
No. 18-956

WILSON-EPES PRINTING CO., INC. – (202) 789-0096 – WASHINGTON, D. C. 20002

IN THE

Supreme Court of the United States
————

GOOGLE LLC,

Petitioner,
v.

ORACLE AMERICA, INC.,

Respondent.
————

On Writ of Certiorari to the
United States Court of Appeals

for the Federal Circuit

————

BRIEF OF FORMER SUN EXECUTIVE
SCOTT MCNEALY AS AMICUS CURIAE

IN SUPPORT OF RESPONDENT

————

CELESTE L.M. KOELEVELD
Counsel of Record

JOHN P. ALEXANDER
YOUNG JUN CHOI
CLIFFORD CHANCE US LLP
31 W. 52nd St.
New York, New York 10019
(212) 878-8000
Celeste.Koeleveld@

CliffordChance.com

Counsel for Amicus Curiae

February 19, 2020

(i)

TABLE OF CONTENTS

Page

TABLE OF AUTHORITIES ii

INTEREST OF AMICUS CURIAE 1

SUMMARY OF ARGUMENT 2

ARGUMENT .. 5

I. OVERVIEW OF JAVA FRAMEWORK ... 5

A. Brief History of Java 5

B. How Java Works 7

II. THE JAVA PACKAGES ARE
CREATIVE AND EXPRESSIVE 9

A. Designing an Elegant Set of Packages
Was Central to Java’s Success 9

B. There Are Countless Ways to Achieve
the Functionality Provided by the
Java Packages 15

III. GOOGLE’S USE OF JAVA WAS
UNAUTHORIZED 19

A. Sun’s Licensing Requirements 20

B. Google’s Flawed “Industry Practice”
Argument ... 23

IV. GOOGLE’S USE OF JAVA WAS NOT
TRANSFORMATIVE 25

V. GOOGLE’S USE UNDERMINES
JAVA’S PROMISE OF “WRITE ONCE,
RUN ANYWHERE” 32

CONCLUSION .. 35

ii

TABLE OF AUTHORITIES

CASES Page(s)

Atari Games Corp. v. Nintendo of Am., Inc.,
975 F.2d 832 (Fed. Cir. 1992) 9

Campbell v. Acuff-Rose Music, Inc.,
510 U.S. 569 (1994) 25

Comput. Assocs. Int’l, Inc. v. Altai, Inc.,
982 F.2d 693 (2d Cir. 1992) 15

Educ. Testing Servs. v. Katzman,
793 F.2d 533 (3d Cir. 1986) 19

Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340 (1991) 9

Gates Rubber Co. v. Bando Chem. Indus.,
9 F.3d 823 (10th Cir. 1993) 15

In re Microsoft Corp. Antitrust Litig.,
333 F.3d 517 (4th Cir. 2003) 24

Jacobsen v. Katzer,
535 F.3d 1373 (Fed. Cir. 2008) 20

Oracle Am. Inc. v. Google Inc.,
750 F.3d 1339 (Fed. Cir. 2014) 2, 11, 16

Oracle Am. Inc. v. Google LLC,
886 F.3d 1179 (Fed. Cir. 2018) 2, 22

Prac. Mgt. Info. Corp. v. Am. Med. Ass’n,
121 F.3d 516 (9th Cir. 1997) 19

Sun Microsystems, Inc. v. Microsoft Corp.,
87 F. Supp. 2d 992 (N.D. Cal. 2000) 24

Sun Microsystems, Inc. v. Microsoft Corp.,
188 F.3d 1115 (9th Cir. 1999) 23

iii

TABLE OF AUTHORITIES—Continued

 Page(s)

TD Bank N.A. v. Hill,
928 F.3d 259 (3d Cir. 2019) 19

U.S. v. Microsoft Corp.,
253 F.3d 34 (D.C. Cir. 2001) 24

STATUTES

17 U.S.C. § 101 ... 9

17 U.S.C. § 102(b) ... 15

17 U.S.C. § 302(a) ... 15

OTHER AUTHORITIES

Adam Brown, Beautiful API Design, DZone
(Nov. 26, 2008), https://dzone.com/articl
es/beautiful-api ... 15

Application Fundamentals, Android Devel-
opers, https://web.archive.org/web/20170
919103505/https://developer.android.com/
guide/components/fundamentals.html 19

Bill Day, Program Java Devices – An
Overview, JavaWorld (July 24, 1999),
https://www.javaworld.com/article/20764
41/java-se-program-java-devices-an-over
view.html ... 29

Bruce Eckel, Thinking in Java (Prentice
Hall 4th ed. 2006) 14

Chuck McManis, The Palm V Meets J2ME,
Java-World (Aug. 20, 1999), https://
www.javaworld.com/article/2076478/the-
palm-v-meets-j2me.html 28

iv

TABLE OF AUTHORITIES—Continued

 Page(s)

Class DateFormat, Oracle, https://docs.ora
cle.com/javase/1.5.0/docs/api/java/text/D
ateFormat.html ... 17

David Bank, The Java Saga, Wired Maga-
zine (Dec. 1, 1995), https://www.wired.
com/1995/12/java-saga/ 6

Edward Yourdon, Java and the New Inter-
net Programming Paradigm, JavaWorld
(Aug. 1, 1996), http://www.javaworld.
com/article/2077231/java-and-the-new-int
ernet-programming-paradigm.html 27

Elizabeth Corcoran, Java Jumps Into the
Net, Wash. Post, Dec. 10, 1995 6

Feature Phone, PC Magazine Encyclopedia,
https://www.pcmag.com/encyclopedia/ter
m/feature-phone ... 30

James Daly, Apple, Symantec Rethink Role
Bedrock Will Play, Computerworld,
Dec. 20, 1993 ... 5

James Gosling et al., The Java Language
Specification (Lisa Friendly ed., Addison-
Wesley 1996) ... 20

Java 2 Platform Standard Edition Devel-
opment Kit 5.0 Specification, Oracle
(Aug. 25, 2004), https://docs.oracle.com/
javase/1.5.0/docs/relnotes/license.html 21

Java Powers Our Digital World, Java,
https://go. java/?intcmp=gojava-banner-
java-com .. 6

v

TABLE OF AUTHORITIES—Continued

 Page(s)

JCP 2.11: Process Document, Java Cmty.
Process, https://www.jcp.org/en/procedur
es/jcp2_11#3.2 .. 10-11

JCP Members, Java Cmty. Process, https:
//jcp.org/en/participation/members 21

Jon Byous, Java Technology: An Early
History, Sun Developer Network (Apr.
2003), https://web.archive.org/web/20090
311011509/http://java.sun.com/features/
1998/05/birthday.html 26, 27

Jon Swartz & Leslie Cauley, Oracle to Buy
Sun for $7.4B after IBM Drops Bid, ABC
News (Apr. 21, 2009), https://abcnews.go.
com/Technology/story?id=7395780&page
=1 ... 24-25

Klint Finley, Tech Time Warp of the Week:
Before the iPhone, Anyone Who Was
Anyone Rocked a Sidekick, Wired
(May 22, 2015), https://www.wired.com/
2015/05/tech-time-warp-week-iphone-
anyone-anyone-rocked-sidekick/ 31

Klint Finley, Tech Time Warp of the Week:
Get a Glimpse of the Lost Touchscreen
Tablet of 1992, Wired (Oct. 17, 2014),
https://www.wired.com/2014/10/star7/ 27

Lee Copeland, Big Blue, Sun in Java
Dispute, JavaWorld (June 23, 2000),
https://www.javaworld.com/article/20761
10/big-blue--sun-in-java-dispute.html 24

vi

TABLE OF AUTHORITIES—Continued

 Page(s)

Lee Gomes, Made in the Shade; ‘Java’ Stirs
Up Renewed Interest in Sun Micro, Dall.
Morning News, Dec. 18, 1995 5

Margaret Rouse, Java Ring, WhatIs.com
(Sept. 2005), https://whatis.techtarget.
com/ definition/Java-Ring 28

Mark Beaulieu, Wireless Internet Applications
and Architecture: Building Professional
Wireless Applications Worldwide (Addison-
Wesley 2002) ... 29

1 Melville B. Nimmer and David Nimmer,
Nimmer on Copyright (2020) 9

NSTimeZone, Apple Developer, https://dev
eloper.apple.com/documentation/foundat
ion/nstimezone?language=objc 17

Package java.text, Oracle, https://docs.orac
le.com/javase/1.5.0/docs/api/java/text/pac
kage-summary.html 11

Rinaldo Di Giorgio, Smart Cards: A Primer,
JavaWorld (Dec. 1, 1997), https://www.
javaworld.com/article/2077101/smart-car
ds--a-primer.html 28

Ryan Paul, Java Wars: IBM Joins OpenJDK
as Oracle Shuns Apache Harmony, Arts
Technica (Oct. 13, 2010), https://arstech
nica.com/information-technology/2010/10/
ibm-joins-openjdk-as-oracle-shuns-apache-
harmony/ ... 25

vii

TABLE OF AUTHORITIES—Continued

 Page(s)

Tim Rohaly, Real-Time Java Takes the Stage,
JavaWorld (Mar. 26, 2002), https://www.
javaworld.com/article/2073884/real-time-
java-takes-the-stage.html 29

TimeZoneInfo Class, Microsoft, https://docs.
microsoft.com/en-us/dotnet/api/system.ti
mezoneinfo?view=netframework-4.8 18

INTEREST OF AMICUS CURIAE1

Amicus Curiae Scott McNealy is a former executive
of Sun Microsystems, Inc., who was integrally involved
in the development and widespread adoption of the
Java platform. Sun, founded in 1982, developed the
world’s most innovative products and services, which
have been used to power the world’s key computing
systems. Through its commitment to shared innova-
tion, community development, and open source leader-
ship, Sun quickly became a leader in the sale of
computer workstations. In the 1990s, Sun developed
Java, an object-oriented, platform-independent, multi-
threaded programming environment that revolution-
ized computer programming and quickly became
integral to the modern internet.

Mr. McNealy co-founded Sun and was the Chairman
of its Board of Directors from 1984 to 2010, President
from December 1984 to April 1999 and from July
2002 to April 2004, and CEO from December 1984 to
April 2006. In these roles, he worked to make Sun
an innovative leader in the information-technology
industry.

In 2010, Oracle Corp. acquired Sun, and Mr.
McNealy moved on to other projects. While Mr.
McNealy does not have any current involvement with
Oracle or Java, he shares a vital interest in protecting
Java’s creative legacy.

1 Pursuant to Supreme Court Rule 37.3(a), Amicus Curiae

states that counsel for all parties consented to the filing of this
brief. Pursuant to Supreme Court Rule 37.6, Amicus Curiae
states that no counsel for any party authored this brief in whole
or in part, and that no person or entity aside from counsel for
Amicus Curiae made any monetary contribution intended to fund
the preparation or submission of this brief.

2
Because of his close involvement with the creation

and widespread adoption of Java, Mr. McNealy
submits this brief to explain from his first-hand
perspective how Java was the result of exceptional
creative efforts by a team of developers and how
Google’s unauthorized copying of Java’s copyrighted
code was not fair use.

SUMMARY OF ARGUMENT

This case is about Google’s unlicensed copying of
approximately 11,000 lines of Java SE code written
and copyrighted by Sun/Oracle. The Federal Circuit
held that the code at issue was copyrightable, Oracle
Am. Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014)
(“Oracle I”), and that Google’s infringement was not
“fair use,” Oracle Am. Inc. v. Google LLC, 886 F.3d
1179 (Fed. Cir. 2018) (“Oracle II”). These decisions
should be affirmed.

The Java platform has evolved and thrived since
Sun developed it nearly 25 years ago. Central to
this success was Sun’s inclusion of “packages” of
pre-written programs that allow programmers to code
quickly and efficiently through a series of elegant
shortcuts. These programs operate by means of de-
claring code (which describes the pre-written program
and is used to invoke it) and implementing code (which
performs the requested function). Designing these
packages and the related declaring code involved a
massive creative effort by professionals at Sun, who
had to decide, among other things, what packages
to create and how to name and organize them in a
way that resonated with programmers. Although the
declaring code used to invoke the programs may read
like gibberish to non-programmers, an elegantly-
designed set of packages is a creative exercise that is

3
apparent to everyday professional programmers—in
the way that an English professor can recognize a
unique arrangement of words as great poetry or an
architect can see lines in a blueprint as an iconic
silhouette in a city skyline. The declaring code in Java
comes intuitively to programmers, and is a huge part
of what has made Java such a success.

In this case, Google copied verbatim the declaring
code and related structure of 37 Java packages for its
Android smartphone operating system. Google took
the declaring code and structure of the 37 packages
specifically because that code was popular among
developers and was what they would expect to use.

Google argues in part that this code is not copy-
rightable because it is merely functional, like labels in
a file cabinet. The idea is that no one should be able
to copyright what is (supposedly) the mere organiza-
tion of generic folders and drawers. But this is a
woeful mischaracterization of the artful design of the
Java packages, and is an insult to the hard-working
developers at Sun who made Java such a success. Sun
had unlimited options in writing the Java packages,
and made creative choices so that the code would
resonate with programmers and be intuitive to how
they think. The declaring code is therefore less like a
file cabinet, and more like a detailed table of contents,
with chapter and subchapter headings, and topic
sentences that forms an integral part of a well-written
book. It is this very elegance that made Java popular,
and gave Google the incentive to copy it.

Google also argues that the declaring code is not
copyrightable because there was only one way of
expressing that code in the specific way most familiar
to Java developers. But contrary to Google’s sugges-

4
tion, the popularity of a work is no reason for it to lose
copyright protection.

Furthermore, Google’s arguments regarding “fair
use” fail for the reasons articulated by the Federal
Circuit and in Oracle’s brief. Amicus McNealy wishes
to address herein only certain points relevant to his
unique position at Sun:

First, contrary to Google’s suggestion, Sun always
required a license for the commercial use of Java SE.

Second, Google’s use of the Java SE code in Android
was not a new context for Java, which was being used
in smartphones before Android.

Third, Google’s use of Java SE was particularly
unfair because it did so in a way that rendered Android
incompatible with Java. Thus, Google’s use not only
made Sun/Oracle suffer financially, but also destroyed
Java’s promise of cross-compatibility.

The Federal Circuit should be affirmed.

5
ARGUMENT

I. OVERVIEW OF JAVA FRAMEWORK

A. Brief History of Java

Prior to the release of the Java platform, the domi-
nant programming languages permitted developers to
use a few common rules and vocabularies in writing
programs for different computer systems and devices.
Each device, however, had unique requirements, and
so each program had to be written in a manner specific
to a particular device. Although a programmer could
write programs for multiple systems or devices in the
same language, the program itself would have to be re-
written (or “ported”) for each type of computing device.
For example, an application written in the program-
ming language “C” and designed for a Microsoft
Windows PC would not work on any non-Windows
device.

Having to port programs for multiple systems
slowed the process of making software available for
new platforms and devices. It was also often prohibi-
tively expensive. Developers therefore often chose to
write software for systems with the largest number of
users. Early efforts to develop a cross-system platform
failed.2

Innovators at Sun realized they needed to start
“really [bearing] down and . . . help customers solve
the problems they were having in migrating away
from mainframes.”3 A team of Sun computer engi-

2 James Daly, Apple, Symantec Rethink Role Bedrock Will

Play, Computerworld, Dec. 20, 1993, at 69.
3 Lee Gomes, Made in the Shade; ‘Java’ Stirs Up Renewed

Interest in Sun Micro, Dall. Morning News, Dec. 18, 1995.

6
neers, led by James Gosling, began developing a
computer platform intended to revolutionize how
people would program.

The Java platform was the result: a paradigm-
shifting platform that permitted developers to
“Write Once, Run Anywhere.” Developers could write
a program once, using Java, and the program could
run on a variety of computing systems and devices.
This was therefore an inspirational breakthrough in
software development.4

The Java platform proved an enormous success.
Java has evolved and thrived for nearly 25 years while
competing against myriad other development plat-
forms. Java’s success not only advanced “Write Once,
Run Anywhere,” but it was at the forefront of the
1990s internet revolution. Indeed, commentators at
the time referred to Java as the “hottest idea in the
high-tech world,” and some touted a “vision of how a
Java-charged Web could change the computing indus-
try.”5 Internet-defining companies, such as Twitter
and Netflix, rely on Java for the infrastructure to
power their businesses.6 And as discussed infra, Java
opened up the world of mobile phones and devices to
the possibilities of the internet.

4 David Bank, The Java Saga, Wired Magazine (Dec. 1, 1995),

https://www.wired.com/1995/12/java-saga/ (last visited Feb. 11,
2020).

5 Elizabeth Corcoran, Java Jumps Into the Net, Wash. Post,
Dec. 10, 1995.

6 Java Powers Our Digital World, Java, https://go.java/?
intcmp=gojava-banner-java-com (last visited Feb. 7, 2020).

7
B. How Java Works

The Java platform relies upon five primary ele-
ments: (i) a Java programming language with which
developers can write applications; (ii) a core set of
programs called the Java Packages,7 which developers
can use to speed the creation of new applications;
(iii) a Java compiler, which translates developer-
written code into byte-code; (iv) a Java Virtual
Machine (“JVM”), which translates Java byte-code
into instructions comprehensible to the underlying
computing device; and (v) a Java Development Kit
(“JDK”), a collection of programming tools released by
Oracle. Only Google’s copying of the Java Packages is
at issue in this case.

Java Language. The Java language constitutes
the “bare bones” of the Java framework, providing the
syntax, grammar, and vocabulary that permits a
developer to write programs in Java. This language is
not identical to the Java platform or the various
programs written in Java. For instance, the Java
Packages (described below) are written in Java, but
Java can also be used to write different programs
achieving the same or similar functionality.

Java Packages. The Java Packages are an exten-
sive set of ready-to-use programs that serve as
“building blocks” for Java developers. These pre-built
packages allow programmers to accomplish tasks
ranging from the simple (like basic math functions) to
the complex (like computer security and network
access) without having to write their own code to do so.
The Java Packages thus provide various shortcuts so

7 The Java Packages are sometimes also called application

programming interfaces (“APIs”) or the Java Class Library.

8
that Java developers need not “reinvent the wheel” for
many desired programming tasks.

Although there are many intricacies to how the Java
Packages interact with one another and within them-
selves, a package is generally subdivided into classes
or interfaces, which are further subdivided into meth-
ods. Each method contains the discrete programming
functions used by developers. For example, the
java.net package provides 40 classes and interfaces to
implement networking applications (i.e., connecting to
the internet and other computer networks). It
contains 440 methods that range from determining if
the computer is connected to a locally networked
computer, to retrieving the IP address of another
computer connected to the internet.

The Java Packages operate with essentially two
types of source code: declaring code and implementing
code. The declaring code is used to invoke the
prewritten program—it functions like a name and
description of the program’s place in the package
hierarchy. The implementing code then tells the
computer how to perform the declared function. Pet.
App. 216a, 221a–225a.

Java Compiler. The Java compiler reads and
interprets the source code written by a developer,
including its declaring code to the Java Packages, and
generates a more compact Java byte-code. This byte-
code is distributed to end-users to run on different
computing platforms.

JVM. Installed on a user’s device, the JVM is
software that translates the Java byte-code to enable
it to run on a computer or device. Once a JVM exists
for a platform, all devices using that type of platform
can run programs written in Java.

9
JDK. The JDK is the culmination of all the

elements of the Java platform. It provides all the
necessary and optional programs and tools to develop
and test Java applications, including the Java
Packages, the Java Compiler, and the JVM.

II. THE JAVA PACKAGES ARE CREATIVE
AND EXPRESSIVE

At issue here is Google’s verbatim copying of the
declaring code and organization of 37 Java Packages.
Google argues that this material is not copyrightable
essentially because (i) the code is a purely functional
method of operation, i.e., it is not expressive; and
(ii) there is only one way of expressing that function in
the way most familiar to Java developers. Google Br.
13–15. Google is wrong on both counts.

A. Designing an Elegant Set of Packages
Was Central to Java’s Success

It is well-settled that the Copyright Act applies to
computer programs.8 See, e.g., Atari Games Corp. v.
Nintendo of Am., Inc., 975 F.2d 832, 838 (Fed. Cir.
1992) (“As literary works, copyright protection extends
to computer programs[.]”); 1 Melville B. Nimmer and
David Nimmer, Nimmer on Copyright § 2A.10[B]
(2020). Thus, the Java code and organization are
protectable as a general matter if they are expressive
and have “at least some minimal degree of creativity.”
Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340,
345 (1991). As described below, this standard is easily
satisfied here.

8 The statute defines a “computer program” as “a set of

statements or instructions to be used directly or indirectly in a
computer to bring about a certain result.” 17 U.S.C. § 101.

10
As noted above, the Java Packages provide a set of

pre-existing programs that allow developers to quickly
and efficiently create their own applications in Java.
But merely offering a programming platform in which
developers could build cross-system applications
would not have been enough to get developers to use
it. Indeed, that functionality could have been made
accessible in any number of ways (as discussed infra).
To attract developers to invest the time to learn
the platform, the selection and then naming and
organization of the packages had to be easy to
understand, memorize, and master. A package’s
declaring code therefore must communicate what a
program does, how it relates to other programs, and
what is needed for it to work, in a way that is intuitive
and resonates with programmers. For this reason,
Sun invested an enormous amount of creativity in
developing an original hierarchy of packages
organized into a distinctive library and unique classes.
This code and organization is integral to the program,
the way a table of contents is intertwined with a book.

Designing a package entailed numerous creative
choices. Java’s architects had to decide what packages
to create, and within those, how many classes and
methods to include. Moreover, for every package,
class, and method that made the cut, Java’s creators
had to name each element and determine how to
arrange them. Over time, Java’s developers evolved
existing packages and added new ones.9 And the art of

9 Developing a proposed package can take over a year. The

process involves multiple levels of review, including input from
experts and an opportunity for public feedback. The final release
must pass various tests, most importantly compatibility with
the existing Java Packages. JCP 2.11: Process Document, Java

11
package design stretches beyond the level of individ-
ual packages. Because Java programmers benefit
from familiarity with the Java Package library, and
because many packages are interrelated, significant
attention was paid to the totality of the library: the
selection and arrangement of those packages must be
just as appealing and elegant as each individual
package. Making these thousands of choices was a
massive creative task. Oracle I, C.A. 20,797–98. None
was required for the programs to perform their
function or dictated by the Java language. Pet. App.
165a–166a.

An examination of the java.text package from Java
Standard Edition 5.0 illustrates the myriad design
choices the Java package creators faced. The java.text
package contains 25 classes, two interfaces, and
hundreds of methods to handle text, dates, numbers,
and messages in a manner independent of natural
human languages (allowing for different localized
uses).10 Figure A sets forth an overview of this
Package’s elaborate class structure (which does not
show the additional detail of method names).

Cmty. Process, https://www.jcp.org/en/procedures/jcp2_11#3.2 (last
visited Feb. 11, 2020).

10 Package java.text, Oracle, https://docs.oracle.com/javase/1.5.0/
docs/api/java/text/package-summary.html (last visited Feb. 11,
2020).

12

13
Java’s creators initially needed to determine

whether to include a java.text package in the first
place. Indeed, the localization functions offered by the
java.text package could have been grouped in other
ways, but Java developers believed that combining
them in a single package worked best.

That, however, was just the start of thousands of
such choices that went into drafting a package library.
Java’s architects then had to determine how long the
package would be, what elements to include, and
where to end the package. Moreover, the packages,
classes, and methods had to have unique and easy to
grasp names.

Beyond the names, Java’s developers had to make
appealing organizational choices. For example,
organizing the java.text package alphabetically or
chronologically were possibilities, but not choices that
Java’s creators made. The class names and organiza-
tion could not be so lengthy that they would be
inefficient for programmers to use regularly, yet the
labels still needed to convey the package’s purpose.

Moreover, Java’s architects needed to consider how
java.text would be interrelated with the broader Java
Package library. Java.text is utilized by eight other
packages, including packages dedicated to fonts, user
interfaces, and images.

All of the above-described choices are creative, not
merely functional. Other names and organizational
structures could have been used to invoke the pre-
written programs at issue (see infra). The ultimate
choice made by Sun (or Oracle) for a particular design
reflected judgment as to what design would resonate

14
with programmers and make the Java platform easy
to learn and memorize.

These choices are important. For example, Google’s
own Principal Java Engineer Joshua Bloch (who
previously worked as Senior Sun Engineer on the Java
project) has stressed the importance of creativity in
developing a package library, explaining that “APIs
can be among a company’s greatest assets,” and that
integral to the process of package design is naming
(“Good names drive development”).11 Mr. Bloch has
noted that “[n]ames matter” and that, if a programmer
creates elegant names, “code will read like prose”;
indeed, “API design is an art, not a science. Strive for
beauty, and trust your gut.”12

Likewise, a leading Java educator has explained
that “somewhere in the mix of Sun’s design objectives,
it seems that there was a goal of reducing complexity
for the programmer.”13 As one programmer put it:

When I first began to program in Java, I loved
the Java language a lot. I used to program in
Pascal, Delphi, Visual Basic and C but Java
was very different and elegant. In addition to
its language structure and features, its API
set was very special. With its beautiful and
aesthetic design, programming in Java is a
pleasure. I don’t have this feeling when I
program in other languages. To feel pleasure
or pain is also valid when we use API sets.
There are many API sets we use in any

11 Trial Ex. 624 at 3, 14.
12 Trial Ex. 877 at 2, 3.
13 Bruce Eckel, Thinking in Java 1 (Prentice Hall 4th ed.

2006).

15
development cycle coming from different
frameworks or libraries. API beauty depends
on designer knowledge and design capability
(say artistic skill).14

Indeed, because of the appeal of Java’s naming and
organization, a community devoted to the develop-
ment of new and existing packages was established.
The result has been one of the most enduring pro-
gramming platforms ever conceived.

B. There Are Countless Ways to Achieve
the Functionality Provided by the
Java Packages

Google argues that the merger doctrine precludes
copyright protection for the material Google copied.
This argument fails.

The merger doctrine provides that when there is
only one or very few ways “to express an idea, [] the
expression is said to have ‘merged’ with the idea” such
that it cannot be protected. Comput. Assocs. Int’l, Inc.
v. Altai, Inc., 982 F.2d 693, 707–08 (2d Cir. 1992);
Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823,
838 (10th Cir. 1993).15 But the notion that there was
only one way to write the code at issue is simply wrong.

As an initial matter, the relevant consideration in
the merger analysis is whether there were alternative
ways of expressing the code at the time Sun wrote
it. Indeed, copyright in a work “subsists from its
creation[.]” 17 U.S.C. § 302(a). Thus, if Sun had many
choices when it wrote the Java declaring code, it would

14 Adam Brown, Beautiful API Design, DZone (Nov. 26, 2008),

https://dzone.com/articles/beautiful-api (last visited Feb. 5, 2020).
15 The merger doctrine arises out of the rule that copyright

does not extend to an idea. See 17 U.S.C. § 102(b).

16
not matter if Google only had one way of writing the
declaring code at the time of its copying. But either
way, in this case, there were multiple ways of writing
the code at issue both when Sun first wrote it and
when Google later copied it.

As described supra, and as the Federal Circuit
found, Sun/Oracle had “‘unlimited options as to the
selection and arrangement of the [] lines Google
copied[.]’” Oracle I, 750 F.3d at 1361; see also id. at
1368 (“[T]he declaring code could have been written
and organized in any number of ways and still have
achieved the same function.”); id. at 1371 (“[T]here is
no evidence that when Oracle created the Java API
packages at issue it did so to meet compatibility
requirements of other pre-existing programs.”).

Likewise, it is clear that Google could have designed
its own packages by writing original declaring code
to call up the new implementing code it wrote. As
the District Court acknowledged, “the Android method
and class names could have been different from the
names of their counterparts in Java and still have
worked.” Pet. App. 215a; see also id. at 266a (“There
was nothing in the rules of the Java language that
required that Google replicate the same groupings
even if Google was free to replicate the same
functionality.”). The Federal Circuit also found that
“nothing prevented Google from writing its own
declaring code, along with its own implementing code,
to achieve the same result.” Oracle I, 750 F.3d at 1361;
see also id. at 1368 (“Google could have structured
Android differently and could have chosen different

17
ways to express and implement the functionality it
copied.”).16

The availability of alternative means of writing the
code at issue is illustrated by considering the various
approaches taken by other competitors. For example,
take the Java Packages’ approach to time zones. In
Java, a developer setting the time zone in an applica-
tion would go into the “DateFormat” class of the
java.text package and declare the “setTimeZone”
method.17 By just looking at their labels a developer
will intuitively know that the DateFormat class can be
used to format a date, and then use the setTimeZone
method to set the time zone for that application.

But this was not the only way to set a time zone in
an application. Apple’s iOS platform devotes an entire
class to set the time zone—the “NSTimeZone” class.
Unlike Java’s placement of that function in the
java.text package, Apple put it in its “Foundation”
framework (Apple’s term for a structure conceptually
similar to Java’s “package”). Apple’s NSTimeZone
class contains numerous methods to manipulate time
zones, including through abbreviations (“timeZone-
WithAbbreviation”), names (“timeZoneWithName”),
and default settings (“defaultTimeZone”).18 It was

16 Similar programs could have been written in the Java

language with different declaring code. See Tr. 290:4–291:9, ECF
No. 943 (Larry Ellison); Tr. 2212:19–2213:16, ECF No. 1065
(Owen Astrachan).

17 Class DateFormat, Oracle, https://docs.oracle.com/javase/
1.5.0/docs/api/java/text/DateFormat.html (last visited Feb. 7,
2020).

18 NSTimeZone, Apple Developer, https://developer.apple.com
/documentation/foundation/nstimezone?language=objc (last visit-
ed Feb. 7, 2020).

18
Apple’s decision to organize and label the time zone
programs in this manner.

Likewise, Microsoft provided similar functionality,
but with an entirely different structure and naming
scheme. In its former Windows Phone development
platform, Microsoft stored its time zone programs in
the “TimeZoneInfo” class in its “System” namespace
(Microsoft’s version of a “package” or iOS “frame-
work”). Within that structure, Microsoft had pro-
grams to, among other things, convert time from
different time zones (“ConvertTime”) or determine
whether a particular date and time in a particular
time zone is ambiguous (“IsAmbiguousTime”).19

As demonstrated by two other software developers,
the organizational conventions, naming schemes, and
selection of programs associated with the concept of
using time zones are open to various modes of expres-
sion. But while Sun/Oracle, Apple, and Microsoft
invested considerable resources and valuable time
making creative decisions for their respective pro-
gramming libraries, Google did not: it merely copied
the declaring code for desirable packages from the
Java platform.

What all of this really comes down to is that Google
wanted to attract Java developers and get to market
quickly. As Google itself explains, such developers
“would expect to use” the popular (and copyrighted)
Java declaring code; otherwise, they would have had
to “learn thousands of new calls.” Google Br. 7–8. By
copying the elements, names, and organization of the
Java Packages verbatim, Google was therefore able to

19 TimeZoneInfo Class, Microsoft, https://docs.microsoft.com

/en-us/dotnet/api/system.timezoneinfo?view=netframework-4.8
(last visited Feb. 5, 2020).

19
provide a platform that Java programmers already
knew.20

Google’s merger argument therefore is essentially
that there is only “one way” of expressing Java’s
declaring code in the specific way already made
popular by Java. That circular argument would un-
dermine any copyright protection for popular works,
which cannot be the law. See, e.g., Prac. Mgt. Info.
Corp. v. Am. Med. Ass’n, 121 F.3d 516, 520 n.8 (9th
Cir. 1997) (rejecting theory that a work loses copyright
protection just because a government regulation
makes it pervasive); Educ. Testing Servs. v. Katzman,
793 F.2d 533, 540 (3d Cir. 1986), (“possible domination
in [particular] field . . . cannot excuse copying . . .
and patently does not affect the validity of [plaintiff’s]
copyright”), abrogated on other grounds, TD Bank
N.A. v. Hill, 928 F.3d 259 (3d Cir. 2019).

III. GOOGLE’S USE OF JAVA WAS
UNAUTHORIZED

Google suggests that Sun/Oracle did not view the
declaring code at issue as proprietary, and/or that
there was some purported industry standard to that
effect. Nothing could be further from the truth.

20 Google’s Android developer website specifically marketed,

until at least September 2017, that: “Android applications
are written in the Java programming language.” Application
Fundamentals, Android Developers, https://web.archive.org/
web/20170919103505/https://developer.android.com/guide/compo
nents/fundamentals.html (last visited Feb. 7, 2020). See also Tr.
629:24–630:2, ECF No. 1907 (Andy Rubin) (Android’s use of
already-created software was “a huge accelerant to [its] effort”).

20
A. Sun’s Licensing Requirements

Since its inception, Sun has licensed Java to a broad
range of technology firms. Java is licensed in three
principal ways (briefly summarized below), all meant
to advance the “Write Once, Run Anywhere” principle:

 The public license is an “open source” license
based on the widely used General Public
License (“GPLv2”).21 Although commonly per-
ceived to be “free,” it is an enforceable agree-
ment where the licensee must contribute back
to the Java community all improvements or
changes to the licensed technology, guarantee-
ing that those improvements benefit all users.

 The Specification License permits licensees to
use the Java declaring code (including the
declaring code for all of the Java Packages at
issue in this case) and structure. However, the
licensee must write its own implementing
code. That new implementation must pass a
compatibility test and must produce the same
“specified” end result so that a program writ-
ten using the standard Java platform would
“compute the same result on all machines and
in all implementations.”22 These licensing
terms are spelled out explicitly in the Java API
Specification, the manual that details the Java

21 Open-source licenses “are used by . . . software developers

. . . who wish to create collaborative projects and to dedicate
certain works to the public,” while “provid[ing] creators of copy-
righted materials a means to protect and control their copyrights.”
Jacobsen v. Katzer, 535 F.3d 1373, 1378 (Fed. Cir. 2008) (empha-
sis added).

22 James Gosling et al., The Java Language Specification xxiii
(Lisa Friendly ed., Addison-Wesley 1996).

21
declaring code and structure.23 Some of the
prominent technology firms that have taken
Java’s Specification License include IBM, SAP,
and Red Hat.24

 For a commercial license, a licensee pays a fee
for use of all the implementation code and may
alter the code as it pleases. While none of the
alterations have to be passed on to the public,
the implementation must meet Java’s com-
patibility standards. Java’s commercial licen-
sees have included the world’s foremost tech-
nology companies, including Sony, Cisco,
RIM, Nokia, Amazon, eBay, Panasonic, LG,
Samsung, VISA, and GE.

Beginning in 2005, Google engaged in extensive
discussions with Sun about the possibility of licensing
Java for use in the Android platform. But despite
countless attempts by Sun employees (including
senior executives), Google declined to license the Java
Packages from Sun or Oracle under any of the avail-
able licenses described above.25 Ultimately, Google
decided to (in its own words) “[d]o Java anyway and
defend [its] decision, perhaps making enemies along
the way.” Pet. App. 106a (e-mail from Android founder
to Google CEO). The negotiation did not break down
over money. Instead, Google’s principal reason for not
agreeing to a license was that—while it wanted to

23 Java 2 Platform Standard Edition Development Kit 5.0

Specification, Oracle (Aug. 25, 2004), https://docs.oracle.com/java
se/1.5.0/docs/relnotes/license.html (last visited Feb. 7, 2020).

24 Tr. 293:8–295:6, 299:11–303:17, ECF No. 943 (Ellison); JCP
Members, Java Cmty. Process, https://jcp.org/en/participation
/members (last visited Feb. 11, 2020).

25 See Tr. 886:3–888:5, ECF No. 1909 (Rubin).

22
provide a platform that Java programmers had
already learned—it wanted neither compatibility
between Android and Java SE nor to contribute back
any changes to the Java community. See Oracle II, 886
F.3d at 1187.

Google cites testimony from certain former Sun
executives (including former CEO Jonathan Schwartz)26
who conclusorily assert their belief that a license was
not needed for Java’s declaring code. Google Br. 38.
But this contradicts the clear terms of the Java
Specification manual and Specification License (see
supra), as well as the actual practice at Sun/Oracle.
Indeed, as Amicus McNealy testified, while Sun
“offered lots of [its] technology for free . . . in terms of
no revenue charge,” it did so pursuant to a license, and
“did not license [its] technology with rights equivalent
to ownership, even if it was free and open.”27 For
instance, Andy Rubin (who later founded Android) felt
the need to obtain a Java license when he launched
his own earlier smartphone, the Danger Sidekick.28
And it is telling that Google points to no instances
where Sun actually allowed any commercial use of its
declaring code without a license.

Google also asserts that Sun supposedly “did not
consider Google’s reuse of the declarations to be
infringement.” Google Br. 38. This is simply not true.
For example, in 2007, Amicus McNealy (then-Chair-
man of Sun’s board) expressly told Mr. Schwartz that

26 Notably, Oracle did not keep Mr. Schwartz on as CEO

after acquiring Sun. Tr. 562:23–565:25, ECF No. 1907 (Jonathan
Schwartz).

27 Tr. 2067:10–68:17, 2077:3–78:2, ECF No. 1064 (Scott
McNealy).

28 Tr. 887:23–889:3, ECF No. 1909 (Rubin).

23
“[t]he Google thing is really a pain. They are immune
to copyright law.”29 Google points to a 2007 blog post
from Mr. Schwartz in which he stated, among other
things, that Android “strapped another set of rockets”
to Java. But Google ignores that in internal com-
munications, Mr. Schwartz was at the same time
complaining that he “h[ad] no clue what [Google is] up
to” and “[m]y sense is they’re playing fast and loose
with licensing terms.”30

B. Google’s Flawed “Industry Practice”
Argument

Google also says that there was a purported indus-
try understanding that declaring code may be reused,
citing the subjective beliefs of its witnesses. Google
Br. 38. But this ignores the actual practice at Sun/
Oracle, noted above.

Various amici—including Java competitors Micro-
soft and IBM—repeat the argument that industry
practice supposedly is to allow re-use of declaring code.
But these self-serving arguments come from compa-
nies with a long history of trying to thwart Java and/or
compete with Sun.

For instance, in the late 1990s, Microsoft attempted
to use Java while altering the parts that made it
interoperable (i.e., the sort of incompatible “re-
implementation” Google did here). Sun sued based on
Microsoft’s violation of its license agreement. See, e.g.,
Sun Microsystems, Inc. v. Microsoft Corp., 188 F.3d
1115 (9th Cir. 1999). As the district court noted:

29 Tr. 608:2–609:12, ECF No. 1907 (Schwartz).
30 Id. at 586:1–24 (Schwartz).

24
Microsoft’s unauthorized distribution of in-
compatible implementations of Sun’s Java
Technology threatens to undermine Sun’s
goal of cross-platform and cross-implementa-
tion compatibility. The threatened fragmen-
tation of the Java programming environment
harms Sun’s relationship with other licensees
. . . .

Sun Microsystems, Inc. v. Microsoft Corp., 87 F. Supp.
2d 992, 997 (N.D. Cal. 2000). The case settled, but
Sun’s disputes with Microsoft continued. See In re
Microsoft Corp. Antitrust Litig., 333 F.3d 517, 536 (4th
Cir. 2003) (affirming preliminary injunction based
on settlement violation). Notably, in the massive U.S.
v. Microsoft litigation, the D.C. Circuit noted that
Microsoft’s “ultimate objective was to thwart Java’s
threat to Microsoft’s monopoly,” citing a Microsoft
document “stat[ing] as a strategic goal: ‘Kill cross-
platform Java by grow[ing] the polluted Java market.’”
U.S. v. Microsoft Corp., 253 F.3d 34, 76 (D.C. Cir.
2001).

IBM also has had various disputes with Sun/Oracle
over the years. For instance, in 2000, IBM withheld
its endorsement of Sun’s Java specification, which
analysts said was an attempt to “wrestle some control
of Java.”31 And in the late-2000s, IBM backed the
Apache Software Foundation in its objections to cer-
tain of Java’s licensing requirements. This came at
around the same time that IBM attempted (unsuccess-
fully) to acquire Sun.32 IBM backed down in the

31 Lee Copeland, Big Blue, Sun in Java Dispute, JavaWorld

(June 23, 2000), https://www.javaworld.com/article/2076110/big-
blue--sun-in-java-dispute.html (last visited Feb. 7, 2020).

32 Jon Swartz & Leslie Cauley, Oracle to Buy Sun for $7.4B
after IBM Drops Bid, ABC News (Apr. 21, 2009), https://abcnews.

25
licensing dispute when Oracle acquired Sun and made
clear that it would continue Sun’s policy. At the time,
IBM noted: “We think this is the pragmatic choice. It
became clear to us that first Sun and then Oracle
were never planning to make the important test and
certification tests for Java, the Java SE TCK, available
to Apache.”33

These past disputes underscore Sun’s history of
zealously protecting its intellectual property rights,
and show the self-interest of some of Google’s amici.

IV. GOOGLE’S USE OF JAVA WAS NOT
TRANSFORMATIVE

Google argues that its use of the Java code should
be allowed as “fair use” because, among other reasons,
Android was supposedly transformative in that it used
Java in the smartphone context. This argument fails:
Java was designed as a cross-platform system, and
Sun had pioneered smartphone uses of Java before
Google created Android.

A work is transformative if it does not “merely
supersede the objects of the original creation . . .
[but] instead adds something new, with a further
purpose or different character, altering the first with
new expression, meaning, or message.” Campbell v.
Acuff-Rose Music, Inc., 510 U.S. 569, 579 (1994).

But Google copied the declarations at issue verbatim
and without alteration, and used them for the same

go.com/Technology/story?id=7395780&page=1 (last visited Feb. 11,
2020).

33 Ryan Paul, Java Wars: IBM Joins OpenJDK as Oracle
Shuns Apache Harmony, Arts Technica (Oct. 13, 2010), https://
arstechnica.com/information-technology/2010/10/ibm-joins-open
jdk-as-oracle-shuns-apache-harmony/ (last visited Feb. 7, 2020).

26
purpose in Android. In particular, Android developers
could use Java’s declaring code to invoke the same
functionality that this code invoked in the Java
Packages.34 This was by design (as discussed supra).
The district court recognized “of course, the copied
[Java Packages] serve the same function in both
works,” Java and Android, “for by definition, declaring
code in the Java programming language serves [a]
specific definitional purpose.” Pet. App. 110a. There-
fore, Google did nothing more than “supersede the
objects of the original creation” without adding any
new elements.

Google argues that Android’s use of Java was
transformative (indeed, “revolutionary”) supposedly
because Java “was built to run on servers and desktop
computers,” and was not “suitable for the serious
constraints of a smartphone platform.” Google Br. 43.
This simply ignores Java’s long history of device and
platform independence.

Java was always intended to work across different
kinds of hardware, as described in more detail below.
As one Java founder put it, “it was patently obvious”
as early as 1993 that Java “fit perfectly with the way
applications were written, delivered, and used on the
Internet.”35 Indeed, Java was meant to unlock the
potential of the internet and mobile computing, giving
developers the opportunity to learn one language that
could be used across many devices. The internet had

34 The fact that Google wrote its own implementing code

to carry out the declared function does not change that the
declaration itself is used for the same purpose.

35 Jon Byous, Java Technology: An Early History, Sun
Developer Network (Apr. 2003), https://web.archive.org/web
/20090311011509/http://java.sun.com/features/1998/05/birthday.
html (last visited Feb. 7, 2020).

27
an early major challenge: many different devices
sought to access a given website. Websites are, after
all, nothing more than computer programs existing on
a remote computer known as a server. Java enabled
these computer programs (i.e., websites) to run on any
device running a JVM, regardless of the type of device
or operating system.36 The Java platform met this goal
by creating a rich ecosystem, closely guarded and
nurtured by Sun and, later, Oracle, designed to ensure
cross-platform compatibility—Java’s core “Write Once,
Run Anywhere” value.

A brief look at Java’s history with mobile devices
is illustrative. For example, as early as 1991, Sun
established the “Green Team,” a group of 13 people
initiated by Patrick Naughton, Mike Sheridan, and
James Gosling. The team was tasked with anticipat-
ing and planning for the “next wave” in computing.37
It quickly developed the Star7, a PDA mobile device
with an animated touch screen that ran an early
version of what would become the Java platform.38 It
could control multiple entertainment devices, such as
televisions, VCRs, and stereos, running on a “proces-
sor-independent” language, the precursor of Java’s
JVM environment.39

36 Edward Yourdon, Java and the New Internet Programming

Paradigm, JavaWorld (Aug. 1, 1996), http://www.javaworld.com/
article/2077231/java-and-the-new-internet-programming-paradigm
.html (last visited Feb. 7, 2020).

37 Byous, supra note 35.
38 Klint Finley, Tech Time Warp of the Week: Get a Glimpse of

the Lost Touchscreen Tablet of 1992, Wired (Oct. 17, 2014),
https://www.wired.com/2014/10/star7/ (last visited Feb. 7, 2020).

39 Byous, supra note 35.

28
As Java developed, developers could exploit the

possibilities of the internet across a wide variety of
connected devices. The Java platform transformed
what had been a medium for sending text and images
to a vibrant, multimedia environment with nearly
infinite possibilities. In 1997, the Java platform was
already expanding beyond the internet and traditional
desktop PCs to items such as smartcards.40

At 1998’s JavaOne Developer Conference, attendees
received a JavaRing, a wearable device with an
embedded microprocessor, which used the Java
platform to bring attendees their preferred coffee after
being scanned by readers located throughout the
conference. The demonstration showed Java’s utility
in a far reaching array of applications and device form
factors, many of which are now routine parts of
smartphones, such as exchanging contact information,
using banking services, and starting cars.41

This focus on mobile devices continued in 1999 with
the introduction of the Java 2 Platform, Micro Edition
(“J2ME”), a derivative of Java’s Standard Edition
(“J2SE”) designed specifically for mobile devices.42
Years before Google considered creating Android, Sun
had developed an entire infrastructure for the use
of the Java platform in mobile computing devices,

40 Rinaldo Di Giorgio, Smart Cards: A Primer, JavaWorld (Dec.

1, 1997), https://www.javaworld.com/article/2077101/smart-cards
--a-primer.html (last visited Feb. 7, 2020).

41 Margaret Rouse, Java Ring, WhatIs.com (Sept. 2005),
https://whatis.techtarget.com/definition/Java-Ring (last visited
Feb. 11, 2020).

42 Chuck McManis, The Palm V Meets J2ME, JavaWorld
(Aug. 20, 1999), https://www.javaworld.com/article/2076478/the-
palm-v-meets-j2me.html (last visited Feb. 7, 2020).

29
including the Java Phone API.43 By 2000, Java was
ubiquitous in the growing personal communications
market, appearing in two-way pagers, mobile phones,
and palm computers/PDAs.44 For instance, as early as
2000, Research in Motion—the company that created
the Blackberry smartphone—was using the Java
platform to create a programmable, web-enabled
pager.45

A demonstration at the JavaOne conference in 2002
showcased a mobile phone-controlled robot in a sumo
wrestling match with a desktop PC-controlled robot.46
The message was clear: Java, designed as a cross-
platform system, enabled mobile devices to do any-
thing a computer could do. As mobile devices, includ-
ing smartphones and tablets, grew more sophisticated
and had greater processing power, developers realized
they could use the Java platform to bring programs
that were previously imprisoned in large desktop
machines to sleek, portable handheld devices.47

As the smartphone industry grew in the early and
mid-2000s, Java was used in a variety of pre-Android
devices, including the Danger Sidekick (one of the

43 Bill Day, Program Java Devices – An Overview, JavaWorld

(July 24, 1999), https://www.javaworld.com/article/2076441/java-
se-program-java-devices-an-overview.html (last visited Feb. 10,
2020).

44 Id.
45 Mark Beaulieu, Wireless Internet Applications and Architec-

ture: Building Professional Wireless Applications Worldwide 289
(Addison-Wesley 2002).

46 Tim Rohaly, Real-Time Java Takes the Stage, JavaWorld
(Mar. 26, 2002), https://www.javaworld.com/article/2073884/real-
time-java-takes-the-stage.html (last visited Feb. 9, 2020).

47 Tr. 1670:9–13, ECF No. 1932 (Alan Brenner).

30
first, if not the first, smartphones), Blackberry, HTC,
Nokia, and SavaJe.48 Amicus McNealy personally
negotiated a Java ME license with Motorola, which
was, at the time, perhaps the biggest player in the
mobile phone industry.49

Andy Rubin, the creator of the Danger Sidekick,
testified that his company “created our own imple-
mentation of the Java 2 SE APIs” and to do so obtained
a Java license from Sun. Mr. Rubin further testified
that the “rest of the industry . . . was using Java in
some of the phones.”50 And after licensing Java for use
on smartphones, Mr. Rubin went on to found Android,
which was then acquired by Google.51 Mr. Rubin
admitted that Android considered Java a direct
competitor that was “targeting the same industry with
similar products.”52

Thus, contrary to mobile phones being a new
context, the Java platform already existed in the
“operating environment of mobile smartphone
devices” before the advent of Android. Pet. App. 111a.
Due to its elegance, portability, and functionality,
Java dominated the mobile market, including both
feature phones53 (Java ME) and emerging smart-

48 Id. at 1622:13–21, 1623:10–1624:1 (Neal Civjan).
49 See Tr. 1356:3–9, ECF No. 1931 (Safra Catz).
50 Tr. 887:23–889:3, 912:21–913:11, ECF No. 1909 (Rubin).
51 Tr. 624:11–17, ECF No. 1907 (Rubin).
52 Tr. 844:21–22, ECF No. 1909 (Rubin).
53 “Feature phones” bridged the gap between pure cell phones,

allowing only voice calls and text messaging, and smartphones.
Feature Phone, PC Magazine Encyclopedia, https://www.pcmag.
com/encyclopedia/term/feature-phone (last visited Feb. 7, 2020).

31
phones (Java ME and SE).54 Indeed, prior to Android’s
launch, Java was “in over 85 percent of the [mobile
phone] market.”55 Virtually every mobile phone on the
market ran some version of Java.56

Moreover, even putting aside the fact that Java
was already in use in smartphones, Sun and Oracle
always expected that the Java platform would expand
its presence in mobile devices as the processing
power of these devices advanced. The Java platform
was designed for all devices possessing a threshold
level of processing power. Early mobile phones and
other resource constrained devices ran Java ME—a
slimmed-down derivative of Java SE. Illustrating
Java’s adaptation to advancing device capabilities,
some early smartphones, such as the first Sidekick
(which had a black-and-white screen, a handful of
applications, and a primitive web browser) could run
Java SE.57

Modern smartphones have processing power,
graphics, applications, and browsers more advanced
than the PCs that first ran Java. Smartphones
today—many of which run Android—have a fully inte-
grated email and messaging system, the speed and
complexity of which makes mid-2000s PC and phone
versions look quaint. The smartphone is no different
in processing power from the PCs that were available

54 By 2005, Java ME was already in about 79% of wireless

handsets. Trial Ex. 134 at 3.
55 Tr. 1624:21–24, ECF No. 1932 (Civjan).
56 Trial Ex. 134 at 3.
57 Klint Finley, Tech Time Warp of the Week: Before the iPhone,

Anyone Who Was Anyone Rocked a Sidekick, Wired (May 22,
2015), https://www.wired.com/2015/05/tech-time-warp-week-iph
one-anyone-anyone-rocked-sidekick/ (last visited Feb. 7, 2020).

32
when Android launched. The only difference is that
smartphones today fulfill Java’s long-standing goal of
bringing extensive computing power and digital
awareness to the masses in handheld devices.

In short, Java was always intended to be device and
platform-independent. Google’s use of Java in smart-
phones simply was not transformative.

V. GOOGLE’S USE UNDERMINES JAVA’S
PROMISE OF “WRITE ONCE, RUN
ANYWHERE”

Google’s unauthorized use of Java has severely
harmed the market for Java. This is in large part due
to the way Google used the Java copyrighted material.

For one thing, Android was designed intentionally
so that it would be incompatible with the JVM,
effectively cutting Oracle out of the potential Android
market.58 Specifically, although Google took Java’s
declaring code verbatim for certain packages, it
added other packages and omitted many others. This
ensured that programs written for Android could not
be run on any other platforms or devices and that
programs written for standard Java devices could not
be run on Android.

By copying the creative elements of the Java
platform familiar to Java developers, but at the
same time ensuring that Java code written for Android
was transformed into Android-specific code, Google’s

58 See Tr. 1332:1–2, ECF No. 987 (John C. Mitchell) (“So

you don’t really have compatibility. You can’t ship code from
one platform to another.”); Tr. 1440:25–1441:2, ECF No. 1931
(Edward Screven) (Android’s programming “locks programmers
into Android . . . their applications can’t run in other environ-
ments”).

33
actions had two consequences: quick access to Java
developers while preventing Java cross-platform com-
patibility. This undermined Java’s vision of cross-
platform compatibility. Because of Google’s (largely
uncommunicated) changes, developers who chose to
write for Android in using Java platform conventions
found that their resulting applications would only
work on Google’s Android devices. In essence, Google
has used the creative aspects of Java to undermine its
core mission: “Write Once, Run Anywhere.”

Moreover, Google’s business model of giving away
Android source code for free, combined with “locking
in” Java developers, effectively destroyed Java’s
licensing model.59 Sun’s Neal Civjan testified that
Android “hijacked” Java: Google “took our technology
and they gave it away for free and they took our
customers and it was devastating.”60 For instance,
Motorola eventually dropped its license for Java in
favor of Google’s free Android.61

Ultimately, Java found itself unable to compete with
a free version of its own product. Former licensees
were able to obtain for free, from Google, the same
packages performing the same functions on the same
platform for which they previously had to pay. As a
result, Oracle eventually had to exit the smartphone

59 Android makes money through advertising and other em-

bedded search functions, while Sun/Oracle makes revenue from
Java through commercial licensing fees paid by those seeking to
use the Java platform in their devices and programs, as noted
supra. Tr. 1771:17–23, ECF No. 1932 (Adam Jaffe).

60 Id. at 1641:5–17 (Civjan).
61 Tr. 1356:3–9, ECF No. 1931 (Catz).

34
market entirely, falling from a dominant position to a
non-existent position in less than a decade.62

This was not simply the result of market forces at
work. This was Google’s calculated strategy to subvert
the Java platform’s market position by taking Oracle’s
technology, giving it away for free, and generating a
revenue stream in a different manner such that no
rational customer would remain with Oracle. Had
Google created its own technology, its actions might be
cutthroat but effective business. By stealing Oracle’s
longstanding copyrighted material, however, Google
unfairly destroyed the market for Java.

And by doing so, Google has reopened the chaos
of system fragmentation that the Java platform was
meant to stem. The threat that a competitor like
Google could simply take the naming conventions and
organization of the Java Packages would have de-
terred Sun from maintaining its decades-long mission
to revolutionize computer software development.

62 Id. at 1361:23–1362:2 (Catz).

35
CONCLUSION

For the foregoing reasons, Amicus respectfully
submits that the Court should affirm the decisions of
the Federal Circuit.

Respectfully submitted,

CELESTE L.M. KOELEVELD
Counsel of Record

JOHN P. ALEXANDER
YOUNG JUN CHOI
CLIFFORD CHANCE US LLP
31 W. 52nd St.
New York, New York 10019
(212) 878-8000
Celeste.Koeleveld@

CliffordChance.com

Counsel for Amicus Curiae

February 19, 2020

	No. 18-956 GOOGLE LLC, Petitioner, v. ORACLE AMERICA, INC., Respondent.
	TABLE OF CONTENTS
	TABLE OF AUTHORITIES
	INTEREST OF AMICUS CURIAE
	SUMMARY OF ARGUMENT
	I. OVERVIEW OF JAVA FRAMEWORK
	A. Brief History of Java
	B. How Java Works

	II. THE JAVA PACKAGES ARE CREATIVE AND EXPRESSIVE
	A. Designing an Elegant Set of Packages Was Central to Java’s Success
	B. There Are Countless Ways to Achieve the Functionality Provided by the Java Packages

	III. GOOGLE’S USE OF JAVA WAS UNAUTHORIZED
	A. Sun’s Licensing Requirements
	B. Google’s Flawed “Industry Practice” Argument

	IV. GOOGLE’S USE OF JAVA WAS NOT TRANSFORMATIVE
	V. GOOGLE’S USE UNDERMINES JAVA’S PROMISE OF “WRITE ONCE, RUN ANYWHERE”

	CONCLUSION

