
No. 18-956

In the

Supreme Court of the United States

On Writ Of CertiOrari tO the United StateS
COUrt Of appealS fOr the federal CirCUit

A
(800) 274-3321 • (800) 359-6859

BRIEF FOR PROFESSOR EUGENE H. SPAFFORD,
PH.D., PROFESSOR ZHI DING, PH.D., PROFESSOR
EMERITUS LEE A. HOLLAAR, PH.D., PROFESSOR

ADAM PORTER, PH.D., AND MR. PETER KENT,
BSC AS AMICI CURIAE IN SUPPORT

OF RESPONDENT

294664

GOOGLE LLC,

Petitioner,

v.

ORACLE AMERICA, INC.,

Respondent.

Anne M. CAppellA

Counsel of Record
ChrIstopher M. pIstrItto

WeIl, GotshAl & MAnGes llp
201 Redwood Shores Parkway
Redwood Shores, CA 94065
(650) 802-3000
anne.cappella@weil.com
christopher.pistritto@weil.com

WeIl, GotshAl
& MAnGes llp

767 Fifth Avenue
New York, NY 10153
(212) 833-3000

Counsel for Amici Curiae

February 19, 2020

i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS. i

TABLE OF CITED AUTHORITIES iii

INTEREST OF AMICI CURIAE1

SUMMARY OF ARGUMENT .5

ARGUMENT. .11

I. API Structures .11

A. APIs And Software APIs.11

B. Java APIs .13

II. A PIs Often Involve Many Creative
Choices That Are Not Dictated By The

 Software’s Function .15

A. The Java APIs Are Creative And Not
 Dictated By Their Functions.15

B. Android Is Not Interoperable With
 Java .19

C. Failing To Protect APIs Would Harm
 The Industry .21

ii

Table of Contents

Page

III. Google’s Copying of the Java APIs Was
 Not A Fair Use .22

A. The Declaring Code And SSO Of APIs
 Embody Substantial Creativity.22

B. The Declaring Code And SSO Are
Significant Portions Of The Creative

 Work Of An API .23

C. The Creativity Of An API Is Not
Substantively Changed By Substituting
New Implementing Code For The

 API’s Existing Implementing Code25

D. Google Did Not Transform The Java
APIs When Copying Them Onto A

 Smartphone Platform26

E. There Is No Technical Need To Copy
The Declaring Code And SSO Of The

 Java APIs .27

F. Google’s Commercial Use Of The Java
APIs Without A License Materially

 Impaired The Market Value30

CONCLUSION .31

iii

TABLE OF CITED AUTHORITIES

Page

CASES

Oracle Am., Inc. v. Google Inc.,
 750 F.3d 1339 (Fed. Cir. 2014).30

Oracle Am., Inc. v. Google Inc.,
 886 F.3d 1179 (Fed. Cir. 2018).28

STATUTES

U.S. Code § 107 .22

DOCKETED DOCUMENTS

Trial Transcript, Oracle of Am., Inc. v. Google
Inc., Case No. C 10-3561 WHA (N.D. Cal.

 Apr. 20, 2012), ECF No. 967 .20

Trial Transcript, Oracle of Am., Inc. v. Google
Inc ., Case No. C 10 -3561 WHA (N.D.

 Cal. Apr. 23, 2012), ECF No. 98720

Tr ia l Transcr ipt , Oracle of Am., Inc . v.
Google Inc., Case No. C 10-3561 WHA

 (N.D. Cal. Apr. 27, 2012), ECF No. 106520

OTHER AUTHORITIES

Apple Releases iOS 8 SDK With Over 4,000
New APIs, Apple Inc. (June 2, 2014),, https://
www.apple.com/newsroom/2014/06/02Apple-
Releases-iOS-8 -SDK-With-Over- 4- 000 -

 New-APIs/. .29

iv

Cited Authorities

Page

D a v i d F l a n a g a n , Ja v a I n A Nut s he l l
 (5th ed. 2005). .19, 29

Guido van Rossum , Resume, Github, https://
g v a n r o s s u m . g i t h u b . i o / R e s u m e . h t m l

 (last visited Feb. 13, 2020). .28

Oracle Java Archive, Oracle Corp., https://
w w w. o r a c l e . c o m / j a v a / t e c h n o l o g i e s /
o r a c l e - j a v a - a r c h i ve - d o w n l o a d s . ht m l

 (last visited Feb. 13, 2020). .21

Patrick Niemeyer & Daniel Leuck, Learning
 Java (4th ed. 2013). .12

Press Release, Oracle Corp., Oracle Buys Sun (Apr.
20, 2009), https://www.oracle.com/corporate/

 pressrelease/oracle-buys-sun-042009.html21

Rob Pike , Go at Google: Language Design
in the Service of Software Engineering,
GoLang, https://talks.golang.org/2012/splash.

 article (last visited Feb. 13, 2020)28

Surface Pro Specifications, Microsoft Corp.
ht t p s : / / w w w. m i c r o s o f t . c o m /s u r f a c e /
e n - u s / s u p p o r t / s u r f a c e - p r o - s p e c s

 (last updated Apr. 12, 2019) .26

Tripp Mickle, Apple Posts Record Revenue
on Strong iPhone, App Sales, Wall St. J.

 (Jan. 28, 2020) .29

1

INTEREST OF AMICI CURIAE1

Dr. Eugene H. Spafford is a Professor of Computer
Science at Purdue University, where he has been employed
since 1987, and the founder and Executive Director
Emeritus of the Center for Education and Research in
Information Assurance and Security at Purdue. He has
over 30 years of experience in both practice and research in
the field of computing and computer science, including with
the use of application programming interfaces (“APIs”).
Over the past decade, he has served in an advisory or
consulting capacity on issues in computing and information
systems with several U.S. government agencies and their
contractors, including the National Science Foundation,
the Federal Bureau of Investigation, the Government
Accountability Office, the National Security Agency,
the U.S. Department of Justice, the U.S. Air Force, the
U.S. Naval Academy, the Department of Energy, and the
Executive Office of the President. He has served on the
President’s Information Technology Advisory Committee
and has testified before Congressional committees nine
times. He is a Fellow of five major scientific and professional
organizations involved with computing: the Association for
Computing Machinery (ACM), American Academy for the
Advancement of Science (AAAS), Institute of Electrical
and Electronic Engineers (“IEEE”), International
Information Systems Security Certifications Consortium,
and Information Systems Security Association (ISSA).

1. Pursuant to Supreme Court Rule 37.6, counsel for amici
curiae states that no counsel for a party authored this brief in whole
or in part. No party or party’s counsel contributed money that was
intended to fund preparing or submitting this brief, and no person,
other than the amici or amici counsel, made such a contribution.
Petitioner has lodged a blanket amicus consent letter with the Court,
and Respondent has consented to the filing of this brief.

2

Dr. Spafford has published and spoken extensively
about software engineering, information security, and
professional ethics, and he has served on the editorial
boards of several major journals of computer science. He
was affiliated with the Software Engineering Research
Center, an NSF University-Industry Cooperative
Research Center when it was located at Purdue. His
current research is directed towards the architecture,
construction, and public policy of secure information
systems. He has been writing computer programs since
1972, including computer security programs that have
been used internationally by government agencies and
companies, and his programming experience includes
Java and other programming languages. He also has
taught undergraduate and graduate courses involving
software engineering, information system security, and
many programming languages.

Dr. Zhi Ding is a Professor of Electrical and Computer
Engineering at the University of California, Davis. He has
over 29 years of practical and research experience in the
field of electronic and electrical engineering, including
with the use of APIs. He received his Ph.D. degree in
Electrical Engineering from Cornell University in 1990.
He was a faculty member of Auburn University and the
University of Iowa, and he has held visiting positions at
Australian National University, Hong Kong University
of Science and Technology, NASA Research Center
(Cleveland, Ohio), and USAF Wright Laboratory.

Dr. Ding has published extensively about electrical
engineering, and his research focuses on communications
and systems. He has published over 200 journal papers and
more than 230 conference papers. Dr. Ding is a coauthor

3

of the popular engineering textbook Modern Digital
and Analog Communication Systems (5th ed.). Dr. Ding
is an IEEE Fellow, and he has served on the technical
committees of several workshops and conferences. He was
the Technical Program Chair of the 2006 IEEE Global
Telecommunication Conference and the General Chair
of the 2016 IEEE Conference on Acoustics, Speech, and
Signal Processing.

Dr. Lee A. Hollaar is an Emeritus Professor at the
School of Computing at the University of Utah. Before
his retirement in 2014 after 34 years on the faculty, he
taught courses in computer and intellectual property
law and computer systems and networking. He has
been programming computers since 1964 and designing
computer hardware since 1969. He received his B.S.
degree in electrical engineering from the Illinois Institute
of Technology in 1969 and his Ph.D. in computer science
from the University of Illinois at Urbana-Champaign in
1975.

Dr. Hollaar was a Fellow with the Senate Committee
on the Judiciary and technical advisor to its chair, Senator
Hatch, where he helped the Committee with the No
Electronic Theft Act and Digital Millennium Copyright
Act, as well as a number of other bills. He has been a
Special Master in a number of software copyright cases
in the Federal District Courts for the Eastern District
of Michigan and the District of Puerto Rico, where he
offered opinions and made recommendations on the scope
of copyright protection in software and whether there was
infringement. His amicus brief to the Supreme Court in
MGM v. Grokster provided the inducement theory that
became the basis of the Court’s unanimous decision.

4

Dr. Hollaar is the author of Legal Protection of Digital
Information (Second Edition 2016, online at Bloomberg
Law).

Dr. Adam Porter is a Professor of Software Engineering
at the University of Maryland and the University of
Maryland Institute for Advanced Computing Studies.
Dr. Porter was appointed as the Executive Director
of the Fraunhofer Center for Experimental Software
Engineering in July 2015. The Fraunhofer Center is
a UMD-affiliated applied research center focusing on
software that increasingly underlies most innovation. Dr.
Porter earned his Ph.D. from the University of California
at Irvine.

Dr. Porter is a Senior Member of the IEEE
and a Senior Member of ACM, and served on the
editorial boards of the IEEE Transactions on Software
Engineering and the ACM Transactions on Software
Engineering and Methodology. Dr. Porter has published
extensively about software engineering, including the
paper, Empirically Guided Software Development Using
Metric-Based Classification, which was listed as one of
the 20 most widely-cited articles published by IEEE
Software. Dr. Porter has also taught a number of courses
in software engineering, including in large scale software
development. Dr. Porter also co-created a Massive Open
Online course on Android development that has reached
over 900,000 students.

Mr. Peter Kent is a best-selling author of dozens
of technical books for both computer professionals and
users, including multiple programming works such as
The Official Netscape JavaScript Book and the Official

5

Netscape JavaScript Programmer’s Reference over his
30 year publishing career. As an educator and trainer,
Mr. Kent has taught a multitude of courses to over 30,000
students spanning the digital and high-tech realms. He
has also served as an expert witness in dozens of legal
cases directed to patent, copyright, trademark, and
contract disputes concerning Internet technology and
digital marketing.

Amici’s interest in this appeal is to ensure a robust
and balanced intellectual property regime that promotes
innovation, reliability, and security in software and
information systems. Amici have no interest in any party
to this litigation or stake in the outcome of this appeal.

SUMMARY OF ARGUMENT

As professors, researchers, practitioners and authors
in computer science, amici created, used, and taught
others about software application program interfaces
(“APIs”)—including APIs used in the software that we
have written, the research that we have overseen, the
companies and government agencies that we have advised,
and the courses that we have taught. Software APIs are
widely used in our modern information systems. The
public policy and legal treatment of APIs including under
the Copyright Act, as well as what constitutes fair use of
those APIs, is therefore of great academic and practical
interest to us and others in the computer science, computer
engineering, systems engineering, electrical engineering,
and software engineering communities.

Amici agree with Oracle that APIs can be copyright
protectable code, the copied Java APIs contain such

6

copyrightable code, and Google’s taking of the Java APIs
was not a fair use. Amici further concur with the Federal
Circuit’s analysis in its prior rulings as they pertain to
the Java APIs and Google’s use thereof in its Android
platform.

Amici agree that there is a potential public benefit in
the open use of some, though not all, software interfaces,
such as furthering interoperability. There are channels
available for such use that do not violate copyright law.
Consistent with those channels, Oracle offered three
different types of licenses for Java. Yet Google did not take
a license, and despite its copying did not make its Android
platform interoperable with Java. Amici observe that this
case should be judged – and our opinions are based on –
current copyright and fair use law as they exist today,
within the framework Congress has given.

1. The Federal Circuit correctly determined that the
Java APIs have sufficient expression to be protectable
by copyright. In particular, amici agree with the Court’s
finding that the copied Java APIs could have been written
any number of ways while still achieving the same function
and that the structure, sequence, and organization of those
Java APIs are creative and original.

There are many types of APIs, and those that exhibit
creativity in the design of their sequence, structure and
organization or the declaring source code in the API are
within the scope of source code protected by copyright.
APIs can be expressed in many different ways yet still
accomplish the same purpose and objective. Differences
among APIs are often the result of subjective choices
based on experience and experimentation, rather than

7

dictates of functionality. Certain APIs are better than
others designed for the same function.

The copied Java APIs are an example of such
copyrightable source code. The ingenuity and creativity
of its developers resulted in Java’s well-designed, intuitive
set of APIs spanning thousands of lines of code.

While a single line of source code from an API can
and often does demonstrate creativity, to understand the
creativity of the Java APIs, however, a court should look at
the work as a whole. That Google and its amici choose to
focus on only a few of the eleven thousand lines of copied
API source code so as to decry a lack of creativity is both
erroneous and tangential to the copyright analysis, which
must look at the whole work that was taken. The design
choices for the copied Java APIs along with the overall
structure, sequence, and organization (“SSO”) of those
APIs involve a far greater degree of choice and expression,
and amply demonstrate the creativity of its developers.

Even if interoperability was relevant to copyright
protection, it is not at issue here. Google’s copying of
thousands of lines of Java API source code and the
corresponding SSO under the guise of interoperability is
misleading. Amici agree that widespread interoperability
increases the efficiency of developers and the industry
at large. Yet respondent does not seek to preclude
interoperability by enforcing its copyrights. Software
developers and academics can freely use the Java APIs
to write applications on the Java platform for essentially
any reason. However, if an entity wishes to copy the Java
APIs to develop a competing platform, Oracle offers a
license under certain terms. Indeed, Oracle offers a free

8

open-source license called OpenJDK in exchange for the
developer making its revisions public and free for others
to use. Such contributions to the Java community enhance
the value and interoperability of Java for all. Google
refused to accept Oracle’s licenses.

Nor was it necessary for Google, a company with
vast resources, to copy portions of Java’s API at all for
its Android operating system. Other APIs existed at
the time and there is no indication that Google choose
Java for any reason other than its popularity with
programmers. Moreover, Google’s copying of Java API
source code was not driven by technical necessity to
achieve interoperability. Google was not seeking to allow
Java applications to operate with the Android operating
system, but instead to use the popularity of Java’s APIs
to attract programmers to its competing platform.

Google argues that to afford copyright protection
to popular APIs would impede efforts to promote
interoperability, and thus harm the industry overall.
Amici acknowledge that interoperability between
programs and platforms is often a desirable objective.
Google’s argument, however, is based on a false premise.
The Android operating system was designed not to
interoperate with Java applications that use Oracle’s
Java APIs. The Android internal product literature and
Google’s own witnesses stated as much in this case. A167;
A21181:4-7; A21503:16-A21504:2; A22397:11-A22398:3;
A22463:13-22. Applications using the Java programming
language are not interoperable on the Android operating
system. Likewise, applications for Android are not
interoperable with the Java Platform Standard Edition
(“Java SE”) API. This is because Google did not copy all

9

of Oracle’s Java APIs, and as a practical matter a Java
program needs one or more libraries, packages, or classes
using those APIs that do not exist in Android or vice versa.
Android is simply a competing software platform that
included core features of the highly popular Java APIs
to reduce the learning curve and make it more attractive
for programmers.

2. The Federal Circuit then correctly determined
that Google’s copying of the Java APIs was not a fair
use. The Federal Circuit considered each of the fair use
factors in coming to its conclusions, with which amici
agree, that Google’s copying of the Oracle Java APIs was
non-transformative and commercial, the 37 API packages
at issue involved some level of creativity, and Google’s
conduct is the type that would likely result in an adverse
impact on the potential market for original APIs.

Google’s wholesale copying of Java API source code to
attract programmers to its competing Android platform
was not a fair use. The copied API source code was used for
the same purpose, the APIs had the same expression and
meaning as they did in Java SE, and Google’s argument
that applying Java APIs to smartphones constitutes a new
context is meritless. The copied Java API source code was
not “transformed” merely because it was re-implemented
on a different type of computer (a smartphone rather
than a server or desktop computer). The meaning and
message of the source code in the copied Java APIs are
intentionally identical to the original function. Even if
this was transformative, Java existed in mobile phones
prior to Android.

10

As to the second fair use factor, the creativity involved
in developing the Java APIs as the Federal Circuit found
indicates that the nature of the copyrighted work is one
deserving of copyright protection. Even though copied
APIs provide a set of functions, those functions can be
expressed in multiple ways and designers exercise vast
amounts of creativity in creating them.

In considering the third fair use factor, there is no
doubt that Google copied far more of the Java APIs than
necessary. Google stipulated that only 170 lines of source
code were necessary to write in the Java language, yet
Google copied over 11,000 lines of source code.

Regarding the fourth and final fair use factor of the
effect upon the potential market, the Federal Circuit
correctly stated that copying substantial portions of
the Java APIs is precisely the sort of behavior that can,
and as the record shows did, impact the market for the
Java API. Failure to protect investments in APIs will
likely have a similar deleterious effect on investments in
the development of complex APIs. To the extent Google
argues this sort of unauthorized copying is necessary for
success in the industry, concrete counterexamples abound.
Notably, Apple’s iPhone has been an undeniable triumph
in the same market as Google’s Android platform without
copying or even supporting Java. Indeed, Apple developed
an entire language and API for programmers to use with
its iPhone, and have met with great success. Moreover,
programmers frequently learn new programming APIs,
and can do so quickly (as they did with the Apple iOS
platform) when the API is well designed.

11

Because well-designed APIs play a central role in
software and information systems, it is important that
the law recognize and protect the creativity they embody.

ARGUMENT

I. API STRUCTURES

A. APIs And Software APIs

To assist the Court in understanding the technology
of the present case, we provide the following discussion
of software APIs.

Modern, complex computer programs such as an
operating system are typically structured in multiple
pieces, with a main program that communicates with
various other program components that perform different
functions. Each program component comprises source
code that performs said functions (e.g., storing data
in memory). These program components also need to
communicate with each other to access the functionality
each provides. User applications such as a word processor,
web browser, or game also need to access the functionality
in these program components.

APIs simplify access to the functions in the program
components, as developers using an API do not need
to write or even know the source code in the program
components themselves. Instead, developers simply need
to know how to request the desired functions using the
API. In essence, the developers can treat an API as a
“black box” that receives an input and returns a result
or output.

12

Generally speaking, an “application programming
interface” or API “consists of the methods and variables
programmers use to work with a component or tool in their
applications.”2 In other words, APIs define how computer
programs communicate with each other and the format
of those communication. APIs come in a variety of types,
forms, and levels of complexity, but all describe and enable
interactions between various types of software.

A “software API” is an API used in a computer
program. A software API is a computer component, which
is written in source code and compiled like other computer
source code. It defines how to communicate with a
program to perform predefined functions and specifies the
results that will be output by the program. For example,
an API could express a particular method that draws a
circle and defines the inputs (two coordinates and a radius
measurement) and outputs (displaying a circle on screen).

Software developers have choices when designing an
API. Designing the declaring code included in an API
takes innovation and creativity to balance the competing
tensions of functionality, flexibility, and simplicity, so it
is attractive to application program developers who may
have a choice of platforms. API developers must also
anticipate the needs of the users of the API, now and in
the future. In doing so, API designers not only select
what functions the API will offer to application program
developers and how those functions will be presented, but
must design the APIs so they are expandable in the future.
Creativity extends far beyond the individual methods: the

2. Patrick Niemeyer & Daniel Leuck, Learning Java 917
(4th ed. 2013).

13

API designers also strive to organize the API elements in
an intuitive manner for application program developers.
An API’s final design thus represents only one of a
vast number of possible approaches, and expresses the
author’s creativity and affirmative choices to perform
select functions.

B. Java APIs

The Java Platform Standard Edition (“Java SE”) allows
an application program developer to access functions or
methods in a hierarchy of nested data structures. At the
highest level are libraries, which are each made up of a
group of packages (e.g. security, language, math, input
and output, etc.), each of which is made up of a group of
related classes (e.g. the security package contains various
classes directed to algorithms, authorization, encryption
keys, etc.). A class in turn is a group of functions (in Java
parlance a function is referred to as a “method”), each of
which perform discrete tasks.

The fundamental unit of a Java API is a method.
Each method includes two source code components. The
declaring code is the source code at the start of a method,
with the designer choosing a method name, various
variables, and what inputs and outputs that method will
perform when a developer requests it. The source code
that implements the requested method, referred to as
implementing code, runs in the developer’s program.

Significant creativity goes into the design of the
structure, sequence, and organization of the API itself,
including how to structure the libraries, packages, classes,
and methods, as well as the declaring code itself. Indeed,

14

part of the beauty of Java is that groupings of methods
and classes often share or “inherit” features that are
commonly used, such that the decision of how to group
classes and methods becomes a creative design choice,
not just a categorizing or filing exercise.

The Java APIs allow developers to access the methods
for use in their own program or application. Thus, instead
of writing every line of code necessary to run a program
from scratch, which she is free to do, a developer can use
a method already defined in a Java API.

A method’s declaring code can be lengthy and complex,
such as the example below from Oracle’s opposition to
Google’s petition for Certiorari.3 The implementing code
is elided for the sake of brevity):

public abstract void verify (PublicKey key, String
sigProvider)

throws CertificateException, NoSuch-
AlgorithmException,
InvalidKeyException,
NoSuchProviderException,
SignatureException
{. . .}

The Java declaring code itself thus illustrates that there
is creativity in writing methods.

The structure, sequence and organization of Java
methods and classes requires creativity as well. Methods
in the same class and classes in the same package can and

3. Oracle’s Br. In Opp. to Pet. for Cert. at 6.

15

often do share common functions and features. A method
using these common functions eliminates the need to
duplicate source code, simplifying the expression of that
method. The Java API designer thus chooses how methods
and classes are organized, how components interact, and
what functions are shared for a desired function. Examining
a single method in a class overlooks the structure, sequence
and organization of the copied Java APIs.

These are only some of the many creative choices that
go into writing API source code.

II. APIS OFTEN INVOLVE MANY CREATIVE
CHOICES THAT ARE NOT DICTATED BY THE
SOFTWARE’S FUNCTION

A. The Java APIs Are Creative And Not Dictated
By Their Functions

Much like different words, sentence structures
and literary styles can convey the same concepts, the
source code used to express an API reflects the author’s
imagination and creativity rather than rigid dictates of
pre-determined functions. Indeed, authoring elegant and
intuitive API declaring code often involves even greater
creativity, talent, experience, and subjective judgment
than authoring the underlying implementing code.

A simplified example of the flexibility and variability
in a Java API is instructive. Let us assume we desire an
API that allows a user to draw different shapes. There
are several ways to design a Java API to achieve this goal.

Figure 1 below shows one possible implementation,
in which an API designer creates a “Polygon” class

16

containing three methods for drawing three different
shapes: “drawCircle,” “drawEllipse,” and “drawSquare.”
An API designer named the class, decided its contents in
the form of three Java methods, wrote the declaring code
of each method, which includes choosing the inputs and
outputs, and then wrote the implementation source code
within the method.

Alternatively, the API designer may choose to design
the class differently and name it “FlexibleShapeDrawing”.
As shown in Figure 2 below, instead of two separate
“drawCircle” and “drawEllipse” methods, this API
includes a single “drawEllipse” method. This approach
may be more intricate to use and implement because the
user must now input two equal values for the major and
minor axes to draw a circle. However, this design has the
advantage of greater flexibility and power as it allows the
user to draw multiple shapes with a single method.

17

As an even more f lexible alternative, instead of
separate methods for separate shapes, the API designer
may instead include only the method “drawPolygon” in the
“Polygon” class. As seen in Figure 3 below, “drawPolgyon”
includes an additional “ShapeType” variable beyond
variables for coordinates. The “ShapeType” variable is
not defined in the “Polygon” class, but in an entirely new
class within the same Java package. The class defining
the complex data object “ShapeType” includes variables
for the number of sides (e.g., “0” for a circle or “4” for
a square) and, for any given shape, the relevant size
measurements (e.g., the radius in the case of a circle or
the length of each side in the case of a square). While this
method may require more sophisticated knowledge to use
and implement than those so far discussed, it can draw
more complex shapes (e.g., a pentagon).

18

In each of these three designs an API designer had the
same goal, namely to allow a programmer to draw shapes.
Each API designer chose a different way to access shape
drawing functionality, how complex the code should be, the
design, and the names, arguments, and implementations
of the methods.

Of course, these are only a few possible API designs
for a handful of methods, and importantly, there is no
“right” answer. There are many more ways that an API
designer may develop and structure an API to perform
the same function. An API designer could have written
drawCircle, drawEllipse, and drawSquare into separate
classes instead of one class, renamed them freely, designed
a separate class or package dedicated to drawing images
that each method referenced or called, and many more
possibilities.

An API designer must make similar decisions for each
and every method and class in an API. For complex APIs
involving hundreds or thousands of methods and classes,

19

the permutations of expressive choices are potentially
exponential, resulting in a vast number of ways API
designs can be expressed. The many possible approaches
to the simple shape-drawing example illustrates the
myriad creative choices that an API designer must
make, including balancing factors such as functionality,
flexibility, and simplicity.

Designing APIs is analogous, for example, to the
innumerable creative choices that an author makes
in writing a story. The author must consider various
narrative elements, such as the characters, locations, and
plot points, and the relationships and specific details of
each. She must also consider how to describe and arrange
these elements into the sentences, paragraphs, chapters,
and so forth to create not only the order and structure of
the story, but how that story is expressed. Authoring most
APIs requires similar decisions regarding the interactions
an API facilitates, accessible functions, implementation
details, and internal structures and relationships. While
the most simplistic and purely functional APIs may lack
creativity, this is not the case with Java SE.

B. Android Is Not Interoperable With Java

The slogan “write once, run anywhere” coined by the
creators of the Java programming language described
the “core value proposition of the Java platform.”4 As a
classic learning text on Java explained, “this means that
the most important promise of Java technology is that you
have to write your applications only once – for the Java
platform – and then you’ll be able to run it anywhere.”5

4. David Flanagan, Java In A Nutshell at 4-5 (5th ed. 2005).

5. Id.

20

Android did not adopt this policy. Android cannot run
all Java programs. A2205 (“Does Android support existing
Java apps? A. No. . . . Is Android Java compatible? A. No.”).
We understand this was affirmed by the evidence and
witness testimony presented during trial. Pet. App. 268a
(noting Android’s creation led to “fragmentation” with
Java); Transcript of Jury Trial Proceedings, at 1010:4-7
(Doc. 967), at 1331:16-1332:2 (Doc. 987), at 2221:11-2222:3
(Doc. 1065), at 2287:13-22 (Doc. 1065). Because Google
selected only certain Java SE API packages, the vast
majority of Java programs (relying on Java API packages
that do not exist in Android) are not interoperable. Such
existing Java programs must be modified or rewritten
from scratch to run on Android. The reverse is also true,
as the great majority of Java programs that rely on the
Android API will not operate with Java SE.

Based on our understanding as computer science
professors and professionals there was no need from a
technical perspective for Google to copy the declaring
code and SSO for a subset of Java APIs. Copying was not
necessary to create a platform that was interoperable
with Java SE, a platform using the Java language, or a
new platform at all.

Instead, Google copied 37 packages from the Java
APIs because many programmers used Java. “Because
Java is a simple and elegant language with a well-designed,
intuitive set of APIs,” “programmers write better code
with fewer bugs than for other platforms, thus reducing
development time.”6 Rather than go through the effort and
expense of developing a robust set of APIs, Google instead

6. Id at 7.

21

chose simply to copy Oracle’s Java APIs to attract Java
programmers to write applications for Android. Writing
code for Android comes at the expense of writing code for
Java SE since Android programs are not interoperable
with Java SE.

C. Failing To Protect APIs Would Harm The
Industry

Google argues that allowing copyright protection over
Java APIs would have deleterious effects on the industry.
Instead, it would have the opposite effect. Should APIs
be stripped of copyright protection, the incentive for an
individual or company to invest in the lengthy development
of robust and ingenious new APIs would be lessened. Sun
Microsystems spent thirteen years developing Java prior
to Oracle’s purchase of Sun for over $5.5 billion dollars.7
Oracle has since released seven new versions of Java
SE over the last decade.8 Without copyright protection,
anyone could have copied the Java SE source code or any
API wholesale, released a commercial competing product
without incurring any development costs whatsoever, and
there would be no recourse.

7. Press Release, Oracle Corp., Oracle Buys Sun (Apr. 20,
2009), https://www.oracle.com/corporate/pressrelease/oracle-
buys-sun-042009.html.

8. Oracle Java Archive, Oracle Corp., https://www.oracle.
com/java/technologies/oracle-java-archive-downloads.html (last
visited Feb. 13, 2020)

22

III. GOOGLE’S COPYING OF THE JAVA APIS WAS
NOT A FAIR USE

A. The Declaring Code And SSO Of APIs Embody
Substantial Creativity

We understand that one of the factors in the fair
use analysis is “the nature of the copyrighted work,”
17 U.S. Code § 107, and that this involves an analysis
of the creativity of the underlying copied work. In this
case, we understand that Google does not dispute that it
copied the declaring code of 37 Java API packages and
the associated “structure, sequence, and organization”
(“SSO”). The copied portions include classes, methods, and
variables contained in the Java API, their organization
and relationships, how to use them, and their expected
behavior.

As explained in §I.A, designing the declaring code for
an API involves substantial creativity and a wide range
of choices. APIs can be expressed in many ways yet still
accomplish the same purpose and objective, and as such
any differences among APIs are often because of subjective
choices based on experience and experimentation rather
than dictates of functionality.

As depicted in the examples provided in §II.A, there
are creative design choices at each level of an API, which
can lead to APIs with significantly different expressions
in the form of source code and SSOs to achieve the same
goals. An API designer has to decide which methods,
classes, packages, and other elements to develop. The API
designer must then decide how to express these elements,
including their behavior, complexity, and relationships

23

with the program components. Classes and packages
can be rearranged, interfaces can be implemented in
one API but not in another, and ultimately the overall
structure of APIs that perform the same functions may
be different. The expression of the declaring code is part
of the API design: for example, how to name the methods,
the selection and ordering of inputs and outputs, and the
types of errors that are reported. Each step in the design
process leaves room for the imagination and independent
judgment of the API author.

That the resulting set of source code from this creative
process performs a function does not undermine the
creativity involved in its design. The expression of an
API is not dictated by function. Certain APIs are better
than others designed for the same function. Accordingly, a
court considering this factor in the fair use inquiry should
find that APIs, like the copied Java APIs, are creative in
nature.

B. The Declaring Code And SSO Are Significant
Portions Of The Creative Work Of An API

As discussed above, we understand that another factor
in the fair use analysis is the amount and substantiality of
the portion used in relation to the copyrighted work as a
whole, which includes a qualitative determination.

As discussed in §II.A, the declaring code and SSO of
an API embodies a qualitatively significant portion of the
creativity involved in authoring an API. In some instances,
the declaring code and SSO of an API might comprise
most of the creative work of the API. Also as discussed in
this section, the selection and ordering of the packages,

24

classes, and methods may have nearly uncountable options,
as may the naming and selection of the declaring code.
The implementing code, in contrast, may be relatively
straightforward or even limited by the confines of the
creative decisions made in designing the declaring code
and SSO. For such APIs, the creativity embodied in the
declaring code and SSO exceeds that for the implementing
code, and the declaring code and SSO comprise most of
the creative work involved in the authorship of the API.

The “Polygon” example in §II.A amply demonstrates
how the declaring code and SSO can embody a relatively
greater portion of the creative work of an API than the
implementing code. There, the author of each of the three
Java API examples found a different, creative way to
draw shapes. Another dozen API designers may have
chosen a dozen different designs. Once those expressive
design choices for the declaring code and SSO have been
made, the implementation of the method(s) potentially
may involve comparatively less creativity and more rote
implementation work. The source code to draw a circle or
square is mundane and straightforward in comparison to
the choice of how to design the drawing interface in the
first place.

Finally, the declaring code and SSO are also
significant portions of the expression of a software API
because the application developers see and use these in
writing programs. To learn how to write programs using
the software API, for example, a developer could consult
an API specification. The API specification identifies
the libraries, packages, classes, and methods that are
available for use by the developer, their declaring code,

25

and their respective intended functions and relationships.
The expression of the software API available (“exposed”)
to developers is the declaring code and SSO of the
API. Developers need not view or even be aware of the
implementing code, which can be treated as a black box,
to successfully learn and use the API.

C. The Creativity Of An API Is Not Substantively
Changed By Substituting New Implementing
Code For The API’s Existing Implementing
Code

We understand that another fair use factor is “the
purpose and character of the use,” which has been
interpreted by courts to include a determination of
whether the use is transformative, and further that a
transformative use is one that changes the expressive
content, meaning, or message of the underlying work. We
also understand that it is undisputed in this case that, in
most instances, Google used different implementing code,
but retained the declaring code and SSO, for the 37 Java
API packages it copied.

We understand that Android’s implementing code
performed substantially the same function as the Java
implementing code for the copied packages. For example,
the Android implementing code accepts the same
parameters and generates the same return values and
exceptions as the Java implementing code. Indeed, we
understand that Google’s implementing code replicated
the exact same Java functionality, contained the same SSO
of the packages, classes, and methods, and the declaring
code that was described in the Java API specification.

26

The declaring code and SSO of the copied Java API
packages in Android thus retained the same purpose,
function, and meaning each had in Java SE. The use
of different implementing code in Android did not
substantively change or add to the purpose or creative
expression in the copied declaring code and SSO. In other
words, the underlying expression of the declaring code
and SSO was not transformed.

D. Google Did Not Transform The Java APIs
When Copying Them Onto A Smartphone
Platform

We also understand that the determination of whether
a work is transformative examines whether the work
uses the copyrighted material for a different or distinct
purpose. Here, Google argues that placing Java on the
Android mobile smartphone platform is transformative.9
Yet from the standpoint of a software API, there is no
significant difference between these processor-based
platforms, because a smartphone is ultimately simply a
general purpose computer that is small enough to fit in
a person’s hand. This is especially the case for an API
designed to work across platforms, such as Java SE.
Indeed, some recent tablets and smartphones contain
processors utilizing the same architecture found in full-
sized computers, and now many laptop computers use
touchscreens that are functionally equivalent to those used
on smartphones.10 There are no appreciable differences

9. Google’s Pet. for Cert. at 25; see also Google Br. at 43.

10. See, e.g., Surface Pro Specifications, Microsoft Corp.
https://www.microsoft.com/surface/en-us/support/surface-pro-
specs (last updated Apr. 12, 2019) (tablet containing Intel x64
architecture processor, which has been used in desktops and

27

with respect to the copied Java APIs whether on a server,
a desktop computer, or a smartphone.

Furthermore, the purpose of, and creative expression
for, software APIs for an application programming
platform is the same regardless of the size of the device
on which it is running: Its purpose is to describe the
syntax, functions, variables, and data structures that a
programmer can learn and use.

E. There Is No Technical Need To Copy The
Declaring Code And SSO Of The Java APIs

Based on our understanding as computer science
professors and professionals, there was no need from a
technical or technological perspective to copy the declaring
code and SSO for a subset of Java APIs, as Google did in
this case. Googled admits that the “declarations were not
beyond Google’s capacity to create.”11 Rather, Google chose
to use certain Java APIs to attract programmers instead
of developing their own or choosing another available set
of APIs. In light of its decision to use the Java SE API in
Android, Google now claims that copying the declaring
code and SSO for the API was necessary. There was no
technical need to use the Java SE API and therefore no
need to copy the declaring code and SSO of the Java SE
API.

In the District Court proceedings, we understand
that the parties stipulated that only 170 lines out of more
than 11,000 lines of code Google copied were necessary if

laptops).

11. Google Br. at 14.

28

one wanted to use the Java programming language.12 The
additional lines of API source code and the SSO appear to
have been copied to attract Java application programmers
to a different platform by offering them the ability to use
some of their knowledge of Java, rather than learning a
completely new platform. Further, as discussed above in
§II.B, we understand that Google conceded Android is not
interoperable with Java. In other words, Google did not
copy the Java APIs out of technological necessity to allow
programs designed for Java SE to operate on Android.

Google was not pressed for choices in choosing which
language and APIs to use for its Android platform.
Java was one of many programming languages with
accompanying APIs such as Python (whose creator
worked at Google while Android was being developed),13
Go or Golang (invented at Google while Android was being
developed),14 C++, Ruby, Perl, C#, and many more. None
of these are proprietary, and as such Google could have
used any one.

12. Oracle Am., Inc. v. Google LLC, 886 F.3d 1179, 1206
(Fed. Cir. 2018) (stating, “[o]n remand, the parties stipulated
that only 170 lines of code were necessary to write in the Java
language. It is undisputed, however, that Google copied 11,500
lines of code—11,330 more lines than necessary to write in Java.
That Google copied more than necessary weighs against fair use.”).

13. Guido van Rossum, Resume, Github, https://gvanrossum.
github.io/Resume.html (last visited Feb. 13, 2020).

14. Rob Pike, Go at Google: Language Design in the Service
of Software Engineering, GoLang, https://talks.golang.org/2012/
splash.article (last visited Feb. 13, 2020).

29

Indeed, given its expertise with software, Google
could also have followed Apple’s example and developed
its own set of APIs for Android developers to use. Apple
developed the Swift programming language and APIs
specifically for use on Apple iOS products including its
iPhone platform.15 While the development of Swift took
Apple four years from initial development to its first
release, and no doubt many engineers and much expense,
the iPhone has been an inarguable success.16

In sum, Google did not choose Java for interoperability,
nor because it was pressed by a lack of available APIs or
could not develop its own APIs. Instead, Google chose
Java APIs because Java was popular and using those APIs
could attract programmers to develop application for its
platform. “The final, and perhaps most important reason
to use Java is that programmers like it.”17 This rationale
for copying cannot be the basis of a fair use.

15. Apple Releases iOS 8 SDK With Over 4,000 New
APIs, Apple Inc. (June 2, 2014), https://w w w.apple.com/
newsroom/2014/06/02Apple-Releases-iOS-8-SDK-With-Over-4-
000-New-APIs/

16. Tripp Mickle, Apple Posts Record Revenue on Strong
iPhone, App Sales, Wall St. J. (Jan. 28, 2020), https://www.wsj.
com/articles/apple-posts-revenue-growth-on-strong-airpod-app-
sales-11580247318 (“Sales of iPhones, which account for more than
half of its revenue, rose 8% to $55.96 billion”).

17. David Flanagan, Java In A Nutshell at 6 (5th ed. 2005).

30

F. Google’s Commercial Use Of The Java APIs
Without A License Materially Impaired The
Market Value

We understand that one of the factors in the fair use
analysis is the effect of the use upon the potential market
for the work. Accordingly, an additional consideration is
that Oracle had provided means by which Google could
have “fairly” used Oracle’s Java code that would have
preserved the market that Oracle had intended and
created for Java as an “open source” project.

Oracle offered three different licenses for Java SE.
Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1350 (Fed.
Cir. 2014). Because Oracle had an existing licensing
scheme, there was an available avenue for Google to use
the Java code fairly. This included a free open source
license called OpenJDK, which required only that the
developer licensee make its revisions freely available
to all.18 Instead, Google copied the Java APIs without
transforming the work, enabling interoperability, or
contributing back to the Java community, which Oracle’s
licenses sought to establish, encourage, and protect. This
severely undermined Oracle’s rights to control the market
for Java and its derivative works.

18. Oracle Br. In Op. to Pet. For Cert. at 7.

31

CONCLUSION

For the forgoing reasons, amici respectfully submit
that the Court should affirm.

Respectfully submitted,

February 19, 2020

Anne M. CAppellA

Counsel of Record
ChrIstopher M. pIstrItto

WeIl, GotshAl & MAnGes llp
201 Redwood Shores Parkway
Redwood Shores, CA 94065
(650) 802-3000
anne.cappella@weil.com
christopher.pistritto@weil.com

WeIl, GotshAl
& MAnGes llp

767 Fifth Avenue
New York, NY 10153
(212) 833-3000

Counsel for Amici Curiae

	BRIEF FOR PROFESSOR EUGENE H. SPAFFORD, PH.D., PROFESSOR ZHI DING, PH.D., PROFESSOR EMERITUS LEE A. HOLLAAR, PH.D., PROFESSOR ADAM PORTER, PH.D., AND MR. PETER KENT, BSC AS AMICI CURIAE IN SUPPORT OF RESPONDENT
	TABLE OF CONTENTS
	TABLE OF CITED AUTHORITIES
	INTEREST OF AMICI CURIAE
	SUMMARY OF ARGUMENT
	ARGUMENT
	I. API STRUCTURES
	A. APIs And Software APIs
	B. Java APIs

	II. APIS OFTEN INVOLVE MANY CREATIVE CHOICES THAT ARE NOT DICTATED BY THE SOFTWARE’S FUNCTION
	A. The Java APIs Are Creative And Not Dictated By Their Functions
	B. Android Is Not Interoperable With Java
	C. Failing To Protect APIs Would Harm The Industry

	III. GOOGLE’S COPYING OF THE JAVA APIS WAS NOT A FAIR USE
	A. The Declaring Code And SSO Of APIs Embody Substantial Creativity
	B. The Declaring Code And SSO Are Significant Portions Of The Creative Work Of An API
	C. The Creativity Of An API Is Not Substantively Changed By Substituting New Implementing Code For The API’s Existing Implementing Code
	D. Google Did Not Transform The Java APIs When Copying Them Onto A Smartphone Platform
	E. There Is No Technical Need To Copy The Declaring Code And SSO Of The Java APIs
	F. Google’s Commercial Use Of The Java APIs Without A License Materially Impaired The Market Value

	CONCLUSION

