Q. And, sir, has anybody been harvesting on your bars since the crash in 2012?
A. Not really. We -- you know, we test our bars to see if we're getting any recovery whatsoever, but not to the extent I would say we was harvesting oysters off of them, you know.

I think in 2015 we may have got 100 bags of oysters off of it to where --
Q. Okay. And other than that limited harvesting and testing, has anybody been harvesting on your leased bars?
A. No, ma'am.
Q. Sir, when you go out on your leases now in 2016, what do you see?
A. Oh, I see decimation, dead shell to where, you know, when -- when the crash happened, you would have a full oyster, you know, top and bottom shell. And after the conchs eat this, you will have an empty shell.

And, also, it seems like a lot of shell are deteriorating from, you know, I assume, the acid THE REPORTING GROUP Mason \& Lockhart
or whatever that the conch drills into the shell.
Q. And, sir, are you still seeing conchs when you go out onto your private bars?
A. If there's any live oysters, yes, ma'am.
Q. And, sir, how has the -- well, let me ask you this. What is your view of why this has happened in the bay based on all of your years of experience harvesting oysters in the bay?
A. Lack of fresh water, high salinity.
Q. And, sir, how has the lack of fresh water and its impact on the bay impacted your family and its business?
A. Well, it's just about put me out of business.

I'm down probably 95 percent in production over the whole bay. I don't only harvest oysters off of private beds, but we also buy from oyster fishermen that work in Apalachicola Bay. And I used to have $\mathbf{3 0}$ or $\mathbf{4 0}$ oyster fishermen. At this time I have zero.
Q. And, sir, how has this impacted the community of the Apalachicola Bay and the oystermen within that community?
A. Well, this affected the whole economy because the fishermen, you know, not only can't make a living, but they're not able to go to the grocery THE REPORTING GROUP

Mason \& Lockhart
store, buy groceries for their family, gas. You
know, it don't just affect the oyster dealer
itself. It affects the community, the other businesses which are in the community that buy other goods to be able to sustain and live.
Q. Thank you, sir. And thank you for being here today.

MS. WINE: Thank you, your Honor.
A. Thank you.

MR. ALLEN: Your Honor, I do have few questions.

SPECIAL MASTER LANCASTER: Sure.

 CROSS-EXAMINATIONBY MR. ALLEN:
Q. Good afternoon, Mr. Ward.
A. Good day.
Q. My name is Winn Allen. I'm counsel for the State of Georgia. It's a pleasure to meet you, sir.
A. Nice to meet you.
Q. Sir, if I understand things correctly, you are the former president of the Apalachicola Bay Oyster Dealers Association. Correct?
A. That is correct.
Q. Okay. I want to hand you a document, sir, that we got from the Oyster Dealers' files. Okay? THE REPORTING GROUP

Mason \& Lockhart
A. Okay.

MR. ALLEN: Your Honor, can I approach?
SPECIAL MASTER LANCASTER: Please.
BY MR. ALLEN:
Q. Mr. Ward, this is a letter dated July 28, 2010.

It was produced to us from the Apalachicola Bay Oyster Dealers. It's from a gentleman named Mike Voisin. Do you know who --
A. Voisin.
Q. Voisin. So I take it you know Mr. Voisin?
A. Mr. Voisin is deceased now, sir.
Q. Okay. All right. Did you know him when he was alive, sir?
A. Yes, sir. Very well.
Q. Take a second just to review the letter for me silently to yourself.
A. Okay.
Q. And just for the record, the letter is GX-1322.

Now, Mr. Ward, in July of 2010, you shared the same feeling as Mr. Voisin --
A. Voisin.
Q. Voisin, I apologize, sir.

In July of 2010, you shared the same feelings as Mr. Voisin that undersized oysters were being put in the marketplace; is that correct?

THE REPORTING GROUP
Mason \& Lockhart
A. That is correct.
Q. And it was your understanding -- just so we're clear, it was your understanding that grossly undersized oysters from Apalachicola Bay were being supplied to the market in 2010. Correct?
A. Correct.
Q. And, sir, you understand it's the government of the State of Florida who is responsible for ensuring that people are not violating the law. Correct?
A. That's correct.
Q. And you understand it's the State of Florida who has responsibility for enforcing regulations on harvesting limits and harvesting sizes in Apalachicola Bay. Correct?
A. Yes, sir.
Q. Let's jump forward in time to September of 2014. Okay, sir?
A. Okay.
Q. In September of 2014, it's correct, sir, you wrote a letter to Nick Wiley requesting that Florida close Apalachicola Bay for the remainder of the winter harvesting season. Correct?
A. That may be correct. Yes, sir.
Q. You -- do you think --

THE REPORTING GROUP Mason \& Lockhart
A. Yes.
Q. Yes, okay. And Nick Wiley is the director of FWC. Correct?
A. That's correct.
Q. And the State of Florida did not, in fact, close Apalachicola Bay for the remainder of the 2014-2015 winter season --
A. No, sir.
Q. -- correct?

No, sir; they did not do that?
A. They did not close it.
Q. Okay. We'll try not to talk over each other.
A. I apologize.
Q. No, no, no.

And, sir, you thought it was a big mistake for Florida not to close the bay in the 2014-2015 winter season. Correct?
A. Yeah.
Q. And in the fall of 2014 , sir, you were of the view that damage was being done every day that Florida left the bay open. Correct?
A. Well, let's look at it from a business standpoint. You're putting -- you know, I believe in putting a premium quality product out on the market. And if you're not putting a -THE REPORTING GROUP Mason \& Lockhart
you know, we have worked long and hard to make
Apalachicola world famous oysters. And we like to put a premium product on the market. And that's what I do in my business. And if -- if -if you go buy a bag of oysters to take home to your family to eat, or you and your buddies are watching a football game, and you sit down and are eating that bag of oysters, and half of that bag is a quality product that you can eat, and half or a quarter of that bag is not quality; and you throw it away, then you feel like you got gypped, you know.

I look at it from an economic standpoint. I wasn't looking at it as if it was going to decimate the bay. I believed in putting a quality premium product on the market. And I believe that's what we tried to do with Apalachicola Bay product.
Q. I very much appreciate that, sir.

My question was in the fall of 2014 you were of the view, were you not, that damage was being done every day that Florida left the bay open. Correct?
A. Yeah.
Q. You were also of the view in the fall of 2014

THE REPORTING GROUP
Mason \& Lockhart
that there was a lack of enforcement by the State of Florida with respect to undersized oysters. Correct, sir?
A. They was harvesting juvenile oysters, yes, sir.
Q. Okay. And you were of the view in October 2014 that Florida's inaction to protect the oysters in Apalachicola Bay was causing harm to the bay. Correct, sir?
A. It wasn't helping it, but it wasn't killing it.
Q. I'll ask it again, sir. You were of the view in October of 2014 that Florida's inaction to protect the bay was causing harm to the bay. Correct?
A. Do you have the letter that I could read that, please?
Q. I'm not reading it from a letter, sir.
A. You're not reading it from a letter?
Q. No, sir; I'm not.
A. Then, you know, I'm under the assumption that the -- you know, like I said, again, I was looking at it from a business standpoint.
Q. I appreciate that, sir.
A. Okay.
Q. I'll just ask it one more time.
A. That's going to be my answer to you.

THE REPORTING GROUP
Mason \& Lockhart

In October of 2014, sir, you were of the view that Florida's inaction to protect oysters in Apalachicola Bay was causing harm to the bay. Right, sir?
A. Okay. If that's the way you want to look at it.
Q. No, sir. I'm not asking for -- I'm not trying to testify for you. I'm just asking for your testimony here in court.
A. It wasn't helping it; but I don't think it was, you know -- like I say again, my main concern was from a, you know, economical standpoint of it.
Q. Okay. Sir, you remember giving a deposition in this case. Right?
A. Yes, sir.
Q. Okay.

MR. ALLEN: Your Honor, may I approach the witness briefly?

Thank you.
BY MR. ALLEN:
Q. Sir, here is your deposition transcript.
A. Okay.

SPECIAL MASTER LANCASTER: Thank you.
BY MR. ALLEN:
Q. And, Mr. Ward, if you would turn with me to page THE REPORTING GROUP Mason \& Lockhart

MR. ALLEN: I have no further questions. REDIRECT EXAMINATION
BY MS. WINE:
Q. Just briefly, sir.

I believe you just testified that your bars have effectively been closed to harvesting since the crash in 2012. Is that correct?
A. Yes, ma'am.
Q. And, sir, in retrospect, sitting here in 2016 looking at everything that's happened in the bay, do you think a closure of the bay in 2014 would have done anything to help this bay recover?
A. No, ma'am.
Q. And why is that your view?
A. Because I have closed my beds. I planted -replanted shells on my beds. You know, I tried to diversify to grow oysters. And I have grown oysters for 30 years, and I have put a premium product on the market. And I have not been able to grow no oysters. They do not survive.
Q. Thank you, sir.

MR. ALLEN: No further questions, your Honor.

SPECIAL MASTER LANCASTER: Mr. Ward?
THE WITNESS: Yes, you Honor.
THE REPORTING GROUP
Mason \& Lockhart

SPECIAL MASTER LANCASTER: Has the water
quality in the bay improved since 2012?
THE WITNESS: No, sir.
SPECIAL MASTER LANCASTER: How much harvesting occurred on your leases in 2011 and 2012?

THE WITNESS: May I look --
SPECIAL MASTER LANCASTER: Sure.
THE WITNESS: -- right here, sir?
2011, off of lease 525 we harvested 1,878 bags and 59 pounds. And off of lease 609, we harvested 3,953 bags and 5 pounds.

And when I refer to bags, sir, that would be a 60 pound.

SPECIAL MASTER LANCASTER: Was that consistent with your prior harvesting level?

THE WITNESS: Yes, pretty much. You know, some years it would be a little better. It depends on, you know, how many recruitments you get during a year's time and how fast they grow.

SPECIAL MASTER LANCASTER: Counsel?
MR. ALLEN: Nothing from Georgia, your Honor.

MS. WINE: Nothing further, your Honor.
THE REPORTING GROUP
Mason \& Lockhart

up to fish. Right?
A. Yes.
Q. All right. And some shellfish also eat algae.

Right?
And that's, again, what we have shown, an arrow going up to the upper level. Correct?
A. Yes.
Q. All right. In this matter, you maintain that reduced freshwater flow into the Apalachicola Bay has impacted the base of the food web. Right?
A. Yes.
Q. And you have documented a change in the composition of algae in low flow years. Correct?
A. I have documented a compositional change, as have others who have also investigated the same data that I have.
Q. And so you're maintaining that low flows have affected the mix or the composition of algae at the base the food web. Right?
A. The change in flow affects the composition of the base of the food web because of the change in salinity and the change in delivery of the important nutrients on which these algae grow.
Q. And you maintain that this change in algae at the base of the food web has affected higher levels

THE REPORTING GROUP
Mason \& Lockhart
of the food web. Right?
A. Indeed, because changes in the various species of the algae affect upper trophic levels for a number of reasons.
Q. And you maintain, for example, that changes in algae at the base of the food web have affected zooplankton. Right?
A. Different species of zooplankton are affected by their food source. And as the composition of the very base of the food web changes, those species that graze on the algae or phytoplankton change, different types of zooplankton may be favored or disfavored.
Q. And you actually maintain that these changes at the base of the food web have ramifications all the way up the food web to the top, fish; right?
A. This is basic estuarine science, yes.
Q. All right. Now, before we move up the food web, I want the Court to understand the context for your conclusions that reduced flow causes changes at the base of the food web. You attribute these changes in algae at the base of the food web to Georgia's upstream consumptive use. Right?
A. I attribute the changes at the base of the food web to changes in the fundamental water quality THE REPORTING GROUP

Mason \& Lockhart
changes that occur that are associated with changes in flow. And I have used various remedy scenarios to determine how much of that flow differential is due to upstream consumption.
Q. But you're blaming Georgia for the changes in flow that are changing the base of the web food. Right?
A. I have used various scenarios to identify the contribution of upstream consumption to the changes that we see in flow and, therefore, the effects that that has on water quality.
Q. But you, yourself, then, Dr. Glibert, are not directly attributing reduced flow to consumption by Georgia; am I right?
A. The various scenarios that I have examined do, indeed, show that there is a significant percentage of flow reduction that is attributable to Georgia that in turn has impacts on the water quality that in turn has impacts on the phytoplankton community.
Q. It's true, isn't it, doctor, that there are factors other than Georgia's consumptive use that can affect flow into the bay?
A. Yes.
Q. And precipitation influences flow into the bay. THE REPORTING GROUP

Mason \& Lockhart

Correct?
A. Yes.
Q. Meteorological conditions like storms or hurricanes can affect flow into the bay. Correct?
A. Yes.
Q. And drought can influence flow into Apalachicola Bay. Right?
A. Yes. And it is during those drought periods when upstream consumption exacerbates the low flow conditions in the bay.
Q. And, doctor, you didn't examine whether operations by the Army Corps of Engineers affects flow into the bay; did you?
A. No, I did not.
Q. Doctor, I would like to talk about zooplankton, again, on demonstrative 1 in the middle of the food web. Zooplankton, as we discussed, some types of zooplankton feed on algae. Right?
A. Yes.
Q. And you would agree that grazers like zooplankton can eat different kinds of algae. Right?
A. There are food preferences by different types of zooplankton. So not all zooplankton eat all algae.

THE REPORTING GROUP
Mason \& Lockhart

```
Q. You would agree that even when there are changes in the types of algae present at the base of the food web, the integrity of the food web can still be maintained. Right?
A. I don't understand your question.
Q. Even when there are changes at the base of the food web in terms of the composition or the mix of algae, a food web still exists in the bay. Correct?
```

A. There can be a substantially changed food web, which can, indeed, be harmed to the species that we are concerned about.
Q. But a food web still exists. Correct?
A. There has been no opinion expressed here that the bay becomes sterile.
Q. All right. For the purposes of your testimony here today, you're not testifying that there isn't a food web in Apalachicola Bay. Right?
A. The food web that emerges under low flow conditions is a food web that is consistent with the food web that is more like the Gulf of Mexico as opposed to the estuarine food web that has classically maintained the productivity in Apalachicola Bay.
Q. But there is a food web in the bay. Correct? THE REPORTING GROUP Mason \& Lockhart
A. Again --
Q. There is a food web in the bay?
A. Again, the bay does not go sterile.
Q. All right. You, yourself, have not assessed whether or not any changes in the algae community have affected zooplankton in the bay. Correct?
A. That's not correct.
Q. Doctor, you gave a deposition in this case. Correct?
A. Uh-huh.
Q. And in your deposition you were under oath. Correct?
A. Yes.
Q. And you told the truth. Correct?
A. Yes.
Q. All right. I would like to refer you and the Court, please, to your deposition transcript, which is tab 3 in your binder, page 46, line 19, to page 47, line 5.

MS. DeSANTIS: And, Mr. Smith, will you queue up clip 8 for us, please.
(Whereupon the video was played.)
BY MS. DeSANTIS:
Q. Did you give that testimony at your deposition, doctor?

THE REPORTING GROUP
Mason \& Lockhart
A. I did. However, the question you just asked me about any zooplankton is different from the question that you asked me during my deposition. And we spoke extensively in my deposition about microzooplankton grazers, which at the time of my deposition I used the term mixotrophs, which are the kind of zooplankton that we call the Venus flytraps of the microbial world. They can be the microzooplankton that can be plants at some points in time, but they can also eat other organisms. We spoke extensively about that during my deposition.
Q. Doctor, the data on zooplankton in Apalachicola Bay, as you testified in that deposition clip, is very minimal. Correct?
A. We were talking in that clip -- specifically in the lines just above we were talking about the work on acartia tonsa, which is a macrozooplankton species. There are data on acartia tonsa. However, the data that are available on acartia tonsa are only available as syntheses. We do not have access to raw data on acartia tonsa. This particular clip was about acartia tonsa.

And your question earlier was about did I do THE REPORTING GROUP

Mason \& Lockhart
anything on any zooplankton. So I do believe that analyses on microzooplankton was part of a discussion that we had in my deposition.
Q. Doctor, let's approach it this way. You have no direct evidence that the zooplankton community in Apalachicola Bay has changed; do you?
A. I do have evidence that the microzooplankton community has changed.
Q. Doctor, again, in your deposition in this case you were under oath. Correct?
A. Yes.
Q. And you told the truth. Correct?
A. Yes.
Q. And I would like to refer you, again, to tab 3, your deposition transcript.
A. Yes.
Q. Page 53 , line 19 , to page 54 , line 5 .

MS. DeSANTIS: And I would like to ask
Mr. Smith to queue up clip 11, please.
(Whereupon the video was played.)
BY MS. DeSANTIS:
Q. And were you asked that question, and did you give that answer in your deposition?
A. Yes. And, again, in the deposition in that conversation we were talking about acartia tonsa. THE REPORTING GROUP Mason \& Lockhart

And that's different than the conversations we had about microzooplankton.
Q. With respect to oysters, oysters, like zooplankton, are a type of grazer. Right?
A. Yes. They eat food.
Q. And you are not an oyster biologist, are you, doctor?
A. I'm not an oyster biologist; that's correct.
Q. And you're not an expert on stressors that affect the oyster population. Correct?
A. I have published a number of papers on stressors to oysters, particularly harmful algal bloom species.
Q. But back to my question, you're not an expert on stressors that affect oyster populations. Correct?
A. I am an expert in the particular area of harmful algal bloom stressors on oysters.
Q. Are you saying you are an expert on stressors that affect oyster populations?
A. I'm not an expert in all stressors of oysters. But I have considerable expertise in stressors of harmful algae on oysters.
Q. When you considered changes in the upper levels of the food web, you primarily considered THE REPORTING GROUP Mason \& Lockhart
oysters. Right?
A. I primarily considered oysters. However, I used general principles to understand that the other components of the upper food web would also respond --
Q. And you --
A. -- to changes.
Q. -- used general principles to link changes at the base of the food web to changes at the upper levels of the food web. Correct?
A. That's correct.
Q. All right. And we'll go into those general principles later, doctor.
A. Sure.
Q. For now, I want to focus on oysters for a minute.
A. Sure.
Q. You would agree that the specific relationship between low flow, any decline in oysters, and algae is not well documented for Apalachicola Bay. Right?
A. I would agree it's not well documented for Apalachicola Bay.
Q. You have not actually sampled or experimented on any oysters that you have procured from Apalachicola Bay to determine whether or not THE REPORTING GROUP Mason \& Lockhart
these oysters are eating a certain kind of algae. Right?
A. That is correct. However, it's the exact same oyster species that I have done considerable experiments with.
Q. But my question was you haven't actually taken oysters from the bay and conducted any experiments on them to see what they're eating. Right?
A. That's correct.
Q. All right. Now, you have used before, doctor, when we have met, the term in situ. Correct?
A. Yes.
Q. All right. And that means on site. Correct?
A. Right.
Q. Yes?
A. Yes.
Q. All right. So, for example, in situ sampling with respect to the Apalachicola Bay would refer to sampling done at the bay as opposed to off site. Right?
A. That's correct.
Q. All right. And you actually have no in situ data that oysters in Apalachicola Bay were impacted by impaired food availability. Correct?

THE REPORTING GROUP

Mason \& Lockhart
A. There's considerable in situ data collected by the broader monitoring programs ongoing in Apalachicola Bay. And it is that in situ data from phytoplankton and oysters that I related.
Q. You do not have any in situ data using experiments on oysters procured from the bay that impaired food availability was affecting those oysters. Right?
A. That's correct.
Q. Did you say that is correct?
A. That's correct.
Q. All right. Now, factors besides changes in the algae community can affect oyster abundance in the bay. Right?
A. Yes.
Q. You have not examined how harvesting practices, for example, have affected the abundance of oysters in the bay?
A. That is correct.
Q. And you didn't consider how fisheries management practices have affected the abundance of oysters in the bay. Right?
A. That is correct.
Q. And you didn't consider how storm surge or hurricanes have affected the abundance of oysters THE REPORTING GROUP

Mason \& Lockhart
in the bay. Right?
A. That is correct.
Q. And you don't know whether agencies under the Florida Department of Environmental Protection still have the authority to close areas of Apalachicola Bay to commercial harvesting; do you?
A. That's -- no, I don't.
Q. All right. And you don't know if any management actions have been taken to restore the oyster reefs after the 2011-2012 collapse of oysters; do you?
A. No.
Q. You would agree, would you not, that oysters in Apalachicola Bay have the ability to regrow and recuperate. Right?
A. If provided the right environmental conditions.
Q. But you didn't look at the ability of oysters to recover or to recuperate in the bay. Right?

That wasn't part of your work?
A. That's correct.
Q. Now, doctor, you have maintained in your written direct testimony that you expect Georgia's consumptive use of water to have an effect on fish. Right?

THE REPORTING GROUP
Mason \& Lockhart
A. The effect on fish that I expect is based on general ecological principles and my understanding of the changes in water quality and the changes at the base of the food web.
Q. And you're, again, mentioning, doctor, these ecological principles. Right?
A. That is correct.
Q. And we will get to your ecological principles in this exam. I promise you we'll get there.

For now, focusing on the fish, fish are at the upper level of the food web. Right?
A. Yes.
Q. Okay. And in your written testimony and your expert report in this matter, you maintain that changes at the base of the food web have affected the fish. Right?
A. Again, applying general understanding of how the base of the food web has repercussions throughout the entire system.
Q. All right. In your expert report, you refer to a Dr. Jenkins. Correct?
A. Yes.
Q. And your expert report indicates that

Dr. Jenkins's expert report provides the detailed analysis of changes in the food web. Correct?

THE REPORTING GROUP
Mason \& Lockhart
A. Dr. Jenkins's report was one of the materials on which I relied. However, I was also familiar with the broader literature that is available on changes in the upper food web; and I also looked at that.
Q. And in your deposition, you indicated that this Dr. Jenkins, on whom you relied in part, he analyzed changes in the upper level of the food web. Right?
A. Yes, he did.
Q. You indicated that the analysis of fish is housed in Dr. Jenkins's expert report. Correct?
A. Yes.
Q. And Dr. Jenkins was one of Florida's experts in this matter. Right?
A. Yes.
Q. And he submitted an expert report, as you have acknowledged in your expert report. Right?
A. Correct.
Q. And in addition to submitting an expert report, Dr. Jenkins gave a deposition in this matter; didn't he?
A. Yes.
Q. And, in fact, in the course of your deposition, I showed you portions of Dr. Jenkins's deposition THE REPORTING GROUP Mason \& Lockhart

1845
A. Yes
Q. You remember that?
A. Yes.
Q. In your expert report we actually counted -- I believe you mentioned Dr. Jenkins's name more than 20 times. Does that sound about right to you?
A. I don't know.
Q. All right. Sound approximately right?
A. I know I cited him.
Q. All right. And you cited him repeatedly. Right?
A. Yes. I cited him more than once --
Q. All right.
A. -- for sure.
Q. You relied on the work of Dr. Jenkins in part to link changes in the phytoplankton community that impacted higher levels of the food web. Right?
A. In a general sense. However, I also relied on the broader literature to understand. But I was focused on the changes at the lower food web.
Q. And you relied on Dr. Jenkins for your opinions on overall fish ecology. Right?
A. I relied on a number of sources for my opinions on overall fish ecology. THE REPORTING GROUP Mason \& Lockhart

	1846	1848	
	Q. But you relied on Dr. Jenkins in part for you	1 correct.	
	opinions on overall fish ecolo	2 A. I want to just make sure that --	
3	A. Yes	3 Q.	
4	Q. A	4 A. But the nursery function --	
5	was asked about his opinions on fish ecology	5 Q. We'll talk about the nursery function in your	
6	And I want you to now review with me some	6 view. But I just wanted to review that clip with	
7	deposition testimony from Dr. Jenkins regarding	7 you.	
8	fish ecology and then ask you some questions	8 Now, we have one much shorter clip that I	
9	about his testimony regarding fish ecology.	9	
10	MS. DeSANTIS: And we actually have	10	
11	Dr. Jenkins's deposition transcript ready to	11	
12	hand up to the Court, to Dr. Glibert, and to	12	
13	distribute	13 Q. -- about that clip as well.	
14	You can go ahead and -	14 If I could refer you and	
15	BY MS. DeSANTIS:	15 to page 90, line 9 of Dr. Jenkins's depor	
16	Q. All right. Dr. Glibert, I would like to ask you	16	
17	and ask the Court to please turn to Dr. Jenkins's	17	
18	transcript beginning at page 65, line 18.	18	
19	MS. DeSANTIS: And I'm going to be	19 (Whereupo	
20	asking Mr. Smith to queue up the first clip,	20 BY MS.	
21	which runs from 65 , line 18 , to page 70 , line	21 Q. Now, Dr. Glibert, in this particular video clip,	
22	21. And we'll just play that on the screen	22 Dr. Jenkins used the word change. Correct?	
23	for the Court.	23	
24	(Whereupon the video was played.)	24 Q. He did not chara	
25	BY MS. DeSANTIS:	25	composition or abundance as harm. Correct?
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart
1847 1849			
	Q. Dr. Glibert, Dr. Jenkins in that testimony talks	1 A. He did not.	
	about the nursery function of east bay. Correct?	2 Q. And it was outside of the scope of your work to	
	A. He does	3 analyze the fish data. Correct?	
4	Q. And you, yourself, in your testimony have also	4 A. That's right.	
5	talked about the function of east bay. Correct?	5 Q. And it was outside of the scope of your work to	
6	A. I do. As does much of the literature	6 examine individual fish species. Correct?	
7	Q. And Dr. Jenkins, in this testimony clip,	7 A. That's correct. I did not take that narrow	
8	identifies the blue crab as a species that may be	8 perspective.	
9	affected in the east bay. Correct?	9 Q. And you have not fully analyzed, independent from	
10	A. He does.	10	
11	Q. He does not identify any fish that have been	11 Apalachicola Bay. Righ	
12	affected in this clip by reduced salinity in the	12 A. Well, I'm aware of literature reports that relate abundance of certain types of species to flow.	
13	bay. Correct?		
14	A. He does not identify fish in that clip	14 And so I -- I'm familiar with that	
15	I think it's worth, just for the purpose of	15 Q. You don't have any data or information specific 16 to Apalachicola Bay that you have analyzed	
16	e Court identifying east bay as that upper		
17	northern freshwater area in the bay because it	17 indicating that there was a change in fis	
18	hasn't been identified here yet.	18 abund	
19	Q. Yes. And I believe the Court is familiar with	19 A. Not that I have analyzed, but that I have read 20 and I'm familiar with.	
20	the region of east bay from some maps that have		
21	previously been used in court, including with	21 Q. And you have not analyzed that data. Right? 22 That was outside the scope of your work?	
22	Dr. Greenblatt today		
23	MS. DeSANTIS: Is that right, your	23 A. Right. I'm familiar with it through the 24 literature.	
24	Honor?		
25	SPECIAL MASTER LANCASTER: That's	25	Q. Right. You have not explored the relationship
	THE REPORTING GROUP		THE REPORTING GROUP
	Mason \& Lockhart		Mason \& Lockhart

 A. I did not take that narrow perspective other than the work that we have talked about and would likely talk about with respect to oysters.
 Q. And so you have not analyzed the impact of changes in the algae community on blue crab, for example; have you?
A. I have not.
Q. And you have not analyzed the impact of changes in the algae community on white shrimp. Right?
A. That's correct.
Q. And you have not analyzed the impact of any changes in the algae community on any particular species of fish in the bay. Right?
A. That's correct. Although I'm aware of some of the literature on that.
Q. And you have not evaluated yourself any in situ data from Apalachicola Bay showing harm to fish?
A. I'm familiar with the analyses of Dr. Livingston, for example, which is based on in situ data. But it's not data that I myself examined.
Q. All right. And you have no information or data that food availability for white shrimp is impaired in Apalachicola Bay. Right?

THE REPORTING GROUP
Mason \& Lockhart
A. However, Dr. Livingston shows that under low flow conditions, white shrimp can -- white shrimp populations can decline by upwards of $\mathbf{9 0}$ percent.
Q. Doctor, again, in this case you gave a deposition. Correct?
A. Uh-huh.
Q. And you told the truth?
A. Yes.
Q. You were under oath. Correct?
A. Yes.
Q. All right. I would like to refer you and the

Court to your deposition transcript page 73, line 13 , to page 73 , line 18.
A. Uh-huh.
Q. And ask Mr. -- and this is tab 3 in the binder.
A. Uh-huh.

MS. DeSANTIS: And ask Mr. Smith please to play clip 25.
(Whereupon the video was played.)
BY MS. DeSANTIS:
Q. Were you asked that question, and did you give that answer in deposition?
A. Yes, I did.

And the very next question goes on to say other than literature, I did not investigate that THE REPORTING GROUP
Mason \& Lockhart
directly.
Q. All right. With respect to salinity preference ranges for species in the upper food web in Apalachicola Bay, you didn't do any analysis on that; did you?
A. That's correct.
Q. Okay. You don't have data or information indicating that any fish species in Apalachicola Bay has been negatively impacted by impaired food availability. Right?
A. I did not investigate fish species directly.
Q. You have identified east bay as a nursery region for species in the bay. Correct?
A. I have, and many others have also identified it as such, yes.
Q. But you did not do any assessment of the species that use east bay as a nursery. Correct?
A. That's well documented in the literature, so I didn't have to.
Q. You, yourself, didn't do any --
A. No.
Q. -- independent analysis of which species use east bay as a nursery. Correct?
A. Other than being familiar with the literature, correct.

THE REPORTING GROUP
Mason \& Lockhart
Q. You were focused primarily on the food web. Right?
A. Particularly the lower food web, yes, and relation to water quality.
Q. Okay. Now, doctor, you referred a couple of times in your testimony here in court to principles that you have used to link changes at the base of the food web to changes in the upper food web. Right?
A. That is correct.
Q. All right. And, doctor, I would like to list these principles out for the Court.

I promised you we would get here. All right?
A. Sure.
Q. So, first, you relied on basic ecology. Correct?

Let's just make a list of these.
Is that right; you relied on basic ecology?
A. Sure.
Q. You also relied on basic nutrition. Right?
A. With respect to aquatic biology, yes. Uh-huh.
Q. You relied on trophodynamics. Correct?
A. Yes. Which is the study of interactions of species and how they relate in and among the food web.
Q. You relied on ecological stoichiometry. Correct? THE REPORTING GROUP Mason \& Lockhart
A. Yes. Which is -- just so I can explain it, it's the study of how nutrient content in different supply levels or in different organisms affect the nutrition of the next level.
Q. And you relied on biogeochemistry. Correct?
A. Yes. Which is the cycling and fluxes of all of the elements in the recycling processes within an aquatic system.
Q. And you relied on bio-oceanography. Correct?
A. Biological oceanography.
Q. Biological oceanography. Well, then we have mistyped it.

Somebody fixed that.
Okay. Biological oceanography. Correct?
A. Yes. The study of all the aquatic organisms in a marine environment, yes.
Q. All right. And you relied on estuarine dynamics. Correct?
A. True.
Q. And these are the principles on which you relied, based your opinion that changes at the base of the food web can have effect on the upper food web. Right?
A. Well, these are some of the fundamental concepts -- the understanding of some of the THE REPORTING GROUP Mason \& Lockhart

1855
fundamental processes and dynamics that go on within an estuary and within organisms that live within that estuary.
Q. All right. Now, doctor -- and we're almost at the time where I may suggest to the Court we take a break; but I have just a couple more questions before it's a good time if the Court would like to break.

You did not examine the historical hydrological regime; did you?
A. I did not carry out a long-term hydrologic analysis; that is correct.
Q. And the ecology of an estuary depends on the historical hydrological regime under which it has evolved. Correct?
A. Well, the historic hydrological regime will determine the type of an estuary that emerges. So whether it's a river-dominated estuary with a high flow of river input or a -- at the other extreme, a coastal lagoon which does not have a lot of inflow of river sources and the water has a much longer residence time. So it's that long-term hydrological regime that sets the trajectory for what kind of estuary will ultimately emerge.

THE REPORTING GROUP
Mason \& Lockhart
Q. But you have not presented any analysis of that long-term --
A. That's right.
Q. -- hydrological regime?
A. That's correct.
Q. But you recognize the importance of it. Correct?
A. That's correct.
Q. And you didn't examine any meteorological records concerning Apalachicola River and Bay. Correct?
A. No. Although I did look at some of the precipitation data, but not in a long-term analysis.
Q. All right. So you didn't do a long-term analysis of any meteorological records concerning the Apalachicola River and Bay. Right?
A. Right.
Q. And you didn't examine any sediment or geological records pertaining to the hydrological history of the river and the bay. Right?
A. That's correct.
Q. That is correct?
A. That's correct.
Q. And you didn't do any or examine any records of tree ring analysis in the Apalachicola River and Bay. Correct?

THE REPORTING GROUP
Mason \& Lockhart
A. That's correct.
Q. And any information regarding historical precipitation patterns in the Apalachicola River and Bay was outside the scope of what you looked at here. Right?
A. Right. Although I'm aware that that has been looked at and published, for example, by Dr. Livingston. And I reviewed some of that work.
Q. And decreases in precipitation can affect the length of low flow periods. Right?
A. Yes.
Q. And decreases in precipitation can affect the severity of low flow periods. Right?
A. Yes.
Q. All right.

MS. DeSANTIS: Your Honor, if you would like to break, this is actually an appropriate time to break in the course of my examination; but it is certainly up to the Court.

SPECIAL MASTER LANCASTER: Thank you.
While I think of it, counsel, the first demonstrative screen thing you showed that had all the arrows --

MS. DeSANTIS: The food web?
THE REPORTING GROUP
Mason \& Lockhart

Oyster Situation Report. Do you have that?
A. Yes, I do.
Q. And, Dr. Glibert, are you familiar with this report?
A. Yes. This report came to my attention about a year ago.
Q. And you have reviewed it?
A. Yes.
Q. And is this report consistent with the conclusions and opinions that you have reached in this case?
A. The particular focus that I was paying attention to in this report is the section -- I don't see page numbers on this -- that refers to nutrient inputs to the bay. And the initial conclusion that they cite is, indeed, consistent with the overall principle that I was applying in this case.
Q. And apart from the overall conclusion being consistent, is the study and the analysis that they performed in this article consistent with the study and the analysis that you did?
A. The initial statement that this report provides is that the Apalachicola Bay is the major source of nutrients to the bay. It fuels the food web THE REPORTING GROUP

Mason \& Lockhart
that supports oyster, shrimp, fish and other marine organisms. When flows decline, so do inputs of nutrients. And this phenomenon lasts for a long period of time. The abundance of all the organisms mentioned above may decline.

I completely agree with that statement. What took me very much by surprise when I was reviewing this document is the very next sentence goes on to say, there are no continuous measurements of nutrient input to the bay.

And I was quite surprised by this because
there are thousands of records of nutrients that have been measured in Apalachicola Bay for the past decade and a half on a monthly basis. They seemed completely unaware of that data. They also seemed completely unaware of the vast literature that has described nutrients to the bay.

So they then tried to carry out an analysis to look at this connection between nutrients and flows, and they resorted to a very limited dataset that was available from the Northwest Florida Water Management District conducted in the early 2000's. They extrapolate that data through a model to 2011 and 2012.

THE REPORTING GROUP
Mason \& Lockhart

But what was quite surprising to me is that this limited dataset was from the Jim Woodruff Dam. So they had very limited data. It was from a site $\mathbf{1 0 0}$ miles away from that which was in the bay.

And they conclude that they have difficulty linking water quality to the oyster population responses. And it was simply because they failed to look at the available data. They failed to look at the right data. And they failed to make the connection, the very connections that I was able to make because I had access to all of this publicly-available data.
Q. And what is that in general terms? What is that available and right data that you looked at in doing your analysis?
A. In my analysis I primarily depended on the monitoring data from the Apalachicola National Estuarine Research Program -- we can brief it ANERR.

Apalachicola Bay is one of the best-monitored estuaries in the country. It rivals Chesapeake Bay and San Francisco Bay as the best data on water quality and long-term records. This dataset has thousands of records of each of the THE REPORTING GROUP

Mason \& Lockhart
water quality parameters.
In addition to that dataset, I depended on Florida Fish and Wildlife's harmful algal bloom dataset which has tens of thousands of records of phytoplankton community. I depended on a number of theses that have excellent phytoplankton identification. I depending on the ANERR data on dissolved oxygen, a dataset that has hundreds of thousands of data records. So it was quite surprising to me that in this report they were unaware of this extensive dataset.
Q. And now, if you could take the other two exhibits that I handed you. They are marked GX-789 and FX-866. They are two articles on which Bill Pine is at least one of the authors. Do you see that?
A. Yes, I see.
Q. And are you familiar with these articles?
A. Yes, I am.
Q. And have you reviewed these articles?
A. Again, these articles came to my attention last year several months after I had started my investigation here.
Q. And are these articles consistent with your findings and opinions in this matter?
A. Both of these articles draw the conclusion that THE REPORTING GROUP

Mason \& Lockhart

and the exact same species of harmful algae.
Q. Yet, the laboratories themselves were not conducted on oysters that were procured from Apalachicola Bay. Correct?
A. That is correct. But we have no reason to believe that Apalachicola Bay oysters would behave physiologically any different.
Q. Doctor, my question was simply those oysters that were experimented on were not procured from Apalachicola Bay. Correct?
A. That's correct.
Q. All right. Doctor, you have maintained that the relationship between algae and flow is complex. Right?
A. Yes.
Q. And, in fact, you have noted that the EPA has encouraged caution in any effort to establish a direct causal link between a decrease in flow and an increase in the abundance of phytoplankton. Correct?
A. Can you please repeat that.
Q. Yes. The EPA -- you have noted that the EPA has encouraged caution in any effort to establish a direct causal link between a decrease in flow and an increase in the abundance of phytoplankton. THE REPORTING GROUP
1887

Correct?
A. There's caution urged there because flow delivers the nutrients that support the phytoplankton, and it depends on the amount of flow and the constituents coming with that flow.
Q. But the EPA has encouraged caution in an effort to establish a direct causal link between a decrease in flow and an increase in the abundance of phytoplankton. Right?
A. Yes.
Q. Okay.

MS. DeSANTIS: I have no more questions.
SPECIAL MASTER LANCASTER: Anything?
MS. WINE: I have nothing further.
SPECIAL MASTER LANCASTER: Doctor, counsel should have told you that I'm a very simple-minded person. If they haven't, I'm about to prove it.

What is an estuarine ecologist?
THE WITNESS: Somebody who studies the ecology of estuaries.

SPECIAL MASTER LANCASTER: Okay. And what estuaries were you testifying about here?

THE WITNESS: Apalachicola Bay.
THE REPORTING GROUP
Mason \& Lockhart

SPECIAL MASTER LANCASTER: So I should understand that Apalachicola Bay is an estuary?

THE WITNESS: Yes. An estuary is an embayment where freshwater and saltwater mix.

SPECIAL MASTER LANCASTER: Thank you for that.

You were, as I understand it, not asked to testify as to the cause of the low flows; is that correct?

THE WITNESS: That's correct.
SPECIAL MASTER LANCASTER: Counsel?
MS. WINE: Nothing further, your Honor.
MS. DeSANTIS: Nothing further, your Honor.

SPECIAL MASTER LANCASTER: Thank you.
MR. PERRY: Your Honor, we're prepared, if we can have just a couple minutes, to call another witness.

SPECIAL MASTER LANCASTER: Sure.
MR. PERRY: But we're also prepared to do so tomorrow morning.

We expect that Dr. Hornberger, our next witness, will take quite a bit of time from Georgia. So we're prepared to go either way, THE REPORTING GROUP Mason \& Lockhart now or tomorrow.

SPECIAL MASTER LANCASTER: I had planned to recess at 4:00. If this is acceptable to counsel, we'll recess now.

MR. PERRY: Yes, your Honor.
MR. PRIMIS: That's fine, your Honor.
SPECIAL MASTER LANCASTER: Let me just say one more thing. I told you that I have committed to stick to this job to the end and write a report. And then I'm going to go to my home in Nova Scotia. If you want to know the address and how to get there, just ask Josh.

We'll stand in recess.
(Time Noted: 3:30 p.m.)
(Proceeding adjourned to Thursday, November 10, 2016, at 9:00 a.m.)
(End of day)

CERTIFICATE

I, Claudette G. Mason, a Notary Public in and for the State of Maine, hereby certify that the foregoing pages are a correct transcript of my stenographic notes of the Proceedings.

I further certify that I am a disinterested person in the event or outcome of the above-named cause of action.

IN WITNESS WHEREOF, I subscribe my hand this 6th day of December, 2016.
/s/ Claudette G. Mason Claudette G. Mason, RMR, CRR Court Reporter.

My Commission Expires
June 9, 2019.

THE REPORTING GROUP
Mason \& Lockhart

\$	10:23 [1] - 1726:14	1885 [1] - 1659:7	1772:5, 1772:10	1814:20, 1815:19,
\$110,000 [1] - 1692:22	10:36 [1] - 1726:16	$19 \text { [2] - 1835:18, }$	2009-2012 [1] -	1816:20, 1816:25,
'		19	20	
	110 [1] - 1677:1	1964 [1] - 1805:18	1755:7, 17	2014-2015
'11 [1] - 1708:15	114 [1] - 1711:1	1970 [2]-1743:21,	1773:11, 1813:5,	1815:7, 1815:16
'12 [2] - 1708:15,	11:58 [1] - 1797:6	1781:16	1813:19, 1813:23,	$2015 \text { [2] - 1781:16, }$
1714:10	12 [1]-1712:2	1985-ish [1] - 1686:24	-	181
'14 [2] - 1689:13,	120 [2]-1687:21,	1986 [2]-1684:25,	2010's [1] - 1684:18	2016 [5] - 1658:13,
1714:10	1807:22	1687:2	2011 [14]-1706:13	810:17, 1820:9
'15 [1] - 1689:13	120.35 [1] - 1678:3	1987 [3] - 1685:1,	1708:19, 1709:6,	1889:17, 1890:11
'30's [2] - 1804:6,	13 [5]-1776:17,	1688:5, 1688:10	1773:23, 1806:16,	2019 [1] - 1890:18
1805:12	1776:19, 1777:7,	1990's [1] - 1731:3	1807:3, 1821:5,	2050 [1] - 1742:11
	1777:11, 1851:13	1992 [1] - 1728:5	1821:10, 1864:3,	21 [1] - 1846:22
I	14 [2]-1784:6, 1784:7	1:05 [1] - 1797:8	1864:6, 1864:8,	22 [1] - 1766:16
Is [1] - 1890:15	1784:11	2	1879:25	23 [2] - 1677:11,
1	142 [1] - 1658:1 148 [1] - 1703:17	2 [16] - 1668:23,	1806:20, 1842:11	$24 \text { [1] - 1693:9 }$
1 [40]-1677:15,	15 [3] - 1684:21,	739:13, 1739:14,	2012 [60] - 166	25 [5] - 1749:20,
1727:22, 1739:12,		1748:14, 1748:24,	1679:17, 1679:23,	$1807: 25,1851: 18$
1750:25, 1751:2,	$152 \text { [2] - 1722:24, }$	1751:2, 1768:10,	1680:7, 1681:14,	$250[1]-1805: 24$
1751:10, 1753:12,	1723:5	1769:3, 1769:12,	1681:15, 1681:19,	26 [2] - 1753:24,
$1753: 21,1755: 12$, $1758 \cdot 5,1758: 14$,	157 [1]-1766:15	1773:13, 1774:2,	1683:6, 1683:8,	1776:22
1758:5, 1758:14,	$16[3]-1679: 9$	1780:16, 1780:17,	1683:23, 1690:1,	27 [1] - 1753:25
1761:11, 1761:19,	1692:19, 1766:16	1793:1	1706:15, 1708:19,	28 [3] - 1665:13,
1762:5, 1762:22,	16-36 [2] - 1686:20,	2,000-five-zero [1] -	1709:6, 1714:9,	1754:23, 1813:5
1768:24, 1769:21, $1770: 7$ 1770:17	1687:6	1742:11	1715:24, 1720:24,	28th [1] - 1781:3
1770:7, 1770:17,	16-two [1] - 1687:6	2.14 [1] - 1717:18	1727:6, 1728:5,	29 [2] - 1795:15,
1771:2, 1771:19,	$160 \text { [1] - 1688:12 }$	2.81 [2] - 1706:14,	1729:25, 1730:17,	1795:18
1772:3, 1772:7,		1707:25	1732:6, 1732:22,	2:32 [1] - 1858:8
1772:22, 1774:9, 1774:18, 1775:16,	$\begin{aligned} & 165[2]-1699: 20, \\ & 1705: 16 \end{aligned}$	2.87 [1] - 1717:14	1733:11, 1741:20,	2:42[1] - 1858:10
1774:18, 1775:16,	$1661 \text { [1] - 1659:3 }$	20 [4] - 1785:11,	1744:20, 1745:2,	
1775:18, 1777:24	1662 [1] - 1659:3	1807:20, 1845:7,	1750:9, 1750:14,	3
1792:14,	$1669 \text { [1] - 1659:14 }$	1870:7	1756:12, 1756:13,	
1793:10, 1819:5,	1675	20's [1] - 1805:12	1756:22, 1762:14,	3 [23] - 1676:3, 1712:4,
1819:8, 1826:1,	1675 [1]-1659.12	20-year [1] - 1728:4	1762:20, 1768:4,	1728:16, 1731:21,
1826:7, 1826:10,	1690 [1]-1659:13	200 [3] - 1692:4,	1774:22, 1775:2,	1748:20, 1749:10,
1828:22, 1833:17,	17 [2] - 1783:18,	1692:11, 1692:16	1775:4, 1775:7,	1753:12, 1761:3,
1848:16	1783:25	2000 [1] - 1728:14	1775:15, 1777:19,	1767:21, 1768:10,
1,878 [1] - 1821:11	1726 [1] - 1659:3	2000's [3] - 1731:1,	1777:21, 1806:16,	1768:14, 1769:3,
1-2 [1] - 1781:4	173 [1] - 1805:23	1791:18, 1879:24	1807:3, 1808:8,	1769:24, 1773:2,
1.17 [1] - 1717:17	1733 [1] - 1659:12	2007 [15] - 1741:19,	1808:12, 1809:14,	1773:16, 1774:2,
1.2 [2]-1725:2,	1734 [1] - 1659:16	1744:20, 1745:1,	1810:3, 1810:6,	1777:6, 1777:10,
1780:19	1737 [1] - 1659:4	1750:8, 1750:13,	1820:7, 1821:2,	1777:16, 1777:17,
1.3 [1]-1724:15	1738 [1] - 1659:4	1751:18, 1753:4,	1821:6, 1864:3,	1835:18, 1837:14,
10 [10]-1692:14,	1778 [1] - 1659:4	1761:7, 1761:14,	1864:6, 1864:9,	1851:15
1707:8, 1707:12,	18 [3]-1846:18,	1761:16, 1761:17,	1864:23, 1865:1,	3,953 [1] - 1821:12
1708:6, 1722:19,	1846:21, 1851:13	1768:4, 1768:17,	1879:25	3-11 [6] - 1767:20,
1756:4, 1756:6,	180 [1] - 1692:16	1769:1, 1769:8	2012-2013 [1] -	1767:24, 1768:1,
1784:6, 1807:18,	1803 [1] - 1659:6	2008 [10] - 1714:9,	1685:21	1768:6, 1768:12,
1889:17	1812 [1] - 1659:6	1754:3, 1762:2,	2013 [9]-1673:24,	1768:14
10.3 [1] - 1722:19	1813 [1] - 1659:17	1770:2, 1770:11,	1681:8, 1689:13,	3-12 [1] - 1769:23
100 [4] - 1677:1,	1820 [1] - 1659:6	1770:15, 1770:21,	1689:16, 1691:18,	3-13 [3] - 1675:10,
1707:11, 1810:11,	1823 [2] - 1659:7	1770:25, 1771:4,	1692:18, 1698:6,	1675:14, 1771:11
1880:4	1865 [1] - 1659:7	1771:7	1699:10, 1715:25	3-14 [2]-1773:1,
106 [1]-1819:7	1877 [1] - 1659:16	2009 [8]-1664:17,	2014 [13] - 1681:1,	1773:6
$109 \text { [3] - 1819:1, }$	1881 [2]-1659:14,	1754:3, 1771:15,	1682:23, 1683:2,	3-15 [2] - 1773:15,
1819:3, 1819:8	1659:16	RFPORTING	OU̇P':19, 1814:17,	1773:20

$\begin{gathered} 3-16[9]-1767: 20, \\ 1768: 1,1768: 7 \end{gathered}$	5	$\begin{aligned} & \text { 1754:8, 1757:22, } \\ & \text { 1869:8, 1869:11 } \end{aligned}$	$\begin{aligned} & \text { above-entitled }[1] \text { - } \\ & \text { 1658:10 } \end{aligned}$	$\begin{aligned} & 1700: 7 \\ & \text { ACF [5] - 1723:16, } \end{aligned}$
$\begin{aligned} & \text { 1774:25, 1775:10, } \\ & \text { 1775:14, 1776:1, } \end{aligned}$	$\begin{aligned} & \hline 5[11]-1690: 23, \\ & 1780: 14,1783: 15, \end{aligned}$	$\begin{gathered} 70[2]-1684: 20, \\ 1846: 21 \end{gathered}$	above-named [1] - 1890:9	$\begin{aligned} & \text { 1744:11, 1767:18, } \\ & \text { 1860:20, 1861:21 } \end{aligned}$
1777:7, 1777:18	1783:25, 1792:14,	71 [2] - 1679:20,	absence [1] - 1742:4	acid [1] - 1810:25
3-17 [2] - 1761:2, 1761:3	1821:12, 1835:19, 1837:17, 1869:2,	1679:21	absolute [6] -	acknowledged [1] -
3-18 [1] - 1761:21	1869:8, 1870:4	1851:13	1757:10, 1757:13,	acquired [1] - 1805:17
3-22[1] - 1762:8	50 [31]-1696:3,	76 [2]-1672:16,	1782:12, 1797:23	acres [15] - 1687:21,
$\begin{aligned} & 3-3[3]-1749: 19 \\ & 1750: 6,1751: 13 \end{aligned}$	$\begin{aligned} & \text { 1696:4, 1723:15, } \\ & \text { 1723:22, 1760:20, } \end{aligned}$	$\begin{gathered} 1676: 3 \\ 78[2]-1766: 1] \end{gathered}$	absolutely [8] 1667:7, 1730:18,	$\begin{aligned} & \text { 1687:23, 1688:12, } \\ & \text { 1688:13, 1692:4, } \end{aligned}$
3-8 [1] - 1750:7	1765:23, 1766:2,	1766:18	1828:18, 1828:21,	1692:11, 1692:16,
	$\begin{aligned} & \text { 1766:4, 1766:24, } \\ & \text { 1767:7, 1767:12, } \end{aligned}$	$\begin{gathered} 79[2]-1766: 17, \\ 1766: 18 \end{gathered}$	$\begin{gathered} \text { 1865:24, 1874:18, } \\ \text { 1877:13, 1882:19 } \\ \text { abstract }[1]-1711: 18 \end{gathered}$	$\begin{aligned} & \text { 1692:19, 1791:8, } \\ & \text { 1791:11, 1791:14, } \end{aligned}$
$\begin{aligned} & 3.1[3]-1756: 4 \\ & 1756: 6,1756: 8 \end{aligned}$	$\begin{aligned} & \text { 1768:2, 1768:8, } \\ & \text { 1768:15, 1769:11, } \end{aligned}$			805:21, 1805:22,
		8	abundance [22] -	1805:23, 1805:24
3.4 [1]-1753:24	1771:25, 1773:7,	8 [17]-1746	$\begin{aligned} & \text { 1677:3, 1711:8, } \\ & \text { 1714:5, 1714:21, } \end{aligned}$	Action [1] - 1723:9 action [2]-1723:18,
$3.5[1]-1753: 24$ $3.6[1]-1754: 23$	1775:8, 1783:23,	1747:2, 1747:9,	1714:5, 1714:21, 1715:16, 1715:18,	$\begin{aligned} & \text { action [2]-1723:18, } \\ & 1890: 9 \end{aligned}$
$\begin{aligned} & 3.8 \\ & 1756: 22,1756: 18,1 \end{aligned}$	$\begin{aligned} & \text { 1799:17, 1807:16, } \\ & \text { 1807:24, 1808:2, } \end{aligned}$	1748:4, 1748:7,	$\begin{aligned} & \text { 1729:18, 1729:25, } \\ & \text { 1730:3, 1841:13, } \end{aligned}$	$\begin{gathered} \text { actions [3] - 1691:9 } \\ 1691: 21,1842: 10 \end{gathered}$
30 [11]-1701:17,	$\begin{aligned} & 1807: 24,1808: 2 \\ & \text { 1860:19, 1861:19, } \end{aligned}$	$\begin{aligned} & 1748: 11,1750: 25 \\ & 1751: 5,1752: 14, \end{aligned}$	1841:17, 1841:21, 1841:25, 1848:25,	$\begin{gathered} \text { activity [5] - 1680:7, } \\ \text { 1682:13, 1682:15 } \end{gathered}$
1750:7, 1756:18,	$\mathbf{0 0} \text { [3] - 1807:23, }$	1753:6, 1754:6	1849:10, 1849:13,	1687:7, 1688:16
1793:8, 1803:9,			1849:18, 1866:2,	actual [11] - 1667:22,
1811:18, 1820:18,	1808:5, 1808:6	80 [2] - 1677:1	879:4, 1886:19,	1709:9, 1710:3,
$1869: 4,1870: 7$ 300	$51[1]-1724: 4$	1807:23	1886:25, 1887:8	1710:11, 1718:8,
$31[1]-1716: 4$	$\begin{gathered} 525[3]-1805: 11, \\ \text { 1805:22, 1821:10 } \end{gathered}$	80-some [1] - 1695:11	1673:9, 1695:22	1730:2, 1734:23,
$32[3]-1767: 21,$		82 [1] - 1708:4		1793:16, 1794:6
1768:7, 1768:13	$53[1]-1837: 17$	88.4[1]-1805:22	acartia [6] - 1836:18, 1836:20, 1836:21,	$\begin{aligned} & \text { add [4] - 1685:18, } \\ & \text { 1688:23, 1689:6, } \\ & 1875: 9 \end{aligned}$
$33_{[1]}$ - 1769:23	537 [1] - 1658:12	8:57 [1] - 1658:1	1836:23, 1836:24,	
34[1] - 1771:12	59 [1] - 182	9	837:25	
$\begin{aligned} & 35[3]-1719: 15, \\ & \text { 1747:20, 1773:2 } \end{aligned}$		9	$\begin{aligned} & \text { accelerated [1] - } \\ & \text { 1884:16 } \end{aligned}$	added [1] - 1701:2 adding [1] - 1689:10
	6	$\begin{aligned} & \hline 9[3]-1658: 13, \\ & 1848: 15,1890: 18 \end{aligned}$	$\begin{aligned} & \text { accept [2] - 1720:11, } \\ & 1724: 12 \end{aligned}$	adding [1] - 1689:10 addition [6] - 1779:19,
$\begin{gathered} 37[6]-1767: 21, \\ 1768: 7,1774: 23 \end{gathered}$	6	$90[4]-1677: 1,$	$\begin{aligned} & \text { acceptable }[5] \text { - } \\ & \text { 1720:11, 1794:19, } \end{aligned}$	$\begin{aligned} & \text { 1844:20, 1876:16, } \\ & \text { 1881:2 } \end{aligned}$
1775:1, 1795:1,	60 [10] - 1688:13,	1851:3		
1795:9	1800:23, 1804:4		$\begin{aligned} & \text { 1824:3, 1825:23, } \\ & \text { 1889:3 } \end{aligned}$	```additional [2] - 1688:11, 1790:9```
38[2]-1761:3, 1797:1	$\begin{aligned} & 1807: 16,1807: 21, \\ & 1807: 23,1807: 25 \end{aligned}$	93 [2]-1883:9,		
39 [1] - 1761:22		1883:11	accepted [1] - 1788:3	address [1] - 1889:12
3:30 [1] - 1889:15	1807:23, 1807:25, 1808:2, 1821:14	$955_{\text {[1] - 1811:14 }}$	$\begin{gathered} \text { access [3] - 1709:1, } \\ \text { 1836:22, 1880:12 } \end{gathered}$	1875:13
	609 [3] - 1805:16,1805:22, 1821:12	9:00 [1] - 1889:17		
4			$\begin{aligned} & \text { according }[3]- \\ & 1755: 19,1796: 12, \\ & 1796: 14 \end{aligned}$	adjacent [1] - 1792:8 adjourned [1] -
4 [9] - 17	$61[1]-1672: 18$	A		
1746:14, 1753:14,	1669:22, 1669:23,	$\begin{gathered} \text { a.m }[5]-1658: 14, \\ 1726: 14,1726: 16, \end{gathered}$	account [5] - 1703:4,	
1753:16, 1758:5, 1760:11, 1760:16,	1671:6, 1671:16,	1797:6, 1889:17	1710:17, 1713:6,	1795:6
1784:6, 1869:2	1671:19, 1672:3,		1742:9, 1786:8	$\begin{gathered} \text { adopt }[4]-1662: 3, \\ 1737: 12,1801: 25, \end{gathered}$
4.7 [1] - 1723:22	$62[1]-1733: 11$	1842:18, 1864:14	1713:4	1823:14
40 [1] - 1811:18	$65[2]-1846: 18,$$1846: 21$	able [15] - 1686:8,1686:18, 1710:2,	accumulates [1] -1870:22	adult [3] - 1693:19,
43 [1] - 1762:9				1697:25, 1875:16
$46[1]-1835: 18$	6th [1] - 1890:11	1727:14, 1779:22,1792:15, 1806:6,	accurate [9]-1663:7,1671:24, 1695:1,	adva
47 [2] - 1720:20,				
$\begin{gathered} 1835: 19 \\ 4: 00[2]-1858: 13, \end{gathered}$	7	1811:25, 1812:5,	$\begin{aligned} & \text { 1695:8, 1696:6, } \\ & \text { 1700:3, 1705:22, } \end{aligned}$	aerial ${ }_{[1]}$ - 1791:13
1889:3	$\begin{array}{cc\|} \hline 7[7]-1751: 5, & \\ 1752: 13,1753: 5 & \mathrm{THE} \end{array}$	1865:4, 1869:15,	1711:4, 1717:18	$\begin{gathered} \text { affect }[21]-1727: 21, \\ \text { 1729:13, 1740:12, } \\ \text { 1742:19, 1782:17, } \end{gathered}$
		REPORTING	UP tely [1] -	

1786:3, 1786:12, 1787:3, 1787:8, 1793:24, 1812:2, 1831:3, 1832:23, 1833:4, 1838:9, 1838:15, 1838:20, 1841:13, 1854:3, 1857:10, 1857:13
affected [15] - 1733:5, 1811:23, 1830:18, 1830:25, 1831:6, 1831:8, 1835:6, 1841:17, 1841:21, 1841:25, 1843:15, 1847:9, 1847:12, 1882:2, 1883:21
affecting ${ }_{[1]}$ - 1841:7
affects [5] - 1757:13,
1782:19, 1812:3, 1830:20, 1833:13
afternoon [17] 1778:13, 1778:14, 1797:17, 1801:14, 1802:12, 1802:13, 1803:5, 1812:15, 1823:3, 1823:4, 1823:18, 1823:21, 1823:24, 1823:25, 1858:5, 1865:16, 1865:17
age [5] - 1668:2, 1668:5, 1670:9, 1671:15
agencies [1] - 1842:3
ages [1] - 1667:12
aggressive [1] 1684:9
ago [2] - 1717:7, 1878:6
agree [24]-1660:23, 1672:4, 1682:16, 1688:19, 1692:9, 1692:13, 1698:2, 1699:8, 1702:4, 1702:8, 1715:5, 1750:6, 1756:13, 1757:21, 1758:23, 1826:3, 1826:10, 1833:21, 1834:1, 1839:17, 1839:21, 1842:14, 1879:6, 1882:4
agreed [1] - 1660:21 agreement [1] -
1704:9 agricultural [18] 1723:15, 1723:23, 1725:18, 1760:12, 1760:17, 1764:11, 1765:16, 1765:24,

1774:13, 1775:9, 1790:25, 1791:3, 1791:7, 1791:19, 1860:19, 1861:20, 1862:1, 1862:8 agriculture [2] 1724:14, 1799:11 ahead [5] - 1736:10, 1736:14, 1753:23, 1778:9, 1846:14 algae [48] - 1826:16, 1827:5, 1827:7, 1827:14, 1827:20, 1827:24, 1828:3, 1829:23, 1829:24, 1829:25, 1830:3, 1830:13, 1830:18, 1830:23, 1830:24, 1831:3, 1831:6, 1831:11, 1831:22, 1833:19, 1833:22, 1833:25, 1834:2, 1834:8, 1835:5, 1838:23, 1839:19, 1840:1, 1841:13, 1850:1, 1850:7, 1850:11, 1850:14, 1871:13, 1871:16, 1871:17, 1872:2, 1872:4, 1873:1, 1873:16, 1873:19, 1874:7, 1874:15, 1874:16, 1875:4, 1886:1, 1886:13
algal [10] - 1838:12, 1838:18, 1871:21, 1872:8, 1872:15, 1872:18, 1872:24, 1881:3, 1885:15, 1885:19
alive ${ }_{[1]}$ - 1813:13 Allan [2] - 1764:17, 1764:20
Allen [1] - 1812:17
ALLEN [12] - 1802:12, 1802:14, 1812:10, 1812:14, 1813:2, 1813:4, 1818:17, 1818:20, 1818:24, 1820:1, 1820:22, 1821:23
allow [5] - 1676:22, 1802:20, 1802:24, 1805:2, 1861:9 allowed [3] - 1804:16, 1810:3, 1859:4 almost [3] - 1732:2, 1775:14, 1855:4 alone [2]-1699:11,
altered ${ }_{[1]}-1866: 15$
alternative
alternative [1] 1779:6
amount [18] - 1683:19, 1686:12, 1697:17, 1697:19, 1699:12, 1702:10, 1706:25, 1707:15, 1730:12, 1790:19, 1790:20, 1792:11, 1873:18, 1876:8, 1876:11, 1877:5, 1877:15, 1887:4
amounts [4] -
1707:25, 1796:5, 1796:12, 1796:14
analyses [6] - 1780:1, 1780:21, 1837:2, 1850:20, 1874:5, 1884:10

analysis [77] -

1678:22, 1679:3, 1679:15, 1681:5, 1681:18, 1682:17, 1683:7, 1683:22, 1683:25, 1684:1, 1690:1, 1707:22, 1710:1, 1710:2, 1711:7, 1711:19, 1712:6, 1712:20, 1712:23, 1713:1, 1713:3, 1713:10, 1713:24, 1714:23, 1715:14, 1715:19, 1716:3, 1716:9, 1716:13, 1716:18, 1718:25, 1721:2, 1724:21, 1726:2, 1727:4, 1733:25, 1734:2, 1734:4, 1743:19, 1744:4, 1779:5, 1779:21, 1779:22, 1780:6, 1781:17, 1786:24, 1787:1, 1787:19, 1791:24, 1792:2, 1793:4, 1793:18, 1793:21, 1824:7, 1843:25, 1844:11, 1852:4, 1852:22, 1855:12, 1856:1, 1856:12, 1856:13, 1856:24, 1860:4, 1861:12, 1861:13, 1866:8, 1866:12, 1866:13, 1871:5, 1876:17, 1878:20, 1878:22, 1879:19, 1880:16, 1880:17

1701:4, 1701:8,
1734:24, 1849:3
analyzed [11] -
1700:11, 1740:3, 1763:15, 1844:8, 1849:9, 1849:16, 1849:19, 1849:21, 1850:6, 1850:10, 1850:13
anecdotal [2] 1710:14, 1710:16 anecdotes [1] 1710:8
ANERR [2] - 1880:20, 1881:7
animal [2] - 1670:9
animals [1] - 1829:2 annihilated [1] 1808:9
annual [2] - 1756:9, 1756:13
anomalies [1] 1718:20
anomaly [6] - 1716:16,
1717:1, 1717:12, 1717:13, 1717:22, 1719:1
answer [13]-1703:19, 1726:1, 1766:22, 1788:19, 1788:22, 1802:7, 1802:23, 1817:25, 1819:11, 1819:18, 1819:23, 1837:23, 1851:22
answers [1] - 1780:3
anyway [1]-1689:11
Apalachicola [121] 1664:4, 1669:25, 1671:14, 1672:2, 1673:4, 1673:13, 1673:16, 1673:19, 1674:1, 1674:14, 1674:19, 1675:25, 1687:21, 1688:12, 1696:1, 1697:22,
1701:17, 1708:18,
1712:12, 1724:3, 1724:20, 1738:13, 1749:23, 1754:9, 1756:10, 1757:24, 1780:9, 1781:10, 1781:13, 1783:11, 1783:19, 1783:23, 1787:2, 1789:19, 1792:4, 1792:12, 1792:19, 1793:2, 1793:5, 1794:16, 1795:24, 1800:23,

1805:4, 1811:17, 1811:21, 1812:21, 1813:6, 1814:4, 1814:15, 1814:22, 1815:6, 1816:2, 1816:18, 1817:7, 1818:4, 1819:16, 1822:10, 1824:9, 1825:10, 1825:16, 1826:12, 1830:9, 1833:7, 1834:18, 1834:24, 1836:13, 1837:6, 1839:19, 1839:22, 1839:25, 1840:19, 1840:24, 1841:3, 1842:6, 1842:15, 1849:11, 1849:16, 1850:19, 1850:25, 1852:4, 1852:8, 1856:9, 1856:15, 1856:24, 1857:3, 1863:23, 1864:9, 1864:24, 1865:4, 1866:24, 1867:14, 1868:1, 1868:13, 1868:24, 1869:25, 1872:4, 1872:10, 1872:11, 1873:6, 1873:10, 1873:12, 1873:13, 1874:16, 1874:20, 1877:25, 1878:24, 1879:13, 1880:18, 1880:21, 1882:2, 1884:7, 1885:24, 1886:4, 1886:6, 1886:10, 1887:25, 1888:2
Apalachicola-ChattahoocheeFlint ${ }_{[1]}$ - 1781:13 apart [2] - 1673:23, 1878:19 apologies [2] 1703:8, 1703:15 apologize [3] 1666:20, 1813:22, 1815:13
APPEARANCES ${ }_{[1]}$ 1658:16 appendix [1] 1745:13 application [1] 1787:24
apply [2] - 1663:19, 1665:25
applying [2] 1843:17, 1878:17 appreciate [2] 1816:19, 1817:22

1876:23, 1876:25,	1849:9	12:14	2:23, 1869:17	Greenblatt [29]
1877:3, 1877:8,	function [9]-1757:12,	generate [1] - 1734:18	1875:19, 1884:	1659:4, 1722:9,
1877:16, 1878:25,	1847:2, 1847:5	ge	giant [1] - 1686:1	5:25, 1737:4,
1882:12, 1882:19,	8:4, 1848:5	734:1	given [9] - 1670:	7:7, 1737:12
$1882: 22,1882: 23$, $1882 \cdot 25,1883: 13$,	1868:8, 1869:7, $1883 \cdot 23,1883 \cdot 25$	generates [1] - 1700:2	1675:6, 1678:21	1737:20, 1738:8,
$\begin{aligned} & \text { 1882:25, 1883:13, } \\ & \text { 1883:25, 1884:25 } \end{aligned}$	1883:23, 1883:25 functions [1] -	$\begin{aligned} & \text { generation [3] - } \\ & \text { 1800:20, 1877:1 } \end{aligned}$	$\begin{aligned} & \text { 1680:17, 1698:2, } \\ & \text { 1699:14, 1785:13, } \end{aligned}$	$\begin{aligned} & \text { 1738:10, 1748:13, } \\ & \text { 1748:22, 1749:9, } \end{aligned}$
foods [1] - 1875:2	63:	885	802:20, 1883:	9:17, 1766:7
football [1] - 1816:7	fundamental [3]	gentleman	glasses [1] - 1737:21	767:5, 1769:1
force [1] - 1690:7 foregoing [1]-18	$1831: 25,1854: 24$, $1855: 1$	1813:7	Glibert [28] - 1659:7,	$\begin{aligned} & 778: 13,1781: 6, \\ & 782: 10,1783: 6, \end{aligned}$
forever [1]-1694:1	furthest [1] - 1717:20	1856:17	$22: 7,1822: 24$	1784:17, 1786:23
form [3]-1826:19,	future [16]-1742:6,	GEORGIA [1] - 1658:6	1823:3, 1823:10,	$\begin{aligned} & \text { 1793:13, 1795:12, } \\ & \text { 1797:19. 1799:18. } \end{aligned}$
format [1] - 1859:7	1759:6, 1759:12,			799:22, 1847:22,
former [1] - 1812:21	59:15, 1759:22	:21, 1665:2,	26:3, 1826:10	1858:24
forms [1] - 1827:11	60:5, 1760:11	5:2, 1686:18	26:23, 1832:1	Greenblatt's [6] -
formulation [1] -	1760:14, 1760:18,	699:25, 1720:22	46:12, 1846:16,	56:18, 1766:15
1671:23	61:4, 1762:12	721:2, 1722:12	47:1, 1848:2	776:18, 1777:6,
$\begin{aligned} & \text { forward [2] - 1814:17, } \\ & \text { 1825:1 } \end{aligned}$	$\begin{aligned} & \text { 1762:20, 1787:11 } \\ & 1796: 16 \end{aligned}$	$\begin{aligned} & \text { 1722:17, 1723:16 } \\ & \text { 1723:23, 1735:8, } \end{aligned}$	$\begin{aligned} & 858: 15,1862: 19, \\ & 865: 16,1865: 18, \end{aligned}$	$\begin{gathered} \text { 1859:14, 1869:18 } \\ \text { grew }[1]-1672: 18 \end{gathered}$
foundation	FWC [2] - 1706:	742:1, 1743:20	7:22, 1878:3,	grille [1] - 1693:10
1876:2	1815:3	45:22, 1746:3	1883:8, 1885	roceries [1] - 1812
```four [4] - 1712:12, 1806:11, 1808:5, 1808:6 fragile [1] - 1871:25```	FX-568 [1] - 1659:13	:8, 1	goal [1] - 1727:3	grocery [1] - 1811:25
	1669:1, 1669:12	1759:19, 1759:23	1736:22, 1801:	grow [19] - 1668:13,
	FX-866 [2] - 1659:14	760:2, 1764:9,	22:1	1671:14, 1673:20,
$\begin{aligned} & \text { Francisco [1] - } \\ & \text { 1880:23 } \end{aligned}$	1:14	$\begin{aligned} & \text { 1765:24, 1766:3, } \\ & \text { 1767:6, 1774:13, } \end{aligned}$	goodness [2] -   1794:8, 1795:11	$\begin{aligned} & \text { 1674:2, 1674:11, } \\ & \text { 1674:15, 1674:19, } \end{aligned}$
free [1]-1732:17   frequency [1] - 1782:2   frequent [1] - 1780:23	G	1775:8, 1790:20,		
	Gage [4]-1756:14,	$\begin{aligned} & \text { 1790:22, 1792:1, } \\ & \text { 1799:9, 1802:9, } \end{aligned}$	$\begin{aligned} & \text { government }[1] \text { - } \\ & 1814: 7 \end{aligned}$	$\begin{aligned} & 1689: 23,1697: 25, \\ & \text { 1808:14, 1808:18, } \end{aligned}$
	$\begin{aligned} & \text { 1781:9, 1859:13, } \\ & \text { 1859:19 } \end{aligned}$	1802:20, 1812:18,	gradual [1] - 1694:6	$\begin{aligned} & \text { 1808:14, 1808:18, } \\ & \text { 1820:17, 1820:20, } \end{aligned}$
frequently [3] -		1821:23, 1832:5,	gradually [1] - 1694:2	1821:21, 1827:9,
1872:5	$\begin{aligned} & \text { 1859:19 } \\ & \text { gage }[1]-1781: 11 \end{aligned}$	1832:14, 1832:18,   1860:6, 1860:20	graduate [1] - 1720:6	1828:11, 1830:23
fresh [6] - 1747:17,	$\begin{aligned} & \text { gage }[1]-1781: 11 \\ & \text { game }[1]-1816: 7 \end{aligned}$		grams [3] - 1747:10,1747:12. 1747:13	growing [2]-1676:21,
1789:20, 1792:9,	gaper [1] - 1696:22	$\begin{aligned} & \text { 1860:6, 1860:20, } \\ & \text { 1861:21, 1862:1, } \end{aligned}$		grown [1] - 1820:17
1792:25, 1811:9,	gasoline [1] - 1729:13	$\begin{aligned} & \text { 1861:21, 1862:1, } \\ & \text { 1862:8, 1867:3, } \end{aligned}$	Grant ${ }_{[1]}$ - 1690:6	
1811:10	general [25] - 1666:25,	1883:10, 1883:12,	graph [7] - 1667:15,	grows [3] - 1672:14,
	1680:15, 1706:4,	Georgia's [43] -	1694:11, 1782:3,	1672:23, 1828:10 growth [9] - 1665:23,
freshwater [20] - 1664:10, 1664:11,	1708:25, 1709:5,	1711:23, 1724:14,	$\begin{aligned} & \text { 1784:10, 1784:14, } \\ & \text { 1785:4, 1785:9 } \end{aligned}$	1672:22, 1673:3,
1739:2, 1787:5	退:14, 1716:24	1725:18, 1739:21,1742:10, 1742:18,	graphing [2] -	1676:20, 1689:2,
1790:14, 1792:11,	5,		1694:19, 1695:4grass [1] - 1828:10	$\begin{aligned} & \text { 1689:9, 1702:10, } \\ & \text { 1727:12, 1728:9 } \end{aligned}$
1793:7, 1795:23,	20:21, 1784:17	$\begin{aligned} & \text { 1742:10, 1742:18, } \\ & \text { 1743:9, 1744:10, } \end{aligned}$		
1796:3, 1822:9,	1791:6, 1795:19	1744:19, 1745:1, 1745:11, 1746:19,	grasses [2] - 1826:18,	Growth [1] - 1675:15 guidance [1] -
1830:9, 1847:17,	96:6, 1799:15,	$\begin{aligned} & \text { 1745:11, 1746:19 } \\ & \text { 1748:2, 1750:13, } \end{aligned}$	gravitas [1] - 1662:15	
1866:9, 1866:13,	$\begin{aligned} & 339: 3,1839: 8, \\ & 339: 12,1843: 2, \end{aligned}$	1748:2, 1750:13, 1751:15, 1752:1		1794:17
1866:25, 1868:6,	$\begin{aligned} & \text { 1839:12, 1843:2, } \\ & \text { 1843:17, 1845:19, } \end{aligned}$	$\begin{aligned} & \text { 1751:15, 1752:1, } \\ & \text { 1754:25, 1755:20 } \end{aligned}$	graze [1] - 1831:11	$1675: 23,1675: 24$
1868:14, 1868:18,	369:8, 1876:22,	761:5, 1761:18,	1870:24	$\begin{aligned} & \text { 1675:23, 1675:24, } \\ & \text { 1676:2, 1733:12, } \end{aligned}$
Friday [2] - 1703:23,1704:16	$\text { 1877:10, } 1880: 1$	62:3, 1762:13,		1676:2, 1733:12,
	generally [11] -	1763:6, 1764:2,	grazer [1] - 1838:4   grazers [2] - 1833:21,	1747:23, 1834:21,
front [3] - 1686:15,	1672:9, 1701:15,	1764:6, 1767:6,1768:3, 1768:16,	$\begin{aligned} & \text { 1836:5 } \\ & \text { great }[4]-1663: 11, \end{aligned}$	1868:15, 1869:3
1703:10, 1737:8	4, 1712:22			
fuels [1] - 1878:25		1770:1, 1773:8,	1669:9, 1708:17,	GX-0568 [1] - 1877:25
full [4]-1662:3,	1754:11, 1789:22	1773:21, 1775:1	greater [3] - 1790:11,	1813:18
1755:25, 1810:21,				
1874:11	generally-harves* ${ }^{\text {TH }}$	33:5,	1790:13, 1864:18	$\begin{gathered} \text { GX-568 [3] - 1659:16, } \\ 1690: 21,1734: 9 \end{gathered}$





1740:7, 1740:11,	1819:5, 1819:8,	1718:15, 1719:1,	1777:17, 1778:21,	M
1740:19, 1740:23,	1837:17, 1846:18,	1784:8, 1789:25,	1796:9, 1798:2,	ma'am [20] - 1801:24,
1741:1, 1741:3,	1846:21, 1848:15,	1795:1, 1795:10	1816:14, 1817:21,	802:1, 1803:12,
1783:7, 1783:10,	1848:16, 1851:12,	LOESS [1] - 1679:14	1820:10, 1866:8	1803:22, 1804:21,
1783:12, 1783:22,	1851:13	long-term [8] -	looks [6] - 1682:24,	1805:23, 1805:25,
1784:4, 1784:5,	lines [4]-1670:11,	1684:4, 1700:17,	1688:7, 1754:19,	1806:3, 1806:19,
1784:11, 1784:16,	1684:6, 1722:15,	1855:11, 1855:23,	1772:13, 1777:18,	1807:11, 1808:7,
1784:18, 1784:19,	1836:17	1856:2, 1856:11,	1796:21	1808:9, 1808:25,
1784:20, 1784:21,	link [6] - 1839:8,	1856:13, 1880:24	loss [1] - 1882:13	1809:10, 1809:15,
1785:1, 1785:5,	1845:17, 1853:7,	look [57] - 1665:12,	Louisiana [1] -	1810:4, 1810:16,
1785:7, 1785:10,	1886:18, 1886:24,	1672:25, 1674:22,	1794:16	1811:4, 1820:8,
1785:13, 1785:14,	1887:7	1675:13, 1676:24,	love [1] - 1805:3	1820:13
1785:17, 1785:20,	linkage [1] - 1876:18	1678:19, 1679:19,	low [52] - 1720:24,	macrozooplankton
1786:3, 1786:7,	linked [1] - 1876:6	1680:20, 1680:25,	1721:6, 1751:21,	[1] - 1836:19
1795:9, 1821:16,	linking [1] - 1880:7	1681:14, 1682:14,	1755:5, 1755:7,	madam [3] - 1663:21,
1829:9, 1830:6,	lip [1] - 1696:17	1683:14, 1684:23,	1755:8, 1755:10,	1674:8, 1682:11
1843:11, 1844:8, $1854: 4,1876: 25$	Lipcius [20]-1681:4,	$1690: 17,1693: 9$, $1703: 17,1704: 6$,	1761:14, 1762:20,	$\begin{aligned} & \text { magnitude }{ }^{[1]} \text { - } \\ & \text { 1807:12 } \end{aligned}$
1854:4, 1876:25	$\begin{aligned} & \text { 1681:7, 1681:24, } \\ & \text { 1684:8, 1684:23, } \end{aligned}$	$\begin{aligned} & \text { 1703:17, 1704:6, } \\ & \text { 1705:24, 1709:9, } \end{aligned}$	1773:25, 1775:14,	MAHONEY [1] -
1739:3, 1739:7,	1687:13, 1694:11,	1710:8, 1712:11,	1780:23, 1781:17,	1658:22
1742:19, 1744:17,	1700:24, 1711:3,	1712:22, 1713:1,	1782:2, 1782:6,	main [3] - 1776:13,
1744:19, 1744:25,	1711:12, 1711:22,	1717:2, 1717:13,	1796:22, 1798:25,	1776:15, 1818:11
1747:3, 1747:15,	1712:4, 1712:11,	1717:19, 1718:12,	1799:2, 1799:4,	Maine [5] - 1658:13,
1747:16, 1747:20,   1748:2, 1750:9	1712:21, 1715:14,	$\begin{aligned} & \text { 1731:19, 1738:24, } \\ & 1741: 7,1742: 4, \end{aligned}$	1799:6, 1830:13,	$\begin{aligned} & \text { 1658:15, 1871:18, } \\ & \text { 1871:22, 1890:3 } \end{aligned}$
1751:16, 1754:2,	$\begin{aligned} & \text { 1716:8, 1719:15 } \\ & \text { 1720:4, 1720:14 } \end{aligned}$	1744:15, 1749:9,	1834:19, 1839:18,	maintain [11] - 1763:1,
1754:5, 1757:2,	1723:5	1750:23, 1752:9,	1851:1, 1857:11,	1763:5, 1776:12,
1762:3, 1763:11,	Lipcius's [6] - 1679:3,	1759:21, 1759:25,	1857:14, 1863:10,	1830:8, 1830:24,
1768:2, 1768:9,	1679:13, 1679:22,	1767:3, 1767:20,	1863:13, 1863:15,	1831:5, 1831:14,
1772:2, 1773:8,	1681:11, 1687:15,	1768:12, 1769:23,	1864:6, 1865:22,	1843:14, 1863:9,
1827:13, 1829:9,	1719:22	1782:14, 1783:14,	1866:22, 1867:1,	1863:12, 1864:2
1830:25, 1831:3,	list [3]-1716:14	1784:24, 1794:9,	1870:21, 1871:6,	maintained [7] -
1838:24, 1839:10,	1853:11, 1853:16	1815:22, 1816:13,	1871:11, 1872:2,	1739:21, 1746:19,
1845:18, 1854:3	listed [2] - 1669:14,	1818:6, 1821:7,	1872:7, 1873:1,	1746:24, 1834:4,
life [6] - 1868:10,	1669:17	1825:9, 1825:16,	1873:16, 1874:15,	1834:23, 1842:22,
1871:25, 1874:1,	literat	1828:22, 1842:18,	1875:3, 1875:12,	1886:12
1877:2, 1877:4,	1673:3, 1673:16,	1856:10, 1879:20,	1884:18, 1888:9	maintaining [1] -
1882:6	1695:22, 1844:3,	1880:9, 1880:10	lower [30]-1665:2,	1830:17
$\begin{aligned} & \text { light }[2]-1662: 11, \\ & 1827: 9 \end{aligned}$	1845:20, 1847:6, 1849:12. 1849:14	$\begin{gathered} \text { looked [23] - 1673:16, } \\ 1690: 2,1690: 4, \end{gathered}$	$\begin{aligned} & \text { 1680:8, 1689:17, } \\ & \text { 1705:21, 1706:18, } \end{aligned}$	$\begin{gathered} \text { major }[6]-1688: 11, \\ 1713: 11,1717: 1, \end{gathered}$
lighter ${ }_{[1]}$ - 1753:15	1849:24, 1850:17,	1690:22, 1704:19,	1715:16, 1716:24,	1724:19, 1727:8,
lightly $[3]-1715: 4$,   1717:15, 1718.2	1851:25, 1852:18,	1709:14, 1711:6,	1717:6, 1721:12,	1878:24
1717:15, 1718:2	1852:24, 1874:23,	1712:16, 1717:7,	1731:2, 1790:15,	manage [1] - 1803:18
```lightly-harvested [1] - 1718:2```	$1877: 5,1877: 9$ 1879:17. 1882:1	$\begin{aligned} & \text { 1718:13, 1724:1, } \\ & \text { 1724:18, 1734:13, } \end{aligned}$	$\begin{aligned} & \text { 1795:24, 1796:3, } \\ & \text { 1798:23, 1824:18, } \end{aligned}$	$\begin{aligned} & \text { managed [2] - } \\ & 1800: 22,1804: 2 \end{aligned}$
likely [3] - 1708:13,	1883:7, 1885:21	1780:8, 1781:8,	1825:14, 1825:18,	management [9] -
1850:5, 1883:15	live [7] - 1696:15,	1781:15, 1789:23,	1845:21, 1853:3,	1663:14, 1663:18,
likewise [1] - 1773:6	1809:20, 1811:4,	1792:21, 1794:14,	1865:19, 1865:22,	1675:23, 1688:16,
limited [7]-1754:8,	1812:5, 1855:2,	1844:4, 1857:4,	1867:4, 1867:20,	1691:8, 1691:20,
1772:23, 1774:4,	1869:5, 1869:15	1857:7, 1880:15	1875:25, 1876:2,	1691:21, 1841:20,
1810:13, 1879:21,	living [1] - 1811:25	looking [28] - 1689:15,	1876:4, 1876:6,	1842:9
1880:2, 1880:3	Livingston [4] -	1691:14, 1698:4,	1876:14, 1876:19,	Management [4] -
limits [1] - 1814:14	1850:20, 1851:1,	1704:12, 1706:22,	1882:12	1675:8, 1690:25,
line [26]-1667:14,	1857:8, 1876:5	1711:11, 1711:12,	lowered [1] - 1721:14	1789:5, 1879:23
1681:23, 1681:25,	local [1] - 1871:21	1715:25, 1716:19,	lowest [2] - 1756:13,	manipulate [1] -
1682:5, 1682:23,	located [1] - 1792:8	1749:2, 1752:12,	1768:20	1859:25
1683:2, 1683:9,	Iocation [3] - 1719:4,	1756:12, 1757:1,	lunch [2] - 1778:7,	manner [2]-1729:7,
1684:14, 1684:16,	1719:6, 1798:8	1757:9, 1774:25,	1786:17	1785:6
1696:5, 1766:16,	locations [9]-168	REPOORTİNG	UP	map [18]-1717:7,

1715:15, 1716:23	numerical [2] -	1722:21, 1872:8	1778:24, 1780:25,	1825:14, 1828:13,
noon [1] - 1797:3	1786:25, 1824:21	occurs [1] - 1872:23	1785:12, 1789:11,	1828:15, 1828:17,
normal [2] - 1869:1,	numerous [1] -	Ocean [1] - 1787:20	1791:5, 1791:7,	1828:20, 1836:11, 1854•3, 1854•15
		OC	1793:14, 1817:24,	$\text { 1855:2, } 1867$
norms [1] - 1682:18	1848:4, 1848:5,	1854:11, 1854:14	1818:1, 1844:1,	1868:10, 1868:17,
North [3] - 1712:15,	1852:12, 1852:17,	October [21] -	1844:14, 1848:8,	1869:4, 1869:10,
1714:5, 1718:3	1852:23, 1868:3,	1751:18, 1751:21,	1858:20, 1859:12,	1869:14, 1870:19,
northeast [1] -	1868:7, 1869:6,	1752:13, 1752:24,	1861:2, 1872:14, 1876.25, 1880:21	1870:23, 1871:4, 1877:2. 1879:2.
1805:15	$1883: 23,1883: 25$, $1884: 24$	1753:1, 1755:1,	1876:25, 1880:21, 1881:15, 1885:1	1877:2, 1879:2, $1879.5,1883 \cdot 22$
northern [2] -		1761:6, 1761:17,	1889:8	orient [1] - 1777:11
northwest [1] -	$1878: 14,1879: 10$	1768:19, 1770:1,	ones [3] - 1711:12,	original [7] - 1671:18,
1805:15	nutrients [9]-	1770:2, 1771:7,	1717:20, 1861:2	1671:22, 1672:19,
$\begin{aligned} & \text { Northwest [1] - } \\ & \text { 1879:22 } \end{aligned}$	$\begin{aligned} & \text { 1830:23, 1866:16, } \\ & \text { 1878:25. 1879:3. } \end{aligned}$	1771:15, 1771:24, 1773:9, 1773:22,	ongoing [1] - 1841:2 open [4] - 1804:19,	$\begin{aligned} & \text { 1678:18, 1794:24, } \\ & \text { 1861:1, 1864:21 } \end{aligned}$
	1879:12, 1879:17	1773:9, 1773:22	1804:21, 1815:21	Original [2] - 1658:
$\begin{aligned} & \text { Notary [2] - 1658:15, } \\ & \text { 1890:2 } \end{aligned}$	$\begin{aligned} & \text { 1879:12, 1879:17, } \\ & \text { 1879:20, 1884:21, } \end{aligned}$	1818:2	1816:22	1723:9
$\begin{aligned} & \text { note }[3]-1669: 7, \\ & 1694: 17,1862: 3 \end{aligned}$	1887:3	OF [4] - 1658:1,	operate [1] - 1719:9	originally [2] - 1678:8,
	nutrition [9] $\text { 1853:19. } 1$	1658:3, 1658:6, 1658:9	operates [2] - 1693:16, 1727:2	
$\begin{gathered} \text { noted [4] - 1868:22, } \\ 1873: 4,1886: 16, \end{gathered}$	1874:11, 1875:13,	offering [1] - 1782:18	operations [1] -	OSCH [2] - 1658:19,
1886:22	1875:15, 1876:8,	official [7] - 1683:18,	1833:13	1797:17
Noted [7]-1726:14,	1876:25, 1882:11,	1692:10, 1692:21,	opine [1] - 1763:14	outcome [3] - 1701:9,
1726:16, 1797:6,	1883:1	1706:3, 1706:12,	opinion [14] -	1746:3, 1890:8
1797:8, 1858:8,	nutritional [5] - 1873.25, 1874	1710:18, 1715:18	1664:12, 1709:15,	outline [1] - 1749:22
1858:10, 1889:15	$1875: 1,1877: 11$	oftentimes [1] -	$1834: 14,1854: 21$	outside [6] - 1758:10
notes [2] - 1675:24,	1882:6	1778:21	1869:23, 1873:15,	1782:25, 1849:2,
$\begin{aligned} & \text { nothing [10] - } \\ & \text { 1661:11, 1732:20, } \end{aligned}$	nutritious [1] - 1866	old [6] - 1668:1, $1668 \cdot 3,1668 \cdot 5$,	1875:3, 1883:12, 1883:16. 1883:17.	1849:5, 1849:22,
1821:23, 1821:25,		1672:2	opinions [22] -	1788:15, 1799:23
$\begin{aligned} & \text { 1822:17, 1887:14, } \\ & 1888: 13,1888: 14 \end{aligned}$	$\begin{aligned} & \text { oath [4] - 1766:9, } \\ & \text { 1835:11, 1837:10, } \end{aligned}$	older [1] - 1667:2 oldest [1] - 1805:11	$\begin{aligned} & \text { 1738:12, 1740:10, } \\ & \text { 1740:13, 1740:14, } \end{aligned}$	$\begin{gathered} \text { overall }[7]-1727: 3, \\ 1845: 23,1845: 25, \end{gathered}$
Nova [1] - 1889:11		once [4]-1696:3,	1741:9, 1763:21,	1846:2, 1866:23,
November [2] 1658:13 188	1725:21, 1782:23,	$\begin{aligned} & \text { 1783:24, 1845:13, } \\ & \text { 1864:14 } \end{aligned}$	$\begin{aligned} & \text { 1782:18, 1789:15, } \\ & \text { 1845:22, 1845:24, } \end{aligned}$	1878:17, 1878:19 overfishing [2] -
Number [1] - 1659:11	1819:17, 1862:2	one [67] - 1663:20,	1846:2, 1846:5,	1731:8, 1731:10
number [28]-1670:4,	$\begin{array}{r} \text { observations [2] - } \\ 1700: 16,1730: 5 \end{array}$	1665:5, 1667:18, 1681:6, 1684:6,	$\begin{aligned} & \text { 1865:19, 1866:24, } \\ & \text { 1870:15, 1875:4, } \end{aligned}$	overharvest [4] - 1710.9, 1732.2
$\begin{aligned} & \text { 1677:7, 1683:16, } \\ & \text { 1686:11, 1691:13 } \end{aligned}$	observe [1] - 1807:13	$\begin{aligned} & \text { 1681:6, 1684:6, } \\ & \text { 1687:12, 1688:12, } \end{aligned}$	1875:8, 1875:9,	$\begin{aligned} & \text { 1710:9, 1732:2, } \\ & \text { 1733:23, 1734:20 } \end{aligned}$
1708:10, 1728:18,	observed [9] - 1677:3,	1695:17, 1695:20,	1876:18, 1878:10,	overharvesting [4]
1728:20, 1729:4,	1700:8, 1728:13,	1698:8, 1699:14,	1881:24	1665:1, 1709:7,
1729:7, 1729:8,	$\begin{aligned} & \text { 1728:18, 1745:4, } \\ & \text { 1745:6. 1756:13. } \end{aligned}$	$1700: 16,1700: 25,$	opposed [3] -	1709:16, 1732:21
1733:3, 1781:23,	$1859: 13,1859: 18$	$\begin{aligned} & 1701: 2,1701: 8 \\ & 1701: 25,1702: 21 \end{aligned}$	$\begin{aligned} & \text { 1718:20, 1834:22, } \\ & \text { 1840:20 } \end{aligned}$	own [8] - 1683:25,
$\begin{aligned} & \text { 1782:14, 1824:16, } \\ & 1831: 4,1838: 11, \end{aligned}$	obtain [1] - 1701:5	1703:6, 1703:25,	optimal [1] - 1763:7	1715:20, 1779:20,
1845:24, 1862:9,	$\begin{aligned} & \text { obtained [2] - 1672:4, } \\ & \text { 1695:17 } \end{aligned}$	1704:4, 1712:11,	order [16] - 1660:6,	1782:15, 1801:25,
1865:8, 1865:9,	occur [6] - 1757:25,	1715:7, 1717:20,	1664:21, 1687:9,	1885:6
$1865: 25,1866: 14$, $1872 \cdot 3,1872 \cdot 12$	1774:13, 1782:6,	$\begin{aligned} & 1718: 10,1719: 4 \\ & 1724: 5,1724: 19 \end{aligned}$	$\begin{aligned} & \text { 1690:14, 1693:17, } \\ & \text { 1700:6, 1707:24 } \end{aligned}$	owned [2] - 1800:21,
$\begin{aligned} & 1872: 3,1872: 12 \\ & 1872: 13,1874: 5 \end{aligned}$	1832:1, 1872:22,	$\begin{aligned} & \text { 1724:5, 1724:19, } \\ & \text { 1727:22, 1730:19, } \end{aligned}$	1708:2, 1728:12,	1804:1 oxygen [13] - 1870:
1881:5	1876:13 occurred	1731:2, 1738:20,	1781:16, 1787:9,	1870:13, 1870:14,
numbered [1] - 1781:2	1761:10, 1768:24,	1743:5, 1752:23,	$\begin{aligned} & \text { 1792:13, 1792:20, } \\ & \text { 1795:7, 1825:3, } \end{aligned}$	1870:16, 1870:18,
numbers [9] - 1669:4,	1770:5, 1771:18,	1752:24, 1753:1, $1754 \cdot 12,1754 \cdot 14$	1795:7, 1825:3, 1859:6	1870:19, 1871:2,
1685:8, 1686:15,	1774:8, 1774:17	1754:12, 1754:14,	1859:6	1871:3, 1871:6,
1711:11, 1715:25,	$1821: 5,1863: 15$	1754:17, 1755:16,	organism [1] - 1809.23	1871:11, 1881:8,
1749:3, 1757:10,		1758:8, 1758:11,	1809:23	1883:21, 1884:19
1791:23, 1878:14	Occurring [2] -	REPORTING	UPP isms [22] -	Oyster [8] - 1675:7,

1785:20, 1786:3,	1666:11, 1689:1,	1776:23, 1777:23,	1723:7, 1723:14,	1779:6, 1789:24,
1786:7	1689:7, 1689:9,	1782:11, 1782:14,	1723:21, 1724:2,	1790:9, 1790:10,
risk [1] - 1872:7	1689:12, 1689:17,	1782:15, 1782:16,	1724:8, 1724:25,	1790:11, 1796:10,
rivals [1] - 1880:22	1689:25, 1700:14,	1782:22, 1783:11,	1725:6, 1725:16,	1798:3, 1832:3,
River [12]-1754:9,	1700:17, 1702:6,	1783:13, 1783:21,	1725:17, 1726:4,	1832:8, 1832:15,
1756:10, 1757:24,	1702:11, 1703:3,	1784:4, 1784:8,	1739:18, 1741:22,	1858:17, 1858:23,
1780:9, 1781:10,	1713:6, 1714:15,	1784:13, 1784:16,	1741:24, 1742:6,	1859:5, 1859:10,
1792:4, 1792:12,	1716:13, 1716:16,	1785:17, 1786:8,	1742:9, 1742:14,	1859:12, 1860:25,
1792:19, 1856:9,	1716:22, 1717:12,	1786:12, 1787:1,	1742:17, 1744:15,	1861:3, 1861:9,
1856:15, 1856:24,	1717:23, 1718:1,	1787:4, 1787:8,	1744:16, 1744:18,	1861:14, 1861:16,
1857:3	1718:12, 1718:13,	1787:9, 1789:18,	1744:22, 1744:24,	1861:17, 1861:22,
river [20]-1713:12,	1718:15, 1718:20,	1792:4, 1792:6,	1745:3, 1745:11,	1862:10
1713:15, 1713:17,	1718:21, 1718:25,	1793:10, 1793:12,	1745:18, 1745:25,	science [5] - 1663:7,
$\begin{aligned} & \text { 1717:21, 1725:11, } \\ & \text { 1725:13, 1749:25, } \end{aligned}$	$\begin{aligned} & \text { 1719:1, 1719:5, } \\ & \text { 1721:18, 1726:6, } \end{aligned}$	$\begin{aligned} & \text { 1795:9, 1796:4, } \\ & \text { 1797:24, 1798:2, } \end{aligned}$	$\begin{aligned} & \text { 1746:5, 1746:6, } \\ & \text { 1748:3, 1748:8, } \end{aligned}$	$\begin{aligned} & \text { 1665:10, 1831:17, } \\ & \text { 1869:9, 1877:11 } \end{aligned}$
1750:3, 1754:15,	1732:19, 1732:25,	1798:5, 1798:7,	1750:10, 1750:15,	Sciences [1] - 1719:25
1754:21, 1769:16,	1733:6, 1733:23,	1798:10, 1798:14,	1750:18, 1751:17,	scientific [5] - 1710:8,
1772:14, 1772:23,	1738:12, 1738:15,	1798:17, 1799:1,	1752:1, 1754:3,	1710:12, 1727:20,
1774:5, 1781:11,	1738:24, 1739:3,	1799:3, 1799:5,	1754:25, 1755:15,	1729:7, 1729:21
1800:4, 1855:18,	1739:7, 1739:23,	1800:2, 1811:9,	1755:21, 1756:23,	scientifically [2] -
1855:19, 1855:21,	1740:8, 1740:12,	1830:22, 1847:12,	1758:17, 1758:19,	1729:16, 1730:1
1856:19	1741:7, 1741:9,	1852:2, 1868:12,	1759:6, 1759:15,	scientists [2] -
river-dominated [1] -	1741:24, 1742:4,	1868:14, 1868:22,	1760:5, 1760:15,	1691:13, 1691:19
1855:18	1742:19, 1744:17,	1869:1, 1869:4,	1760:19, 1761:1,	scope [6] - 1678:22,
$\mathbf{R M R}_{[2]} \text { - 1658:14, }$ $1890: 15$	$\begin{aligned} & \text { 1744:19, 1744:25, } \\ & \text { 1746:7, 1746:16, } \end{aligned}$	$\begin{aligned} & \text { 1869:11, 1869:12, } \\ & \text { 1869•17 1869:24 } \end{aligned}$	$\begin{aligned} & \text { 1761:5, 1762:12, } \\ & \text { 1762:13, 1762:21, } \end{aligned}$	1849:2, 1849:5,
rock [9]-1696:12,	1746:20, 1746:25,	1870:4, 1870:5,	1762:24, 1763:1,	1860:17
1696:14, 1697:1,	1747:3, 1747:6, 1747:15, 1747:16,	$\begin{aligned} & \text { 1872:6, 1872:7, } \\ & \text { 1875:8, 1883:20, } \end{aligned}$	$\begin{aligned} & \text { 1763:16, 1763:23, } \\ & \text { 1764:5, 1764:16, } \end{aligned}$	Scotia [1] - 1889:11
$\begin{aligned} & \text { 1718:14, 1718:18, } \\ & \text { 1718:19, 1719:3, } \end{aligned}$	1747:20, 1748:2,	1884:17	1764:17, 1764:23,	screen [15] - 1704:23, 1746:15, 1749:19,
1719:8, 1719:13	1748:7, 1750:9,	salt [7] - 1747:6,	1765:3, 1765:6,	1756:19, 1762:9,
ROMS [1] - 1787:21	1750:12, 1750:22,	1747:10, 1747:13,	1765:10, 1765:13,	1767:23, 1768:13,
room [1] - 1732:16	1751:3, 1751:6,	1868:15, 1868:20,	1765:23, 1766:2,	1771:12, 1773:4,
rotting [1] - 1871:2	1751:10, 1751:15, 1751:16, 1751:25,	1869:3, 1870:7	1766:24, 1766:25, 1768:3, 1768:9,	1773:18, 1777:8,
roughly [1] - 1696:7	1751:16, 1751:25, 1752:4, 1752:9,	saltwater [2] - 1747:24, 1888:5	1768:15, 1768:22,	$\begin{aligned} & \text { 1785:2, 1826:1, } \\ & \text { 1846:22, 1857:23 } \end{aligned}$
round [1] - 1806:7 run [7]-1723:1,	1752:14, 1753:6,	sampled [4] -	1769:2, 1769:11,	$\begin{aligned} & 1846: 22,1857: 23 \\ & \text { se }[1]-1688: 21 \end{aligned}$
1730:16, 1794:9,	$\begin{aligned} & \text { 1753:12, 1753:21, } \\ & \text { 1754:2, 1754:5, } \end{aligned}$	$1700: 20,1700: 25,$ 1701:7, 1839:23	$\begin{aligned} & \text { 1770:1, 1771:19, } \\ & \text { 1773:7, 1773:21, } \end{aligned}$	sea [31] - 1740:7,
1794:11, 1803:8, 1803:9, 1803:10	1754:24, 1755:11,	1701:7, 1839:23 sampling [7] -	1774:9, 1774:18,	$\begin{aligned} & \text { 1740:11, 1740:17, } \\ & \text { 1740:18, 1740:19, } \end{aligned}$
1803:9, 1803:10 running [2]-1695:3,	1755:15, 1755:23,	1698:22, 1699:4,	1774:22, 1775:24,	$\begin{aligned} & \text { 1740:18, 1740:19, } \\ & \text { 1740:23, 1741:1, } \end{aligned}$
1796:1	1757:2, 1757:18,	1699:6, 1701:17,	1777:22, 1790:3,	1741:3, 1783:7,
runs [1] - 1846:21	1757:20, 1757:21,	1729:22, 1840:18,	1790:4, 1790:5,	1783:10, 1783:12,
	1758:4, 1758:14,	1840:20	1790:6, 1795:22,	1783:22, 1784:4,
S	$\begin{aligned} & \text { 1761:4, 1761:5, } \\ & \text { 1761:10, 1761:18, } \end{aligned}$	$\begin{aligned} & \text { San }[1]-1880: 23 \\ & \text { sat }[1]-1789: 11 \end{aligned}$	$\begin{aligned} & \text { 1796:17, 1799:10, } \\ & \text { 1799:12, 1799:16, } \end{aligned}$	$\begin{aligned} & \text { 1784:5, 1784:11, } \\ & \text { 1784:16, 1784:18, } \end{aligned}$
Saint $[1]$ - 1805:14	1762:11, 1763:3, $1763 \cdot 7$ 1763:11	SAV [6] - 1826:17,	1859:15, 1859:16, 1859:17, 1859:19	1784:20, 1784:21,
saline [3] - 1719:7, 1745:20, 1745:23	1763:18, 1763:24,	$\begin{aligned} & \text { 1826:24, 1828:6, } \\ & \text { 1828:11, 1828:16, } \end{aligned}$	1860:3, 1860:6,	$\begin{aligned} & \text { 1785:1, 1785:5, } \\ & \text { 1785:7, 1785:10, } \end{aligned}$
salinities [15] -	1764:25, 1768:2,	1828:19	1860:11, 1860:18,	1785:13, 1785:14,
1690:3, 1713:14,	1768:9, 1768:15,	saw [7] - 1682:20,	1861:6, 1861:19,	1785:17, 1785:20,
1716:15, 1716:21,	1768:16, 1768:23, 1769:3, 1769:12,	1683:17, 1687:15, $1690: 5.1731: 13$	$\begin{aligned} & \text { 1861:25, 1862:7, } \\ & \text { 1862:13, 1869:21, } \end{aligned}$	1786:3, 1786:7
1717:5, 1717:6,	$1769: 20,1769: 25$	1690:5, 1731:13, 1747:1, 1866:4	1869:25, 1870:2,	Sea [1] - 1690:6
1719:11, 1783:19,	1771:1, 1772:1,	scale [4] - 1696:25,	1870:12	seafood [2] - 1803:14, 1871:18
1789:21, 1790:15,	1772:7, 1773:6,	1750:23, 1750:24,	scenarios [34]-	season [7] - 1755:5,
1795:24, 1800:7,	1773:8, 1773:13,	1751:5	1738:16, 1738:19,	1755:7, 1755:10,
1869:8	$\begin{aligned} & \text { 1773:20, 1773:21, } \\ & \text { 1774:1, 1774:12, } \end{aligned}$	scenario [114] -	$\begin{aligned} & \text { 1738:25, 1741:16, } \\ & \text { 1741:19, 1742:22, } \end{aligned}$	1782:4, 1814:23,
salinity [188] - 1664:9, 1665.2 1666.8	$1775: 9,1775: 15$	1722:4, 1722:7,	1712:12, 1744:14,	1815:7, 1815:17

