
No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,
Petitioner,

v.
ORACLE AMERICA, INC.,

Respondent.

On Writ of Certiorari
to the United States Court of Appeals

for the Federal Circuit

BRIEF AMICI CURIAE
OF 83 COMPUTER SCIENTISTS
IN SUPPORT OF PETITIONER

 Phillip R. Malone
Counsel of Record

JUELSGAARD INTELLECTUAL
PROPERTY AND
INNOVATION CLINIC

MILLS LEGAL CLINIC AT
STANFORD LAW SCHOOL

559 Nathan Abbott Way
Stanford, CA 94305
(650) 725-6369
pmalone@stanford.edu

Counsel for Amici Curiae

TABLE OF CONTENTS

INTEREST OF AMICI CURIAE 1
SUMMARY OF ARGUMENT 2
ARGUMENT .. 4
I. The Decisions Below Reflect the Federal

Circuit’s Fundamental Misunderstanding of
How Interfaces Differ from Programs 4

A. Software Interfaces Specify What a
Program Does, Not How It Does So 5

B. Google Wrote Its Own Implementation of
the Java API to Promote Interoperability
and Transform Java to Run on
Smartphones ... 12

II. The Decisions Below Upend Decades of
Settled Expectations and Threaten
Future Innovation in Software 17

A. The Computer Industry Has Long
Relied on Freely Reimplementing
Software Interfaces to Foster
Innovation and Competition 17

B. Allowing Copyright to Restrict the
Reimplementation of Software Interfaces
Will Stifle Competition 22

CONCLUSION ... 26
APPENDIX — LIST OF AMICI A1

ii
TABLE OF AUTHORITIES

Statutes

17 U.S.C. § 101 ... 6
17 U.S.C. § 102(b) .. 4, 5

Other Authorities

Amazon S3 Compatibility API, Oracle Cloud
(last visited Jan. 6, 2020),
https://tinyurl.com/ss5ohua 22

Cloud Storage Interoperability, Google Cloud
(last updated Oct. 23, 2018),
https://tinyurl.com/hr855ur 22

Eric S. Raymond, The Art of UNIX
Programming (2004) .. 19

Fred von Lohmann, The New Wave: Copyright
and Software Interfaces in the Wake of Oracle
v. Google, 31 Harv. J.L. & Tech. 517 (2018) 23

Ira W. Cotton & Frank S. Greatorex, Jr., Data
Structures and Techniques for Remote
Computer Graphics, Am. Fed’n Info.
Processing Soc’ys Fall Joint Computer Conf.
533 (1968) ... 17

Jay Greene & Laura Stevens, “You’re Stupid If
You Don’t Get Scared”: When Amazon Goes
from Partner to Rival, Wall St. J. (June 1,
2018, 5:30 AM ET),
https://tinyurl.com/y927p3ot 24

Kim Topley, J2ME in a Nutshell (2002) 14

iii
Liam Tung, Bigger than Windows, Bigger than

iOS: Google Now Has 2.5 Billion Active
Android Devices, ZD Net (May 8, 2019),
https://tinyurl.com/v94nep4 15, 19

Maurice V. Wilkes, David J. Wheeler & Stanley
Gill, The Preparation of Programs for an
Electronic Digital Computer (1951) 17

Rita Zhang, Access Azure Blob Storage from
Your Apps Using S3 Java API, Microsoft (May
22, 2016), https://tinyurl.com/rt8mb67 22

Steven J. Vaughan-Nichols, Linux Totally
Dominates Supercomputers, ZDNet (Nov. 14,
2017, 12:04 PM PST),
https://tinyurl.com/swmkdqy 19

TIOBE Index for January 2020, TIOBE (last
visited Jan. 5, 2020),
https://tinyurl.com/ycoaep4a 8

Trail: Essential Classes (The JavaTM Tutorials),
Oracle (last visited Jan. 5, 2020),
https://tinyurl.com/tndpwg4 16

Usage Statistics of Unix for Websites, W3Techs
(Jan. 6, 2020), https://tinyurl.com/tcbrmtc 19

1
 INTEREST OF AMICI CURIAE

Amici are 83 computer scientists, engineers, and
professors who are pioneering and influential figures
in the computer industry.1 Amici include the
architects of iconic computers from the mainframe era
to the microcomputer era, including the IBM S/360
and the Apple II; languages such as AppleScript,
AWK, C, C#, C++, Delphi, Go, Haskell, PL/I, Python,
RenderMan, Scala, Scheme, Standard ML, Smalltalk,
and TypeScript; and operating systems such as MS-
DOS, Unix, and Linux.2 Amici are responsible for key
advances in the field, including in computer graphics,
computer animation, computer system architecture,
cloud computing, algorithms, public key cryptography,
the theory of computation, deep learning, object-
oriented programming, relational databases, design
patterns, virtual reality, the spreadsheet, and the
Internet. Amici wrote the standard college textbooks
in areas including artificial intelligence, algorithms,
computer architecture, computer graphics, computer
security, data structures, functional programming,
Java programming, operating systems, software
engineering, and the theory of programming
languages.

1 Both parties consent to the filing of this brief. No counsel for a
party authored this brief in whole or in part, and no party or
counsel for a party made a monetary contribution intended to
fund its preparation or submission. No person, other than amici
or their counsel, made a monetary contribution to the preparation
or submission of this brief.
2 Amici’s biographies are in the Appendix (and included in the
word count).

2
 Amici are widely recognized for their

achievements. They include 13 Association for
Computing Machinery (ACM) Turing Award winners
(computer science’s most prestigious award); 32 ACM
Fellows; 15 Institute of Electrical and Electronics
Engineers (IEEE) Fellows; 12 Computer History
Museum (CHM) Fellows; 7 National Academy of
Sciences (NAS) Members; 26 National Academy of
Engineering (NAE) Members; 10 American
Association for the Advancement of Science (AAAS)
Members; 14 American Academy of Arts and Sciences
(AAoAS) Members; 5 National Medal of Technology
recipients; and numerous professors at many of the
world’s leading universities.

As computer scientists, amici have long relied on
reimplementing interfaces to create fundamental
software. They join this brief because they believe,
based on their extensive experience with and
knowledge of computer software and programming,
that the decisions below threaten to upend decades of
settled expectations across the computer industry and
chill continued innovation in the field.

SUMMARY OF ARGUMENT

The decisions of the Federal Circuit below are
wrong and threaten significant disruption if allowed to
stand. They undermine a fundamental process—
software interface reimplementation—that has
spurred historic innovation across the software
industry for decades.

Software interfaces, including those embodied in
the Java Application Programming Interface (API) at
issue here, are purely functional systems or methods
of operating a computer program or platform. They are

3
 not computer programs themselves. Interfaces merely

describe what functional tasks a computer program
will perform without specifying how it does so. The
Java API’s functional interfaces, called declarations,
are written using the Java programming language,
which mandates each declaration’s precise form.

In contrast, implementations provide the actual
step-by-step instructions to perform each task
included in an interface. Sun implemented the Java
API for desktop computers. Google reimplemented—
or wrote its own original implementation of—the Java
API when it created the Android platform for
smartphones and tablets. Android was highly
transformative: It enabled programs written in the
Java programming language to successfully run on
smartphones and tablets for the first time. Doing so
required Google to make significant additions to the
Java API to handle mobile-specific features, like
touchscreen inputs.

Android also provided interoperability with Java:
Programmers could use their preexisting knowledge to
simultaneously write Java libraries for both desktops
and smartphones. Reimplementing the Java API was
the only way to make Android interoperable with
Java. Reimplementation requires duplicating an
interface’s declarations and organizational scheme—
its structure, sequence, and organization (SSO). Had
Android changed the Java API’s declarations or SSO,
programmers would have been forced to write
different software for desktops and smartphones,
eliminating one of Android’s most significant benefits.

Google’s decision to reimplement an existing
interface was not unusual. Reimplementing software
interfaces is a long-standing, ubiquitous practice that

4
 has been essential to realizing fundamental advances

in computing. It unleashed the personal computer
revolution, created popular operating systems and
programming languages, and established the
foundation upon which the Internet and cloud
computing depend. It has increased consumer choice,
lowered prices, and fostered compatibility between
programs. Free reimplementation of software
interfaces has long been, and continues to be, essential
for innovation and competition in software.

The Court should reverse the decisions below to
preserve software interfaces as uncopyrightable and
prevent copyright from stifling innovation and
competition in software.

ARGUMENT

I. The Decisions Below Reflect the Federal
Circuit’s Fundamental Misunderstanding of
How Interfaces Differ from Programs
The decisions below extend copyright protection to

software interfaces—including the Java API—by
erroneously equating them with computer programs.
Asserting that software interfaces are simply a type of
computer program, all of which are “by definition
functional,” the Federal Circuit misapplied general
Ninth Circuit law that recognizes computer programs
as copyrightable. See Pet. App. 162a. But software
interfaces are not computer programs, and no party
argues that “one can copy line-for-line someone else’s
copyrighted computer program.” Id. at 239a.

The Federal Circuit’s conclusory review fails to
appreciate the district court’s reasoned—and correct—

5
 recognition of software interfaces as uncopyrightable

under 17 U.S.C. § 102(b) and the merger doctrine. See
Pet. App. 262a-267a. The Federal Circuit compounded
its error by overturning a jury finding of fair use and
holding that Google’s creation of Android was not fair
use as a matter of law. Id. at 3a.

Amici join Google’s arguments that software
interfaces cannot be copyrighted under either § 102(b)
or the merger doctrine, and that, regardless, the jury
could reasonably have found that Google’s creation of
Android was fair use. Pet. Br. 19, 34. In support of
those arguments, amici emphasize that software
interfaces correspond to functional ideas, that Google
had to duplicate the Java API’s declarations exactly to
provide interoperability between Android and Java,
and that Android was a transformative achievement
that successfully introduced Java to smartphones for
the first time.

A. Software Interfaces Specify What a
Program Does, Not How It Does So

A software interface specifies the set of commands
used to operate a computer program or system. Each
command defines one functional task a program must
accomplish, such as finding the maximum of two
numbers, sorting a list of numbers, or displaying text
on the screen.

Each command in an interface includes its name,
inputs, and outputs. Together, these comprise the
command’s “declaration.” The declaration for a
command to find the maximum of two numbers, for
example, would include the name “max,” two numbers
as inputs, and one number—the maximum—as
output. Declarations are purely functional: They

6
 specify what a computer program or system needs to

do without specifying how it does so. By themselves,
declarations do not instruct a computer to do anything.

In contrast, an interface’s implementation is the
actual “set of statements or instructions to be used
directly or indirectly in a computer in order to bring
about a certain result,” namely, carrying out the tasks
its declarations specify. 17 U.S.C. § 101 (defining
“computer program”). The same declaration can be
implemented in various ways to accomplish the same
task. Some implementations prioritize speed, others
memory use. But as long as an implementation carries
out the specified task, it is valid. As the district court
aptly explained, while the “specification is the idea,”
the “implementation is the expression.” Pet. App.
263a-264a.

Because real-world software interfaces can
include thousands of declarations, programmers group
related declarations into their own “folders,” just as
everyday computer users group related files into
folders on their desktop. The courts and parties have
referred to this organizational scheme throughout this
litigation as the interface’s structure, sequence, and
organization (SSO).

i. Declarations specify the individual
tasks a program must perform

To better understand the relationship between an
interface’s declarations, implementations, and SSO,
consider the sort declaration in the Java API.3 In
English, this declaration would read, “Given a list of

3 Courier font denotes Java keywords and declarations.

7
 numbers, sort them in ascending order.” To express

this functional requirement in terms a computer can
understand, a programmer would write the following
declaration in the Java language4:

public static void sort(int[] a)

Before explaining each component of this
declaration, we emphasize that this line does not
instruct the computer to do anything. If a programmer
attempted to run this “program,” nothing would
happen because there are no instructions to run. The
line simply indicates that this declaration’s
implementation will include a command, which Java
calls a “method,” for sorting numbers. The Java
language requires almost every word in this
declaration. A programmer must type those words
exactly as they appear above, including the same
capitalization, punctuation, and order. Otherwise, the
declaration will cause an error or specify a method
with different functionality, like sorting words instead
of numbers.

The word public is a Java language keyword
that enables other programs to use sort once it has
been implemented (other keywords, like private,
restrict other programs’ access to a method). Similarly,
the Java language requires static for sort to work

4 The Java language is one part of the Java platform (J2SE),
which also includes the API and API implementations (also called
“libraries”). While the boundary between the language and the
API is fuzzy, the language is broadly responsible for defining the
syntax and keywords programmers use to write software. Only
the API is at issue here. See Pet. App. 220a.

8
 as expected.5 The void keyword means that the

method has no output; rather than output a sorted
copy of the list, sort simply rearranges the given list
of numbers. Finally, the parentheses enclose the
method inputs. Here, the only input is the list of
integers to be sorted—designated by the Java keyword
int followed by two brackets [].

In contrast, only two words in the declaration
leave the programmer any choice, and both are names.
The first is sort itself. This word descriptively names
the method based on the task its implementation will
perform. While it would be possible to use a
synonym—perhaps arrange or order—for the same
method, few names are as intuitive as sort to describe
the task this method’s implementation will perform.
Particularly short and intuitive names for common
operations like sort become customary terms of art
used across interfaces.6 Customary naming enhances
an interface’s readability and minimizes errors,
especially when, as is typically the case, that interface
is designed and used by different programmers. Thus,
while interface designers have some choice when

5 The Java language primarily views programs in terms of
interactions among “objects.” Normal methods operate directly on
an object without passing it as an input. Adding the static
keyword to a method declaration instead indicates that all inputs
must be passed explicitly, as with sort.
6 As of January 2020, eight of the top ten most used programming
languages (Java, Python, C++, C#, Visual Basic .NET,
JavaScript, PHP, and Swift) include a command called sort to
arrange a list in ascending order. See TIOBE Index for January
2020, TIOBE (last visited Jan. 5, 2020),
https://tinyurl.com/ycoaep4a.

9
 naming methods, the method’s function, name length,

and clarity constrain their choice.
Similarly, the programmer may choose the names

for method inputs. Here, a names the input “array,” or
list, of numbers to be sorted. Other options include
array, numbers, and list. Unlike method names,
Java permits input names to vary between a
declaration and its implementation while maintaining
interoperability. In creating Android, Google took
advantage of this creative freedom and frequently
used names for inputs that differed from those in Sun’s
Java API. See Pet. App. 226a.

ii. Implementations provide the step-by-
step instructions to perform the tasks
declarations specify

Once a software interface has been designed,
programmers can supply implementations to carry out
the tasks specified by its declarations. Google, for
example, wrote its own implementations for the Java
API’s declarations. Implementations take the inputs
listed in declarations and manipulate them to produce
the correct output. While the syntax of the
programming language dictates the form of each
declaration, implementations are open-ended and can
be thousands of lines long. Naïve implementations can
be prohibitively slow or use excessive amounts of
memory. In contrast, clever implementations can run
quickly enough to make formerly unfeasible
operations practical, or conserve enough memory to
allow programs to run on entirely new hardware—
such as phones, tablets, televisions, or even home
thermostats—that have far less memory available
than desktop computers.

10
 Computer scientists have evaluated dozens of

implementations for sort. One of the simplest
implementations is “selection sort.” Given a list of
numbers, selection sort starts at the beginning of the
list and walks through number by number, keeping a
running tally of the smallest number it has found.
Once it reaches the end of the list, it swaps the
smallest number with the number at the beginning of
the list. Then, the program searches through the
remainder of the list again, this time looking for the
second smallest number to swap into the second
position. This process repeats until the program has
swapped every number into its correct position.
Unfortunately, this implementation is prohibitively
slow for large lists of numbers.

More sophisticated implementations for sort,
like “mergesort,” can sort even large lists efficiently.
With modern data sets comprising hundreds of
millions or even billions of numbers, names, or images,
inefficient sorting implementations like selection sort
make entire categories of programs impossible to use.
Because different devices have different constraints,
software engineers devote considerable effort to
choosing the best implementation to meet their
specific needs. Their choice could mean the difference
between the success of two competing pieces of
software.

iii. SSOs establish how software
interfaces group related declarations

Because interfaces can include tens of thousands
of declarations, their designers organize related
declarations just as users organize related files into
folders on their desktop. In fact, Java’s designers

11
 organized the Java API’s files in exactly this way. See

Figure 1.

Figure 1

Java’s API is organized in three tiers: packages,

classes, and methods. Packages correspond to folders,
classes to files, and declarations to individual lines in
a file. The full file path for sort, for example, is
java.util.Arrays.sort. The overall folder for the
interface is named java, while util, short for utility,
is the name of the package, or subfolder, containing
the API’s various general-purpose classes. One such
class, Arrays, is a file that contains methods for
manipulating lists of objects, like numbers. One of the
lines in Arrays is the declaration given above for
sort.

Programmers who reimplement, i.e., provide their
own implementation for, an interface must maintain
its SSO. Failure to do so will result in incompatibility.
Just as users must know how to navigate to their
saved documents, programmers using a software
interface must specify the path for each declaration
they use, like sort, so that the computer knows where
to find the corresponding implementation. Telling a
person to click on “My Documents,” then on a folder
called “Receipts,” and finally on a file called “Sofa” to

12
 find how much their sofa cost is just like a program

navigating through the Java API to a package called
util and opening a class called Arrays to find the
implementation for the sort method.

Changing this organizational hierarchy would
prevent a person or a program from locating the file or
implementation they need, rendering the interface
specification incompatible and not interoperable. The
only change an implementation may make to the SSO
is the specific order that method declarations are
listed within a class because doing so does not alter the
method’s file path. Whether sort appears first or fifth
within the Arrays class, for example, does not change
its file path: java.util.Arrays.sort. While the
district court did not exhaustively compare the
sequence of method declarations for each class in the
Java API and Android, it did find that Google
reordered the method declarations from the Java
API’s Math class. Pet. App. 266a n.10.

Thus, although interface designers have some
choice in naming their method declarations and
inputs, programmers who reimplement an existing
interface, like Google did with the Java API, must use
the same standard names and structure to achieve
interoperability.

B. Google Wrote Its Own Implementation
of the Java API to Promote
Interoperability and Transform Java to
Run on Smartphones

Google created the Android platform to promote
interoperability and enable Java to run on an entirely
new class of devices: smartphones. This required

13
 Google to reimplement the Java API: It duplicated the

Java API’s declarations and SSO but wrote its own
implementations. See Pet. App. 219a-220a. It would
have been impossible for Google to make Android
interoperable, or compatible, with Java without
reimplementing the Java API.7 In this context,
making software interoperable means reimplementing
a software interface.

In both of its opinions, the Federal Circuit
questioned Google’s claim that Android
reimplemented the Java API to promote
interoperability with Java because programs written
for Android are not fully compatible with Java. Pet.
App. 46a n.11, 172a. But complete compatibility is not
necessary, or even desirable, to promote
interoperability in software development.

Because of its longevity, Java, and almost every
other computer system, must remain backwards-
compatible. Any program written in earlier versions of
Java must also run on later versions, or programmers
would be unable to make cumulative improvements
and the software ecosystem would break down.
However, this also means that inefficient or outdated
software survives several generations of software
development solely to maintain compatibility.

To avoid this problem, Google selectively
reimplemented portions of the Java API for Android to
eliminate functionality that was obsolete or
inappropriate for smartphones, like using a mouse.

7 We follow convention in using “interoperable” to mean
“compatible.” Oracle’s requirement that companies obtain a Java
Compatibility Kit (JCK) license to demonstrate “compatibility” is
merely a licensing scheme, not a technical necessity.

14
 See Pet. App. 219a-220a. Rather than copy Sun’s

implementations, Google was careful to write its own
implementations to carry out the tasks that the Java
API’s declarations specify. Id. at 219a. Google’s
decision empowered software developers to write Java
programs that run equally well on both desktops and
smartphones.

Android was highly transformative. Creating
Android required Google to significantly expand
Java’s API in novel ways to account for external
features and constraints unique to the smartphone
context: built-in GPS tracking, limited battery life and
memory, fluctuating network connections, and an
entirely new user interface based on touchscreen
gestures. See Pet. App. 111a. In contrast, the district
court found that “Sun and Oracle never successfully
developed its own smartphone platform using Java
technology.” Id. at 220a. While Sun did release Java
ME to run Java on feature phones, these devices are
far less sophisticated than modern smartphones.
JA99-102. Moreover, Java ME did not support the
entire Java language, omitting basic features like
numbers with decimal points. Kim Topley, J2ME in a
Nutshell 11, 13 (2002). Nor did Java ME support key
Java API features like the Java Collections
Framework, which is part of java.util, id. at 11, 24,
a package necessary “to make any worthwhile use of
the [Java] language,” Pet. App. 125a. Thus, Java ME
was far less compatible with standard Java than
Android, and Java ME’s failure to include such core
functionality only underscores how transformative
Android was.

Google’s significant augmentations to Java’s API
introduced Java to an entirely new platform, Android,

15
 that, with 2.5 billion active devices, is “by far” the

most-used operating system in the world. Liam Tung,
Bigger than Windows, Bigger than iOS: Google Now
Has 2.5 Billion Active Android Devices, ZDNet (May 8,
2019), https://tinyurl.com/v94nep4. Programmers
using only the reimplemented packages can write
programs for desktops and smartphones using the
same familiar instructions. Additionally, because Java
and Android are both open source (meaning anyone
can read and contribute to their implementations),
Google’s focus on interoperability has enabled outside
programmers, including many amici, to contribute
improvements to both platforms simultaneously.

Contrary to the Federal Circuit’s assertion that
there was no evidence of programs that rely only on
Google’s reimplemented packages, or that “[no] such
program would be useful,” Pet. App. 172a n.15, Java
and Android form parts of a broad and largely
compatible ecosystem that drastically simplifies
writing software for desktops and smartphones. Many
important programs, including Guava (which provides
efficient implementations of numerous core functions),
Gradle and Maven (which serve as project
management tools), and JUnit (which helps test the
output of a program’s subcomponents), are routinely
used with programs developed using Java and
Android. Android revitalized this ecosystem, inspiring
renewed innovation and collaboration among
programmers.

Sun had always promoted the Java API, along
with the Java language, as free and open for all to use.
See Pet. App. 106a-107a, 115a. Many amici, along with
instructors at high schools and colleges across the
country, taught Java in introductory programming

16
 courses precisely because of its free availability.

Assertions that the Java API might be copyrightable
only emerged after Oracle acquired Sun in 2010. While
Oracle does not dispute that Google was free to use the
Java language, it asserts a copyright interest in the
Java API. Id. at 220a. Even then, Oracle concedes that
at least sixty-two classes, spread across three Java
API packages, are necessary for the Java language to
work. Id. at 102a-103a.

As professors, textbook authors, and industry
leaders, amici have broad experience with both
teaching and using the Java language and do not
consider it to be fully separable from the Java API. In
fact, for any programming language, the core API is
integral to the language. Thus, amici agree with the
district court that “there is no bright line” between the
Java language and API. Pet. App. 227a. Introductory
Java textbooks typically introduce the Java API at the
outset, and amici know of no Java textbook that
teaches the language without covering the API. A Java
program which failed to use the Java API would
hardly be recognizable: The API is part of what makes
the Java language Java. Indeed, Oracle’s own online
tutorials consider portions of the Java API—including
packages like java.util.regex that it accuses
Google of infringing—“essential to most programmers”
for programming in Java. Trail: Essential Classes (The
JavaTM Tutorials), Oracle (last visited Jan. 5, 2020),
https://tinyurl.com/tndpwg4.

17
 II. The Decisions Below Upend Decades of
Settled Expectations and Threaten
Future Innovation in Software
Software interfaces are essential to innovation.

For decades, programmers have relied upon
reimplementing interfaces to create fundamentally
transformative technologies. Reimplementing
software interfaces also promotes innovation by
countering network effects and lock-in effects that
inhibit competition. This Court should reverse the
decisions below to preserve software interface
reimplementation and the vitality of the software
industry.

A. The Computer Industry Has Long
Relied on Freely Reimplementing
Software Interfaces to Foster
Innovation and Competition

Oracle’s attempt to assert copyright in the Java
API is historically anomalous and jeopardizes the
unparalleled innovation and competition that
continue to flourish across the computer industry. The
first practical description of an API appeared in 1951,
see generally Maurice V. Wilkes, David J. Wheeler &
Stanley Gill, The Preparation of Programs for an
Electronic Digital Computer (1951), and the specific
phrase “application programming interface” dates to
at least 1968, see Ira W. Cotton & Frank S. Greatorex,
Jr., Data Structures and Techniques for Remote
Computer Graphics, Am. Fed’n Info. Processing Soc’ys
Fall Joint Computer Conf. 533, 534-35 (1968).
Programmers have freely reimplemented software
interfaces throughout the ensuing decades. By
creating standard specifications for computer

18
 programs to communicate with each other,

uncopyrightable software interfaces have promoted
competition in personal computing and led to the rise
of popular operating systems, programming
languages, the Internet, and cloud computing.
Google’s reimplementation of the Java API fits
squarely within this tradition of innovation and
competition.

i. Reimplementing interfaces unleashed
the personal computer revolution

Reimplementing software interfaces made
personal computing commonplace. IBM released its
first home computer in 1981. Software companies
developed an ecosystem of products to run on IBM’s
machine, including the popular spreadsheet program
Lotus 1-2-3 co-created by amicus Mitchell Kapor. To
run these programs, however, users had to purchase
IBM’s PC because the programs required full
compatibility with IBM’s basic input-output system
(BIOS) responsible for starting the operating system
and initializing the computer’s hardware when turned
on. To compete with IBM, programmers like amicus
Tom Jennings at software company Phoenix, along
with those at computer manufacturers, like Compaq,
reimplemented the BIOS API, including its SSO, to
enable users to run their favorite IBM-compatible
software on competing machines.

Thus, reimplementing the BIOS API resulted in
the manufacture and sale of faster, cheaper, and
compatible alternatives to IBM’s PC that could run
important programs like DOS, the operating system
responsible for Microsoft’s early success. If copyright
had prevented competitors from reimplementing

19
 IBM’s BIOS API and making IBM-compatible PCs,

companies like Microsoft would never have been able
to revolutionize personal computing.

ii. Reimplementing interfaces created
the world’s most ubiquitous operating
systems

Operating systems, the fundamental programs
responsible for managing all of a computer’s hardware
and software resources, depend on software interface
reimplementation. The first modern operating system,
Unix, was implemented in 1969 by amici Ken
Thompson, Douglas McIlroy, and Brian Kernighan
and others at AT&T Bell Labs. AT&T licensed Unix’s
source code to academic institutions for a nominal fee,
leading to widespread adoption. See Eric S. Raymond,
The Art of UNIX Programming 29-41 (2004). Because
commercial licenses from AT&T were costly and
restrictive, and because hardware evolutions outpaced
AT&T’s Unix, programmers reimplemented and
extended the API themselves. See id.

Today, nearly 70% of websites run on Unix-based
operating systems, including the popular open source
operating system Linux created by amicus Linus
Torvalds. See Usage Statistics of Unix for Websites,
W3Techs (Jan. 6, 2020), https://tinyurl.com/tcbrmtc.
Linux alone runs nearly 35% of Internet servers and
the 500 fastest supercomputers in the world. See id.;
Steven J. Vaughan-Nichols, Linux Totally Dominates
Supercomputers, ZDNet (Nov. 14, 2017, 12:04 PM
PST), https://tinyurl.com/swmkdqy. Android’s
operating system, the most popular in the world, see
Tung, supra, is itself built atop Linux. And Apple, co-
founded by amicus Steve Wozniak, also

20
 reimplemented the Unix API for its desktop OS X and

mobile iOS operating systems. Programmers’ ability to
reimplement the Unix API established a standardized
design for the fundamental program running on any
computer: its operating system.

iii. Reimplementing interfaces fueled
widespread adoption of popular
programming languages

One of the most influential programming
languages, C, became widespread due to the relative
ease of reimplementing its API to enable C programs
to run on different hardware. Open source enthusiasts
reimplemented a version of C compatible with Linux,
and industry leaders like Microsoft and Google
reimplemented C for their own products. Other
popular programming languages like C++, created by
amicus Bjarne Stroustrup, also proliferated due in
part to reimplementations of their APIs.

Similarly, Sun reimplemented existing APIs as
part of the Java platform. Java reimplemented C’s
math API, which includes methods for calculating a
variety of mathematical functions. While at Sun,
amicus Joshua Bloch oversaw Sun’s reimplementation
of the Perl programming language’s regular
expression API, which allows sophisticated text
searches and alterations. Oracle’s attempt to
copyright Java’s API and hold Google liable for
infringement of the resulting java.util.regex API
ignores Java’s own history of API reimplementation.

21
 iv. Reimplementing interfaces enables

computer networks, including the
Internet, to function

The Internet relies on programmers’ ability to
reimplement standardized interfaces to transmit data.
Copyrighting those interfaces would defeat the
Internet’s goal of creating a global network of
interconnected computers. In 1983, the Berkeley
Systems Research Group released the Berkeley
Systems Distribution (BSD) sockets API. Sockets
control the endpoints for any communication over the
Internet. Because the BSD sockets API was not
copyrighted, every major operating system
reimplemented it to enable Internet communication.
Thus, programmers can write standardized software
compatible across computers to manage Internet
connectivity.

v. Reimplementing interfaces is
fundamental to cloud computing

Finally, reimplementing software interfaces has
been, and continues to be, fundamental to cloud
computing, a key driver of innovation in the big data
era. With cloud computing, developers can rent
powerful computer servers to run resource-intensive
computations, like deep learning algorithms pioneered
by amicus Geoffrey Hinton, without purchasing and
managing those servers themselves. Amazon’s Web
Services (AWS) API serves as the de facto industry
standard for cloud computing. AWS itself
reimplemented IBM’s BIOS API, enabling familiar
BIOS commands to run on Amazon’s servers. AWS
therefore allows programmers to write programs as if

22
 they were running on a standard PC rather than learn

commands unique to Amazon.
Major competitors, including Microsoft, Google,

and Oracle, have in turn adopted AWS’s API. See Rita
Zhang, Access Azure Blob Storage from Your Apps
Using S3 Java API, Microsoft (May 22, 2016),
https://tinyurl.com/rt8mb67; Cloud Storage
Interoperability, Google Cloud (last updated Oct. 23,
2018), https://tinyurl.com/hr855ur; Amazon S3
Compatibility API, Oracle Cloud (last visited Jan. 6,
2020), https://tinyurl.com/ss5ohua. Rather than
compete on the API’s design, cloud providers compete
on business factors—like price and customer service—
and on implementation factors—like latency,
downtime, and redundancy. Software interface
reimplementation therefore fosters competition in the
cloud by allowing customers to transfer their data or
programs to competing cloud providers offering
cheaper or better service without having to learn an
entirely new interface or rewrite their software to
conform to a new specification.

B. Allowing Copyright to Restrict the
Reimplementation of Software
Interfaces Will Stifle Competition

The decisions below jeopardize the market for
software. Reimplementing software interfaces enables
startups to counter network effects and compete with
established players. Network effects arise when a
service’s value increases along with its number of
users. They make users unlikely to switch to
technically “better” competing software services that
have not yet established a large userbase because
much of a service’s value comes from its community of

23
 users and its secondary market of compatible services.

For example, a developer might not learn a new
programming language unless it is used by potential
employers, even if that language is more intuitive than
others or runs more efficiently. Yet an archaic
language used by institutional employers is worth
learning, regardless of its inefficiencies.
Uncopyrightable software interfaces address network
effect barriers by enabling startups to plug into
existing systems and innovate through cumulative
improvements.

Just as the first car would look laughable today,
the first word processing software would be a
laughable replacement for modern applications. Yet a
steering wheel and gas and brake pedals have been
standard in cars for over a century. If Tesla had to re-
invent the standard driving interface to make electric-
powered cars, it would face high barriers in attracting
new customers. See Fred von Lohmann, The New
Wave: Copyright and Software Interfaces in the Wake
of Oracle v. Google, 31 Harv. J.L. & Tech. 517, 517
(2018). Treating software interfaces as copyrightable
would be like requiring car manufacturers to invent a
substitute for the steering wheel. Startups would not
risk manufacturing such a car, and even if they did,
consumers likely would not purchase it. See also CDT
Br. 14-17 (using keyboard shortcuts and spreadsheet
compatibility as examples of the benefits of
uncopyrightable interfaces).

Furthermore, extending copyright to software
interfaces would enable companies to monopolize
standard interfaces. Companies could initially make
their interfaces freely available to lure developers to
their platform, and then, after attracting a significant

24
 number of developers, demand a licensing fee for

further use. These fees would be passed on to
consumers, making software more expensive.
Copyrightable interfaces could also curtail employee
mobility because different employers would use
competing proprietary APIs, and employees with
expertise in one proprietary API would be less
desirable to employers using another. Innovation
could stagnate.

Amazon, for example, could follow Oracle’s lead
and use the decisions below to force companies that
reimplement its cloud storage APIs to pay a licensing
fee, stifling competition in a vibrant market valued at
$42 billion in 2017. See Jay Greene & Laura Stevens,
“You’re Stupid If You Don’t Get Scared”: When Amazon
Goes from Partner to Rival, Wall St. J. (June 1, 2018,
5:30 AM ET), https://tinyurl.com/y927p3ot. Amazon
could gain a monopoly over cloud storage until its
competitors redesigned their systems from scratch to
avoid infringing on Amazon’s APIs. The decisions
below will transform copyright into a tool for
incumbents to improperly stave off competition.

Reimplementing software interfaces also protects
consumers from lock-in effects by promoting
interoperability among operating systems and
programs. Consumers depend on operating systems
that run on their hardware, programs that run across
operating systems, and Internet applications that run
across browsers. Under the decisions below, software
interfaces enabling interoperability might require
expensive licenses, and their owners could
significantly restrict their use. Consumers will face
higher prices and fewer choices. Software will become
harder to use because switching to a competing service

25
 will require users to learn an unfamiliar interface.

Rather than switch to more innovative software, users
will remain locked in to outdated systems. See also
CDT Br. 17-19.

Forcing companies that reimplement APIs to rely
on fair use will not meaningfully address these anti-
competitive effects. Though better than nothing, a fair
use standard creates uncertainty because it depends
on fact-intensive, case-by-case determinations which
can result, as this case demonstrates, in lengthy and
expensive litigation. Rather than risk crippling
lawsuits, startups will choose not to enter markets at
all or will undertake inefficient workarounds.

Restricting API reimplementation to situations
where fair use can be established would impede
innovation and competition almost as much as
denying reimplementation outright: Users will suffer
from fewer product choices, higher prices, and
incompatible software.

26
 CONCLUSION

The Court should reverse the decisions below to
ensure continued innovation and protect competition
in the software industry.

January 13, 2020

Respectfully submitted,
Phillip R. Malone

Counsel of Record
JUELSGAARD INTELLECTUAL

PROPERTY AND INNOVATION
CLINIC

MILLS LEGAL CLINIC AT
 STANFORD LAW SCHOOL
559 Nathan Abbott Way
Stanford, CA 94305
(650) 725-6369
pmalone@law.stanford.edu

A1
 APPENDIX — LIST OF AMICI

Amici sign this brief on their own behalf, not on
behalf of the organizations with which they are
affiliated.1

Harold Abelson.¶ Professor, MIT. Co-author,
innovative introductory CS text with worldwide
impact. Founding director, Creative Commons, Public
Knowledge. Four major awards for contributions to CS
education. Fellow, IEEE.

Brian Behlendorf. Executive Director,
Hyperledger. Chairman, EFF. Member, Mozilla
Foundation. Co-founder, Benetech, Apache Software
Foundation. Former CTO, World Economic Forum.

Jon Bentley. Researcher: programming
techniques, tools, algorithms. Previously,
Distinguished Member of Technical Staff, Bell Labs;
Professor, Carnegie-Mellon; visiting faculty, West
Point, Princeton.

1 Amici represent a substantial cross section of the world’s most
distinguished computer scientists and engineers. As such, the 83
amici include seven who are presently Google employees
(indicated by * next to their names); two who testified as unpaid
fact witnesses at trial in this case (indicated by †); two who were
retained as experts by Google but did not testify (indicated by ‡),
and a number who may have received some research support
from Google at some point during the last 14 years (indicated by
¶). Each of these amici signs this brief based on their personal
experience and beliefs as individual, independent computer
scientists whose work in the field long preceded their affiliation
with Google or their participation in this case. None sign on
behalf of Google or at Google’s request. Amici’s bios are included
in the word count.

A2
 Matthew Bishop. Professor, UC Davis. Author,

Computer Security: Art and Science.
Joshua Bloch.† Professor, Carnegie-Mellon.

Specialist in API Design. Previously, Chief Java
Architect, Google; Distinguished Engineer, Sun
Microsystems. Led design, implementation of
numerous Java APIs. Author, Effective Java.

Gilad Bracha. Creator, Newspeak programming
language. Previously, Scientist, Google; VP, SAP Labs;
Distinguished Engineer, Sun Microsystems. Co-
author, Java Language and VM Specifications. Dahl-
Nygaard Prize.

Daniel Bricklin. Conceived and co-developed
VisiCalc, the first spreadsheet. Fellow, CHM, ACM.
Member, NAE. ACM Software System Award, ACM
Grace Murray Hopper Award.

Frederick P. Brooks, Jr. Professor Emeritus,
UNC Chapel Hill. Project Manager, IBM System/360
hardware and OS/360 software. Architect, Stretch and
Harvest supercomputers. Founder, UNC’s CS
Department. Author, The Mythical Man-Month.
National Medal of Technology, ACM Turing Award.
Member, NAS, NAE, British and Dutch academies.

Edwin Catmull. Co-founder, Pixar Animation
Studios. Previously, President, Pixar and Disney
Animation. Architect, RenderMan (used in nearly all
films nominated for Academy Awards in Visual
Effects). Five Academy Awards, including two Oscars
and lifetime achievement award. IEEE John von
Neumann Medal. Fellow, ACM, CHM. Member, NAE.

A3
 R.G.G. Cattell.‡ Distinguished Engineer, Sun

Microsystems; Researcher, Xerox PARC, CMU.
Responsible for numerous APIs including Enterprise
Java, JDBC. Author, first monograph on
object/relational databases. Fellow, ACM.

Vinton G. Cerf.* “Father of the Internet.” Co-
designer, TCP/IP. VP, Google. Previous positions at
MCI, DARPA, Stanford. Fellow: IEEE, AAAS, ACM,
AAoAS. Member: NAE, British Royal Society. Former
President, ACM. Founding President, Internet
Society. Presidential Medal of Freedom, National
Medal of Technology, Queen Elizabeth Prize for
Engineering, ACM Turing Award, Japan Prize, Legion
d’Honneur.

David Clark.¶ Internet pioneer. Senior Research
Scientist, MIT CSAIL; Technical Director, MIT IPRI.
Was Chief Protocol Architect, Internet Activities
Board; Chairman, National Academies CSTB.
Member, NAE, AAoAS.

William Cook. Professor, UT Austin. Chief
architect, AppleScript. Dahl-Nygaard Prize.

Thomas H. Cormen. Professor, Dartmouth. Co-
author, Introduction to Algorithms. Former chair,
Dartmouth CS department. ACM Distinguished
Educator.

Miguel de Icaza. Distinguished Engineer,
Microsoft. Cofounder, GNOME, Mono
(reimplementing Microsoft’s .NET platform on Linux).
FSF Software Award, MIT Technology Review
Innovator of the Year.

A4
 Jeffrey Dean.* Google Senior Fellow, in charge

of Research, AI, Health. Co-creator, five generations of
web search systems; distributed computing
infrastructure. Previously, DEC WRL, CDC, WHO.
Fellow, ACM, AAAS. Member, NAE. Mark Weiser
Award, ACM-Infosys Foundation Award.

Dr. L Peter Deutsch. Co-developed Interlisp-D,
Smalltalk-80 at Xerox PARC. Originated Just-In-Time
Compilation. Created Ghostscript open-source
reimplementation of PostScript. ACM Software
System Award. Fellow, ACM.

Whitfield Diffie. Discovered public key
cryptography, which underlies all modern secure
communication. Previously, Chief Security Officer,
Sun Microsystems; Manager, Secure Systems
Research, Bell-Northern Research. ACM Turing
Award. Member, NAE, Royal Society.

David L. Dill. Donald E. Knuth Professor,
Emeritus, Stanford. Fellow, IEEE, ACM. Member,
NAE, AAoAS. Computer-Aided Verification Award,
Alonzo Church Award.

Lester Earnest. Served on ARPAnet startup
committee; invented Finger social networking
protocol. Aviation Electronics Officer, Digital
Computer Project Officer, NADC. Co-designed SAGE
air defense system, MIT.

Dawson Engler. Professor, Stanford. ACM
Grace Murray Hopper Award, Mark Weiser Award,
Numerous Best Paper awards.

A5
 Dr. Stuart Feldman. Chief Scientist, Schmidt

Futures. Wrote first Fortran 77 compiler, make tool.
Formerly at Google, IBM, Bell Labs, ACM President.
ACM Software System Award. Fellow, IEEE, ACM,
AAAS.

Martin Fowler. Chief scientist, ThoughtWorks.
Author, seven popular software development books.

Bob Frankston. Co-founder, Software Arts.
Implemented VisiCalc (first spreadsheet). Fellow,
IEEE, ACM, CHM. ACM Software System Award.

Neal Gafter. Principal Engineer, Microsoft:
Technical lead, Roslyn Project. Previously, Software
Engineer, Google; Senior Staff, Sun Microsystems.
Developed Java compiler, implemented Java language
features.

Erich Gamma. Microsoft Technical Fellow. Co-
author, Design Patterns: Elements of Reusable Object-
Oriented Software, which won ACM Programming
Language Award. Previously, Distinguished
Engineer, IBM. ACM Software System Award.

Andrew Glover. Director, Delivery Engineering,
Netflix. Steering Committee Chair, Spinnaker Open
Source project. Author, Java Testing Patterns.

Allan Gottlieb. Professor, NYU. Led
Ultracomputer group which introduced fetch-and-add
instruction still in use today.

Anoop Gupta. Co-founder, CEO, SeekOut.
Previously, Distinguished Scientist, VP Unified
Communications, VP Global Technology Policy,
Microsoft; Professor, Stanford.

A6
 Robert Harper. Professor, Carnegie-Mellon. Co-

designer, Standard ML programming language. Allen
Newell Medal for Research Excellence, Herbert Simon
Award for Teaching Excellence. Fellow, ACM.

Anders Hejlsberg. Technical Fellow, Microsoft.
Lead architect, TypeScript open source project.
Designer, C#, Delphi, Turbo Pascal programming
languages.

Martin Hellman. Co-inventor, public-key
cryptography, which protects trillions per day in
financial transactions. Professor Emeritus, Stanford.
Previously, MIT Professor. ACM Turing Award.
Member, NAE. Fellow, CHM.

Maurice Herlihy. Professor, Brown. Previously,
Carnegie-Mellon. Dijkstra Prize in Distributed
Computing, Gödel Prize in theoretical computer
science, Fulbright Distinguished Chair. Fellow, ACM,
AAoAS, National Academy of Inventors.

Geoffrey Hinton.*¶ “The Godfather of Deep
Learning.” Emeritus Professor, University of Toronto;
Google Engineering Fellow; Member NAE; Fellow of
the Royal Society. ACM Turing Award, Honda
Foundation award, IEEE Maxwell Gold medal, BBVA
award, NSERC Herzberg Gold medal.

Tom Jennings. Faculty, CalArts
Art+Technology Program. Co-wrote Phoenix
Software’s IBM compatible ROM BIOS. Creator of
FidoNet, the first and most influential message and
file networking system.

A7
 Mitchell Kapor. Partner, Kapor Capital. Co-

Chair, Kapor Center for Social Impact. Previously,
Founder, President, CEO, Lotus Development
Corporation: Co-created Lotus 1-2-3; Co-founder, EFF;
Founding Chair, Mozilla Foundation; Adjunct
Professor, MIT, Berkeley. Fellow, CHM.

Alan Kay. Pioneer in object-oriented
programming, personal computing, GUIs. Co-author,
Smalltalk programming language. Positions at HP,
Disney, Apple, Xerox PARC. ACM Turing Award, NAE
Draper Prize, Kyoto Prize. Member, AAAS, NAE,
AAoAS. Fellow, ACM, CHM, Royal Society of Arts.

Brian Kernighan.*¶ Professor, Princeton. Unix
pioneer, Bell Labs. Co-creator, AWK programming
language. Co-author, 13 books including seminal work
on C programming language. Member, NAE, AAoAS.

David Klausner. Fifty years software/hardware
experience at Microsoft, AT&T, Cisco, IBM, HP, Intel.

Kin Lane. Computer scientist working on API
technology, business, politics. Twenty years’ API
experience as programmer, architect, executive.
Author, Business of APIs.

Ed Lazowska.¶ Professor, University of
Washington. Member, NAE. Fellow, ACM, IEEE.
Member, NAE, AAoAS. Past co-chair, President’s
Information Technology Advisory Committee.

Douglas Lea.¶ Professor and Department Chair,
SUNY Oswego. Creator of Java concurrency APIs.
Author, Concurrent Programming in Java. Dahl–
Nygaard Prize. Fellow, ACM.

Bob Lee.† CEO, Present Company. Previously,
CTO, Square; Staff Engineer, Google. Led Android
core library team, created Guice framework.

A8
 Harry Lewis. Professor, Harvard. Students

included Bill Gates, Mark Zuckerberg. Previously
Dean, Harvard College; Interim Dean, Harvard’s
School of Engineering and Applied Sciences.

Sheng Liang. Co-founder, CEO, Rancher Labs.
Previously, CTO, Cloud Platform group, Citrix; Staff
Engineer, Sun Microsystems. Designed Java Native
Interface, led JVM development. Author, The Java
Native Interface.

Barbara Liskov. Professor Emeritus, MIT.
Created CLU, first programming language to support
data abstraction; Argus, first high-level language to
support distributed programming. ACM Turing
Award, IEEE John von Neumann Medal, ACM
SIGPLAN Programming Languages Award, ACM
SIGOPS Lifetime Achievement Award. Fellow, ACM,
AAoAS, National Academy of Inventors. Member,
NAS, NAE.

Douglas McIlroy. Professor, Dartmouth.
Headed Bell Labs department that originated Unix.
Many contributions to Unix including pipes
abstraction. Designer, PL/I programming language.
USENIX lifetime achievement award, programming
tools award. Fellow, AAAS. Member, NAE.

Paul Menchini. CISO, North Carolina School of
Science and Mathematics. Previously, HP, Intel, GE.
Edited IEEE VHDL Standard. Developed first
commercially successful VHDL compiler. IEEE Senior
Life member.

James H. Morris. Professor Emeritus, Carnegie-
Mellon. Previously Dean, Department Head;
Professor, UC Berkeley; Principal Scientist and
Research Fellow, Xerox PARC. Co-inventor, Knuth-
Morris-Pratt algorithm. Fellow, ACM.

A9
 Peter Norvig.* Director, Google Research.

Previously directed Google’s search algorithms group.
Co-author, Artificial Intelligence: A Modern Approach.
Fellow, AAAI, ACM, AAoAS.

Martin Odersky.¶ Professor, EPFL (Lausanne,
Switzerland). Creator, Scala programming language.
Designed original Java generics. Wrote Java compiler.

 John Ousterhout.¶ Professor, Stanford.
Formerly, Professor, UC Berkeley. Creator, Tcl
scripting language. Fellow, ACM. Member, NAE. ACM
Software System Award, ACM Grace Murray Hopper
Award.

Tim Paterson. Wrote OS that was sold to
Microsoft and became MS-DOS. At Microsoft, worked
on QuickBASIC, Visual Basic, VBScript, Visual J++
(Java).

David Patterson.*¶ Professor Emeritus,
Berkeley. Previously Director, Parallel Computing
Lab; Chair, CS Division; Chair, Computing Research
Association; President, ACM. Projects included
Reduced Instruction Set Computers (RISC),
Redundant Arrays of Inexpensive Disks (RAID),
Network of Workstations. All led to multibillion-dollar
industries. Forty honors including ACM Turing
Award, IEEE John von Neumann Medal. Member,
NAE, NAS, AAoAS. Fellow, AAAS, CHM, ACM, IEEE.

A10
 Alex Payne. Advisor to early-stage technology

startups. Previously, Platform Lead at Twitter. Co-
author, Programming Scala. Organizer, Emerging
Languages Conference. Lectured on API design at
Stanford.

Tim Peierls. President, Seat Yourself.
Previously, VP, Descartes Systems Group; MTS, Bell
Labs. Member, four expert groups developing Java
API specifications. Co-author, Java Concurrency in
Practice.

Ronald L. Rivest. Institute Professor, MIT. Co-
inventor, RSA public-key cryptosystem. Co-author,
Introduction to Algorithms. ACM Turing Award.
Fellow, ACM, IEEE. Member, AAAS, NAE, NAS.

Aviel D. Rubin.¶ Professor, Technical Director
of Information Security Institute, Johns Hopkins.
Director, JHU Health and Medical Security Lab. EFF
Pioneer Award, Fulbright Scholar.

Curtis Schroeder. Computer Scientist, Draper.
Served as editor for widely reimplemented SISO CIGI
API. Previously, Antycip Simulation, Lockheed
Martin.

Robert Sedgewick. Founding Chair and
Professor, Princeton CS Department. Co-inventor,
Red-Black tree data structure. Author, 20 books
including million-selling Algorithms. Steele Prize,
ACM Karlstrom Award. Fellow, ACM.

Mary Shaw. Professor, Carnegie-Mellon.
Specialist in software engineering. National Medal of
Technology and Innovation, ACM SIGSOFT
Outstanding Research Award, IEEE Distinguished
Women in Software Engineering Award. Fellow, ACM,
IEEE, AAAS.

A11
 Barbara Simons. IBM Research (retired).

Former President, ACM. Computing Research
Association Distinguished Service Award, EFF
Pioneer Award, UC Berkeley College of Engineering
Distinguished Alumni Award. Fellow, ACM, AAAS.

Daniel Sleator. Professor, Carnegie-Mellon.
Specialist in algorithms, data structures. Previously
Bell Labs. Joint winner (with Bob Tarjan) Paris
Kanellakis Theory and Practice Award.

Alfred Z. Spector. CTO, Two Sigma. Previously,
VP of Research, Google; CTO, IBM Software; VP, IBM
Services and Software; Professor, Carnegie-Mellon.
Fellow, IEEE, ACM. Member, NAE, AAoAS. IEEE
Kanai Award for Distributed Computing, ACM
Software Systems Award.

Michael Stonebraker. Database pioneer. Main
architect, INGRES relational DBMS, POSTGRES
object-relational DBMS. CTO, Paradigm4, Tamr;
Professor, MIT. Previously, Professor, UC Berkeley.
ACM Turing Award, IEEE John von Neumann Medal,
ACM System Software Award, SIGMOD Innovations
Award. Member, NAE.

Bjarne Stroustrup. Inventor, C++ programming
language. Author, The C++ Programming Language.
On ISO Standards committee since 1989. NAE
Charles S. Draper Prize. Fellow, ACM, IEEE, CHM,
Cambridge’s Churchill College. Member, NAE.

Gerald Jay Sussman. Professor, MIT. Co-
author, innovative introductory CS text with
worldwide impact. ACM Karlstrom Award. Fellow,
ACM, IEEE, AAoAS, AAAS. Member, NAE.

A12
 Ivan E. Sutherland. Professor, founder of

Asynchronous Research Center, Portland State.
Previously, Technical Fellow, Sun Microsystems. 1963
MIT Ph.D. thesis, Sketchpad, is widely known; he has
been called “the father of computer graphics.” ACM
Turing Award, IEEE John von Neumann Medal,
Kyoto Prize. Fellow, ACM, CHM. Member, NAE, NAS.

Andrew Tanenbaum. Professor emeritus, Vrije
Universiteit. Principal designer, Linux-precursor
MINIX. Author, 24 books. Member, Royal Netherlands
Academy of Arts and Sciences. Fellow ACM, IEEE.
USENIX Lifetime Achievement Award, Eurosys
Lifetime Achievement Award.

Brad Templeton. Founder, ClariNet (perhaps
the earliest dot-com company). First employee,
Personal Software/Visicorp (first major
microcomputer applications company). Author,
numerous microcomputer software titles. Chairman
Emeritus, EFF.

Ken Thompson.* Spent much of his career at
Bell Labs where he created Unix operating system,
invented B programming language (precursor to C),
defined UTF-8 encoding, co-developed first master-
level chess-playing machine. Google Advisor,
Previously Distinguished Engineer. Co-invented Go
programming language. ACM Turing Award, IEEE
Richard W. Hamming Medal, National Medal of
Technology. Fellow, CHM. Member, NAS, NAE.

Linus Torvalds. Principal developer, Linux
kernel, which runs on billions of devices from
cellphones to supercomputers. Millennium Technology
Prize, Lovelace Medal, IEEE Computer Pioneer
Award, EFF Pioneer Award, Takeda Award. Fellow,
CHM, Linux Foundation.

A13
 Jeffrey Ullman. Professor Emeritus, Stanford.

Previously Bell Labs. Author, 16 books, many
considered classics. Member NAE. Fellow, AAoAS.
IEEE John von Neumann Medal.

Leslie Valiant. Professor, Harvard. Founding
contributor to theory of machine learning. Devised
bulk synchronous model of parallel computation.
Developed fundamental theories of computational
complexity. ACM Turing Award, International
Mathematical Union Nevanlinna Prize. Fellow of the
Royal Society. Member, NAS.

Andries van Dam.¶ Professor, Brown
University. Cofounder ACM SICGRAPH. Co-author
Computer Graphics: Principles and Practice. Fellow
IEEE, ACM. Member NAE, AAoAS. Numerous
awards including IEEE Centennial Medal.

Guido van Rossum. Created Python
programming language. Was Principal Engineer,
Dropbox; Senior Staff, Google. ACM Distinguished
Engineer. Fellow, CHM, CWI Dijkstra.

John Villasenor.‡ UCLA Professor of electrical
engineering, law, and public policy. Brookings
Institution Senior Fellow. Hoover Institution Visiting
Fellow. Member, Council on Foreign Relations.
Former Vice Chair, World Economic Forum’s Global
Agenda Council on the Intellectual Property System.

Jan Vitek.¶ Professor, Northeastern. Specialist
in programming languages. Chief Scientist, Fiji
Systems. Past Chair, ACM SIGPLAN.

A14
 Philip Wadler. Professor, Edinburgh; Senior

Research Fellow, IOHK. Contributor, Haskell, Java,
XQuery. Co-author, Java Generics and Collections.
POPL Most Influential Paper Award. Fellow, ACM,
Royal Society of Edinburgh.

James Waldo. Professor, CTO, Harvard. Was
Distinguished Engineer, Sun Microsystems; developed
Java APIs for distributed systems. Author, Java: The
Good Parts.

Dan Wallach.¶ Professor, Rice University. Rice
Scholar, Baker Institute for Public Policy. Former
member, Air Force Science Advisory Board, USENIX
Board of Directors.

Steve Wozniak. Co-founder, Apple. Inventor,
Apple I and Apple II computers. ACM Grace Murray
Hopper Award, National Medal of Technology. Twelve
honorary doctorates. Fellow, CHM. Inductee, National
Inventors Hall of Fame.

Frank Yellin. Original member, Sun
Microsystems’ Java Project. Co-author, The Java
Virtual Machine Specification, Java API specification.
Formerly Google, Lucid.

