
No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,

Petitioner,
V.

ORACLE AMERICA, INC.,

Respondent.

On Petition for a Writ of Certiorari
to the United States Court of Appeals

for the Federal Circuit

MOTION FOR LEAVE TO FILE BRIEF OF 78
AMICI CURIAE AND BRIEF OF 78 AMICI

CURIAE COMPUTER SCIENTISTS IN
SUPPORT OF PETITIONER

Phillip R. Malone
Counsel of Record

JUELSGAARD INTELLECTUAL
PROPERTY AND
INNOVATION CLINIC

MILLS LEGAL CLINIC AT
STANFORD LAW SCHOOL

559 Nathan Abbott Way
Stanford, CA 94305
(650) 725-6369
pmalone@law.stanford.edu

Counsel for Amici Curiae

1
MOTION FOR LEAVE TO FILE BRIEF OF
AMICI CURIAE COMPUTER SCIENTISTS

Amici are 78 computer scientists, engineers, and
professors who are pioneering and influential figures
in the computer industry.1 Amici respectfully move,
pursuant to Supreme Court Rule 37.2, for leave to
file the attached brief of amici curiae in support of
the petition for a writ of certiorari. Based on their
extensive knowledge of and experience with software
development and the software industry, amici are
uniquely positioned to bring to the Court’s attention
important information that will not otherwise be
provided by the parties or other amici. Amici’s expert
historical, technical, and industry knowledge may be
of considerable help to the Court in this case.

Amici’s experience is exceptionally broad and
deep. Amici include the architects of iconic computers
from the mainframe era to the microcomputer
era, the most widely used programming languages,
and operating systems such as MS-DOS and
Unix. They are responsible for key advances
in the field, such as computer graphics, cloud
computing, public key cryptography, object-oriented
programming, virtual reality, and the Internet
itself. They wrote the standard college textbooks
in areas including artificial intelligence, algorithms,
computer architecture, computer graphics, computer
security, data structures, functional programming,
Java programming, operating systems, software
engineering, and the theory of programming languages.

As some of the world’s foremost experts
in their field, amici are well suited to provide

1 Amici’s biographies are attached as Appendix A to the
proposed brief.

2
the Court with an authoritative explanation of
computer interfaces, particularly the Java Application
Programming Interface (API) at issue in this case; of
the Federal Circuit’s fundamental misunderstanding
of how interfaces differ from programs; and of the
exceptional importance of this case. Moreover, as
computer scientists, amici have themselves relied
on reimplementing software interfaces to create and
operate new software. Amici bring an unparalleled
perspective to assist the Court in understanding this
case’s potential to upset the long-standing practices
and expectations of the software industry and the
innovation that has flourished under those practices
and expectations.

Many of the computer scientists listed on the
proposed brief were amici in four previous briefs in the
course of this litigation, including two briefs in support
of Petitioner on the merits at the Federal Circuit, one
brief in support of Petitioner’s petition for rehearing en
banc at the Federal Circuit, and one brief in support of
Petitioner’s first petition for a writ of certiorari to this
Court.

Pursuant to Rule 37.2(a), amici provided notice
of intent to file the attached brief at least ten days
before its due date. Petitioner provided blanket consent
for the filing of amicus briefs. Respondent declined
to consent.2 Because amici represent a cross section
of the world’s most distinguished computer scientists
and engineers, among the 78 amici are a small
number (five) who are current employees of Petitioner

2 Respondent indicated it would not consent if the brief
included any amici who were current Google employees,
independent contractors, or consultants, or who had served as
witnesses or retained experts in this case.

3
(indicated by * next to their names in Appendix A); two
who receive some support from Google (indicated by
**); two who testified as unpaid fact witnesses at trial
in this case (indicated by †); and one who was retained
as an expert by Petitioner but did not testify (indicated
by ‡).

Each of those amici signs this brief based on their
personal experience and beliefs as individual computer
scientists whose work in the field long preceded their
affiliation with Petitioner or their participation in this
case. They do not sign on behalf of Petitioner or
at its request. Their interest in this case, like that
of all of the other amici, is solely to help explain
to the Court the background, nature, and history of
APIs and the critical importance of software interface
reimplementation for continued innovation across the
computer industry.

Amici thus respectfully request leave to file
the attached amici curiae brief to aid the Court in
understanding the technical details of this case and its
exceptional importance.

4
Respectfully submitted,

Phillip R. Malone
Counsel of Record

JUELSGAARD INTELLECTUAL
PROPERTY AND
INNOVATION CLINIC

MILLS LEGAL CLINIC AT
STANFORD LAW SCHOOL

559 Nathan Abbott Way
Stanford, CA 94305
(650) 725-6369
pmalone@law.stanford.edu

February 25, 2019

TABLE OF CONTENTS

TABLE OF AUTHORITIES.................................... ii

INTEREST OF AMICI CURIAE............................. 1

SUMMARY OF ARGUMENT................................. 2

ARGUMENT.. 4

I. The Decisions Below Reflect the Federal
Circuit’s Fundamental Misunderstanding of
How Interfaces Differ from Programs.............. 4

A. Software Interfaces Specify What a
Program Does, Not How It Does So........... 5

B. Google Reimplemented the Java API to
Promote Interoperability and Transformed
Java to Run on Smartphones....................12

II. This Case Is Exceptionally Important Because
the Decisions Below Upend Decades of Settled
Expectations and Threaten Software
Innovation..16

A. The Computer Industry Has Long Relied
on Freely Reimplementing Software
Interfaces to Foster Innovation and
Competition..17

B. Restricting the Reimplementation of
Software Interfaces Will Stifle Competition
by Increasing Entry Barriers....................22

C. Restricting the Reimplementation of
Software Interfaces Will Exacerbate
Lock-In Effects and Create an “Orphan
Software” Problem....................................24

CONCLUSION...25

APPENDIX A — LIST OF AMICI CURIAE............1a

ii
TABLE OF AUTHORITIES

Cases Page(s)
Oracle Am., Inc. v. Google Inc. (Copyright I),

872 F. Supp. 2d 974 (N.D. Cal. 2012) ... passim
Oracle Am., Inc. v. Google Inc. (Copyright II),

750 F.3d 1339 (Fed. Cir. 2014)4, 13, 14, 15
Oracle Am., Inc. v. Google Inc. (Fair Use I),

2016 WL 3181206 (N.D. Cal. 2016)14, 16
Oracle Am., Inc. v. Google LLC (Fair Use II),

886 F.3d 1179 (Fed. Cir. 2018)5, 13, 15

Constitutions
U.S. Const. art. I, § 8, cl. 825

Statutes
17 U.S.C. § 101 ..6
17 U.S.C. § 102(b) ...5

Other Authorities
Cloud Storage Interoperability, Google Cloud

(last updated Oct. 23, 2018),
https://cloud.google.com/storage/docs/
interoperability ...21

TIOBE Index for December 2018, TIOBE (last
visited Dec. 5, 2018),
https://www.tiobe.com/tiobe-index9

Trail: Essential Classes (The JavaTM Tutorials),
Oracle (last visited Dec. 10, 2018),
https://docs.oracle.com/javase/tutorial/
essential/index.html16

Usage Statistics and Market Share of Unix for
Websites, W3Techs (Nov. 30, 2018),

https://cloud.google.com/storage/docs/interoperability
https://cloud.google.com/storage/docs/interoperability
https://www.tiobe.com/tiobe-index
https://docs.oracle.com/javase/tutorial/essential/index.html
https://docs.oracle.com/javase/tutorial/essential/index.html

iii
https://w3techs.com/technologies/details/
os-unix/all/all ..19

Dave Burke, Android: Celebrating a Big
Milestone Together with You, Google (May
17, 2017), https://blog.google/products/
android/2bn-milestone15, 19

Fred von Lohmann, The New Wave: Copyright
and Software Interfaces in the Wake of
Oracle v. Google,
31 Harv. J.L. & Tech. 517 (2018)23

Ira W. Cotton & Frank S. Greatorex, Jr., Data
Structures and Techniques for Remote
Computer Graphics, Am. Fed’n Info.
Processing Soc’ys Fall Joint Computer
Conf. 533 (1968) ..17

Jay Greene & Laura Stevens, “You’re Stupid If
You Don’t Get Scared”: When Amazon Goes
from Partner to Rival, Wall St. J. (June 1,
2018, 5:30 AM ET), https://www.wsj.com/
articles/how-amazon-wins-152784540223

Maurice V. Wilkes, David J. Wheeler & Stanley
Gill, The Preparation of Programs for an
Electronic Digital Computer (1951)17

Rita Zhang, Access Azure Blob Storage from
Your Apps Using S3 Java API, Microsoft
(May 22, 2016),
https://www.microsoft.com/developerblog/
2016/05/22/access-azure-blob-storage-
from-your-apps-using-s3-api21

Steven J. Vaughan-Nichols, Linux Totally
Dominates Supercomputers, ZDNet (Nov.
14, 2017, 12:04 PM PST),
http://www.zdnet.com/article/linux-

https://w3techs.com/technologies/details/os-unix/all/all
https://w3techs.com/technologies/details/os-unix/all/all
https://blog.google/products/android/2bn-milestone
https://blog.google/products/android/2bn-milestone
https://www.wsj.com/articles/how-amazon- wins-1527845402
https://www.wsj.com/articles/how-amazon- wins-1527845402
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
http://www.zdnet.com/article/linux-totally-dominates-supercomputers

iv
totally-dominates-supercomputers19

http://www.zdnet.com/article/linux-totally-dominates-supercomputers
http://www.zdnet.com/article/linux-totally-dominates-supercomputers

1
INTEREST OF AMICI CURIAE

Amici are 78 computer scientists, engineers, and
professors who are pioneering and influential figures
in the computer industry.1 Amici include the architects
of iconic computers from the mainframe era to the
microcomputer era, including the IBM S/360 and the
Apple II; languages such as AppleScript, AWK, C, C#,
C++, Delphi, Go, Haskell, PL/I, Python, RenderMan,
Scala, Scheme, Standard ML, Smalltalk, and
TypeScript; and operating systems such as MS-DOS
and Unix.2 Amici are responsible for key advances in
the field, including in computer graphics, computer
animation, computer system architecture, cloud
computing, algorithms, public key cryptography, the
theory of computation, object-oriented programming,

1 Pursuant to Rule 37.2(a), counsel for both parties received
notice of intent to file this brief at least ten days before its due
date. Petitioner consented to the filing; Respondent declined to
consent. No counsel for a party authored this brief in whole or
in part, and no party or counsel for a party made a monetary
contribution intended to fund its preparation or submission. No
person other than the amici or their counsel made a monetary
contribution to the preparation or submission of this brief.

2 Amici’s biographies are attached as Appendix A. Amici sign
this brief on their own behalf and not on behalf of the companies or
organizations with which they are affiliated; those affiliations are
for identification purposes only. Amici represent a cross section of
the world’s most distinguished computer scientists and engineers.
As such, the 78 amici include five who are presently Google
employees (indicated by * next to their names); two who receive
some support from Google (indicated by **); two who testified as
unpaid fact witnesses at trial in this case (indicated by †); and
one who was retained as an expert by Google but did not testify
(indicated by ‡). Each of these amici signs this brief based on their
personal experience and beliefs as individual computer scientists
whose work in the field long preceded their affiliation with Google
or their participation in this case. None sign on behalf of Google
or at Google’s request.

2
relational databases, design patterns, virtual reality,
the spreadsheet, and the Internet. Amici wrote the
standard college textbooks in areas including artificial
intelligence, algorithms, computer architecture,
computer graphics, computer security, data structures,
functional programming, Java programming, operating
systems, software engineering, and the theory of
programming languages.

Amici have been widely recognized for their
achievements. They include at least 12 Association for
Computing Machinery (ACM) Turing Award winners
(computer science’s most prestigious award); 24 ACM
Fellows; 11 Institute of Electrical and Electronics
Engineers (IEEE) Fellows; 14 American Academy
of Arts and Sciences (AAAS) Fellows; 6 National
Academy of Sciences Members; 24 National Academy of
Engineering Members; 5 National Medal of Technology
recipients; and numerous professors at many of the
world’s leading universities.

As computer scientists, amici have relied on
reimplementing interfaces to create fundamental
software. They join this brief because they believe,
based on their extensive experience with and
knowledge of computer software and programming,
that the decisions below threaten to upend decades of
settled expectations across the computer industry and
chill continued innovation in the field.

SUMMARY OF ARGUMENT

The Court should grant the petition for
a writ of certiorari. Review of the decisions
below is exceptionally important because they
undermine a fundamental process—software
interface reimplementation—that has spurred

3
historic innovation across the software industry for
decades.

Software interfaces, including those embodied in
the Java Application Programming Interface (API) at
issue here, are purely functional systems or methods
of operating a computer program or platform. They are
not computer programs themselves. Interfaces merely
describe what functional tasks a computer program
will perform without specifying how it does so. The
Java API’s functional interfaces, called declarations,
are written using the Java programming language,
which mandates each declaration’s precise form.

In contrast, implementations provide the actual
step-by-step instructions to perform each task included
in an interface. Sun implemented the Java API for
desktop computers. Google reimplemented—or wrote
its own original implementation of—the Java API when
it created the Android platform for smartphones and
tablets. Android was highly transformative: It enabled
programs written in the Java programming language
to successfully run on smartphones and tablets for the
first time. Doing so required Google to make significant
additions to the Java API to handle mobile-specific
features, like touchscreen inputs.

Android also provided interoperability with Java:
Programmers could use their preexisting knowledge to
simultaneously write Java programs for both desktops
and smartphones. Reimplementing the Java API
was the only way to make Android interoperable
with Java. Reimplementation requires duplicating an
interface’s declarations and organizational scheme—its
structure, sequence, and organization (SSO). Had
Android changed the Java API’s declarations or SSO,
programmers would have been forced to write different

4
software for desktops and smartphones, eliminating
one of Android’s most significant benefits.

Google’s reimplementation of an existing
interface was not unusual. Reimplementing software
interfaces is a long-standing, ubiquitous practice
that has been essential to realizing fundamental
advances in computing. It unleashed the personal
computer revolution, created popular operating
systems and programming languages, and established
the foundation upon which the Internet and cloud
computing depend. It also increases consumer choice,
lowers prices, and fosters compatibility between
programs. Free reimplementation of software
interfaces was, and continues to be, essential for
innovation and competition in software.

The Court should grant the petition for a
writ of certiorari to preserve software interfaces as
uncopyrightable and prevent copyright from stifling
innovation in software.

ARGUMENT

I. The Decisions Below Reflect the Federal
Circuit’s Fundamental Misunderstanding of
How Interfaces Differ from Programs

The decisions below extend copyright protection
to software interfaces—including the Java API—by
erroneously equating them with computer programs.
Asserting that software interfaces are simply a type
of computer program, all of which are “by definition
functional,” the Federal Circuit misapplied general
Ninth Circuit law recognizing computer programs as
copyrightable. See Oracle Am., Inc. v. Google Inc.
(Copyright II), 750 F.3d 1339, 1367 (Fed. Cir. 2014). But

5
software interfaces are not computer programs, and no
party argues that “one can copy line-for-line someone
else’s copyrighted computer program.” Oracle Am., Inc.
v. Google Inc. (Copyright I), 872 F. Supp. 2d 974, 987
(N.D. Cal. 2012).

The Federal Circuit’s conclusory review fails
to appreciate the district court’s reasoned—and
correct—recognition of software interfaces as
uncopyrightable under 17 U.S.C. § 102(b) and the
merger doctrine. See Copyright I, 872 F. Supp.
2d at 998-1000. The Federal Circuit compounded its
error by overturning a jury finding of fair use and
holding that Google’s creation of Android was not fair
use as a matter of law. See Oracle Am., Inc. v. Google
LLC (Fair Use II), 886 F.3d 1179, 1185-86 (Fed. Cir.
2018).

Amici join Google’s arguments that software
interfaces cannot be copyrighted under either Section
102(b) or the merger doctrine, and that in any event,
Google’s creation of Android was fair use. Brief
for Petitioner at 16-29, Google LLC v. Oracle Am.,
Inc., No. 18-956 (Jan. 25, 2019). In support
of those arguments, amici emphasize that software
interfaces correspond to functional ideas, that Google
had to duplicate the Java API’s declarations exactly
to provide interoperability between Android and Java,
and that Android was a transformative achievement
that successfully introduced Java to smartphones for
the first time.

A. Software Interfaces Specify What a
Program Does, Not How It Does So

A software interface specifies the set of commands
used to operate a computer program or system. Each

6
command defines one functional task a program must
accomplish, such as finding the maximum of two
numbers, sorting a list of numbers, or displaying text
on the screen.

Each command in an interface includes its
name, inputs, and outputs. Together, these comprise
the command’s “declaration.” The declaration for a
command to find the maximum of two numbers, for
example, would include the name “max,” two numbers
as inputs, and one number—the maximum—as output.
Declarations are purely functional: They specify what
a computer program or system needs to do without
specifying how it does so. By themselves, declarations
do not instruct a computer to do anything.

In contrast, an interface’s implementation is the
actual “set of statements or instructions to be used
directly or indirectly in a computer in order to bring
about a certain result,” namely, carrying out the tasks
specified by its declarations. 17 U.S.C. § 101 (defining
“computer program”). The same declaration can be
implemented in various ways to accomplish the same
task. Some implementations prioritize speed, others
memory use. So long as an implementation carries out
the specified task, it is valid. While the “specification
is the idea,” the “implementation is the expression.”
Copyright I, 872 F. Supp. 2d at 998 (emphasis in
original).

Because real-world software interfaces can
include thousands of declarations, programmers group
related declarations into their own “folders,” just as
everyday computer users group related files into folders
on their desktop. The courts and parties have referred
to this organizational scheme throughout this litigation

7
as the interface’s structure, sequence, and organization
(SSO).

i. Declarations specify the individual tasks
a program must perform

To better understand the relationship between
an interface’s declarations, implementations, and SSO,
consider the sort declaration in the Java API.3 In
English, this declaration would read, “Given a list of
numbers, sort them in ascending order.” To express
this functional requirement in terms a computer can
understand, a programmer would write the following
declaration in the Java language4:

public static void sort(int[] a)

Before explaining each component of this
declaration, we emphasize that this line does not
instruct the computer to do anything. If a programmer
attempted to run this “program,” nothing would happen
because there are no instructions to run. The line
simply indicates that this declaration’s implementation
will include a command, which Java calls a “method,”
for sorting numbers.

The Java language requires almost every word
in this declaration. A programmer must type those
words exactly as they appear above, including the same

3 Courier denotes Java keywords and declarations.
4 The Java language is one part of the Java platform (J2SE),

which also includes the API and API implementations (the latter
are also called “libraries”). While the boundary between the
language and the API is indefinite, the language is generally
responsible for defining the syntax and keywords programmers
use to write software. Only the API is at issue here. See Copyright
I, 872 F. Supp. 2d at 978.

8
capitalization, punctuation, and order. Otherwise, the
declaration will cause an error or specify a method
with different functionality, like sorting words instead
of numbers. The word public is a Java language
keyword that enables other programs to use sort
once it has been implemented (other keywords, like
private, restrict other programs’ access to a method).
Similarly, the Java language requires static for sort
to work as expected.5 The void keyword means that
the method does not have any output; rather than
output a sorted copy of the list, sort simply rearranges
the given list of numbers. Finally, the parentheses
enclose the method inputs. Here, the only input is the
list of integers to be sorted—designated by the Java
keyword int[].

In contrast, only two words in the declaration
leave the programmer any choice, and both are names.
The first is sort itself. This word descriptively names
the method based on the task its implementation
will perform. While it would be possible to use
a synonym—perhaps “arrange” or “order”—for the
same method, few names are as intuitive as sort to
describe the task this method’s implementation will
perform. Particularly short and intuitive names for
common operations like sort even become customary
terms of art used across interfaces.6 Because the

5 The Java language primarily views programs in terms of
interactions among “objects” representing the program’s data.
Related objects are members of the same “class.” Adding the
static keyword to a method declaration allows that method
to be called on all objects of a class even if the method could not
be added to the class directly, as is the case here. Thus, for sort
to work across any list of numbers, rather than one particular list,
its declaration must include static.

6 As of December 2018, seven of the top ten most used
programming languages (Java, Python, C++, Visual Basic .NET,

9
programmers who design and use a software interface
are typically different people, declaration names must
be intuitive and succinctly describe their purpose to
promote efficiency and minimize errors.

Similarly, a names the input “array,” or list,
of numbers to be sorted. Just as with sort, the
programmer designing the interface chooses the input’s
name. Other options could be “array,” “numbers,” or
“list.” But just as with sort, the universe of potential
names is small and further restricted by linguistic
convention. While software interface designers have
some choice for naming methods and inputs, the
method’s function, word length, and clarity constrain
their choice. Particularly for programming language
interfaces, which define the most basic commands used
across programs, there are few practical options for
naming declarations that satisfy these constraints.

ii. Implementations provide the
step-by-step instructions to perform the
tasks declarations specify

Once a software interface has been designed,
programmers can supply implementations to carry
out the tasks specified by its declarations. Google,
for example, wrote its own implementations for the
Java API’s declarations. Implementations take the
inputs listed in declarations and manipulate them
to produce the correct output. While the syntax
of the programming language dictates the form of
each declaration, implementations are open-ended
and can be thousands of lines long. Naïve

C#, JavaScript, and PHP) include a command called sort to
arrange a list in ascending order. See TIOBE Index for December
2018, TIOBE (last visited Dec. 5, 2018), https://www.tiobe.com/
tiobe-index.

https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index

10
implementations can be prohibitively slow or use
excessive amounts of memory. In contrast, clever
implementations can run quickly enough to make
formerly unfeasible operations practical or conserve
enough memory to allow programs to run on entirely
new hardware—such as phones, tablets, televisions, or
even home thermostats—that have far less memory
available than desktop computers.

Computer scientists have evaluated dozens of
implementations for sort. One of the simplest
implementations is “selection sort.” Given a list of
numbers, a selection sort implementation starts at
the beginning of the list and walks through number
by number, keeping a running tally of the smallest
number it has found. Once it reaches the end of the
list, it swaps the smallest number with the number
at the beginning of the list. Then, the program
searches through the remainder of the list a second
time, this time looking for the second smallest number
to swap into the second position. This process repeats
until the program has swapped every number into its
correct position. Unfortunately, this implementation is
prohibitively slow for large lists of numbers.

More sophisticated implementations for sort,
like “quicksort” or “mergesort,” can sort even large
lists efficiently. With modern data sets comprising
hundreds of millions or even billions of numbers,
names, or images, inefficient sorting implementations
like selection sort make entire categories of programs
impossible to use. Because different devices have
different constraints, software engineers devote
considerable effort to choosing the best implementation
to meet their specific needs. Their choice could mean
the difference between the success of two competing
pieces of software.

11
iii. SSOs establish how software interfaces

group related declarations

Because interfaces can include tens of thousands
of declarations, their designers organize related
declarations in the same way users organize related
files into folders on their desktop. In fact, Java’s
designers organized the Java API’s files in exactly this
way. See Figure 1.

Figure 1

Java’s API is organized in three tiers: packages,
classes, and methods. Packages correspond to folders,
classes to files, and declarations to individual lines
in a file. The full file path for sort, for example, is
java.util.Arrays.sort. The overall folder for the
interface is named java, while util, short for utility,
is the name of the package, or subfolder, containing
the API’s various general-purpose classes. One such
class, Arrays, is a file that contains methods for
manipulating lists of objects, like numbers. One of
the lines in Arrays is the declaration given above for
sort.

Programmers who reimplement, or provide their
own implementation for, an interface must maintain
its SSO. Just as users must know how to navigate to
their saved documents, programmers using a software
interface must specify the path for each declaration

12
they use, like sort, so that the computer knows where
to find the corresponding implementation. Telling a
person to click on “My Documents,” then on a folder
called “Receipts,” and finally on a file called “Sofa” to
find how much their sofa cost is just like a program
navigating through the Java API to a package called
util and opening a class called Arrays to find the
implementation for the sort method.

Changing this standard organizational scheme
would prevent a person or a program from locating
the file or implementation they need, rendering the
interface specification incompatible. Thus, while
interface designers have some choice in naming their
method declarations and inputs, programmers who are
reimplementing an existing interface, like Google did
with the Java API, must use the same standard names
and structure to achieve interoperability.

B. Google Wrote Its Own Implementation
of the Java API to Promote
Interoperability and Transform Java
to Run on Smartphones

Google created the Android platform to promote
interoperability and enable Java to run on an entirely
new class of devices: smartphones. This required
Google to reimplement the Java API: It duplicated
the Java API’s declarations and SSO but wrote its
own implementations. See Copyright I, 872 F. Supp.
2d at 978. It would have been impossible for Google to
make Android interoperable, or compatible, with Java
without reimplementing the Java API.7 In this context,
making software interoperable means reimplementing
a software interface.

7 Though we follow convention in using interoperability and
compatibility interchangeably, some computer scientists

13
In both of its opinions, the Federal Circuit

questioned Google’s claim that Android reimplemented
the Java API to promote interoperability with
Java because programs written for Android are
not fully compatible with Java. Fair Use II, 886
F.3d at 1206 n.11 (finding evidence “unrebutted”
that “Google designed Android to be incompatible
with the Java platform”); see also Copyright II,
750 F.3d at 1371 (finding “Google’s interoperability
argument confusing”). But complete compatibility
is not necessary, or even desirable, to promote
interoperability in software development.

Because of its longevity, Java, and almost
every other computer system, must remain
backwards-compatible. Any program written in
earlier versions of Java must also run on later versions,
or programmers would be unable to make cumulative
improvements and the software ecosystem would
break down. However, this also means that inefficient
or outdated software survives several generations of
software development solely to maintain compatibility.

To avoid this problem, Google selectively
reimplemented portions of the Java API for Android
to eliminate functionality that was obsolete or
inappropriate for smartphones, like using a mouse. See
Copyright I, 872 F. Supp. 2d at 978. Rather than copy

distinguish compatibility as one-way functionality and
interoperability as two-way functionality. For example, under
this distinction, new versions of Microsoft Word are compatible
with older versions because users can save documents in Word
2003 and open them in Word 2017. New versions of Word are
not interoperable, however, because the converse is not true. In
contrast, Oracle’s requirement that companies obtain a Java
Compatibility Kit (JCK) license to demonstrate “compatibility” is
merely a licensing scheme, not a technical necessity.

14
Sun’s implementations, Google was careful to write its
own implementations to carry out the tasks the Java
API’s declarations specify. Google’s decision empowered
software developers to write Java programs that run
equally well on both desktops and smartphones. See
Oracle Am., Inc. v. Google Inc. (Fair Use I), 2016 WL
3181206, at *10 (N.D. Cal. 2016).

Android was highly transformative. Amici agree
with the district court that “Sun and Oracle never
successfully developed its own smartphone platform
using Java technology.” Copyright I, 872 F. Supp.
2d at 978.8 Creating Android required Google to
significantly expand Java’s API in novel ways to
account for external features and constraints unique
to the smartphone context: built-in GPS tracking,
limited battery life and memory, fluctuating network
connections, and an entirely new user interface based
on touchscreen gestures. See Fair Use I, 2016 WL
3181206 at *9.

These significant augmentations to Java’s API
introduced Java to an entirely new Android platform
that, with over two billion monthly active devices,
now has the “largest reach of any computing platform
of its kind.” Dave Burke, Android: Celebrating
a Big Milestone Together with You, Google (May

8 While Sun did release Java ME to run Java on feature phones,
these devices are far less sophisticated than modern smartphones.
Moreover, Java ME did not support the entire Java language,
omitting basic features like numbers with decimal points (known
as floating point arithmetic). Finally, Java ME did not support key
Java API features like the Java Collections Framework, which is
part of java.util, a package necessary “to make any worthwhile
use of the [Java] language.” Copyright II, 750 F.3d at 1349. Thus,
Java ME was far less compatible with standard Java than Android,
and Java ME’s failure to include such core functionality only
underscores how transformative Android was.

,

15
17, 2017), https://blog.google/products/android/2bn-
milestone. Programmers using only the reimplemented
packages can write programs for desktops and
smartphones using the same familiar instructions.
Additionally, because Java and Android are both
open source (meaning anyone can read their
implementations), Google’s focus on interoperability
has enabled outside programmers, including many
amici, to contribute improvements to both platforms
simultaneously. Contrary to the Federal Circuit’s
assertion that there was no evidence of programs
that rely only on Google’s reimplemented packages,
or that “[no] such program would be useful,” Copyright
II, 750 F.3d at 1371 n.15, Java and Android form
parts of a broad and largely compatible ecosystem that
drastically simplifies writing software for desktops and
smartphones.

Android revitalized this ecosystem, inspiring
renewed innovation and collaboration among
programmers. Sun’s CEO publicly congratulated
Google upon Android’s release on his official company
blog and expressed support for Android. See Brief of
Defendant-Appellee/Cross-Appellant Google Inc. at
17-18, Fair Use II, 886 F.3d 1179 (Docket No. 17-1118),
2017 WL 2305681. Sun’s CEO also emailed Google’s
CEO directly to offer his congratulations on Android’s
success and to suggest further improvements. See id.
at 18-19. After acquiring Sun, even Oracle initially
praised Google for expanding Java to new devices. See
id. at 19.

Sun had always promoted the Java API, along
with the Java language, as free and open for all to use.
See id. at 9-10. Many amici, along with instructors at
high schools and colleges across the country, decided

https://blog.google/products/android/2bn-milestone
https://blog.google/products/android/2bn-milestone

16
to teach Java in introductory programming courses
precisely because of its free availability. Assertions
that the Java API might be copyrightable only emerged
after Oracle acquired Sun in 2010. While Oracle does
not dispute that the Java language is free and open for
all to use, it asserts a copyright interest in the Java API.
Copyright I, 872 F. Supp. 2d at 978. Even then, Oracle
concedes that at least sixty-two classes, spread across
three Java API packages, are necessary for the Java
language to work. Fair Use I, 2016 WL 3181206 at *5.

As professors, textbook authors, and industry
leaders, amici have broad experience with both
teaching and using the Java language and do not
consider it to be fully separable from the Java API.
Amici agree with the district court that “there is
no bright line” between them. Copyright I, 872 F.
Supp. 2d at 982. The API is part of what makes
the Java language, Java. Indeed, Oracle’s own online
tutorials consider portions of the Java API—including
packages like java.util.regex that it accuses
Google of infringing—“essential to most programmers”
for programming in Java. Trail: Essential Classes
(The JavaTM Tutorials), Oracle (last visited Dec. 10,
2018), https://docs.oracle.com/javase/tutorial/essential/
index.html.

II. This Case Is Exceptionally Important
Because the Decisions Below Upend
Decades of Settled Expectations and
Threaten Software Innovation

Software interfaces are essential to innovation.
For decades, programmers have relied upon
reimplementing interfaces to create fundamentally
transformative technologies. Reimplementing software
interfaces also promotes innovation by countering

,

https://docs.oracle.com/javase/tutorial/essential/index.html
https://docs.oracle.com/javase/tutorial/essential/index.html

17
network effects and lock-in effects that inhibit
competition. It is exceptionally important that the
Court review the decisions below to preserve software
interface reimplementation and the vitality of the
software industry.

A. The Computer Industry Has Long
Relied on Freely Reimplementing
Software Interfaces to Foster
Innovation and Competition

Oracle’s attempt to assert copyright in the Java
API is historically anomalous and jeopardizes the
unparalleled innovation and competition that continue
to flourish across the computer industry. The first
practical description of an API appeared in 1951,
see generally Maurice V. Wilkes, David J. Wheeler
& Stanley Gill, The Preparation of Programs for an
Electronic Digital Computer (1951), and the specific
phrase “application programming interface” dates
to at least 1968, see Ira W. Cotton & Frank S.
Greatorex, Jr., Data Structures and Techniques for
Remote Computer Graphics, Am. Fed’n Info. Processing
Soc’ys Fall Joint Computer Conf. 533, 534-35 (1968).
Programmers have freely reimplemented software
interfaces throughout the ensuing decades. By
creating standard specifications for computer programs
to communicate with each other, uncopyrightable
software interfaces have promoted competition in
personal computing and led to the rise of popular
operating systems, programming languages, the
Internet, and cloud computing.

18
i. Software interfaces unleashed the

personal computer revolution

Reimplementing software interfaces made
personal computing commonplace. IBM released its
first home computer in 1981. Software companies
developed an ecosystem of products to run on IBM’s
machine, including the popular spreadsheet program
Lotus 1-2-3. To run these programs, however, users had
to purchase IBM’s PC because the programs required
full compatibility with IBM’s basic input-output
system (BIOS) responsible for starting the operating
system and initializing the computer’s hardware
when turned on. To compete with IBM, other
computer manufacturers, like Compaq, and software
companies, like Phoenix, reimplemented the BIOS API,
including its SSO, to enable users to run their favorite
IBM-compatible software on competing machines.

Thus, reimplementing the BIOS API resulted
in the manufacture and sale of faster, cheaper, and
compatible alternatives to IBM’s PC, including DOS,
the operating system responsible for Microsoft’s early
success. If copyright had prevented competitors
from reimplementing IBM’s BIOS API and making
IBM-compatible PCs, companies like Microsoft would
never have been able to revolutionize personal
computing.

ii. Software interfaces created the world’s
most ubiquitous operating systems

Operating systems, the fundamental programs
responsible for managing all of a computer’s hardware
and software resources, depend on software interface
reimplementation. The first modern operating system,
Unix, was co-developed by amicus Ken Thompson

19
at AT&T Bell Labs and released in 1969. AT&T
licensed Unix’s source code to academic institutions for
a nominal fee, leading to widespread adoption. Because
commercial licenses from AT&T were costly and
restrictive, and because hardware evolutions outpaced
AT&T’s Unix API, programmers reimplemented the
API themselves.

Today, nearly 70% of websites run on Unix-based
operating systems, including the popular open source
operating system Linux. See Usage Statistics and
Market Share of Unix for Websites, W3Techs (Nov.
30, 2018), https://w3techs.com/technologies/details/os-
unix/all/all. Linux alone runs nearly 40% of Internet
servers and the 500 fastest supercomputers in the
world. See id; Steven J. Vaughan-Nichols, Linux
Totally Dominates Supercomputers, ZDNet (Nov. 14,
2017, 12:04 PM PST), http://www.zdnet.com/article/
linux-totally-dominates-supercomputers. Android’s
operating system, the most popular in the world, see
Burke, is itself built atop Linux. Apple, co-founded by
amicus Steve Wozniak, also reimplemented the Unix
API for its desktop OS X and mobile iOS operating
systems. Programmers’ ability to reimplement the
Unix API established a standardized design for the
fundamental program running on any computer: its
operating system.

iii. Software interfaces fueled widespread
adoption of popular programming
languages

One of the most influential programming
languages, C, became widespread due to the relative
ease of reimplementing its API to enable C programs
to run on different hardware. Open source enthusiasts
reimplemented a version of C compatible with Unix,

https://w3techs.com/technologies/details/os-unix/all/all
https://w3techs.com/technologies/details/os-unix/all/all
http://www.zdnet.com/article/linux-totally-dominates-supercomputers
http://www.zdnet.com/article/linux-totally-dominates-supercomputers

20
and industry leaders like Microsoft and Google
reimplemented C for their own products. Other popular
programming languages like C++, created by amicus
Bjarne Stroustrup, also proliferated due in part to
reimplementations of their APIs.

Similarly, Sun reimplemented existing APIs
for Java. Java reimplemented C’s math API,
which includes methods for calculating a variety of
mathematical functions. While at Sun, amicus Joshua
Bloch oversaw Sun’s reimplementation of the Perl
programming language’s regular expression API for
Java, which allows sophisticated text searches and
alterations. Oracle’s attempt to copyright Java’s API
and hold Google liable for infringement of the resulting
java.util.regex API ignores Java’s own history of
API reimplementation.

iv. Software interfaces enable computer
networks, including the internet, to
function

The Internet relies on programmers’ ability
to reimplement standardized interfaces to transmit
data. Copyrighting those interfaces would defeat
the Internet’s goal of creating a global network of
interconnected computers. In 1983, the Berkeley
Systems Research Group released the Berkeley
Systems Distribution (BSD) sockets API. Sockets
control the endpoints for any communication over
the Internet. Because the BSD sockets API was
not copyrighted, it became widely adopted: Every
major operating system reimplemented it to enable
Internet communication. Thus, programmers can write
standardized software compatible across computers to
manage Internet connectivity.

21
v. Software interfaces are fundamental to

cloud computing

Finally, reimplementing software interfaces has
been, and continues to be, fundamental to cloud
computing. With cloud computing, developers can rent
powerful computer hardware to run resource-intensive
computations, like machine-learning algorithms,
without having to purchase and manage expensive
hardware themselves. Amazon’s Web Services (AWS)
API serves as the de facto industry standard for cloud
computing. AWS itself reimplemented IBM’s BIOS API,
enabling familiar BIOS commands to run on Amazon’s
servers. AWS therefore allows programmers to write
programs as if they were running on a standard PC
rather than learn commands unique to Amazon.

Major competitors, including Microsoft and
Google, have in turn adopted AWS’s API. See
Rita Zhang, Access Azure Blob Storage from Your
Apps Using S3 Java API, Microsoft (May 22,
2016), https://www.microsoft.com/developerblog/
2016/05/22/access-azure-blob-storage-from-your-
apps-using-s3-api; Cloud Storage Interoperability,
Google Cloud (last updated Oct. 23, 2018),
https://cloud.google.com/storage/docs/interoperability.
Rather than compete on the API’s design, cloud
providers compete on business factors—like price
and customer service—and on implementation
factors—like latency, downtime, and redundancy.
Software interface reimplementation therefore fosters
competition in the cloud by allowing customers to
transfer their data or programs to competing cloud
providers that offer cheaper or better service without
having to learn an entirely new interface or rewrite
their software to conform to a new specification.

https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://cloud.google.com/storage/docs/interoperability

22
B. Restricting the Reimplementation

of Software Interfaces Will Stifle
Competition by Increasing Entry
Barriers for Startups

The decisions below jeopardize the market for
software. Reimplementing software interfaces enables
startups to counter network effects and compete with
established players. Network effects arise when a
service’s value increases along with its number of
users. They make users unlikely to switch even to
technically “better” competing software services that
have not yet established a large userbase because
much of a service’s value comes from its community of
users and its secondary market of compatible services.
For example, a developer might choose not to learn
a new programming language unless it is used by
potential employers, even if that language is more
intuitive than others and produces efficient results.
On the other hand, an archaic language used by
institutional employers is worth learning, regardless of
its inefficiencies. Uncopyrightable software interfaces
address network effect barriers by enabling startups
to plug into existing systems and grow through
cumulative improvements.

Just as the first car would look laughable
today, the first word processing software would be a
laughable replacement for modern applications. Yet
a steering wheel, turn signals, and gas and brake
pedals have been standard in cars for over a century.
If Tesla had to re-invent the standard driving interface
to make electric-powered cars, it would face high
barriers in attracting new customers. See Fred von
Lohmann, The New Wave: Copyright and Software
Interfaces in the Wake of Oracle v. Google, 31 Harv.

23
J.L. & Tech. 517, 517 (2018). In software, treating
interfaces as copyrightable would be like requiring car
manufacturers to invent a substitute for the steering
wheel. Startups would not risk manufacturing such a
car, and even if they did, consumers likely would not
purchase it.

Furthermore, extending copyright to software
interfaces would enable companies, like Sun, to
monopolize standard interfaces. Companies could
initially make their interfaces freely available to
lure developers to their platform, and then, after
attracting a significant number of developers, demand
a licensing fee for further use. These fees would
be passed on to consumers, making software more
expensive. Copyrightable interfaces could also curtail
employee mobility because different employers would
use competing proprietary APIs, and employees with
expertise in one proprietary API would be less
desirable to employers using another. Innovation could
stagnate.

Amazon, for example, could follow Oracle’s lead
and use the decisions below to force every company
that has reimplemented its cloud storage APIs to
pay a licensing fee, stifling competition in a vibrant
market valued at $42 billion in 2017 and projected to
reach $72 billion by 2019. See Jay Greene & Laura
Stevens, “You’re Stupid If You Don’t Get Scared”: When
Amazon Goes from Partner to Rival, Wall St. J. (June
1, 2018, 5:30 AM ET), https://www.wsj.com/articles/
how-amazon-wins-1527845402. Amazon could gain
a monopoly over cloud storage until its competitors
redesigned their systems from scratch to avoid
infringing on Amazon’s APIs. The decisions below will
make copyright an additional tool for incumbents to
stave off competition.

https://www.wsj.com/articles/how-amazon- wins-1527845402
https://www.wsj.com/articles/how-amazon- wins-1527845402

24
Relying on fair use is no answer. A fair use

standard creates uncertainty because it depends on
fact-intensive, case-by-case determinations which can
result, as demonstrated by this case, in lengthy and
prohibitively expensive litigation. Rather than risk
crippling lawsuits, startups will choose not to enter the
market at all or will undertake inefficient workarounds.
Conditioning API reimplementation on fair use would
impede innovation and competition almost as much
as denying reimplementation outright: Users will
suffer from fewer product choices, higher prices, and
incompatible software.

C. Restricting the Reimplementation of
Software Interfaces Will Exacerbate
Lock-In Effects and Create an “Orphan
Software” Problem

Reimplementing software interfaces protects
consumers from lock-in effects by promoting
interoperability among operating systems, programs,
and Internet browsers. Consumers depend on
operating systems that run on their hardware,
programs that run across operating systems, and
Internet applications that run across browsers. Under
the decisions below, software interfaces enabling
interoperability might require expensive licenses, and
their owners could significantly restrict their use.
Consumers will face higher prices and fewer choices.
Software will become harder to use because switching
to a competing service will require users to learn an
unfamiliar interface. Rather than switch to more
innovative software, users will remain locked in to
outdated systems.

If software interfaces are copyrightable, it
will become economically infeasible to continue

25
using orphan software, i.e., software no longer
supported or updated by its creator. Previously,
when copyrighted software became unsupported,
developers could reimplement its interface to allow
it to run on new systems. When NASA needed
to refurbish old manufacturing robots for a project,
for example, it contracted with a company to
reimplement the interface necessary for integrating
newly manufactured memory chips with the old robot
hardware. Had the interface been copyrighted, NASA
would have needed to purchase new robots at a
significantly higher cost.

Restricting the reimplementation of software
interfaces could make generations of software unusable
by the people and organizations who paid for them,
hindering, rather than promoting, “the Progress of
Science and useful Arts.” U.S. Const. art. I, § 8, cl.
8. Copyrightable interfaces would particularly harm
public, nonprofit, and research-based entities because
of their limited resources, undermining crucial services
for public health and safety, national defense, and
access to justice.

CONCLUSION

The Court should grant the petition for a writ
of certiorari to review the decisions below and ensure
continued innovation and competition in the software
industry.

26
Respectfully submitted,

Phillip R. Malone
Counsel of Record

JUELSGAARD INTELLECTUAL
PROPERTY AND
INNOVATION CLINIC

MILLS LEGAL CLINIC AT
STANFORD LAW SCHOOL

559 Nathan Abbott Way
Stanford, CA 94305
(650) 725-6369
pmalone@law.stanford.edu

February 25, 2019

1a
APPENDIX A — LIST OF AMICI CURIAE

(In alphabetical order)

Amici sign this brief on their own behalf and
not on behalf of the companies or organizations with
which they are affiliated; those affiliations are for
identification purposes only.1

1. Harold Abelson.** Dr. Harold “Hal” Abelson is a
Professor of Electrical Engineering and Computer
Science at MIT, a fellow of the IEEE, and a founding
director of both Creative Commons and Public
Knowledge. He directed the first implementation of
the Logo computing language for the Apple II, which
made the language widely available on personal
computers beginning in 1981, and published a
popular book on Logo in 1982. Abelson co-developed
MIT’s introductory computer science subject, which
included innovative advances in curricula designed
for students pursuing different kinds of computing
expertise. These curricula had a worldwide impact
on university computer science education. Notable
awards include the Bose Award (MIT School of
Engineering, 1992), the Taylor L. Booth Education
Award (IEEE-CS, 1995), and the SIGCSE 2012
Outstanding Contribution to Computer Science

1 The * indicates five amici who are current Google employees,
** indicates two amici who receive some support from Google, †

indicates two amici who testified as unpaid fact witnesses at trial
in this case, and ‡ indicates one amicus who was retained as an
expert by Google but did not testify at trial. Each of these amici
sign this brief based on their personal experience and beliefs
as individual computer scientists whose work in the field long
preceded their affiliation with Google or their participation in this
case.

2a
Education (ACM, 2012). Abelson holds an A.B. from
Princeton University and a Ph.D. in mathematics
from MIT.

2. Brian Behlendorf. Brian Behlendorf is Executive
Director of Hyperledger, an open source blockchain
technology collaborative based at the Linux
Foundation. He also serves as Chairman of the
Board of the Electronic Frontier Foundation, and a
member of the boards of the Mozilla Foundation and
Benetech. He also co-founded the Apache Software
Foundation, has worked as CTO for the World
Economic Forum, advised and served the White
House on open data and open source software issues,
and co-founded a string of successful startups.

3. Jon Bentley. Jon Bentley’s research interests
include programming techniques, algorithm design,
and the design of software tools and interfaces.
He has written three books on programming and
over a hundred articles on a variety of topics,
ranging from the theory of algorithms to software
engineering. He received a B.S. from Stanford in
1974 and an M.S. and Ph.D. from the University
of North Carolina in 1976, then taught Computer
Science at Carnegie Mellon for six years. He joined
Bell Labs Research in 1982, where he became a
Distinguished Member of Technical Staff. He left
Bell Labs in 2001 to join Avaya Labs Research, from
which he retired in 2013. He has been a visiting
faculty member at West Point and Princeton, and
has been a member of teams that have shipped
library functions, software tools, telephone switches,
telephones and web services. He holds over 40 US
Patents. In March 2000 he received the Dr. Dobb’s

3a
Excellence in Programming Award for “advancing
the craft of computer programming.”

4. Matthew Bishop. Matthew Bishop received his
Ph.D. in computer science from Purdue University,
where he specialized in computer security, in
1984. He is on the faculty at the Department of
Computer Science at the University of California
at Davis. His main research area is the analysis
of vulnerabilities in computer systems, including
modeling, detecting, and analyzing them. Currently,
he has research projects involving data sanitization,
modeling election processes, and analyzing attacks.
He is co-leading an education project aimed at
improving the practice of programming using
a “secure programming clinic” to help students
improve the robustness and security of their
programs. He has been active in the area of
UNIX security since 1979, and has presented
tutorials at SANS, USENIX, and other conferences.
He also has done work on electronic voting, and
was one of the two principle investigators of the
California Top-to-Bottom Review, which performed
a technical review of all electronic voting systems
certified for use in the State of California. His
textbook, Computer Security: Art and Science
(Addison-Wesley, 2002), is used at many academic
institutions throughout the world.

5. Joshua Bloch.† Joshua Bloch is an expert on API
design, with over a quarter century of experience.
He is a Professor of Computer Science at Carnegie
Mellon University. Previously, he was Chief Java
Architect at Google, a Distinguished Engineer at
Sun Microsystems, and a Senior Systems Designer
at Transarc Corporation. He led the design

4a
and implementation of numerous Java APIs and
language features, including the award-winning
Java Collections Framework. He is the author
of several books, including the bestselling, Jolt
Award-winning Effective Java (Addison-Wesley,
2001; Second Edition, 2008), the de facto standard
guide to Java best practices. He served on the
National Academies CSTB Certifiably Dependable
Software Committee. He holds a B.S. from Columbia
and a Ph.D. in Computer Science from Carnegie
Mellon University.

6. Gilad Bracha. Gilad Bracha is the creator of
the Newspeak programming language and a well
known researcher in the area of object-oriented
programming languages. He was awarded the
senior Dahl-Nygaard prize in 2017. Previously, he
has worked at Google, as a VP at SAP Labs in
Palo Alto, a Distinguished Engineer at Cadence,
and a Computational Theologist and Distinguished
Engineer at Sun. He has authored or co-authored
several books including the Java Language and
Virtual Machine Specifications, and the Dart
Programming Language. Prior to joining Sun, he
worked on Strongtalk, the Animorphic Smalltalk
System. He received his B.Sc in Mathematics and
Computer Science from Ben Gurion University in
Israel and a Ph.D. in Computer Science from the
University of Utah.

7. Daniel Bricklin. Daniel “Dan” Bricklin is best
known for conceiving and co-developing VisiCalc,
the pioneering electronic spreadsheet, while he was
a student at the Harvard Business School. VisiCalc,
released in 1979, is widely credited for fueling the
rapid growth of the personal computer industry.

.

5a
There is a direct line of upward-compatibility
for data files from VisiCalc to Lotus 1-2-3 to
Microsoft Excel and then to Google Docs. Prior
to VisiCalc, he worked at Digital Equipment
Corporation developing early screen-based word
processing software. He is the author of a popular
app for the Apple iPad, and is currently Chief
Technology Officer of Alpha Software Corporation.
Mr. Bricklin is a member of the National Academy
of Engineering, a Fellow of the Computer History
Museum, an Association for Computing Machinery
(ACM) Fellow, and a recipient of the ACM Software
System Award, the ACM Grace Murray Hopper
Award, and the Western Society of Engineers
Washington Award. Mr. Bricklin holds a BS in
Electrical Engineering/Computer Science from MIT
and an MBA from the Harvard Graduate School of
Business Administration.

8. Frederick Brooks. Frederick Brooks is the
Kenan Professor of Computer Science (Emeritus)
at University of Northern Carolina at Chapel
Hill. As Corporate Project Manager for IBM’s
System/360 (mainframe) computer family hardware
and the Operating System/360 software, he in 1964
switched the standard computer byte size from
6 to 8 bits. He was an architect of the Stretch
and Harvest supercomputers. He founded UNC’s
Computer Science Department. He’s researched
computer architecture, software engineering, the
design process, and graphics virtual environments.
He wrote The Mythical Man-Month, The Design
of Design, and with G.A. Blaauw, Computer
Architecture. Honors include the National Medal of
Technology, the ACM Turing award, the National

6a
Academies of Engineering and Sciences, and British
and Dutch academies.

9. Edwin Catmull. Edwin “Ed” Catmull is co-founder
of Pixar Animation Studios and was president
of Pixar Animation and Disney Animation, vice
president of Lucasfilm Computer Division, and head
of the Computer Graphics Laboratory at the New
York Institute of Technology. He is an architect
of the RenderMan rendering software, which was
used in 44 of the last 47 films nominated for an
Academy Award in the Visual Effects category.
Catmull was honored with five Academy Awards
including the Gordon E. Sawyer Award for lifetime
achievement in the field of computer graphics. He
also holds the IEEE John von Neumann Medal for
pioneering contributions to the field of computer
graphics, the ACM SIGGRAPH Steven Anson Coons
Award for Outstanding Creative Contributions to
Computer Graphics, the Carnegie Mellon University
Entertainment Technology Center Randy Pausch
Award, the Progress Medal and the Fuji Gold Medal
awards from the Society of Motion Picture and
Television Engineers, and the animation industry’s
Ub Iwerks Award for technical advancements in the
art or industry of animation. Catmull is a Fellow
of the Association for Computing Machinery, the
Computer History Museum, and the Visual Effects
Society. He received his Ph.D. in computer science
from the University of Utah.

10. Rick Cattell.‡ R. G. G. “Rick” Cattell is an
independent consultant in database systems. He
previously worked as a Distinguished Engineer at
Sun Microsystems. Dr. Cattell served for 20 years
at Sun Microsystems in management and senior

7a
technical roles, and for 10 years in research at
Xerox PARC and Carnegie Mellon University. He
is best known for his contributions in database
systems and middleware, including database
scalability, Enterprise Java, object/relational
mapping, object-oriented databases, and database
interfaces. At Sun he instigated Enterprise
Java, JDBC, Java DB, and Java Blend, and
contributed to many Java APIs and products.
He previously developed Xerox PARC’s Cedar
DBMS, Sun’s Simplify database GUI, and SunSoft’s
CORBA-database integration. He is a co-founder
of SQL Access (predecessor to ODBC), founder
and chair of the Object Data Management Group
(ODMG), author of the world’s first monograph on
object/relational and object databases, recipient of
the ACM Outstanding Ph.D. Dissertation Award,
and an ACM Fellow.

11. Vinton G. Cerf.* Vinton G. “Vint” Cerf is an
Internet pioneer, and VP and Chief Internet
Evangelist for Google, where he contributes to
global policy development and the continued spread
of the Internet. Widely known as one of the
“Fathers of the Internet,” Cerf is the co-designer
of the TCP/IP protocols and the architecture of
the Internet. He has served in executive positions
at MCI, the Corporation for National Research
Initiatives, the Defense Advanced Research Projects
Agency, and on the faculty of Stanford University.
Cerf served as chairman of the board of the Internet
Corporation for Assigned Names and Numbers
(ICANN) from 2000-2007. Cerf is a Fellow of
the IEEE, ACM, and the American Academy of
Arts and Sciences, the International Engineering
Consortium, the Computer History Museum, and is

8a
a member of the National Academy of Engineering.
He is a former President of the ACM and Founding
President of the Internet Society. President Obama
appointed him to the National Science Board in
2012. Cerf is a recipient of numerous awards and
commendations in connection with his work on the
Internet, including the US Presidential Medal of
Freedom, US National Medal of Technology, the
Queen Elizabeth Prize for Engineering, the ACM
Turing Award, Officer of the Legion d’Honneur and
29 honorary degrees. In December 1994, People
magazine identified Cerf as one of that year’s “25
Most Intriguing People.” Cerf holds a B.S. from
Stanford, and an M.S. and Ph.D. from UCLA.

12. David Clark. David Clark received his PhD
from MIT in 1973. He is a Senior Research
Scientist at the MIT Computer Science and Artificial
Intelligence Laboratory. He is technical director
of the MIT Internet Policy Research Initiative.
Since the mid-70s, he has been leading the
development of the Internet; from 1981-1989
he acted as Chief Protocol Architect in this
development, and chaired the Internet Activities
Board. He is past chairman of the Computer Science
and Telecommunications Board of the National
Academies, and has contributed to a number of
studies on the societal and policy impact of computer
communications. He is a member of the National
Academy of Engineering and the American Academy
of Arts and Sciences, and serves as a member of
the Academy Council. His recently published book,
Designing an Internet, discusses the key role that
modularity and open interfaces played in the success
of the Internet.

9a
13. William Cook. William Cook is an Associate

Professor in the Department of Computer Sciences
at the University of Texas at Austin. His
research is focused on object-oriented programming,
programming languages, modeling languages, and
the interface between programming languages and
databases. Prior to joining UT in 2003, Dr. Cook
was Chief Technology Officer and co-founder of
Allegis Corporation. He was chief architect for
several award-winning products, including the
eBusiness Suite at Allegis, the Writer’s Solution
for Prentice Hall, and the AppleScript language at
Apple Computer. At HP Labs his research focused
on the foundations of object-oriented languages,
including formal models of mixins, inheritance, and
typed models of object-oriented languages. He
completed his Ph.D. in Computer Science at Brown
University in 1989. He recieved the Dahl-Nygaard
Senior Prize in 2014 for his contributions to the
theory and practice of object-oriented programming.

14. Miguel de Icaza. Miguel de Icaza is currently
a Distinguished Engineer at Microsoft and was
an early contributor to Linux projects. In 1997,
he co-founded the GNOME project, with the goal
to create a completely free desktop environment.
In 2001, he co-founded and directed the Mono
Project, with the goal to reimplement Microsoft’s
.NET development platform on Linux. He has
started two companies: Ximian in 1999, which
focused on the Linux desktop and was sold to
Novell in 2003; and Xamarin which was founded
in 2011 to build mobile development tools and
was sold to Microsoft in 2016. He has received
numerous awards and recognitions including: the
Free Software Foundation Free Software Award,

10a
the MIT Technology Review Innovator of the Year
Award, and was named one of Time Magazine’s 100
innovators for the new century.

15. Jeffrey Dean.* Jeff Dean joined Google in 1999
and is currently one of two Senior Fellows
in the company, where he leads Google’s
Research, AI and Health efforts. He has
co-designed/implemented five generations of
Google’s crawling, indexing, and query serving
systems, and co-designed/implemented major pieces
of Google’s initial advertising and AdSense for
Content systems. He is also a co-designer and
co-implementor of Google’s distributed computing
infrastructure, including the MapReduce, BigTable
and Spanner systems, protocol buffers, LevelDB,
systems infrastructure for statistical machine
translation, the TensorFlow open-source machine
learning system, and a variety of internal and
external libraries and developer tools. Prior to
joining Google, Jeff did computer systems research
at Digital Equipment Corporation’s Western
Research Lab. Jeff has also worked for both the
Centers for Disease Control and the World Health
Organization, designing computer software for
epidemiology and for statistical analysis of the
HIV/AIDS pandemic. He is a Fellow of the ACM and
the AAAS, a member of the U.S. National Academy
of Engineering, and a recipient of the Mark Weiser
Award and the ACM-Infosys Foundation Award in
the Computing Sciences. Jeff holds a B.S., summa
cum laude, in computer science and economics
from the University of Minnesota, and a M.S. and
Ph.D. in computer science from the University of
Washington.

11a
16. L. Peter Deutsch. Dr. L. Peter Deutsch

received a Ph.D. in Computer Science from U.C.
Berkeley in 1973. Subsequently at Xerox PARC,
he helped develop the Interlisp-D, Cedar Mesa,
and Smalltalk-80 programming systems. Deutsch’s
work on Smalltalk implementation, among other
innovations, was an important contributor to the
just-in-time compilation technology now used widely
to dramatically improve the performance of Java
and JavaScript implementations. He is also the
author of a number of RFCs and of the The Eight
Fallacies of Distributed Computing, and originated
the Deutsch limit adage about visual programming
languages. From 1986 to 1991, as Chief Scientist
at ParcPlace Systems, he developed cross-platform
JIT technology. From 1986 to 2003, dba Aladdin
Enterprises, he was the creator of Ghostscript,
an Open Source implementation of the PostScript
language. In 1993, he was a co-recipient of the
ACM Software System Award, and was also named
a Distinguished Alumnus of the U.C. Berkeley
Computer Science program; he was named an
ACM Fellow in 1994. In 1994, he founded Artifex
Software to license Ghostscript commercially while
continuing its development and its release as
Open Source; Artifex today is a multi-million-dollar
business. In 1999-2000, he served on the board of
the Open Source Initiative. He is a co-inventor on
two patents.

17. Whitfield Diffie. Dr. Whitfield Diffie serves as
advisor to a variety of startups, primarily in the
field of security. He is best known for discovering
the concept of public key cryptography, which
underlies the security of internet commerce and
all modern secure communication systems. Diffie’s

12a
two principal positions after leaving Stanford
University in the late 1970s were Manager of Secure
Systems Research for Bell-Northern Research, the
laboratory of the Canadian telephone system, and
Chief Security Officer at Sun Microsystems. Diffie
received the 2015 Turing Award and in 2017 was
elected to both the National Academy of Engineering
and the Royal Society.

18. David L. Dill. David Dill is The Donald E. Knuth
Professor, Emeritus, in the School of Engineering at
Stanford University. Prof. Dill’s Ph.D. thesis, “Trace
Theory for Automatic Hierarchical Verification of
Speed Independent Circuits” was named as a
Distinguished Dissertation by the Association for
Computing Machinery (ACM), and published as
such by M.I.T. Press in 1988. He was named a
Fellow of the Institute of Electrical and Electronics
Engineers (IEEE) in 2001 for his contributions to
verification of circuits and systems, and a Fellow
of the ACM in 2005 for contributions to system
verification and for leadership in the development
of verifiable voting systems. In 2008, he received
the first “Computer-Aided Verification” award for
fundamental contributions to the theory of real-time
systems verification. In 2013, he was elected
to the National Academy of Engineering and the
American Academy of Arts and Sciences. In 2016, he
received the Alonzo Church Award for Outstanding
Contributions to Logic and Computation.

19. Lester Earnest. Lester Earnest is a
widely-recognized computer scientist, best known
for his deep involvement with the Advanced
Research Project Agency Network (ARPAnet)
startup committee, which led to his invention of

13a
the Finger social networking protocol. He served
as a US Navy Aviation Electronics Officer and
Digital Computer Project Officer at the Naval Air
Development Center, and later joined MIT to help
design the Semi-Automatic Ground Environment
air defense system. Later, he innovated numerous
early features in the nascent field of word processing,
including the first spell-checker, search engine,
self-driving vehicle, robotic hand-eye assembler
that took verbal instructions, online restaurant
reviews, online news service, and a number of other
successful innovations.

20. Stu Feldman. Dr. Stuart Feldman is a well known
computer scientist and specialist in programming
languages. Feldman is currently Chief Scientist of
Schmidt Futures where he is responsible for the
Scientific Knowledge programs, including creating
fellowship programs, supporting nascent innovative
research projects, and driving new platforms and
larger research projects that aim to change the way
scientific research is done and the way universities
support it. Feldman did his academic work in
astrophysics and mathematics and earned his AB
at Princeton and his PhD at MIT. He has been
awarded an honorary Doctor of Mathematics by the
University of Waterloo and an Honorary Doctorate
from the Technion. He is former President of
ACM (Association for Computing Machinery, the
largest professional society in computing) and
former member of the board of directors of the
AACSB (Association to Advance Collegiate Schools
of Business). Feldman is best known for writing
"Make" and other essential tools. He received the
2003 ACM Software System Award. He is a Fellow
of the IEEE, ACM, and AAAS. He is Board Chair

14a
of the Center for the Minorities and Disabled in IT,
serves on a number of university advisory boards
and National Academy panels, and has served on a
wide variety of government advisory committees.

21. Martin Fowler. Martin Fowler is an author
and educator on software development. He is
currently chief scientist at ThoughtWorks, a global
system delivery and consulting firm. Mr. Fowler
concentrates on the design of enterprise software:
what makes a good design and what practices
are needed to enhance it. He is the author of
seven books on software development, which have
over a million copies in print in over a dozen
languages. He is the editor of a book series with
Addison-Wesley on software design. His website,
http://martinfowler.com, is a wide-ranging resource
of software development techniques attracting
around 150,000 visitors per month.

22. Bob Frankston. Bob Frankston co-founded
Software Arts with Dan Bricklin, where he
implemented VisiCalc. Prior to VisiCalc, Bob
worked to develop the first online financial language.
He worked at Lotus Development where he
created Lotus Express, and at Microsoft, where he
championed home networking which extended the
Internet into people’s homes. He is a fellow of the
IEEE, the ACM and the Computer History Museum.
Bob is a recipient of the the ACM Software System
Award, the MIT William L. Stewart Award, the
MIT LCS Industrial Achievement Award, and the
Western Society of Engineers Washington Award.
He holds Math and EECS BS Degrees, and Masters
and Engineers degrees in EECS from MIT. He is

15a
on the Board of Governors of the IEEE Consumer
Electronics Society.

23. Neal Gafter. Neal Gafter is a Principal Engineer
at Microsoft, where he is a technical lead for
the Roslyn Project (Microsoft’s implementation for
the C# and Visual Basic programming languages).
Previously he was a software engineer and Java
Evangelist at Google, where he designed and
implemented the distributed storage architecture
for Google Calendar, and a Senior Staff Engineer at
Sun Microsystems, where he led the development
of the Java compiler and implemented the Java
language features in releases 1.4 through 5.0. Neal
was a member of the C++ Standards Committee
and led the development of C and C++ compilers
at Sun Microsystems, Microtec Research, and
Texas Instruments. He holds a B.S. in computer
engineering from Case Western Reserve University
and a Ph.D. in computer science from the University
of Rochester.

24. Erich Gamma. Erich Gamma is a Microsoft
Technical Fellow. He is co-author of “Design
Patterns: elements of reusable object-oriented
software” which is a highly influential book in the
software industry. It has become a classic in the
literature of object-oriented development, offering
timeless and elegant solutions to common problems
in software design. The book has sold over 1/2
million copies and was awarded the Association
of Computing Machinery (“ACM”) Programming
Language Award. Prior to joining Microsoft,
Gamma was a Distinguished Engineer at IBM. He
was one of the leaders of the Eclipse Project and was
responsible for its Java Development Tools. For the

16a
contribution to Eclipse he was awarded the ACM
Software System Award.

25. Allan Gottlieb. Allan Gottlieb is a professor of
computer science at New York University where
he has been teaching for 39 years and is a Fellow
of the Association of Computing Machinery. He
has co-authored a book (with George Almasi) on
parallel computing. The “Ultracomputer” group
he led introduced the fetch-and-add coordination
instruction still in use today.

26. Anoop Gupta. Anoop Gupta is co-founder and
CEO of SeekOut, a startup providing recruiting
and engagement tools for hard-to-find and diverse
technology talent. Prior to SeekOut, Anoop spent 18
years at Microsoft. He was Distinguished Scientist
at Microsoft Research leading Telepresence and
Natural-User-Interface efforts; he directly reported
to Bill Gates as his technology assistant; he headed
all enterprise communications products (Exchange,
Skype) as Corporate Vice President of Unified
Communications; and he was Corporate Vice
President for Global Technology Policy for Microsoft.
Prior to Microsoft, Anoop was a tenured professor
of Computer Science at Stanford, where he founded
one of the earliest companies in the streaming
media space that was acquired by Microsoft in
1997. He has a Ph.D. in Computer Science from
Carnegie-Mellon University. He holds over 85
issued US patents and is author 100+ research
papers.

27. Robert Harper. Robert Harper is a professor
in the computer science department at Carnegie
Mellon University. He holds a Ph.D. in computer

17a
science from Cornell University. His main research
interest is in the application of type theory to
the design and implementation of programming
languages and to the mechanization of their
meta-theory. Harper made major contributions
to the design of the Standard ML programming
language and the LF logical framework. Harper is
a recipient of the Allen Newell Medal for Research
Excellence and the Herbert A. Simon Award for
Teaching Excellence, and is an Association for
Computing Machinery Fellow.

28. Anders Hejlsberg. Anders Hejlsberg is a
Technical Fellow in the Cloud and Enterprise group
at Microsoft Corporation and has been designing
and implementing programming languages and
development tools for over 35 years. Anders is the
lead architect of the TypeScript open-source project
and the original designer of the C# programming
language. Before joining Microsoft in 1996, Anders
was a Principal Engineer at Borland International.
As one of the first employees of Borland, he was
the original author of Turbo Pascal and later
worked as the Chief Architect of the Delphi product
line. Anders studied Engineering at the Technical
University of Denmark.

29. Martin Hellman. Martin Hellman is co-inventor,
with Whitfield Diffie and Ralph Merkle, of public
key cryptography, the technology that secures
e-commerce and protects trillions of dollars per day
in financial transactions. His many honors include
the top prize in computer science (the million dollar
ACM Turing Award) and election to the National
Academy of Engineering. Hellman has a deep
interest in the ethics of technological development

18a
and serves on Advisory Boards at the Federation of
American Scientists and Verified Voting. He was
on the faculty at MIT (1969-1971) and Stanford
University (1971-1996), where he is now Professor
Emeritus of Electrical Engineering.

30. Maurice Herlihy. Maurice Herlihy has an A.B. in
Mathematics from Harvard University, and a Ph.D.
in Computer Science from M.I.T. He has served on
the faculty of Carnegie Mellon University and the
staff of DEC Cambridge Research Lab. He is the
recipient of the 2003 Dijkstra Prize in Distributed
Computing, the 2004 Gödel Prize in theoretical
computer science, the 2008 ISCA influential paper
award, the 2012 Edsger W. Dijkstra Prize, and
the 2013 Wallace McDowell award. He received a
2012 Fulbright Distinguished Chair in the Natural
Sciences and Engineering Lecturing Fellowship, and
he is fellow of the ACM, a fellow of the National
Academy of Inventors, the National Academy of
Engineering, and the American Academy of Arts
and Sciences.

31. Tom Jennings. Tom Jennings has specialized in
computers, software, and electronics since 1977;
computer networking since 1984; and the Internet
since 1992. Jennings was on the team that wrote
the interface specification (API in today’s parlance)
for Phoenix Software’s IBM compatible ROM BIOS.
Jennings is the creator of FidoNet, the first
and most influential message and file networking
system protocol for networking computer bulletin
boards. Jennings built Wired magazine’s first
internet presence as its first webmaster and ran
an early regional internet service provider, TLGnet.

19a
Currently, Jennings is on the faculty at Calarts
Art+Technology program.

32. Mitchell Kapor. Mitchell Kapor founded Lotus
Development Corp. in 1982 and co-created
Lotus 1-2-3. He served as the President (later
Chairman) and Chief Executive Officer of Lotus
from 1982 to 1986, and as a Director until 1987.
In 1990, Mr. Kapor co-founded the Electronic
Frontier Foundation, and served as its chairman
until 1994. From 1999 to 2001, he was a
partner at Accel Partners, a venture capital firm
based in Palo Alto, California. In 2003, Mr.
Kapor became the founding Chair of the Mozilla
Foundation, which is dedicated to the development
and promulgation of standards-compliant, open
source web browser software. From 1994-1996, he
served as Adjunct Professor at the Massachusetts
Institute of Technology’s Media Lab, where he
taught courses on software design, democracy
and the Internet, and digital community. From
2005 to 2009, Mr. Kapor was on the faculty
of the Information School at the University of
California, Berkeley, as Lecturer (2005-2006) and
Adjunct Professor (2006-2009), where he co-taught
“Open Source Development and Distribution of
Information.” He is currently a Partner at Kapor
Capital, which invests in seed-stage, social-impact
tech startups; and Co-Chair of the Kapor Center for
Social Impact, which pursues creative strategies to
leverage tech for positive, progressive change. Mr.
Kapor received a B.A. from Yale College in 1971
and studied psychology, linguistics, and computer
science as part of an interdisciplinary major in
Cybernetics.

20a
33. Alan Kay. Alan Kay is one of the pioneers of

object-oriented programming, personal computing,
and graphical user interfaces. For this work,
Dr. Kay has received the Draper Prize from the
National Academy of Engineering, the ACM Turing
Award, and the Kyoto Prize from the Inamori
Foundation. Alan has been elected a fellow of
the American Academy of Arts and Sciences, the
National Academy of Engineering, the Royal Society
of Arts, and the Computer History Museum. Alan
has held fellow positions at HP, Disney, Apple,
and Xerox, and has served as the chief scientist
at Atari. While at Xerox PARC, he was one of
the key members there to develop prototypes of
networked workstations using the programming
language Smalltalk. He is an adjunct professor
of computer science at UCLA and an advisor to
One Laptop per Child. At Viewpoints Research,
Alan also continues his work with “powerful ideas
education” for the world’s children, as well as the
development of advanced personal computers and
networking systems.

34. Brian Kernighan.** Brian Kernighan is a
professor in the Computer Science Department of
Princeton University. He worked at Bell Labs
alongside Unix creators Ken Thompson and Dennis
Ritchie and contributed to the development of
Unix. He co-authored a number of Unix programs,
including widely used document preparation tools.
He is also the author or co-author of eleven books
on computing, including the first book on the C
programming language with Dennis Ritchie; these
books have been translated into more than two
dozen languages. He is also a co-creator of the
AWK and AMPL programming languages. In

21a
collaboration with Shen Lin he devised well-known
heuristics for two fundamental NP-complete
optimization problems: graph partitioning and the
traveling salesman problem. Kernighan received a
Bachelor’s degree in engineering physics from the
University of Toronto, and his Ph.D. in electrical
engineering from Princeton University. He is a
member of the National Academy of Engineering.

35. David Klausner. David Klausner has over
fifty years of software/hardware development and
consulting experience in the computer and software
industry. He has written software for commercial
products as an engineer, developer, supervisor,
project manager, department manager, middle
manager and company executive. He has worked in
forensic investigation and in reverse engineering.
He has been employed in various capacities for
various companies, such as Microsoft, AT&T, Cisco,
IBM, Hewlett Packard, and Intel Corporation. He
holds a Bachelors of Arts degree in Mathematics,
and a Master of Science degree in Electrical
Engineering. He has taught programming, public
speaking, has guest lectured at Stanford University,
and been an invited speaker by IBM, AT&T, and
others. His technical opinions have been confirmed
in several cases by the United States Court of
Appeals for the Federal Circuit.

36. Kin Lane. Kin is a computer scientist
and API Evangelist working to understand the
technology, business and politics of APIs and
help share this insight with the world. He
is the author of the book, Business of APIs,
and is behind the popular API Evangelist blog.
He has over twenty years of experience as a

22a
programmer, database administrator, architect,
product developer, manager, and executive in the
API space.

37. Ed Lazowska. Ed Lazowska holds the Bill &
Melinda Gates Chair in the Paul G. School of
Computer Science & Engineering at the University
of Washington. His research concerns the design,
implementation, and analysis of high performance
computing and communication systems, and more
recently, the techniques and technologies of
data-intensive discovery. He co-chaired (with Marc
Benioff) the President’s Information Technology
Advisory Committee from 2003-05, and (with David
E. Shaw) the Working Group of the President’s
Council of Advisors on Science and Technology to
review the Federal Networking and Information
Technology Research and Development Program in
2010. He is a Member of the National Academy of
Engineering and a Fellow of the American Academy
of Arts and Sciences.

38. Doug Lea. Doug Lea is a Professor of
Computer Science at the State University of New
York at Oswego. He is an author of books,
articles, reports, and standardization efforts on
object oriented software development including
those on specification, design and implementation
techniques, distributed, concurrent, and parallel
object systems, and software re-usability; he has
served as chair, organizer, or program committee
member for many conferences and workshops in
these areas. He is the primary author of several
widely used software packages and components.

39. Bob Lee.† Bob Lee is CEO of Present Company,
makers of Present, a new location-based social

23a
network. Prior to that, as Square’s CTO, Bob built
Square’s core products, scaled the team from 12
to 1200 people, and created Square Cash. Before
Square, Bob worked at Google where he created
Guice and was the core library lead for Android.

40. Harry Lewis. Harry Lewis is Gordon McKay
Professor of Computer Science, where he has taught
since 1974, and where he is also a Faculty Fellow
of the Berkman Klein Center for Internet and
Society. His students have included Bill Gates,
Mark Zuckerberg, and computer science professors
at Harvard, Yale, Brown, Stanford, MIT, and
other leading universities. He has served both
as dean of Harvard College and as interim dean
of Harvard’s School of Engineering and Applied
Sciences. Lewis is a member of the board of directors
of EPIC, the Electronic Privacy Information Center.
He is a co-author of Blown to Bits: Your Life,
Liberty, and Happiness after the Digital Explosion,
and of several other books on computer science,
mathematics, and higher education. He holds
Bachelor’s, Master’s, and PhD degrees in Applied
Mathematics from Harvard University.

41. Sheng Liang. Sheng Liang is a software
entrepreneur. He is cofounder and CEO of Rancher
Labs, an enterprise software company. He was
CTO of the Cloud Platform group at Citrix Systems
after their acquisition of Cloud.com, where he
was co-founder and CEO. Sheng was co-founder
and CTO of Teros, a provider of perimeter and
network security solutions for enterprises and
service providers, acquired by Citrix Systems in
2005. He also served as VP of Engineering
at SEVEN Networks, and Director of Software

24a
Engineering at Openwave Systems. He was a Staff
Engineer in Java Software at Sun Microsystems,
where he designed the Java Native Interface
(JNI) and led the Java Virtual Machine (JVM)
development for the Java 2 platform. He has a B.S.
from the University of Science and Technology of
China and a Ph.D. from Yale University.

42. Barbara Liskov. Barbara Liskov is one of the
world’s leading authorities on computer language
and system design. Liskov joined MIT in 1972
as a member of the Department of Electrical
Engineering and computer Science. She is also
a member of the MIT laboratory for Computer
Science and Artificial Intelligence and heads
the programming methodology group. Her
research interests lie in programming methodology,
programming languages and systems, and
distributed computing. Major projects include:
the design and implementation of CLU, the first
programming language to support data abstraction;
the design and implementation of Argus, the first
high-level language to support implementation of
distributed programs; and the Thor object-oriented
database system, which provides transactional
access to persistent, highly available objects in
wide-scale distributed environments. Liskov is
a fellow of the American Academy of Arts and
Sciences, the National Academy of Inventors,
the Association for Computing Machinery, and
the Massachusetts Academy of Science. She is a
member of the National Academy of Sciences and
the National Academy of Engineering. In 2009,
she received the A.M. Turing Award from the
ACM. Other honors include the Society of Women
Engineers’ Achievement Award, the IEEE von

25a
Neumann medal, the ACM SIGPLAN Programming
Languages Achievement Award, the University
of Pennsylvania Harold Pender Award, the ACM
SIGOPS Hall of Fame Award, the CMU and Tokyo
University of Technology Katayanagi Award for
Research Excellence, the ACM SIGOPS Lifetime
Achievement Award, and five honorary doctorates.
She holds a B.A. from UC Berkeley and a Ph.D.
from Stanford.

43. Paul Menchini. Paul Menchini is the Chief
Information Security Officer at the North Carolina
School of Science and Mathematics. Previously,
he held technical positions at HP, Intel, GE
Microelectronics, CLSI and OrCAD. As a member
of the “Woods Hole Summer Study on Hardware
Description Languages,” he contributed to the
specifications for VHDL; subsequently, he edited two
revisions of IEEE Std 1076 VHDL and developed
the first commercially successful VHDL compiler. As
part of the compiler project, he developed an API for
a VHDL intermediate form, which was subsequently
standardized by the IEEE. He holds a Masters in
Computer Engineering from Stanford University
and is the recipient of numerous technical awards,
including charter membership in the “IEEE Golden
Core.”

44. Douglas McIlroy. Douglas McIlroy is an adjunct
professor of computer science at Dartmouth College,
to which he retired from Bell Laboratories. At Bell
he headed a research department that originated
the Unix operating system [and counts seven
members of the National Academy of Engineering
among its alumni]. He pioneered macroprocessors,
was a designer of the PL/I programming language,

26a
and provided PL/I for writing the Multics operating
system. He has done basic work in speech
synthesis, text processing, and graphics algorithms.
In connection with Unix, he conceived “pipes”
that enable one to combine concurrent computer
processes, originated standard Unix programming
tools, and edited the manual, some editions of
which were trade books. He received awards
for lifetime achievement and programming tools
from the Usenix association and is a fellow of
the American Association for the Advancement of
Science and a member of the National Academy of
Engineering.

45. James H. Morris. Dr. James H. Morris is
a Professor Emeritus of Computer Science at
Carnegie Mellon University, where he served
as Dean of the Silicon Valley Campus, Dean
of the School of Computer Science, Head of
the Computer Science Department, and Director
of the Information Technology Center, a joint
project with IBM that developed a prototype
university computing system. He founded Carnegie
Mellon’s Human Computer Interaction Institute,
Robot Hall of Fame, and Silicon Valley Campus.
He was an Associate Professor at UC Berkeley,
where he developed two fundamental principles of
programming languages: inter-module protection
and lazy evaluation. He was co-discoverer of the
Knuth-Morris-Pratt string-searching algorithm. He
was Principal Scientist and Research Fellow at
Xerox PARC, where he was part of the team that
developed the Alto, a precursor to today’s personal
computers. He is a founder of MAYA Design Group
and an ACM Fellow. He holds a B.S. from CMU and
an M.S. and Ph.D. from MIT.

27a
46. Peter Norvig.* Peter Norvig is a Director of

Research at Google; previously he directed Google’s
core search algorithms group. He is co-author of
Artificial Intelligence: A Modern Approach, the
leading textbook in the field, and co-teacher of an
Artificial Intelligence class that signed up 160,000
students, helping to kick off the current round of
massive open online classes (MOOCs). He is a fellow
of the AAAI, ACM, California Academy of Science
and American Academy of Arts and Sciences.

47. Martin Odersky. Martin is a professor at EPFL
in Lausanne, Switzerland. He is best known as
the creator and principal designer of the Scala
programming language. Prior to that, he made
several contributions to the development of Java.
He created the Pizza and GJ languages, designed
the original version of generics for Java, and wrote
the javac reference compiler for Java. He is a fellow
of the ACM.

48. John Ousterhout. John Ousterhout is the
Bosack Lerner Professor of Computer Science at
Stanford University. His current research focuses
on new software stack layers to allow data center
applications to take advantage of communication
and storage technologies with microsecond-scale
latencies. Ousterhout’s prior positions include
fourteen years in industry, where he founded two
companies (Scriptics and Electric Cloud), preceded
by fourteen years as Professor of Computer Science
at U.C. Berkeley. He is the creator of the Tcl
scripting language and is also well known for
his work in distributed operating systems and
storage systems. Ousterhout received a BS degree
in Physics from Yale University and a PhD in

28a
Computer Science from Carnegie Mellon University.
He is a member of the National Academy of
Engineering and has received numerous awards,
including the ACM Software System Award, the
ACM Grace Murray Hopper Award, the National
Science Foundation Presidential Young Investigator
Award, and the U.C. Berkeley Distinguished
Teaching Award.

49. Tim Paterson. Tim began his career designing
one of the first 16-bit microcomputer systems at
Seattle Computer Products. He then wrote an
operating system for that computer, which was
later sold to Microsoft and became widely used as
MS-DOS. He went on to found his own company,
Falcon Technology, whose primary products were
hard disk systems for personal computers. He
moved on to Microsoft where he was a software
engineer for many years, working on such products
as QuickBASIC, Visual Basic, VBScript, and Visual
J++ (Java). After his retirement in the late
‘90s he has continued developing software and
microcontroller-based hardware projects as a hobby
and part-time small business. He has been granted
three U.S. patents on software methods.

50. David Patterson.* David Patterson joined UC
Berkeley in 1977. He has been Director of the
Par Lab, Chair of UC Berkeley’s CS Division,
Chair of the Computing Research Association,
and President of the Association for Computing
Machinery. His most successful projects have
been Reduced Instruction Set Computers (RISC),
Redundant Arrays of Inexpensive Disks (RAID),
and Network of Workstations. All helped lead to
multibillion-dollar industries. This research led

29a
to many papers, six books, and about 35 honors,
including election to the National Academy of
Engineering, the National Academy of Sciences,
the Silicon Valley Engineering Hall of Fame, and
Fellow of the Computer History Museum. He
shared the IEEE von Neumann Medal, the NEC
C&C Prize,and the ACM Turing Award (the highest
prize in computing) with John Hennessy, former
President of Stanford University and co-author of
two of his books.

51. Alex Payne. Alex Payne consults, advises, and
invests in early-stage technology startups. As
Platform Lead at Twitter he managed one of the
web’s most popular APIs. He was subsequently
co-founder and Chief Technology Officer of online
banking service Simple, acquired by BBVA in 2014.
Alex organizes an annual conference showcasing
advances in programming languages and has
co-authored a book on the Scala programming
language (O’Reilly, 2009). He is a regular speaker
at technology and business conferences worldwide
and has lectured on API design at Stanford.

52. Tim Peierls. Since receiving a BS in Computer
Science from Yale in 1983 and an MS in CS from
Cornell in 1986, Tim has continuously worked in
the software industry, first at Bell Labs (airline crew
scheduling), then co-founding the Lightstone Group
in 1990 (aircraft scheduling, delivery vehicle routing
and scheduling, sold to Descartes Systems Group in
1998) and Seat Yourself in 2002 (online ticketing for
school performing arts groups). For the last fifteen
years, almost all of his programming work has been
in Java. He has served on the Expert Groups of
several Java Specification Requests (166, 201, 330,

30a
334) and on the SE/EE Executive Committee of the
Java Community Process; he co-authored a book,
Java Concurrency in Practice; and he contributes
code, support, and advice to various open source
projects, including Restlet, Hazelcast, and JClouds.

53. Ronald L. Rivest. Ronald L. Rivest is an MIT
Institute Professor in the Electrical Engineering
and Computer Science Department. He is
well-known as a co-inventor of the RSA public-key
cryptosystem, for which he received the ACM Turing
Award. He is a co-author of the widely-used textbook
Introduction to Algorithms. His current research
interest is voting systems and election integrity.

54. Aviel D. Rubin. Dr. Aviel “Avi” D. Rubin
is Professor of Computer Science and Technical
Director of the Information Security Institute at
Johns Hopkins University. He is also the Director
of the JHU Health and Medical Security Lab. Prior
to joining Hopkins, Rubin was a research scientist
at AT&T Labs. His is also the founder of Harbor
Labs, a cybersecurity company. Rubin testified
about information security before the U.S. House
and Senate on multiple occasions, and he is the
author of several books about computer security.
Rubin is a frequent keynote speaker at industry and
academic conferences, and he delivered a widely
viewed TED talk in 2011 and another TED talk
in September, 2015. He also testified in federal
court as an expert witness on numerous occasions
in matters relating to high tech litigation. Rubin
served as Associate Editor of IEEE Transactions
on Information Forensics and Security, Associate
Editor of Communications of the ACM (CACM),
and an Advisory Board member of Springer’s

31a
Information Security and Cryptography Book Series.
In 2010-2011 Rubin was a Fulbright Scholar at
Tel Aviv University. In January, 2004 Baltimore
Magazine named Rubin a Baltimorean of the Year
for his work in safeguarding the integrity of our
election process, and he is also the recipient of
the 2004 Electronic Frontiers Foundation Pioneer
Award. Rubin has a B.S, (’89), M.S.E (’91), and Ph.D.
(’94) from the University of Michigan.

55. Curtis Schroeder. Curtis is a
Hardware-in-the-Loop Simulation Engineer
at Draper. He served as the Drafting Group Editor
for the Simulation Interoperability Standards
Organization (SISO) Common Image Generator
Interface (CIGI) 4.0 international standard. The
success of SISO international standards depends
upon implementation of said copyrighted standards
by numerous simulation vendors and end-users,
including NATO. Previously, Curtis has worked for
Antycip Simulation in the UK and the Lockheed
Martin Aeronautics Company, where he utilized
a number of open standards in projects he was
involved in. He earned B.S. & M.S. Computer
Science degrees at the Missouri University of
Science & Technology.

56. Robert Sedgewick. Robert Sedgewick is the
founding chair and the William O. Baker Professor
in the Department of Computer Science at Princeton
and served for many years as a member of the
board of directors of Adobe Systems. He has over
fifty years of experience working with software
systems. He has held visiting research positions
at Xerox PARC, Palo Alto, CA; Institute for Defense
Analyses, Princeton, NJ; and INRIA, Rocquencourt,

32a
France. He regularly serves on journal editorial
boards and organizing program committees of
conferences and workshops on data structures and
the analysis of algorithms held throughout the
world. Professor Sedgewick’s research interests
include analytic combinatorics, algorithm design,
the scientific analysis of algorithms, curriculum
development, and innovations in the dissemination
of knowledge. He has published widely in these
areas and is the author of twenty books, including
a series of books on algorithms that have been
bestsellers for four decades and have sold nearly
one million copies. He has also published extensive
online content (including studio-produced video
lectures) on analysis of algorithms and analytic
combinatorics and (with Kevin Wayne) algorithms
and computer science. Their massive open online
course (MOOC) on algorithms has been named one
of the “top 10 MOOCs of all time.”

57. Mary Shaw. Mary Shaw is the Alan J. Perlis
University Professor of Computer Science in the
Institute for Software Research at Carnegie Mellon
University. Her research focuses on software
engineering and software design, particularly
software architecture and design of systems used
by real people. She has made fundamental
and significant contributions to an engineering
discipline for software through developing data
abstraction with verification, establishing software
architecture as a major branch of software
engineering, designing influential and innovative
curricula in software engineering and computer
science supported by two influential textbooks,
and helping to found the Software Engineering
Institute at Carnegie Mellon. She has received

33a
the United States’ National Medal of Technology
and Innovation, the George R. Stibitz Computer
& Communications Pioneer Award, the ACM
SIGSOFT Outstanding Research Award, the IEEE
Computer Society TCSE’s Distinguished Educator
and Distinguished Women in Software Engineering
Awards, and CSEE&T’s Nancy Mead Award for
Excellence in Software Engineering Education. She
is an elected Life Fellow of the ACM and the IEEE
and an elected Fellow of the AAAS. She holds a BA
cum laude from Rice and a Ph.D. from Carnegie
Mellon.

58. Barbara Simons. Barbara Simons is a former
President of the Association for Computing
Machinery (ACM), the nation’s oldest and largest
educational and scientific society for computing
professionals. She is the only woman to have
received the Distinguished Engineering Alumni
Award from the College of Engineering of U.C.
Berkeley, where she earned her Ph.D. in computer
science. A fellow of ACM and the American
Association for the Advancement of Science, she
also received the Computing Research Association
Distinguished Service Award and the Electronic
Frontier Foundation Pioneer Award. She has
published Broken Ballots: Will Your Vote Count?, a
book on voting machines co-authored with Douglas
Jones. She has been on the Board of Advisors
of the U.S. Election Assistance Commission since
2008, and she co-authored the report that led to the
cancellation of Department of Defense’s Internet
voting project (SERVE) in 2004 because of security
concerns. She was a member of the National
Workshop on Internet Voting, convened by President
Clinton, which conducted one of the first studies of

34a
Internet Voting and produced a report in 2001. She
is Board Chair of Verified Voting and is retired from
IBM Research.

59. Daniel Sleator. Daniel Sleator is a professor of
computer science at Carnegie Mellon university.
Prior to joining CMU, Sleator was a member of
technical staff at AT&T Bell Laboratories. He is
the joint winner (with Bob Tarjan) of the 1999 ACM
Paris Kanellakis Theory and Practice Award. This
was awarded for the invention of the splay tree.
His primary area of research is algorithm and data
structure design and analysis. He has also built
systems for parsing English, and doing automated
music analysis. In 1995 he founded the Internet
Chess Club.

60. Alfred Z. Spector. Alfred Spector is Chief
Technology Officer and Head of Engineering at
Two Sigma, a firm dedicated to using information
to optimize diverse economic challenges. Prior to
joining Two Sigma, Dr. Spector spent nearly eight
years as Vice President of Research and Special
Initiatives, at Google, where his teams delivered a
range of successful technologies including machine
learning, speech recognition, and translation. Prior
to Google, Dr. Spector held various senior-level
positions at IBM, including Vice President of
Strategy and Technology (or CTO) for IBM Software
and Vice President of Services and Software
research across the company. He previously founded
and served as CEO of Transarc Corporation, a
pioneer in distributed transaction processing and
wide-area file systems, and he was a professor of
computer science at Carnegie Mellon University.
Dr. Spector received a bachelor’s degree in Applied

35a
Mathematics from Harvard University and a Ph.D.
in computer science from Stanford University. He
is a Fellow of both the Association for Computing
Machinery and the IEEE. He is an active member
of the National Academy of Engineering and the
American Academy of Arts and Sciences, where he
serves on the Council. Dr. Spector won the IEEE
Kanai Award for Distributed Computing in 2001
and the ACM Software Systems Award for his work
on the Andrew File System (AFS) in 2016.

61. Michael Stonebraker. Dr. Stonebraker has been
a pioneer of data base research and technology
for more than 40 years. He was the main
architect of the INGRES relational DBMS, and
the object-relational DBMS, POSTGRES. These
prototypes were developed at the University of
California at Berkeley where Stonebraker was
a Professor of Computer Science for twenty-five
years. More recently at M.I.T. he was a co-architect
of the Aurora/Borealis stream processing engine,
the C-Store column-oriented DBMS, the H-Store
transaction processing engine, the SciDB array
DBMS, and the Data Tamer data curation system.
Presently he serves as Chief Technology Officer of
Paradigm4 and Tamr, Inc. Professor Stonebraker
was awarded the ACM System Software Award in
1992 for his work on INGRES. Additionally, he
was awarded the first annual SIGMOD Innovation
award in 1994, and was elected to the National
Academy of Engineering in 1997. He was awarded
the IEEE John Von Neumann award in 2005 and
the 2014 Turing Award, and is presently an Adjunct
Professor of Computer Science at M.I.T, where he
is co-director of the Intel Science and Technology
Center focused on big data.

36a
62. Bjarne Stroustrup. Bjarne Stroustrup is the

inventor of the C++ programming language. He
wrote the standard textbook on the language and
its original implementation, The C++ Programming
Language, and many other academic and popular
books and articles. He has served on the ISO
Standards committee since its creation in 1989. He
is a fellow of the ACM, the IEEE and the CHM.
He was elected member of the National Academy of
Engineering and is a recipient of the NAE’s highest
award, The Charles S. Draper Prize. He holds
a masters degree in mathematics and computer
science from Aarhus University, in Denmark, and
a Ph.D. in computer science from the University
of Cambridge, where he is an honorary fellow of
Churchill College.

63. Gerald Jay Sussman. Gerald Jay Sussman
is the Panasonic (formerly Matsushita) Professor
of Electrical Engineering at the Massachusetts
Institute of Technology. He has been involved in
artificial intelligence research at M.I.T. since 1964.
His research has centered on understanding the
problem-solving strategies used by scientists and
engineers, with the goals of automating parts of the
process and formalizing it to provide more effective
methods of science and engineering education.
Sussman has also worked in computer languages,
in computer architecture, and in VLSI design.
Sussman is a coauthor of the introductory computer
science textbook that included innovative advances
in curricula designed for students pursuing different
kinds of computing expertise, which has had a
worldwide impact on university computer-science
education. Sussman has received numerous
awards and recognitions including: the ACM’s Karl

37a
Karlstrom Outstanding Educator Award, the Amar
G. Bose award for teaching, a fellow of the Institute
of Electrical and Electronics Engineers, a fellow
of the American Academy of Arts and Sciences, a
member of the National Academy of Engineering,
and a fellow of the American Association for the
Advancement of Science. He received the S.B.
and the Ph.D. degrees in mathematics from the
Massachusetts Institute of Technology in 1968 and
1973.

64. Ivan E. Sutherland. Ivan E. Sutherland received
his B.S. degree from the Carnegie Institute of
Technology, his M.S. degree from the California
Institute of Technology, and his Ph.D. degree from
the Massachusetts Institute of Technology, all in
electrical engineering. He holds honorary degrees
from Harvard University, the University of North
Carolina, and the University of Utah. He joined
Sun in 1990 as a Sun Fellow, Sun’s highest technical
rank. He joined Portland State University in 2009 to
found the Asynchronous Research Center. He leads
a small group working on self-timed VLSI systems;
his group develops self-timed circuit methodologies
and design techniques for fast CMOS circuits
and applies them to new hardware architectures.
His book, Logical Effort (1999) with joint authors
Sproull and Harris, describes the mathematics
of designing fast circuits. His 1963 MIT Ph.D.,
Sketchpad, is widely known, and he has been called
the “father of computer graphics.” He is author of
more than seventy patents, as well as numerous
publications and lectures. Dr. Sutherland holds
the 1988 ACM Turing Award, the 2012 Kyoto Prize
and the IEEE Von Neumann Award. He is a Fellow
of the ACM and a member of both the National

38a
Academy of Engineering and the National Academy
of Sciences.

65. Andrew Tanenbaum. Andrew S. Tanenbaum
has an S.B. degree from M.I.T. and a Ph.D. from
the University of California. He is a professor
emeritus at the Vrije Universiteit in Amsterdam.
Tanenbaum is the principal designer of three
operating systems: TSS-11, Amoeba, and MINIX, as
well as a considerable amount of other open-source
software. In addition, Tanenbaum is the author or
coauthor of five books, which together have been
translated in more than 20 languages and over 175
editions. Tanenbaum has lectured on a variety of
topics all over the world. He has been keynote
speaker at 40 conferences and has given talks at
over one hundred universities and companies in
fifteen countries all over North America, Europe,
Asia, and Australia. In 2004, Tanenbaum became
an Academy Professor of the Royal Netherlands
Academy of Arts and Sciences. In 2008, he received
a prestigious European Research Council Advanced
Grant. Tanenbaum is a Fellow of the ACM, a
Fellow of the IEEE, and a member of the Royal
Netherlands Academy of Arts and Sciences. In 1994
he was the recipient of the ACM Karl V. Karlstrom
Outstanding Educator Award. In 1997 he won the
ACM SIGCSE Award for Outstanding Contributions
to Computer Science. In 2007 he won the IEEE
James H. Mulligan, Jr., Education Medal. In 2008
he won the USENIX Lifetime Achievement Award
and in 2015 he won the inaugural Eurosys Lifetime
Achievement Award. He has also won numerous
other awards, some of which are on his Wikipedia
page. He has two honorary doctorates.

39a
66. Brad Templeton. Brad Templeton, active in

the computer network community since 1979, was
founder and publisher at ClariNet Communications
Corp., the electronic newspaper that was perhaps
the earliest dot-com company. He participated
in the building and growth of USENET from its
earliest days, and in 1987 founded and edited
rec.humor.funny, for many years the world’s most
widely read electronic publication. He was the
first employee of Personal Software/Visicorp, the
first major microcomputer applications software
company. He later founded Looking Glass
Software and over the years was author of a
dozen packaged microcomputer software products,
including VisiPlot for the IBM-PC, various
games, popular tools and utilities for Commodore
computers, special Pascal and Basic programming
environments designed for education (ALICE), an
add-in spreadsheet compiler for Lotus 1-2-3 (3-2-1
Blastoff), and various network related software
tools. He currently is track chair for computing and
networks at Singularity University, a consultant
and speaker on self-driving cars, and is on the
board of the Electronic Frontier Foundation and
the Foresight Nanotech Institute. He is Chairman
Emeritus of the Electronic Frontier Foundation.

67. Ken Thompson.* Ken Thompson spent much of
his career at Bell Laboratories where he co-designed
and implemented the original Unix operating
system, invented the B programming language
that was a precursor to the C programming
language, invented the Bon programming language,
co-developed the Plan 9 operating systems,
developed the CTSS version of the editor QED,
developed ed, which is the standard text editor on

40a
Unix, and the definition of the UTF-8 encoding,
which is used for more than half of all Web
pages. Thompson also co-developed the software and
hardware for Belle, which was the first computer
built for the sole purpose of chess playing, and it
officially became the first master-level machine in
1983. He is currently a Google Advisor and was
formerly a Distinguished Engineer at Google, where
he invented new programming languages (including
the Go programming language as a co-inventor),
among other projects. Thompson is a recipient of
numerous awards and commendations in connection
with his work on Unix, including the IEEE Emanuel
R. Piore Award (1982), the Turing Award (1983),
the IEEE Richard W. Hamming Medal (1990), the
National Medal of Technology (1999), and the Japan
Prize (2011). He is a member of the National
Academy of Sciences and the National Academy
of Engineering. Thompson holds a B.S. and an
M.S., both in Electrical Engineering and Computer
Science, from the University of California, Berkeley.
He has been awarded two honorary Ph.D degrees.

68. Jeffrey Ullman. Jeffrey Ullman is the Stanford W.
Ascherman Professor of Engineering (Emeritus) in
the Department of Computer Science at Stanford
and CEO of Gradiance Corp. He received a
B.S. degree from Columbia University in 1963
and a Ph.D. from Princeton in 1966. Prior to
his appointment at Stanford in 1979, he was a
member of the technical staff of Bell Laboratories
from 1966-1969, and on the faculty of Princeton
University between 1969-1979. From 1990-1994,
he was chair of the Stanford Computer Science
Department. Ullman was elected to the National
Academy of Engineering in 1989, the American

41a
Academy of Arts and Sciences in 2012, and has
held Guggenheim and Einstein Fellowships. He has
received the Sigmod Contributions Award (1996),
the ACM Karl V. Karlstrom Outstanding Educator
Award (1998), the Knuth Prize (2000), the Sigmod
E. F. Codd Innovations award (2006), the IEEE von
Neumann medal (2010), and the NEC C&C Prize
(2017). He is the author of 16 books, including books
on database systems, compilers, automata theory,
and algorithms.

69. Leslie Valiant. Leslie Valiant is the T. Jefferson
Coolidge Professor of Computer Science and Applied
Mathematics in the School of Engineering and
Applied Sciences at Harvard University. He
has been a founding contributor to the theory of
machine learning, devised the bulk synchronous
model of parallel computation, invented randomized
communication methods for data centers, and
developed fundamental theories of the inherent
limits of computational feasibility. He is the
recipient of the Nevanlinna Prize from the
International Mathematical Union, and of the
Turing Award from the ACM. He is a Fellow of
the Royal Society and a member of the National
Academy of Sciences.

70. Andries van Dam. Andries van Dam is a Professor
of Computer Science at Brown University, and
has served on Brown’s Computer Science faculty
since 1965. He was also Brown’s first Vice
President of Research from 2002 to 2006. He
is the author of the widely used reference books
Computer Graphics: Principles and Practice and
Object-Oriented Programming Java: A Graphical
Approach. In 1967, Andries co-founded ACM

42a
SICGRAPH, the precursor to SIGGRAPH. Andries
is an IEEE Fellow, an ACM Fellow, and is a member
of the National Academy of Engineering and the
American Academy of Arts and Sciences. Andries
has won multiple awards, including the Information
Display’s Special Recognition Award (1974), the
IEEE Centennial Medal (1984), the National
Computer Graphics Association’s Academic Award
(1990), the ACM SIGGRAPH Steven A. Coons
Award (1991), the L. Herbert Ballou University
Professor Chair (1992), the ACM Karl V. Karlstrom
Outstanding Educator Award (1994), the Thomas
J. Watson, Jr. University Professor of Technology
and Education Chair (1995), the IEEE James H.
Mulligan, Jr. Education Medal (1999), and the
ACM SIGCSE Award for Outstanding Contributions
to Computer Science Education (2000). Andries
received a B.S. with honors in Engineering Science
form Swarthmore College, a M.S. and Ph.D.
from the University of Pennsylvania, and holds
honorary Ph.D. degrees from Darmstadt Technical
University, University of Waterloo, ETH Zurich, and
Swarthmore College.

71. Guido van Rossum. Guido van Rossum created
the open-source programming language Python,
and is its lead developer and thought leader.
Python is widely used in industry, and is the most
popular introductory teaching language at top U.S.
universities. Guido developed the Python language
while at CWI in Amsterdam. After moving to the
United States, he worked as a guest researcher at
NIST, at CNRI, and at several start-up companies.
He became a Senior Staff Engineer at Google, and
is currently a principal engineer at Dropbox. Guido
is an ACM Distinguished Engineer, a Fellow of

43a
the Computer History Museum, and a recipient of
several awards including the USENIX STUG Award,
the NLUUG Award, the Free Software Foundation
Award, and the Dr. Dobb’s Journal 1999 Excellence
in Programming Award. In 2013, Python was
awarded the Dutch National ICT COMMIT Award.
Guido holds an M.S. in Mathematics and Computer
Science from the University of Amsterdam.

72. John Villasenor. John Villasenor is on the faculty
at UCLA, where he is a professor of electrical
engineering, public policy, and management,
as well as a visiting professor of law. He
is also a nonresident senior fellow at the
Brookings Institution and a visiting fellow at
the Hoover Institution. Professor Villasenor’s
research considers communications and information
technologies and their broader ramifications, and
has addressed topics including cybersecurity,
autonomous vehicles, and digital media policy.
Professor Villasenor is a member of the Council on
Foreign Relations and a former vice chair of the
World Economic Forum’s Global Agenda Council on
the Intellectual Property System. He holds an M.S.
and Ph.D. in electrical engineering from Stanford
University, and a B.S. in electrical engineering from
the University of Virginia. Professor Villasenor has
previously served as, though is not currently serving
as, a consultant to Google in relation to the Oracle
v. Google matter.

73. Jan Vitek. Jan Vitek is a Professor of Computer
Science at Northeastern University. He is the
past Chair of the ACM Special Interest Group
on Programming Languages (SIGPLAN), the vice
chair of AITO and of the IFIP WG 2.4, and

44a
is Chief Scientist at Fiji Systems. He holds
a Ph.D. from the University of Geneva and an
MSc from the University of Victoria. He works
on various aspects of programming languages
including virtual machines, compilers, software
engineering, real-time and embedded computing,
concurrency and information security. Professor
Vitek led the Ovm project which resulted in the
first successful flight test of real-time Java virtual
machine. With Noble and Potter, Vitek proposed
the notion of ownership for alias control, which
became known as ownership types. He chaired
PLDI, ISMM and LCTES and was program chair of
ESOP, ECOOP, VEE, Coordination, and TOOLS.

74. Philip Wadler. Philip Wadler is a Professor of
Theoretical Computer Science at the University of
Edinburgh and Senior Research Fellow at IOHK. He
is an ACM Fellow and a Fellow of the Royal Society
of Edinburgh, past chair of ACM SIGPLAN, past
holder of a Royal Society-Wolfson Research Merit
Fellowship, winner of the SIGPLAN Distinguished
Service Award, and a winner of the POPL Most
Influential Paper Award. Previously, he worked
or studied at Stanford, Xerox Parc, CMU, Oxford,
Chalmers, Glasgow, Bell Labs, and Avaya Labs,
and visited as a guest professor in Copenhagen,
Sydney, and Paris. He has an h-index of 66 with
more than 22,000 citations to his work, according
to Google Scholar. He contributed to the designs of
Haskell, Java, and XQuery, and is a co-author of
Introduction to Functional Programming (Prentice
Hall, 1988), XQuery from the Experts (Addison
Wesley, 2004) and Generics and Collections in Java
(O’Reilly, 2006). He has delivered invited talks in
locations ranging from Aizu to Zurich.

45a
75. James H. Waldo. James “Jim” Waldo is

the Gordon McKay Professor of the Practice of
Computer Science in the School of Engineering
and Applied Sciences at Harvard, where he is
also the Chief Technology Officer. Jim is also
a professor of technology policy at the Harvard
Kennedy School. Previously, Jim designed clouds
at VMware, and was a Distinguished Engineer
at Sun Microsystems, where he investigated
next-generation large-scale distributed systems.
He was the lead architect for Jini, a distributed
programming system based on Java. Before joining
Sun, Jim spent eight years at Apollo Computer
and Hewlett Packard, working in the areas of
distributed object systems, user interfaces, class
libraries, text and internationalization. While at
HP, he led the design and development of the
first Object Request Broker, and was instrumental
in getting that technology incorporated into the
first OMG CORBA specification. Jim edited the
book The Evolution of C++: Language Design in
the Marketplace of Ideas (MIT Press), co-edited
Engaging Privacy and Information Technology in a
Digital Age (National Academies Press), and was
one of the authors of The Jini Specification (Addison
Wesley). More recently, he authored Java: The Good
Parts. He is currently a member of the editorial
boards of Queue magazine and Communications of
the ACM. He holds over fifty patents. Jim received
his Ph.D. from the University of Massachusetts
(Amherst). He holds two M.A. degrees from the
University of Utah.

76. Dan Wallach. Dan Wallach is a professor in
the Department of Computer Science and a Rice
Scholar at the Baker Institute for Public Policy at

46a
Rice University in Houston, Texas. His research
considers a variety of different computer security
topics, ranging from web browsers and servers
through Java security, electronic voting technologies,
and smartphones. Wallach is a former member
of the Air Force Science Advisory Board and a
former member of the USENIX Association Board
of Directors.

77. Steve Wozniak. Steve Wozniak co-founded Apple
and invented the Apple I and Apple II computers.
He holds a B.S. in Electrical Engineering and
Computer Science from UC Berkeley, and honorary
doctorates from twelve universities. Wozniak is
Innovator in Residence at High Point University.
He founded many companies including CL 9,
which brought the first programmable universal
remote control to market in 1987, Wheels of
Zeus (WOZ), and Acquicor Technology. He was
Chief Scientist at Fusion-io and at Primary Data.
He designed calculators for Hewlett-Packard and
taught computer science to elementary school
students and their teachers. Wozniak won
numerous awards including the ACM Grace Murray
Hopper Award, the National Medal of Technology
(with Steve Jobs), the IEEE Hoover Medal,
the Heinz Award for Technology, the American
Humanist Association Isaac Asimov Science Award,
the Global Award of the President of Armenia for
Outstanding Contribution to Humanity Through
IT, the Young Presidents’ Organization Lifetime
Achievement Award, the Cal Alumni Association
Alumnus of the Year Award, and the Legacy for
Children Award from the Children’s Discovery
Museum in San Jose. He was named a Fellow
of the Computer History Museum “for co-founding

47a
Apple Computer and inventing the Apple I personal
computer,” and inducted into the National Inventors
Hall of Fame, the Manufacturing Hall of Fame, and
the Consumer Electronics Hall of Fame.

78. Frank Yellin. Frank Yellin spent over a decade
working on runtime systems for interpreted and
compiled languages. As a Staff Engineer in
Embedded and Consumer at Sun Microsystems, he
was an original member of the Java project. Yellin is
co-author of The Java Virtual Machine Specification
(Addison-Wesley, 1999), and coauthored the first
version of the Java API specification. Yellin worked
as a Staff Software Engineer at Google, where he
specialized in automatic scalable security testing.
Previously he worked at Lucid, where he focused on
multitasking, garbage collection, interrupts, and the
compilation of Common Lisp. He holds an A.B. in
Applied Mathematics from Harvard and an M.S. in
Computer Science from Stanford. He is the inventor
or co-inventor of sixteen patents.

	Table of Authorities
	Interest of Amici Curiae
	Summary of Argument
	Argument
	The Decisions Below Reflect the Federal Circuit's Fundamental Misunderstanding of How Interfaces Differ from Programs
	Software Interfaces Specify What a Program Does, Not How It Does So
	Google Reimplemented the Java API to Promote Interoperability and Transformed Java to Run on Smartphones

	This Case Is Exceptionally Important Because the Decisions Below Upend Decades of Settled Expectations and Threaten Software Innovation
	The Computer Industry Has Long Relied on Freely Reimplementing Software Interfaces to Foster Innovation and Competition
	Restricting the Reimplementation of Software Interfaces Will Stifle Competition by Increasing Entry Barriers
	Restricting the Reimplementation of Software Interfaces Will Exacerbate Lock-In Effects and Create an “Orphan Software” Problem

	Conclusion
	Appendix A — List of Amici Curiae

