
No. 18-956

IN THE

Supreme Court of the United States
————

GOOGLE LLC,

Petitioner,
v.

ORACLE AMERICA, INC.,
 Respondent.

————

On Writ of Certiorari
to the United States Court of Appeals

for the Federal Circuit

————

BRIEF OF MICROSOFT CORPORATION AS
AMICUS CURIAE IN SUPPORT OF PETITIONER

————

LISA W. BOHL
MOLOLAMKEN LLP
300 N. LaSalle St.
Chicago, IL 60654
(312) 450-6700

LEONID GRINBERG
MOLOLAMKEN LLP
430 Park Ave.
New York, NY 10022
(212) 607-8160

JEFFREY A. LAMKEN
Counsel of Record

MICHAEL G. PATTILLO, JR.
MOLOLAMKEN LLP
The Watergate, Suite 660
600 New Hampshire Ave., NW
Washington, DC 20037
(202) 556-2000
jlamken@mololamken.com

Counsel for Amicus Curiae

(i)

TABLE OF CONTENTS

Page
Interest of Amicus Curiae ... 1

Summary of Argument ... 3

Argument .. 6

I. Innovation in Today’s Computer
Industry Depends on Collaborative
Development and Seamless
Interoperability—Both of Which Require
Reuse of Functional Code 7

A. Innovation in the Modern
Computer Industry Relies on
Collaborative Development 7

B. Interoperability Is a Key
Component of Technological
Innovation Today 10

C. Reuse of Functional Software Code,
Including APIs, Is Critical To
Promoting Collaborative
Development and Interoperability 12

II. Courts Have Long Applied a Flexible
Fair Use Doctrine To Address
Software’s Unique Nature 15

A. Software’s Collaborative and
Functional Elements Distinguish It
from Traditional Creative Works
Subject to Copyright Protection 16

B. A Flexible Fair Use Doctrine Is
Essential To Promoting
Collaboration and Interoperability
in Modern Software Development—
As Courts Have Long Recognized 18

ii
TABLE OF CONTENTS—Continued

Page
C. Experience Has Shown That a

Flexible Fair Use Doctrine Fosters
Innovation in Computer Software 21

III. The Federal Circuit’s Decision Defies
Settled Fair-Use Principles and
Misapprehends the Collaborative Nature
of the Computer Industry 22

A. The Federal Circuit’s Disregard of
the Functional Nature of Oracle’s
Declaring Code and SSOs in the
Fair-Use Analysis Defies Precedent
and Industry Reality 23

B. The Federal Circuit Fundamentally
Misunderstood What Constitutes a
“Transformative Use” of Software 26

IV. The Federal Circuit’s Rigid Approach to
Fair Use Threatens the Viability of the
Interconnected Software Ecosystem 30

Conclusion ... 32

iii

TABLE OF AUTHORITIES
 Page(s)

CASES
Apple Comput., Inc. v. Microsoft Corp.,

35 F.3d 1435 (9th Cir. 1994) 17
Atari Games Corp. v. Nintendo of Am., Inc.,

897 F.2d 1572 (Fed. Cir. 1990) 26
Atari Games Corp. v. Nintendo of Am. Inc.,

975 F.2d 832 (Fed. Cir. 1992) 20
Campbell v. Acuff-Rose Music, Inc.,

510 U.S. 569 (1994) passim
Comput. Assocs. Int’l, Inc. v. Altai, Inc.,

982 F.2d 693 (2d Cir. 1992) 15, 17
Dr. Seuss Enters., L.P. v. Penguin Books

USA, Inc., 109 F.3d 1394
(9th Cir. 1997) .. 24, 25

Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340 (1991) .. 18, 23

Fox News Network, LLC v. TVEyes, Inc.,
883 F.3d 169 (2d Cir. 2018), cert. denied,
139 S. Ct. 595 (2018) ... 24

Lewis Galoob Toys, Inc. v. Nintendo of Am.,
Inc., 964 F.2d 965 (9th Cir. 1992) 20

Lexmark Int’l, Inc. v. Static Control
Components, Inc.,
387 F.3d 522 (6th Cir. 2004) 17

Lotus Dev. Corp. v. Borland Int’l, Inc.,
49 F.3d 807 (1st Cir. 1995) 16, 29

Mattel Inc. v. Walking Mountain Prods.,
353 F.3d 792 (9th Cir. 2003) 24

Micro Star v. Formgen Inc.,
154 F.3d 1107 (9th Cir. 1998) 23

iv

TABLE OF AUTHORITIES—Continued

Page(s)

Perfect 10, Inc. v. Amazon.com, Inc.,
508 F.3d 1146 (9th Cir. 2007) 18, 22

Sega Enters. Ltd. v. Accolade, Inc.,
977 F.2d 1510 (9th Cir. 1992) passim

Sony Comput. Entm’t, Inc. v. Connectix
Corp., 203 F.3d 596 (9th Cir. 2000) passim

Sony Corp. of Am. v. Universal City Studios,
Inc., 464 U.S. 417 (1984) 15, 18, 19, 25

Stewart v. Abend,
495 U.S. 207 (1990) ... 18

Swirsky v. Carey,
376 F.3d 841 (9th Cir. 2004) 18

Wall Data Inc. v. L.A. Cty. Sheriff’s Dep’t,
447 F.3d 769 (9th Cir. 2006) 26

CONSTITUTIONAL PROVISIONS
AND STATUTES

U.S. Const. art. I, § 8, cl. 8 7, 23, 30
17 U.S.C. § 107 ... 2
17 U.S.C. § 107(2) .. 23

OTHER AUTHORITIES

Clark D. Asay, Software’s Copyright
Anticommons,
66 Emory L.J. 265 (2017) passim

Clark D. Asay, Transformative
Use in Software,
70 Stan. L. Rev. Online 9 (2017). 27, 28

v

TABLE OF AUTHORITIES—Continued

Page(s)

Carliss Baldwin & Eric von Hippel,
Modeling a Paradigm Shift: From
Producer Innovation to User and Open
Collaborative Innovation,
22 Org. Sci. 1399 (2011) 7, 8, 9, 16

CB Insights, Open-Source Software Has
Changed the Way Software Is Developed.
Here’s Where The $33B Industry Is
Headed (2019), https://www.cbinsights.
com/reports/CB-Insights_Future-Of-
Open-Source.pdf ... 9

Jonathan Corbet & Greg Kroah-Hartman,
Linux Found., 2017 Linux Kernel
Development Report (Oct. 25, 2017),
https://www.linuxfoundation.org/
publications/2017/10/2017-state-of-
linux-kernel-development 10

Entm’t Software Ass’n, U.S. Video Game
Sales Reach Record-Breaking $43.4
Billion in 2018 (Jan. 22, 2019),
https://www.theesa.com/press-releases/
u-s-video-game-sales-reach-record-
breaking-43-4-billion-in-2018/ 21

Simon J. Frankel & Ethan Forrest,
What Remains of Fair Use for Software
After Oracle v. Google?, 8 N.Y.U.
J. Intell. Prop. & Ent. L. 310 (2019) 12, 20

GE Appliances Connected Ranges & Wall
Ovens, https://www.geappliances.com/
ge/connected-appliances/ranges-ovens-
cooking.htm ... 12

James Gibson, Once and Future Copyright,
81 Notre Dame L. Rev. 167 (2005) 13

vi

TABLE OF AUTHORITIES—Continued

Page(s)

Google, Compare Nest Thermostats,
https://store.google.com/us/
magazine/compare_thermostats 12

Joseph Gratz & Mark A. Lemley, Platforms
and Interoperability in Oracle v. Google,
31 Harv. J.L. & Tech. 603 (2018) passim

Mark Kaelin, Microsoft Cognitive Services:
Leading the AI Charge, TechRepublic
(May 22, 2017), https://www.tech
republic.com/article/build-2017-ai-will-
change-everything-and-microsoft-looks-to-
lead-the-way/ .. 9

Erik Kain, Putting the PlayStation 4’s 91.6
Million Sales into Context, Forbes (Jan.
11, 2019), https://www.forbes.com/sites/
erikkain/2019/01/11/putting-the-
playstation-4s-91-6-million-sales-into-
context/#543b0c856c50 21

Sonia K. Katyal, The Paradox of Source
Code Secrecy, 104 Cornell L.
Rev. 1183 (2019) ... 7, 8, 10

Nat’l Comm’n on New Tech. Uses of
Copyrighted Works (CONTU), Final
Report on the National Commission on
New Technological Uses of Copyrighted
Works, 3 Computer L.J. 53 (1981) 10

Jamie Rigg, PlayStation Keeps Making
Money, Sony Phones Keep Losing It,
Engadget (Feb. 1, 2019), https://
www.engadget.com/2019/02/01/sony-
playstation-4-profit/ ... 22

vii

TABLE OF AUTHORITIES—Continued

Page(s)

Ring, Home Security System,
https://shop.ring.com/pages/
security-system .. 12

Pamela Samuelson & Clark D. Asay,
Saving Software’s Fair Use Future,
31 Harv. J.L. & Tech. 535 (2018) 25

Charles C. Snow et al., Organizing
Continuous Product Development and
Commercialization: The Collaborative
Community of Firms Model, 28 J. Prod.
Innovation Mgmt. 3 (2010) 31

Jonathan Zittrain, The Future of the Internet
and How To Stop It (Yale Univ. Press,
1st ed. 2008) .. 8, 11

IN THE

Supreme Court of the United States
————

 NO. 18-956

GOOGLE LLC,
Petitioner,

v.

ORACLE AMERICA, INC.,
 Respondent.

————

On Writ of Certiorari
 to the United States Court of Appeals

for the Federal Circuit
————

BRIEF OF MICROSOFT CORPORATION
AS AMICUS CURIAE IN SUPPORT OF

PETITIONER
————

INTEREST OF AMICUS CURIAE1
Microsoft Corporation (“Microsoft”) is a leading inno-

vator in computer software; it has been creating software
platforms and APIs for application developers for over

1 Pursuant to Supreme Court Rule 37.6, counsel for amicus curiae
states that no counsel for a party authored this brief in whole or in
part. No counsel or party made a monetary contribution intended to
fund the preparation or submission of this brief, and no person other
than amicus or its counsel made such a contribution. The parties
have provided written consent to the filing of this amicus brief.

2

forty years. Microsoft’s mission is to enable individuals
and businesses throughout the world to realize their full
potential by creating technology that transforms the
ways people work, play, and communicate. Microsoft
develops, manufactures, licenses, sells, and supports a
wide range of software programs, devices, and services,
including Windows, Microsoft Azure, Microsoft Office
365, Surface, Xbox and Xbox Live, and Bing. And it in-
vests billions of dollars on research, development, and
promotion of new technologies, products, and services to
compete in dynamic technology markets.

This case concerns the Copyright Act’s authorization
of “the fair use of a copyrighted work” under 17 U.S.C.
§ 107—in particular, how it applies to functional computer
code. That issue has profound consequences for innova-
tion in today’s computer industry, which depends upon
reuse of functional code for purposes of collaborative
development and ensuring interoperability and compati-
bility across a wide array of software platforms and hard-
ware devices. Courts have long adopted a flexible ap-
plication of the fair use doctrine to accommodate those
realities. But in overturning the jury’s verdict here, the
decision below upends that settled law. It takes an un-
duly narrow view of fair use that elevates functional code
to the same level of copyright protection as the creative
expression in a novel. That ruling threatens modern
paradigms of software development.

Microsoft has a unique—and balanced—perspective
on the technological, legal, and economic issues this case
implicates. On the one hand, Microsoft relies on copy-
right protection, which enables it to license its own prod-
ucts and services and earn a fair return for its creations.
On the other hand, Microsoft recognizes that limits on
copyright—such as the fair use doctrine—are essential to

3

the operation of the computer industry. For example,
Microsoft also uses and licenses copyrighted works, and
has a longstanding interest in preserving room for legiti-
mate reverse-engineering, competitive analysis, and in-
novative follow-on development of existing software.
Microsoft, its customers, and its developers also need
their own products to interoperate with systems, plat-
forms, and solutions provided by multiple vendors. Fur-
ther, Microsoft uses, contributes to, and sponsors open-
source projects, which also rely on settled copyright
law—both its protections and exceptions. For example,
Microsoft has for several years been the most active cor-
porate maintainer of open-source projects on GitHub, the
leading collaborative software development platform,
which Microsoft acquired in 2018. Microsoft also im-
plements APIs from the open-source community in its
Windows and Azure products. Similarly, third parties
implement Microsoft APIs in their products to enable
compatibility and interoperability. Microsoft thus has a
profound interest in ensuring the Court appreciates how
innovation in today’s computer industry is impacted by
the copyright issues presented in this case.

SUMMARY OF ARGUMENT
I. The nature of software production has shifted dra-

matically in the twenty-first century. Innovation today
depends on collaborative development; it is no longer the
case that software is predominantly created by a single
entity or individual who develops a proprietary product
in isolation. Instead, developers rely on sharing, modi-
fying, and enhancing previously developed code to create
new products and develop new functionality. Both a
cause and effect of this collaborative development is the
increased demand for seamless interoperability and
compatibility—i.e., the ability of different products, de-

4

vices, and applications to communicate and work togeth-
er without effort from the consumer. That can be as
basic as enabling a document created in Microsoft Word
to be opened, edited, and saved in another application, or
as complex as enabling an ecosystem of smart devices,
applications, and platforms to connect and interoperate
seamlessly in the cloud. This collaborative development
and interoperability depend upon the reuse of computer
code, like APIs, that serves largely functional purposes—
like calling on a program to perform a specific task.

II. It is no surprise that a broad swath of the soft-
ware industry—from individual developers and computer
scientists to start-ups to large companies—have filed
amicus briefs supporting petitioner in this case. The
modern software industry’s development paradigm,
which accepts and expects that much functional code can
be reused by follow-on developers, depends upon a
flexible application of copyright law. For decades, courts
have adapted the fair use doctrine to address the unique
issues software presents. Fair use promotes two funda-
mental but competing interests of copyright law:
assuring authors the right to their original expression,
and encouraging innovation built upon the ideas and
information conveyed by a prior work. In the software
context, courts have recognized that copyright should
provide protections for aspects of software that reflect
truly creative expression from piracy and other forms of
identical copying. But courts have balanced that with the
recognition that copyright must allow some reuse of
software’s functional aspects to enable the collaborative
development and interoperability that are critical to the
modern computer industry. Copyright holders and
follow-on developers alike have flourished under that
approach.

5

III. The balance of interests in that flexible approach
favors upholding the jury’s finding of fair use here. In
overturning that verdict, the Federal Circuit disregarded
the critical significance of the nature of the copyrighted
material, affording functional software elements the
same level of protection as creative aspects of a work of
fiction. The Federal Circuit’s opinion disregards three
controlling Ninth Circuit opinions holding that fair use is
essential to allow follow-on developers to access existing
copyrighted programs to develop compatible new soft-
ware—even software that might compete with the pro-
grams being used. The court also imposed a problem-
atically narrow standard for evaluating “transformative
use” of functional code. While Google used the software
interfaces at issue for the same purpose as in Oracle’s
Java platform—allowing a program to invoke computer
functionalities—it incorporated them into a completely
different platform that opened new possibilities for
programmers and consumers. Such follow-on innovation
promotes the purposes of copyright law, and fair-use
analysis should give it due weight.

IV. The Federal Circuit’s approach here threatens in-
novation in the software industry. Its rigid analysis
undermines the viability of modern collaborative soft-
ware development, in which a developer’s software
product is not an end point, but a launching pad for fur-
ther innovation. If companies can no longer reuse soft-
ware’s functional elements without explicit authorization
from the software’s creator, such innovative follow-on
development will be compromised. The Federal Circuit’s
decision also undermines the reuse of functional code to
achieve compatibility and interoperability, endangering
another linchpin of today’s interconnected world.

6

ARGUMENT
The nature of innovation in the computer industry has

changed dramatically over recent decades. Gone are the
days when computing products operate in isolation. It is
less common that a single company develops entirely
proprietary products. Rather, more software products
are developed through collaboration among many differ-
ent parties. And consumers now demand that products
be able to interoperate across myriad software platforms
and hardware devices. Such collaborative development
and interoperability are facilitated by an industry para-
digm that expects, and accepts, that much existing func-
tional software code may be reused by follow-on develop-
ers.

That paradigm depends in large part upon an applica-
tion of copyright law that reflects the realities of software
development today. Industry participants expect that
copyright will provide robust protection for aspects of
their software that reflect creative expression. At the
same time, the law must allow for the reuse of software’s
functional aspects to facilitate follow-on innovation. For
decades, courts have addressed those competing inter-
ests through a flexible application of the fair use doctrine.
Copyright holders and follow-on developers alike have
flourished under that approach.

After hearing the evidence, the jury concluded here
that Google’s fair-use defense was valid. The Federal
Circuit’s reversal of that verdict as a matter of law—
setting down rigid rules in the process—threatens disas-
trous consequences for innovation. It extinguishes the
necessary “breathing room” for the ecosystem of innova-
tion fair use protects. This Court should reverse the
Federal Circuit’s ruling on fair use to ensure that copy-

7

right “promote[s],” rather than impedes, “the Progress
of Science and useful Arts.” U.S. Const. art. I, § 8, cl. 8.

I. INNOVATION IN TODAY’S COMPUTER INDUSTRY

DEPENDS ON COLLABORATIVE DEVELOPMENT AND

SEAMLESS INTEROPERABILITY—BOTH OF WHICH

REQUIRE REUSE OF FUNCTIONAL CODE
Two driving forces of innovation in the modern com-

puter industry are collaborative development of prod-
ucts, and seamless interoperability of those products
across platforms and devices. Both depend on the in-
dustry’s expectation that follow-on developers can reuse
existing functional software code, like the declaring code
of APIs at issue in this case.

A. Innovation in the Modern Computer Industry
Relies on Collaborative Development

Software production “has undergone a radical trans-
formation” in recent decades. Clark D. Asay, Software’s
Copyright Anticommons, 66 Emory L.J. 265, 280 (2017).
Under the previously dominant “producer” model, a sin-
gle company created a “proprietary software offering.”
Id. at 284. Programmers “wrote software much like
authors wrote manuscripts: they would come up with an
idea and write down the program necessary to make the
idea come to fruition.” Sonia K. Katyal, The Paradox of
Source Code Secrecy, 104 Cornell L. Rev. 1183, 1199
(2019).

The proprietary model still serves an important role in
the industry. But software today typically is no longer
produced by a single author; instead, “more and more
software is collaboratively built.” Asay, Anticommons,
supra, at 279. In the modern software industry, “open
collaborative innovation projects” increasingly serve as
important “sources of innovative products, processes, and

8

services.” Carliss Baldwin & Eric von Hippel, Modeling
a Paradigm Shift: From Producer Innovation to User
and Open Collaborative Innovation, 22 Org. Sci. 1399,
1411 (2011). That collaboration takes forms that were
rare, if not unheard of, twenty years ago. For example,
commercial and non-commercial software producers now
collaborate to “bundle cooperatively-developed software
with proprietary code.” Katyal, supra, at 1207. And
firms that are otherwise competitors now organize in
networks to collectively develop products that benefit the
entire industry.

That collaboration, fueled by advances in software en-
gineering techniques, has allowed developers to treat
portions of code as “building blocks.” Asay, Anticom-
mons, supra, at 281. Those “building blocks” are both
“self-contained, meaning they can function independent-
ly,” and “ ‘modular,’ meaning that other [building blocks]
can be created and used with [preexisting blocks] without
having to completely rewrite the preexisting” code. Ibid.
These “increasingly * * * modularized design” practices
have simplified and reduced the costs of collaborative
development. Baldwin & von Hippel, supra, at 1399. A
developer can now create a new program by “simply
select[ing] a group of preexisting” code “and combin[ing]
them in a new way,” or by “add[ing] some new [building
blocks] for interacting with” previously developed ones.
Asay, Anticommons, supra, at 281. The building-block
approach has “dramatically increase[d] the pace of soft-
ware innovation.” Ibid.

New collaborative programming methods have in-
creased not only the speed, but also the type of innova-
tion. These methods have facilitated the “capacity to
produce unanticipated change through unfiltered contri-
butions from broad and varied audiences.” Jonathan

9

Zittrain, The Future of the Internet and How To Stop It
70 (Yale Univ. Press, 1st ed. 2008). Software improve-
ments can now be made not just by corporations or pro-
fessional developers, but also by amateurs or end-users
of software products who modify existing software to
better serve their needs. Such user-based innovation has
resulted in “commercially significant product and process
development and modification in many fields.” Baldwin
& von Hippel, supra, at 1400. In the cutting-edge realm
of artificial intelligence, for example, companies are de-
veloping highly sophisticated, deep-learning systems
while recognizing that third parties may have ingenious
new ideas for services that utilize such systems’ capa-
bilities.2

Under the modern “paradigm,” parties have “collab-
oratively built some of the most popular and important
software technologies in the world, including Linux, An-
droid, Apache Web Server, Firefox, * * * and many oth-
ers that power much of the Internet and computing
world.” Asay, Anticommons, supra, at 283. The open-
source industry, which is one example of this collabora-
tive paradigm, was estimated to be worth $17 billion in
2019 and is predicted to reach $33 billion by 2022.3 That
trend will only continue—especially as the world shifts to
cloud computing, where 90% of workloads use the Linux

2 See Mark Kaelin, Microsoft Cognitive Services: Leading the AI
Charge, TechRepublic (May 22, 2017), https://www.techrepublic.com
/article/build-2017-ai-will-change-everything-and-microsoft-looks-to-
lead-the-way/.
3 See CB Insights, Open-Source Software Has Changed the Way
Software Is Developed. Here’s Where The $33B Industry Is Headed
3 (2019), https://www.cbinsights.com/reports/CB-Insights_Future-
Of-Open-Source.pdf.

10

open-source operating system and other open-source
components.4 This collaborative development approach
has become the “default innovation paradigm.” Asay,
Anticommons, supra, at 283.

B. Interoperability Is a Key Component of
Technological Innovation Today

This transformation in today’s computer ecosystem
has been driven in large part by the demand for inter-
operability. Interoperability is the ability of “heterogen-
eous products and services to exchange software inter-
faces * * * and share data.” Asay, Anticommons, supra,
at 279. In the early era of software development, “pro-
grams were largely written for and confined to specific
hardware products,” so “[l]ittle to no interoperability
* * * existed.” Id. at 286. Later, however, a “greater
separation between hardware and software” developed,
Katyal, supra, at 1192, as companies began mass-
marketing products “designed to operate on any number
of machines from one or more manufacturers,” Nat’l
Comm’n on New Tech. Uses of Copyrighted Works
(CONTU), Final Report on the National Commission on
New Technological Uses of Copyrighted Works, 3 Com-
puter L.J. 53, 58 (1981). That created an increased need
for interoperability across computing platforms.

Indeed, consumers today now expect and rely on their
different products, devices, and applications to commu-
nicate and work together without any effort on their part.
Interoperability makes that possible: It is “the reason

4 See Jonathan Corbet & Greg Kroah-Hartman, Linux Found., 2017
Linux Kernel Development Report 1 (Oct. 25, 2017), https://
www.linuxfoundation.org/publications/2017/10/2017-state-of-linux-
kernel-development/.

11

[users] can read a web site regardless of what Internet
browser [they] use” or “read documents on a PC even
though someone wrote them on a Mac,” or why “mes-
sages can pass from phone to computer to tablet.” Jo-
seph Gratz & Mark A. Lemley, Platforms and Inter-
operability in Oracle v. Google, 31 Harv. J.L. & Tech.
603, 610 (2018).

Interoperability is also critical to today’s “cloud” mod-
el, in which files are stored not on local devices, but on
remote, third-party servers that can be accessed from
different devices and locations. A user’s files—whether
images, documents, spreadsheets, or music—now pass
through multiple applications and servers operating in
multiple software environments, all in service of immedi-
ate availability on any device. Interoperability helps
achieve the promise of the cloud: the availability of user
data no matter what platform is accessing it. Without
such interoperability, consumers would be “compelled to
retain one platform * * * because their data is trapped
there.” Zittrain, supra, at 177.

Today’s growing “Internet of Things” is exponentially
increasing the demands of interoperability across “a wide
array of devices beyond computers.” Gratz & Lemley,
supra, at 612. Software “has made its way into more and
more everyday goods, including cars, household appli-
ances, televisions, watches, treadmills, phones, security
systems, cooling and heating systems, and more.” Asay,
Anticommons, supra, at 287. Those “smart” products
often use Internet connectivity to offer advanced fea-
tures, and require different computing devices and ap-
plications to work together to provide users with an
integrated experience.

For example, in an interconnected home system, a
consumer’s phone will automatically instruct the ther-

12

mostat5 to turn on and the oven to heat up6 when she is
thirty minutes away from home. Meanwhile, the home
alarm system—which sends the homeowner a phone alert
whenever it is tripped7—will automatically disable the
moment she reaches the door. Each device must com-
municate with and share standards used by other third-
party products to ensure compatibility. If, as in com-
puting’s early days, every device had its own proprietary
interface, one could never add a product outside of a
particular vendor’s offerings to the system. But in
today’s interoperable ecosystem, consumers generally
can choose smart products based on their merits and
functionality, without worrying about compatibility with
their existing system.

C. Reuse of Functional Software Code, Including
APIs, Is Critical To Promoting Collaborative
Development and Interoperability

The collaborative development and interoperability
that drives innovation in today’s computer industry is
made possible in no small part by the reuse of functional
software code. Software has a dual character: “[A]l-
though code can reflect expressive choices,” it can also be
“primarily functional and constrained * * * by the specific
purposes it is designed to achieve.” Simon J. Frankel &
Ethan Forrest, What Remains of Fair Use for Software
After Oracle v. Google?, 8 N.Y.U. J. Intell. Prop. & Ent.

5 See, e.g., Google, Compare Nest Thermostats, https://store.google.
com/us/magazine/compare_thermostats.
6 See, e.g., GE Appliances, Connected Ranges & Wall Ovens,
https://www.geappliances.com/ge/connected-appliances/ranges-ovens
-cooking.htm.
7 See, e.g., Ring, Home Security System, https://shop.ring.com/
pages/security-system.

13

L. 310, 311 (2019). Functional object code, for instance,
“tell[s] [a computer] to perform a given function—by
feeding it a set of instructions regarding which circuits to
turn on, and which to turn off, and when.” James Gibson,
Once and Future Copyright, 81 Notre Dame L. Rev. 167,
174 (2005). Such code forms the basic “plumbing” of
software applications.

APIs, which are interfaces that allow applications to
communicate with one another, are one type of functional
code. In particular, an API’s “declaring code com-
mand[s] the computer to execute the associated imple-
menting code, which gives the computer the step-by-step
instructions for carrying out the declared func-
tion.” Pet. App. 126a. In other words, the declaring code
simply identifies a function to be performed, while the
implementing code actually tells the computer how to
perform that function.

Among the code that Google used in this case, for
example, was declaring code that facilitates the operation
of opening a file.8 Programs that need to open files are as
numerous as they are varied, including music players,
image editors, word processors, email clients, and video
games. Engineers working on these diverse applications
can reuse functional API declaring code to create an
interoperable system in which a file created in a word
processor can be sent as an attachment in an email client
and opened on a mobile phone. And if, for example, the
“open file” method is extended to work with a new kind of
device, none of the user-level applications would have to

8 See Pet. App. 126a n.2 (listing “java.io,” a package containing
classes that read files).

14

be updated because the declaring code would remain the
same.

The ability of developers to repurpose such function-
ality without obtaining explicit authorization from any
specific software creator frees software developers to
focus on adding new, innovative features, rather than
constantly rewriting new declarations for already-known
functions. And reusing declaring code not only conserves
engineering resources, but also enables engineers to have
a lingua franca for functional operations more generally,
which facilitates collaboration among developers.

The reuse of functional elements of APIs has long pro-
moted competition, innovation, and consumer choice. In
the late 1980s, for example, IBM dominated the market
for PC-compatible computers “through its control of the
IBM PC BIOS,” which “provide[d] an API for software,
including the operating system, to communicate with the
computer’s processor.” Gratz & Lemley, supra, at 610.
To create PC-compatible computers, other companies
“reimplemented” the functional aspects of the IBM
API—including “a hierarchy of command” and a soft-
ware “call” that “would write a particular letter to the
screen.” Id. at 611. That “led to a proliferation of IBM
PC-compatible ‘clone’ computers from Compaq, Dell, and
others.” Ibid.

In another example from the 1990s, an open-source
developer created a program called WINE, which al-
lowed developers to enable Windows applications to run
on computers that used the Linux open-source system,
without explicit authorization from Microsoft. Gratz &
Lemley, supra, at 611. To create WINE, the developer
“use[d] the same hierarchy of function names” of various
Windows APIs. Id. at 612. Years later, Microsoft
created “the inverse of WINE,” reimplementing the

15

structure of certain Linux APIs to create the Windows
Subsystem for Linux, a program that allowed Linux
programs to run on Windows. Ibid. The Windows-Linux
experience shows that reuse of functional code is a “two-
way street” that benefits both the original creator and
the follow-on developer—and ultimately the consumer.
See ibid.

II. COURTS HAVE LONG APPLIED A FLEXIBLE FAIR USE

DOCTRINE TO ADDRESS SOFTWARE’S UNIQUE

NATURE
“From its beginning, the law of copyright has devel-

oped in response to significant changes in technology.”
Sony Corp. of Am. v. Universal City Studios, Inc., 464
U.S. 417, 430 (1984). Software reflected a leap forward in
technology. But it also presented new issues for copy-
right law not posed by traditional literary works. Unlike
a novel, modern software is built collaboratively. See pp.
7-10, supra. And it is a “hybrid” of both extremely cre-
ative and highly functional elements. Comput. Assocs.
Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).
For decades, courts have adapted copyright law to ad-
dress that reality: They have afforded strong protections
to creative aspects of software to prevent wholesale
piracy, while allowing broad reuse of functional software
code under a robust fair use doctrine for developing new
technologies. The computer industry has flourished
under that approach, benefiting copyright holders and
third parties alike. The Federal Circuit’s decision upends
that approach and threatens the technological innovation
it fostered.

16

A. Software’s Collaborative and Functional Ele-
ments Distinguish It from Traditional Creative
Works Subject to Copyright Protection

Although “[m]ost of the law of copyright * * * devel-
oped in the context of literary works such as novels,
plays, and films,” “[t]he problem presented by computer
programs is fundamentally different.” Lotus Dev. Corp.
v. Borland Int’l, Inc., 49 F.3d 807, 819 (1st Cir. 1995)
(Boudin, J., concurring). Software is made differently
from, and serves different purposes than, traditional
literary works.

Unlike a novel, software today is often built collab-
oratively, not by an individual, siloed author. See pp. 7-
10, supra. Appreciation of that collaborative paradigm is
critical to fair-use analysis. Under the traditional single-
producer model, it was once assumed that strong
intellectual-property protection for software was “the
only feasible way to cover the costs of innovation.” Bald-
win & von Hippel, supra, at 1411. But today’s collabor-
ative ecosystem shows the traditional calculus “that
software creators will not incur the costs necessary to
develop software without exclusive rights in that soft-
ware” no longer holds. Asay, Anticommons, supra, at
271. Instead, “any given piece of software may include
dozens, hundreds, or even thousands of copyright hold-
ers.” Id. at 279. With new revenue streams that do not
depend on a proprietary model, companies are incen-
tivized to innovate even if they do not capture monopoly
profits. See Baldwin & von Hippel, supra, at 1399-1400.

Much of this collaborative process is facilitated by
copyright-based licensing agreements that have devel-
oped over time. Asay, Anticommons, supra, at 279.
Nonetheless, collaborative innovation frequently occurs
without the express permission of the copyright holder—

17

yet within the boundaries of copyright law. As explained
below (at 21-22), the computer industry has adapted in
particular to the breathing room that courts have con-
strued the fair use doctrine to provide. See Gratz &
Lemley, supra, at 610. An impractically rigid approach
to copyright could “make * * * collaboratively built
resource[s] more difficult” to produce, stymieing the
software-development models that are now ascendant.
Asay, Anticommons, supra, at 268.

Software differs from traditional literary works in
other critical respects. Unlike a novel, software is not
purely a work of creative expression—it is a “hybrid” of
creative and functional elements. Altai, 982 F.2d at 712.
A programmer’s “program structure and design may be
highly creative and idiosyncratic.” Sega Enters. Ltd. v.
Accolade, Inc., 977 F.2d 1510, 1524 (9th Cir. 1992), as
amended (Jan. 6, 1993). But other aspects of software
are utilitarian and serve functional purposes, such as “fa-
cilitat[ing] communication between the user and the com-
puter.” Apple Comput., Inc. v. Microsoft Corp., 35 F.3d
1435, 1444 (9th Cir. 1994). Software thus “ ‘hover[s] * * *
closely to the elusive boundary’ ” between idea and ex-
pression that marks copyright’s bounds. Lexmark Int’l,
Inc. v. Static Control Components, Inc., 387 F.3d 522,
535 (6th Cir. 2004). The software interfaces at issue in
this case are one example. While they reflect certain
minimal creativity, these interfaces are largely func-
tional, allowing a programmer to invoke a function on a
device. See Pet.App. 179a-180a; pp. 12-15, supra. As
explained above (at 7-15), today’s industry expects that
follow-on developers can reuse such code for the purpose
of creating compatible products.

Software thus presents unique practical challenges for
copyright law. Compared to traditional works, there are

18

likely to be both more copyright holders in any given
piece of software, and a greater practical need to reuse
aspects of software to foster follow-on innovation. Those
“changes” from the literary context require a reasoned
“response” from the courts when applying fair use.
Sony, 464 U.S. at 430.

B. A Flexible Fair Use Doctrine Is Essential To
Promoting Collaboration and Interoperability
in Modern Software Development—As Courts
Have Long Recognized

Copyright promotes two fundamental but competing
interests: On the one hand, it seeks to “assure[] authors
the right to their original expression”; on the other, it
“encourages others to build freely upon the ideas and
information conveyed by a work.” Feist Publ’ns, Inc. v.
Rural Tel. Serv. Co., 499 U.S. 340, 349-350 (1991). To
that end, copyright provides broad protections for an
author’s “creative expression,” which “falls within the
core” of the work copyright law is intended to foster.
Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 586
(1994). But an array of doctrines also makes clear that
copyright law allows great latitude for the reuse of facts,
ideas, and other functional elements underlying an
author’s work. Those include the “idea/expression” di-
chotomy, Feist, 499 U.S. at 350, scènes à faire, Swirsky v.
Carey, 376 F.3d 841, 850 (9th Cir. 2004), and most
relevant here, fair use, Campbell, 510 U.S. at 576; see
Stewart v. Abend, 495 U.S. 207, 237 (1990) (“[F]air use is
more likely to be found in factual works than in fictional
works.”).

Fair use is a “flexible” and adaptable doctrine. Perfect
10, Inc. v. Amazon.com, Inc., 508 F.3d 1146, 1163 (9th
Cir. 2007). That extends to accounting for the techno-
logical realities the copyrighted work presents. See

19

Sony, 464 U.S. at 430. For decades, courts have tailored
fair-use analysis to account for software’s hybrid na-
ture—affording protection against piracy for the creative
aspects of software, while offering little to no protection
to its utilitarian aspects. Courts have been particularly
willing to find fair use where functional aspects of soft-
ware are used to achieve interoperability or compatibility
with other software and devices.

In Sega, for example, the Ninth Circuit upheld Acco-
lade’s copying of object code to develop video games that
could be played on Sega’s Genesis console. 977 F.2d at
1514-1515, 1525. The code was “essentially utilitarian”—
covering the “subroutines” that allowed “the user to in-
teract with the video game” and “the game cartridge to
interact with the console”—and thus warranted only
“ ‘thin’ ” copyright protection. Id. at 1524-1525. Accolade
copied it, moreover, not to appropriate expressive con-
tent, but to access “functional” elements needed for
“compatibility.” Id. at 1522. And even though Accolade
created “a competing product,” that commercial purpose
did not “preclude[] a finding of fair use” because it was
“rebutted by” the resulting “public benefit”: Accolade’s
use led to an “increase in the number of independently
designed video game programs offered for use with the
Genesis console.” Id. at 1522-1523.

The Ninth Circuit applied similar reasoning in Sony
Computer Entertainment, Inc. v. Connectix Corp., 203
F.3d 596 (9th Cir. 2000). Connectix had copied Sony’s
“BIOS”—software that controlled the basic functions of
Sony’s PlayStation game console. Id. at 603. Connectix
did so in connection with creating new software that
enabled users to play video games that had been devel-
oped for Sony’s console on PCs. Id. at 601. The court
noted that Sony’s BIOS “lies at a distance from the core

20

[of copyright protection] because it contains unprotected
[functional] aspects.” Id. at 603. The BIOS code thus
was entitled to a “ ‘lower degree of protection than more
traditional literary works.’ ” Ibid. The court also found
that Connectix’s program was a transformative use of the
BIOS, because it “afford[ed] opportunities for game play
in new environments.” Id. at 606. The court held that
Connectix’s copying was fair use, despite the fact that it
was done to create a product that competed with—and
did not otherwise expand the capabilities of or market
for—Sony’s own product. Id. at 608.

Similar examples abound. Time and again, courts
have held that copying software to access its functional
elements—to develop follow-on, compatible or interoper-
able technologies—is fair use that furthers copyright
law’s purposes. See, e.g., Lewis Galoob Toys, Inc. v. Nin-
tendo of Am., Inc., 964 F.2d 965, 971 (9th Cir. 1992) (fair
use for consumers to use a product that was compatible
with Nintendo’s games); Atari Games Corp. v. Nintendo
of Am. Inc., 975 F.2d 832, 843-844 (Fed. Cir. 1992)
(reverse-engineering a game console’s software to make
compatible games was fair use).

Until the Federal Circuit’s decision below, the broad
application of fair use in such circumstances was con-
sidered “settled law.” Gratz & Lemley, supra, at 610.
That “approach to software—grounded in the primarily
functional, rather than expressive, nature of most
programming—has * * * permitted developers to build
upon their predecessors’ advances.” Frankel & Forrest,
supra, at 311. The computer industry has structured its
conduct in reliance on the breathing room for reuse of
functional code that such decisions provided.

21

C. Experience Has Shown That a Flexible Fair
Use Doctrine Fosters Innovation in Computer
Software

Experience has shown that the pragmatic approach
courts have taken to fair use of software code has fos-
tered the “growth in creative expression * * * that the
Copyright Act was intended to promote.” Sega, 977 F.2d
at 1523. Indeed, some have urged that copyright’s “solic-
itousness to copying for the purpose of interoperability is
the reason we have a vibrant and competitive [computer]
industry” today. Gratz & Lemley, supra, at 610.

The video-game industry, for instance, has flourished
since the seminal decisions finding fair use in the 1990s.
Previously, game development was tied to the maker of
the game console and its licensees. Allowing third par-
ties to develop compatible games by reverse-engineering
game-console software “facilitat[ed] the entry” of “new
competitor[s].” Sega, 977 F.2d at 1523. Since then, the
video-game industry has grown to generate over $43
billion in annual U.S. revenues.9

Nor did the video-game industry’s growth come at the
expense of the original copyright holders. In Connectix,
Sony argued that it would lose sales and profits if Con-
nectix were permitted to create a competing platform
that could run games created for Sony’s PlayStation. 203
F.3d at 607. But the latest PlayStation has sold more
than 91.6 million units.10 In one recent quarter, Sony’s

9 Entm’t Software Ass’n, U.S. Video Game Sales Reach Record-
Breaking $43.4 Billion in 2018, (Jan. 22, 2019), https://www.theesa.
com/press-releases/u-s-video-game-sales-reach-record-breaking-43-
4-billion-in-2018/.
10 Erik Kain, Putting the PlayStation 4’s 91.6 Million Sales into
Context, Forbes (Jan. 11, 2019), https://www.forbes.com/sites/erik

22

PlayStation division brought in $670 million in profit,
outperforming “other parts of [Sony’s] business.”11

Thus, a central premise of the Federal Circuit’s
approach—that a fair-use finding here would undermine
incentives to produce computer programs—is belied by
history. A flexible application of fair use has not harmed
the ability of software producers to enter into productive
copyright-licensing arrangements and otherwise recoup
their investments in innovation. Copyright holders have
continued to thrive because allowing reasonable fair use
of functional code enables innovation that creates new
opportunities for the whole market to grow.

III. THE FEDERAL CIRCUIT’S DECISION DEFIES SETTLED

FAIR-USE PRINCIPLES AND MISAPPREHENDS THE

COLLABORATIVE NATURE OF THE COMPUTER

INDUSTRY
After hearing the evidence in this case, the jury

reasonably concluded that Google’s reuse of functional
Java code was fair use. Pet.App. 9a. In reversing that
finding as a matter of law, the Federal Circuit’s decision
upends the computer industry’s settled expectations
about fair use of software code. Instead of treating fair
use as a “flexible” doctrine that can adapt to address
software’s dual nature, Perfect 10, 508 F.3d at 1163, the
Federal Circuit took a rigid view that treats even the
functional aspects of software as if they were entitled to
the same protection as creative literary works. It also

kain/2019/01/11/putting-the-playstation-4s-91-6-million-sales-into-
context/#543b0c856c50.
11 Jamie Rigg, PlayStation Keeps Making Money, Sony Phones
Keep Losing It, Engadget (Feb. 1, 2019), https://www.engadget.
com/2019/02/01/sony-playstation-4-profit/.

23

took a straitjacketed view of the “transformative use”
factor of fair use, failing to acknowledge that Google’s
reuse of the Java software interfaces in its Android oper-
ating system has made a world of new features possible
for Java programmers and consumers alike.

The purpose of copyright law is to “promote” “the
Progress of Science and useful Arts.” U.S. Const. art. I,
§ 8, cl. 8. The Federal Circuit’s cramped fair-use analysis
defies that purpose, threatening to disrupt collaborative
software development and restrict creativity in the most
vital and inventive sector of our economy. Reversal is
warranted.

A. The Federal Circuit’s Disregard of the Func-
tional Nature of Oracle’s Declaring Code and
SSOs in the Fair-Use Analysis Defies Precedent
and Industry Reality

The Copyright Act requires consideration of the
“nature of the copyrighted work” in any fair-use analysis.
17 U.S.C. § 107(2). That factor “calls for recognition that
some works are closer to the core of intended copyright
protection than others, with the consequence that fair use
is more difficult to establish when the former works are
copied.” Campbell, 510 U.S. at 586. Conversely, “[w]orks
that are merely compilations of fact” or of “functional
concepts” receive “ ‘thin’ ” protection, so fair use is easier
to establish. Sega, 977 F.2d at 1524 (quoting Feist, 499
U.S. at 349). Given that software may contain both high-
ly creative elements and essentially functional elements,
courts have long recognized that a focus on “the nature of
the copyrighted work” taken is “particularly significant”
in software cases. Micro Star v. Formgen Inc., 154 F.3d
1107, 1113 (9th Cir. 1998).

For example, in Connectix, the copied work consisted
of software code that controlled the basic functions of the

24

PlayStation game console. 203 F.3d at 603. Because of
its functional nature, the court explained, the code “lies at
a distance from the core” of copyright protection, ibid.—
a factor that “strongly favor[ed]” finding fair use, id. at
605. Similarly, in Sega, the Ninth Circuit emphasized
that the functional nature of the object code that was
copied was “important to the resolution” of the fair-use
question. 977 F.2d at 1522.

In the decision below, the Federal Circuit took the
opposite view. It declared that the nature of the copy-
righted software at issue is “ ‘not * * * terribly significant
in the overall fair use balancing.’ ” Pet.App. 42a. The
court thus took no real account of the fact that, while the
Java declaring code and the SSOs meet the minimum
creativity requirements for copyrightability, they are
essentially functional—they are the means by which a
programmer triggers a function on a device when writing
software in the Java language. See, e.g., Pet.App. 126a,
226a, 228a. Under longstanding software copyright prin-
ciples, the functional nature of the code should have been
an analytical pivot point favoring fair use. But the
Federal Circuit discarded its significance altogether, and
instead treated the relevant software code like a highly
creative work within the core of copyright’s protection.

In holding that the nature of the copyrighted work is
not significant, the Federal Circuit cited only cases in-
volving traditional creative works, such as fictional books,
artistic dolls and images, and television programming.
Pet.App. 42a-43a (citing Dr. Seuss Enters., L.P. v. Pen-
guin Books USA, Inc., 109 F.3d 1394 (9th Cir. 1997) (Dr.
Seuss’s The Cat in the Hat); Mattel Inc. v. Walking
Mountain Prods., 353 F.3d 792 (9th Cir. 2003) (Barbie
doll); Fox News Network, LLC v. TVEyes, Inc., 883 F.3d
169 (2d Cir. 2018) (news broadcasts), cert. denied, 139 S.

25

Ct. 595 (2018)). It is unsurprising that courts “give little
attention to the nature-of-the-work factor in run-of-the-
mill fair use analyses,” Pamela Samuelson & Clark D.
Asay, Saving Software’s Fair Use Future, 31 Harv. J.L.
& Tech. 535, 560 (2018), where the copied works contain
the “ ‘creativity, imagination and originality’ ” at the heart
of copyright protection, Pet.App. 42a (quoting Dr. Seuss,
109 F.3d at 1402).

But software requires a different approach. As this
Court has explained, copyright law must “respon[d] to
significant changes in technology.” Sony, 464 U.S. at 430.
For decades, courts understood that the nature-of-the-
work “factor carries greater weight” in this context
“because of software’s functional nature.” Samuelson &
Asay, supra, at 560. The Federal Circuit summarily dis-
missed the Ninth Circuit’s decisions in Connectix and
Sega as involving “materially” different “facts,” Pet.App.
54a, without addressing their broader reasoning that
functional code is entitled to less protection—particularly
where it is reused for the purpose of achieving inter-
operability or compatibility with the copyrighted product,
see pp. 18-20, supra.

The Federal Circuit justified its contrary conclusion
on the grounds that “allowing this one factor”—the
functional nature of the code—“to dictate a conclusion of
fair use in all cases involving copying of software” would
“negate” Congress’s declaration “that software is copy-
rightable.” Pet.App. 43a. But recognizing that the func-
tional code here is entitled to thinner protection would
not dictate the outcome in “all cases” involving software.
Different aspects of software lie on a spectrum, with
more creative elements lying closer to “the core of in-
tended copyright protection” than the code here. Camp-
bell, 510 U.S. at 586. Courts are more than capable of

26

drawing that distinction and tailoring the degree of fair-
use protection to the nature of the code in the cases
before them. See, e.g., Wall Data Inc. v. L.A. Cty.
Sheriff ’s Dep’t, 447 F.3d 769, 780 (9th Cir. 2006)
(concluding that the “nature of the copyrighted work
weigh[ed] against a finding of fair use” for computer
terminal emulation software); Sega, 977 F.2d at 1525
(distinguishing between functional and expressive as-
pects of video-game code). The Federal Circuit’s failure
to do so here—and its indication that such distinctions
are “not * * * significant” in future cases—upsets the
computer industry’s long-settled expectations, with po-
tentially disastrous consequences for innovation. See pp.
30-32, infra.12

B. The Federal Circuit Fundamentally Misunder-
stood What Constitutes a “Transformative
Use” of Software

Another critical factor in the fair-use analysis concerns
“whether and to what extent the new work is ‘trans-
formative.’ ” Campbell, 510 U.S. at 579. The “central
purpose of [that] investigation” is to determine “whether
the new work merely ‘supersedes the objects’ of the
original creation, or instead adds something new, with a
further purpose or different character, altering the first
with new expression, meaning, or message.” Ibid. (cita-
tions and brackets omitted). The latter such works “lie at

12 The Federal Circuit was required to apply Ninth Circuit copyright
law to this case. See Atari Games Corp. v. Nintendo of Am., Inc.,
897 F.2d 1572, 1575 (Fed. Cir. 1990) (recognizing that Federal
Circuit must apply regional circuit law on subjects not within its
exclusive jurisdiction). But the Federal Circuit instead purported to
create national law to “guide resolution of [the fair-use] question in
all future cases” involving software. Pet. App. 18a.

27

the heart of the fair use doctrine’s guarantee of breathing
space within the confines of copyright, and the more
transformative the new work, the less will be the sig-
nificance of other factors * * * that may weigh against a
finding of fair use.” Ibid. (citation omitted).

The Federal Circuit concluded that Google’s use of the
Java software-interface code was not transformative
because “the purpose of the API packages in Android is
the same as the purpose of the packages in the Java
platform”; “Google made no alteration to the expressive
content or message of the copyrighted material”; and
“smartphones were not a new context.” Pet.App. 31a-
32a. That analysis misapprehends the purposes of copy-
right law and the nature of the code at issue—with
critical consequences for future software cases.

1. The Federal Circuit took a rigid view of the “pur-
pose” of Google’s reuse that ignores the realities of the
computer industry, which relies on reuse of functional
code for innovation. The court found that Google’s use
was not transformative because the Java declaring code
and SSOs “ ‘serve the same function in both’ ” Java and
Google’s Android. Pet.App. 33a. But while that code
served the same broad “purpose” in both works—calling
on a device to perform a function—the same could be said
of any software code that is reused. Unlike literary
works, software code serves not to enlighten or entertain,
but “to carry out specific, preassigned computing func-
tions.” Clark D. Asay, Transformative Use in Software,
70 Stan. L. Rev. Online 9, 14 (2017). As a consequence,
“reuses of software will typically implicate the very same
functions.” Ibid. The Federal Circuit’s analysis thus
leads to an absurd result: It makes it more difficult to
establish fair use for reusing functional software than for
repurposing aspects of a creative fictional work. See id.

28

at 10. That does not merely turn copyright law on its
head. It “imperil[s]” the “productive balance that fair
use helps strike between copyright holders and follow-on
software innovators.” Ibid.

2. The Federal Circuit also missed the point in focus-
ing on the fact that Google did not alter the “expressive
content or message of the copyrighted material” itself,
Pet.App. 31a-32a—as opposed to acknowledging what
Google did with that code in its Android operating sys-
tem.

The transformative-use factor properly asks “whether
the new work * * * adds something new, with a further
purpose.” Campbell, 510 U.S. at 579 (emphasis added).
Here, the jury reasonably could have found that Google’s
reuse of the Java software interfaces was transformative
because Google utilized the Java code in the context of a
totally different software program, Android, that imple-
mented the functions that the Java code invokes using
totally different code. See Pet.App. 218a-219a. And un-
like the Java platform, which “was developed to run on
desktop computers and enterprise servers,” Pet.App.
216a-217a, Android “was designed specifically for mobile
devices,” Pet.App. 196a, and thus “ha[d] to accommo-
date” factors like “limited memory and battery life, that
did not apply to [the Java platform],” Pet. 25.

The Federal Circuit summarily dismissed the notion
that Google’s use of the Java software interfaces in the
Android mobile-phone platform was transformative sim-
ply because Java “was already being used in smart-
phones.” Pet.App. 35a. But that broad statement has
little bearing on whether Google’s use was, in reality, a
transformative use of the code. Whether or not “other
smartphone manufacturers” had already licensed Java
for use in mobile phones, ibid., the fact is that Android

29

“completely transformed the mobile computing industry
and powered innovation in the smartphone market,”
Asay, Anticommons, supra, at 315.13 Indeed, without
new platforms like Android, a single mobile operating
system—Apple’s iOS—likely would have dominated the
smartphone market. Cf. Pet.App. 219a (“Android-based
mobile devices * * * now comprise a large share of the
United States market.”).

Ultimately, Google was “not seeking to appropriate
the advances” in the Java software interfaces, but “to
give [Java programmers] an option to exploit their own
prior investment in learning” the Java language. Lotus,
49 F.3d at 821 (Boudin, J., concurring). And just as
WINE had enabled Windows applications to run in a
Linux environment, see pp. 14-15, supra, Android also
opened up new possibilities to Java programmers, fos-
tering the development of additional, compatible pro-
grams. Because Google “facilitate[d] greater compatibil-
ity and collaboration” among Java programmers “outside
of strictly Sun/Oracle products,” its use “represents a
different purpose than that of the original creation, and
arguably one with greater societal potential.” Asay,
Anticommons, supra, at 314-315. It cannot be that
Google’s use was not transformative as a matter of law.

3. The Federal Circuit’s emphasis on Google not
having “alter[ed] * * * the expressive content or message
of the copyrighted material” itself, Pet.App. 31a-32a, is
misplaced for another reason. The expressive content in,
for example, the Java declaring code, lies in the names

13 While Oracle has a copyright in Java, the law “does not confer”
copyright holders in software with “control over the market for
devices” that run that software. Connectix, 203 F.3d at 607.

30

chosen to invoke various functions. See Pet.App. 150a.
The Federal Circuit could identify no way in which
Google altering the names of functions in the declaring
code would serve copyright law’s purpose of “promot[ing]
the Progress of Science and useful Arts.” U.S. Const.
art. I, § 8, cl. 8. Having more names for the same soft-
ware functions does not enrich society. Quite the
opposite—that is akin to having “every typewriter maker
* * * scramble the [QWERTY] keyboard.” Pet.App.
104a. In short, the Federal Circuit’s analysis represents
the type of thinking this Court has warned against: It
seeks to “simplif [y]” the fair-use analysis with “bright-
line rules,” rather than performing “case-by-case analy-
sis” and application “in light of the purposes of copy-
right.” Campbell, 510 U.S. at 577-578. For that reason,
too, reversal is warranted.

IV. THE FEDERAL CIRCUIT’S RIGID APPROACH TO FAIR

USE THREATENS THE VIABILITY OF THE INTER-
CONNECTED SOFTWARE ECOSYSTEM

If allowed to stand, the Federal Circuit’s decision
would have ramifications far beyond the dispute between
Oracle and Google over the Java code in this case. While
fair use is supposed to involve a “case-by-case analysis,”
Campbell, 510 U.S. at 577-578, the Federal Circuit made
clear that it intended the analytical framework it adopted
to “guide resolution of [the fair-use] question in all future
cases” involving software, Pet.App. 18a. The Federal
Circuit’s failure to take a view of fair use that accounts
for the real-world uses of functional software code thus
threatens profoundly negative consequences for innova-
tion in the computer industry as a whole.

The Federal Circuit’s decision threatens the model of
open collaboration that is critical to innovation in today’s
computer industry. See pp. 7-15, supra. The existing

31

“[c]ommunity of practice,” which “refers to the social
learning that occurs when individuals who have a com-
mon interest in some topic or field collaborate over an
extended period of time to share knowledge and experi-
ence,” has been integral to “develop[ing] solutions[] and
build[ing] prototypes” in technology. Charles C. Snow et
al., Organizing Continuous Product Development and
Commercialization: The Collaborative Community of
Firms Model, 28 J. Prod. Innovation Mgmt. 3, 8 (2010).
But if companies and individuals can no longer assume
that reuse of functional elements of an original software
product for such purposes will be protected as fair use,
that threatens to impede such follow-on, collaborative
innovation at the most basic level.

The Federal Circuit’s decision also threatens another
pillar of today’s computer ecosystem—seamless interop-
erability and compatibility across software platforms and
hardware devices made possible through the reuse of
common functional code. See Gratz & Lemley, supra, at
609-613; pp. 10-15, supra. Under prior law like Sega and
Connectix, companies could take comfort that reusing
such code for the purpose of achieving interoperability or
compatibility would be fair use. But the Federal Circuit’s
decision upends those assumptions, creating uncertainty
and disincentives to innovation.

Ultimately, the Federal Circuit’s decision means less
collaboration, less interoperability, and less innovation
for consumers—the opposite of the progress copyright
law is intended to foster. By contrast, the jury’s finding
of fair use has no detrimental effect on the ability of soft-
ware producers to recoup their investment in software
creation. Technological changes have reduced the costs
of innovation, and it is no longer the case that producers
always require decades of exclusive rights to profit from

32

their software creations. See pp. 7-10, supra. In addi-
tion, industry experience in the wake of decisions like
Sega and Connectix demonstrates that robust application
of fair use tends to expand the overall market for the
technology at issue, to the benefit of the original copy-
right holders. See pp. 21-22, supra.

This Court should restore the flexible approach to fair
use that is essential to striking the correct balance be-
tween copyright protection and follow-on innovation.

CONCLUSION
The judgment of the court of appeals should be

reversed.

LISA W. BOHL
MOLOLAMKEN LLP
300 N. LaSalle St.
Chicago, IL 60654
(312) 450-6700

LEONID GRINBERG
MOLOLAMKEN LLP
430 Park Ave.
New York, NY 10022
(212) 607-8160

Respectfully submitted.

JEFFREY A. LAMKEN

Counsel of Record
MICHAEL G. PATTILLO, JR.
MOLOLAMKEN LLP
The Watergate, Suite 660
600 New Hampshire Ave., NW
Washington, D.C. 20037
(202) 556-2000
jlamken@mololamken.com

Counsel for Amicus Curiae

JANUARY 2020

