
No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,

Petitioner,

v.

ORACLE AMERICA, INC.,

Respondent.

On Writ of Certiorari to the

United States Court of Appeals

for the Federal Circuit

AMICUS CURIAE BRIEF OF DEVELOPERS

ALLIANCE IN SUPPORT OF PETITIONER

BRUCE GUSTAFSON

DEVELOPERS ALLIANCE

1201 Wilson Blvd.

25th Floor

Arlington, VA 22209

(202) 735-7333

bruce@developersalliance.org

JAMES H. HULME

Counsel of Record

NADIA A. PATEL

ARENT FOX LLP

1717 K Street, NW

Washington, DC 20006

(202) 857-6000

james.hulme@arentfox.com

TABLE OF CONTENTS

Page

INTEREST OF AMICUS CURIAE 1
SUMMARY OF ARGUMENT 2
ARGUMENT .. 3
I. Copyright in Software Must be Viewed with the

Nature of Software as Context. 9
II. Consistent With the Goals of Copyright Law,

Software Interfaces Simplify the Creation of
Software and Promote Innovation. 15
A. Software Interfaces Enable Parallel

Innovation in Multiple Layers of
Hardware/Software Systems and Accelerate
Innovation by Enabling Multiple Developers
to Collaborate Across Large Software
Projects. ... 16

B. Software Interfaces Promote Competition
and Increase Innovation by Preventing Lock-
In Between Otherwise Independent Layers
in Hardware/Software Systems. 18

III. Restricted Rights in API Declarations and
Libraries are Inconsistent With Copyright Law
and the Nature of Software. 21
A. Restrictions on API Declarations Would

Frustrate the Purpose of Copyright Law,
Because Free and Open APIs Promote
Innovation. .. 22

ii

B. Copyright of API Declarations is
Inconsistent With the Letter of Copyright
Law, Because API Declarations are
Functional and Not Creative. 25

C. Absolute Restrictions on API Declarations
and Libraries are Inconsistent with
Established Exceptions to Copyright Under
the Law. ... 27

CONCLUSION ... 31

iii

TABLE OF AUTHORITIES

Page(s)
Cases

Andy Warhol Foundation for the Visual
Arts, Inc. v. Goldsmith,
382 F. Supp. 3d 312 (S.D.N.Y. 2019) 29

Authors Guild v. Google, Inc.,
804 F.3d 202 (2d Cir. 2015) 30

Baker v. Selden,
101 U.S. 99 (1880) .. 3

Blanch v. Koons,
467 F.3d 244 (2d Cir. 2006) 29

Campbell v. Acuff-Rose Music, Inc.,
510 U.S. 569 (1994) .. 27

Rogers v. Koons,
960 F.2d 301 (2d Cir. 1992) 29

Swatch Group Management Services
Ltd. v. Bloomberg L.P.,
756 F.3d 73 (2d Cir. 2014) 29

Zalewski v. Cicero Builder Dev., Inc,
754 F.3d 95 (2d Cir. 2014) 25

Statutes and Constitutional Provisions

17 U.S.C. § 102(a) ... 21, 25

iv

17 U.S.C. § 102(b) ... 21, 27

17 U.S.C. § 107 ... 27, 28, 29

17 U.S.C. § 1201(f)(1) ... 21

17 U.S.C. § 1201(f)(3) ... 28

U.S. Const. art 1, § 8, cl. 8 21

Other Authorities

Developers Alliance & NDP Analytics,
Quantifying Risks to
Interoperability in the Software
Industry (2017),
https://www.developersalliance.org/i
nteroperability-report-december-
2017 .. 2, 16

Domain name speculation, Wikipedia,
https://en.wikipedia.org/w/index.ph
p?title=Domain_name_speculation
&oldid=928471617 ... 25

Jeffrey Desjardins, Visual Capitalist,
How Many Millions of Lines of Code
Does It Take? (2017),
https://www.visualcapitalist.com/mi
llions-lines-of-code/ .. 15

Software.org, The Growing $1 Trillion
Economic Impact of Software
(2017),
https://software.org/reports/2017-
us-software-impact/ ... 2

v

U.S. Copyright Office, Circular 33,
Works Not Protected by Copyright
(2017),
https://www.copyright.gov/circs/circ
33.pdf .. 27

U.S. Copyright Office, Circular 41,
Copyright Registration of
Architectural Works (2019),
https://www.copyright.gov/circs/circ
41.pdf ... 6

William F. Patry, Patry on Fair Use
(2015) .. 30

INTEREST OF AMICUS CURIAE

The Developers Alliance is a non-profit
corporation that advocates for software developers.1
Our corporate mission is to “[a]dvocate on behalf of
developers and the companies that depend on them,
support the industry’s continued growth, and promote
innovation.”2

Alliance members include industry leaders in
consumer, enterprise, industrial, and emerging
software, and a global network of more than 75,000
developers.3

Amici have no direct financial interest in the
outcome of this case but have a strong interest in
seeing that the law continues to support innovation in
the software industry. Due to the importance of the
issues presented to the developer community, the
Developers Alliance has been following this litigation
closely. The Developers Alliance previously joined two
amicus briefs in this matter before the Federal Circuit

1 No counsel for any party authored this brief in whole or part,
and no person other than amicus curiae or its counsel made a
monetary contribution to the preparation or submission of this
brief. All parties received timely notice of the Developers
Alliance’s intent to file and consented to the filing of this brief.
2 https://www.developersalliance.org/about/about-the-alliance/.
3 A list of Developers Alliance members is available at
https://www.developersalliance.org/member-directory/. Google
is a Developers Alliance member but took no part in the
preparation of this brief.

2

and filed an amicus brief in support of certiorari in
this proceeding.4

SUMMARY OF ARGUMENT

The current case has implications that go far
beyond the two litigants involved. In 2017 there were
an estimated three million software developers in the
United States, and their collective work added an
estimated $565 billion to the country’s gross domestic
product.5,6 As a result of the current litigation,
developers are now confused about whether and
where established practices constitute copyright

4 Brief of Amici Curiae Rackspace US, Inc., Application
Developers Alliance, TMSoft, LLC, and Stack Exchange Inc.,
Oracle America, Inc. v. Google Inc., Nos. 13-1021, 13-1022 (Fed.
Cir. May 30, 2013); Brief of Amici Curiae Engine Advocacy, The
App Developers Alliance, and Github Inc., Oracle America, Inc.
v. Google Inc., Nos. 17-1118, 17-1202 (Fed. Cir. June 1, 2017);
Cert. Brief for Developers Alliance as Amicus Curiae.
5 There are nearly three million professionals that are involved
in software development and programming as part of their jobs.
Over half of those are strictly software developers while the rest
have occupations that require programming as a secondary
component of their work such as computer scientists, data
analysts, and database administrators. Developers Alliance &
NDP Analytics, Quantifying Risks to Interoperability in the
Software Industry (2017),
https://www.developersalliance.org/interoperability-report-
december-2017.
6 In 2017, Software.org, the BSA Foundation, commissioned The
Economist Intelligence Unit (EIU) to assess the economic impact
of the software industry. The EIU collected and analyzed the
most recent data available from several recognized and
reputable sources. The Growing $1 Trillion Economic Impact of
Software (2017), https://software.org/reports/2017-us-software-
impact/.

3

infringement. Specifically, developers now question
their ability freely to create interoperable software
across projects and platforms, an established industry
practice for decades. In determining whether
copyright law should apply to API declarations, the
Court should therefore consider the nature of
software and industry norms.

The Court should also recognize that use and re-
use of interoperable software is the foundation of
innovation in the software development industry.
Subjecting API declarations to copyright protections
would force developers to constantly re-engineer
something that already works, stymying creativity
and innovation.

Finally, imposing restrictions on the use of API
declarations is contrary to the goals of copyright law
and the nature of software.

Accordingly, the Court should reverse the
judgment of the court of appeals.

ARGUMENT

Technology has progressed since this Court
decided Baker v. Selden, 101 U.S. 99 (1880). The
nineteenth century saw great strides in the
development of programmable machines, but the
“software” and “hardware” of the age were
predominantly paper tapes, punch cards and
electromechanical systems. Since then, the ability to
repurpose complex equipment without completely
reinventing it has become a fundamental driver of
innovation.

4

Software interfaces, or “API declarations,” serve a
similar function. When developers write original
software (or “code”), there is a universal
understanding that they hold protected rights in their
work. To enable collaborative development and
software interoperability however, developers must
be free to connect their own code to remote code that
other developers have written. This is commonly done
through API declarations.7 As used here, an API
declaration is a short line of code that is part symbolic
logic, part syntax, part symbolic notation, and part
pseudo-English.8 These statements are at the heart of
the current case.

API declarations are used by software developers
as shorthand for a remote block of software that
performs a precisely defined function on behalf of the
calling program. Through a single-line API
declaration call, application developers avoid the need
to embed the complete implementing code in their
programs. Any program that exists today could
conceptually be rewritten by removing all API
declaration calls and replacing them with the entirety
of the remote implementing code they represent
(assuming the appropriate underlying hardware

7 The acronym “API” is probably the most misused term in the
long record of this case, and we use it here with great trepidation
for fear of adding to the confusion. Such is the danger of trying
to translate between two dialects (the exact point of this brief).
In this brief, “API” is an umbrella term without clear definitional
boundary—a concept, versus a thing. An API declaration is a
thing (defined herein), distinct from implementing code (a
different thing, and also defined).
8 See, e.g., App. to Pet. for Cert. 223a (the call
“java.lang.Math.max”).

5

environment). In this sense, API declarations are
easily distinguished from implementing code; an API
declaration’s function is to simply stand-in-for and
point-to the implementing code. The API declarations
at the heart of this case exist in two places: 1) one-at-
a-time in the application code that calls them, and
2) in libraries associated with the computer platforms
that house the implementing code.

To communicate effectively to and from the
remote implementing code, an API declaration must
be precisely formatted and carry with it all the
appropriate information for it to perform its function.
In fact, there is only one correct API declaration
format for any particular API, and any deviation
renders it non-functional. Given the wide range of
computational and control functions that can be
appropriately off-loaded to APIs, the number and
complexity of available APIs can be overwhelming for
a developer. By convention, API declarations embody
information that a skilled developer can use to
categorize them and identify related APIs—an
implicit roadmap that simplifies the developer’s task
of finding and remembering hundreds of APIs. An
experienced developer can intuit the likely form of
unknown but related APIs, and the overarching
structure of the library used to hold them, by
examining a small number of API declarations in
context.

An “API declaration” as defined above would be
easily understood by any developer, but the term
itself is not used in the industry. The software
developer community generally refers to the API
declaration, the remote implementing code it refers

6

to, and the function that this code performs, using the
singular term “API,” relying on the context to provide
a deeper meaning. In industry vernacular, an
application developer that embeds an API declaration
into their program is said to “call the API” (where API
here refers to the remote implementing code that then
“executes” or “runs” when the API declaration is
encountered in the primary program). This loose
mapping of terms is a primary obstacle to
understanding how software interfaces should be
treated under copyright law.

Copyright, applied to any specialized art, must
take into account the unique nature of the domain as
understood by those participating in the field.9 A
critical flaw in the record of this case has been a lack
of a shared understanding by the courts of the
vocabulary and basic practices involved in software
development. It is easier to understand the
fundamentals of what is being discussed if technology
terms-of-art are used “as the natives use them,”
particularly where they overlap with words and
concepts that carry alternative meanings in other
contexts. Writing software is not the same as writing
a novel; the lexicon, purpose, and industry norms are
very different. What merits copyright protection in
one field may not in the other.

9 For instance, in its Circular 41, Copyright Registration of
Architectural Works, the United States Copyright Office
identifies “[i]ndividual standard features of the architectural
work, such as windows, doors, or other staple building
components” as unprotected by copyright—a non-obvious fact to
an outsider, but uniquely relevant to the domain.
https://www.copyright.gov/circs/circ41.pdf.

7

APIs are the established industry mechanism
that promotes innovation and interoperability while
protecting the creative works of individual
developers. By publishing API declarations,
developers enable their implementing code to
interoperate with the code of other programmers.
Without shared API declarations, there is no way to
call an API and no way to identify what implementing
code to execute, how to transfer the appropriate
variables for the API to act on, or how to interpret the
results when they are returned. Without shared API
declarations, each device and program is an island,
and modern software development simply cannot
occur.

Interoperability through software interfaces
increases innovation by allowing independent
developers to build on the work of others.
Interoperability allows for independent innovation in
logically separate sections of a complex computer
program by defining how information passes from one
program section to another, and what actions will
occur as a result. For instance, because of the use of
APIs between the firmware of a mobile device, its
operating system, and the applications software
developers have written, consumers can freely add,
delete and update apps without purchasing a new
phone.10 In fact, it is now easy for users to port their

10 Traditionally, “hardware” refers to the physical aspects of a
device, while “software” is the broad term for programs that run
on hardware. “Firmware” is software that is semi-permanently
placed in hardware (it might only be capable of modification in
the factory, for instance), often forming part of the interface
between the two.

8

entire collection of applications from one device to
another. Interoperability also allows developers to
specialize and thus creates efficiencies in the use of
scarce programming skills. Finally, interoperability
helps drive innovation by balancing the market power
of the various participants in a complex software
ecosystem.

If copyright law were to give control over both API
declarations and implementing code to the original
author, then software interoperability is a monopoly,
controlled by the copyright owner, in frustration of
copyright law’s stated intent to promote innovation.
API declarations are functional by their nature, and
the conventions of the software industry that created
them strictly limit how they can be structured. In any
case, their role in the software development process is
such that imposing copyright infringement for their
use would be inappropriate. The use and re-use of
computer code is foundational to the nature of the
software development industry and has been since its
inception.

The role of software interfaces to promote the
independent development of interoperable software is
acknowledged by copyright law. An independent
application developer who wishes to write code that
interoperates with the Java or Android platform
necessarily must use the Java or Android API
declarations. An independent platform developer who
wishes to interoperate with Java or Android
applications necessarily must re-use the Java or
Android API declarations.

9

The Court should find that API declarations,
unique to the nature of software, are not subject to
copyright protection, or in the alternative that the
free and open sharing of API declarations is protected
as fair use. The judgment below in this case should
therefore be reversed.

I. Copyright in Software Must be Viewed with
the Nature of Software as Context.

Software developers have long lived in a world
defined by the unforgiving logic of the underlying
machine they seek to harness. The goal is simple: to
make the machine do exactly what you want, and
nothing that you do not want. For a software
developer, ambiguity is an error, as is any other
miscommunication with the underlying machine,
which cannot intuit intention or overlook flawed
instructions. Every time software developers write
code, there follows a leap of faith as they execute the
program to see whether the computer does what they
intended. Finding and correcting errors—
“debugging”—is a fundamental skill every
programmer must master.

Once they have written and debugged a section of
software, programmers are understandably reluctant
to wade back in and change things. Even the re-
keying of error-free code has the potential to
introduce new errors. Worse still, changes in the code
that surrounds the working segment can suddenly
break the untouched, previously-functioning portion,
because context matters, and information stored in
computer memory changes as the program executes.

10

To help manage the software creation and error
correction process, the computer industry adopted a
philosophy of breaking down large computer
programs into smaller inter-connected blocks, and
segmenting computer systems into logical and
physical subsystems to help isolate them from each
other. This reduced the creation of new errors in old
code, made errors easier to find and
compartmentalize, and had the added benefit of
allowing the re-use of software blocks that performed
commonly used functions, like mathematical
operations, logically sorting lists, or parsing strings of
letters. At the same time, this segmentation process
allowed multiple authors to focus their attention on
each of the self-contained and interoperable blocks,
rather than a single author having to manage the
entire software program.

The philosophy behind this modular approach is
fundamental to the nature of the computer industry.
From the earliest computer systems, engineers have
broken down larger problems into smaller parts, and
redundancies have been identified and removed.
Developers gained efficiencies by telling the computer
to re-read previous portions of the written code rather
than writing things twice. “Do” steps one, two and
three, then “re-do” steps one and two, then do step
four—instead of writing out steps one and two twice
in the same program. Critical to this evolution was
the ability to hand off from one block of code to
another, and eventually from one author’s code to
another’s. This ability is now the foundation of
modern software development, so much so that
software developers are unable to imagine a world
that works any other way.

11

Given that computer functionality is the
fundamental purpose of computer code, the interface
rules amongst software and hardware elements must
be universally understood and rigidly followed.
Independent authors must be able to rely on remote
authors to explicitly support software interface
implementations that are absolutely compatible and
strictly in keeping with agreed formats. To
accomplish this, the specifics of reusable software
interfaces must be shared knowledge amongst all
industry participants.

As with any community, the nature of software
development is shaped by shared knowledge, shared
experience, and shared language. To the extent that
many of the concepts in computing were first
developed by engineers and scientists, the language
of software is colored by technical terms and
mechanical allusions. The complexity of computing
systems means that virtually all efforts in the area
are collaborative and require many individuals to
work in concert with a shared understanding of the
overall group activity. The resulting vocabulary
borrows heavily from English, mathematics, and logic
because each of these is already reflected in the
underlying computer hardware, but it is decidedly not
prose in the conventional sense.

Just as legal scholars can write a thesis on the
nuanced meaning of “partner,” software developers
use words-of-art that defy easy definition. Thus, while
developers write “code,” the word has multiple, broad,
and nuanced meanings that computer professionals
understand, but that lay people struggle to
comprehend. Similarly, though “API” was once an

12

acronym for Application Programming Interface,
developers use it as a shorthand for many things and
aspects of things that generally refer to the rules,
syntax and tools that allow software blocks that
perform some useful function to “connect” to other
software that wants to make use of that function.
Developers publish APIs, call APIs, write APIs and
share APIs thousands of times a day.

The written language of programming—the
superset of the various programming languages that
also includes some universal norms and higher-level
syntax—is also unique to the nature of the industry.
It is a functional language that borrows terms and
context from the other fields that influence science,
such that elements like brackets and braces indicate
both separation and grouping, for instance. Thus,
letters such as “x” and “y” imply coordinate variables,
but could be anything. And arbitrary names skew
toward logical consistency with what they represent:
“max” for a common statistical concept, for instance.
The end result is a human readable meta-language
where those skilled in the art can intuit what the
symbols and words represent, and thus can puzzle out
what the program is trying to do without actually
running it on a computer. A knowledgeable developer
can “read code” that a lay person cannot.

Introducing new terms into the developer lexicon
is systematized and constrained by the functional
bias inherent in the nature of software development.
A new programming language that seeks to provide
full programming flexibility must remain faithful to
the bias towards utility that computer science
embodies. “Max,” “MAX,” “maxi,” or “aMax” could be

13

acceptable additions to a suite of APIs supporting
statistical functions, since they imply a function and
meaning; “Aardvark” as a mathematical function
might be whimsical, but it would not be embraced
since it is not anchored to any deeper concept and
would result in code that was non-intuitive and hard
to understand. The success of any platform or
language depends on how easily developers can read,
remember, and wield it, and ultimately how effective
it is in accomplishing programming goals. It is
therefore critical that the application of copyright
respect the context in which software is developed.

In an attempt to bridge the specialized language
of software development and the language of law and
copyright, lower courts have turned to either analogy
or translation. Analogies can be helpful by bringing
familiar context to an alien field, but they tend to
oversimplify and to bring with them implicit
assumptions based on the model chosen. Similarly,
translations seldom capture the nuance of a shared
culture’s understanding of its unique language.

Analogies from other fields tend either to over-
emphasize or underemphasize the degree to which
software interfaces are one-sided, two-sided, or “no-
sided.” Software interfaces, as already described,
simultaneously separate, connect, and stand-in-the
place-of blocks of code. As understood by developers,
they are functional, rigidly formatted, and their exact
syntax and function must be known by the
independent developers on either side to enable
interoperable software.

14

In the same vein, analogies other than the
industry chosen “library” tend to imply greater or
lesser creativity in the organization of the APIs they
hold. Real-world libraries store and organize
information based on a limited number of high-level
characteristics such as author, title, subject or
language. Their purpose is to simplify searching by
those that know something, but not everything, about
that for which they are looking. API libraries arose
spontaneously in the early days of computer
programming as the complexity of API documentation
grew. API libraries make it easier to search for or call
a particular API and understand its form and
limitations, and they help developers understand the
relationship between various APIs. In Java and
Android, their organization is explicitly embedded in
each API declaration. Reading an API declaration
identifies where it is located in the library and how
the library is structured. Conversely, the location of
an API declaration in the library structure dictates
much of its written form.

The syntax, symbology, and structure of an API
declaration, while it may contain elements from
English, mathematics, or logic, is a purely functional
construct whose purpose is to reference the target
implementing code without ambiguity. The structure
and characters that make up the declaration aid a
knowledgeable developer in intuiting the purpose of
the target API and in identifying related APIs more
easily. A skilled developer, knowing what
mathematical or logical function is needed for a
program to perform, should quickly and easily be able
to find a suitable API in its associated library.

15

II. Consistent With the Goals of Copyright Law,
Software Interfaces Simplify the Creation of
Software and Promote Innovation.

Just as specialization of labor revolutionized the
manufacturing sector, the ability to separate
hardware and software into interoperable parts has
revolutionized the technology industry. The key that
has unlocked software innovation is the ability for
software and hardware from many independent
creators to interoperate with software and hardware
from many other independent creators.

The size and complexity of software projects is
growing steadily. A multi-player online game today
can contain 5 million lines of code, while a luxury car
can contain 100 million lines.11 Software development
no longer occurs only inside corporations but is now
distributed both geographically and across time
zones, with many independent developers
contributing their effort and knowledge to a single
project. The distribution of development effort is now
so broad that any particular developer can expect to
work on many software projects during their careers,
often concurrently.

The next phase of technology evolution is already
upon us. Fully interoperable devices are being linked
together to form the internet of things (IoT).
Household appliances, mobile phones, computers,
wristwatches, doorbells and a vast array of sensors

11 An informative chart with comparable code sizes for various
technologies is available at
https://www.visualcapitalist.com/millions-lines-of-code/.

16

and devices are already sharing information through
a dynamic and evolving network of interfaces. Even
more than in today’s software industry,
interoperability is fundamental to the nature of IoT.
It is estimated that the global economic productivity
resulting from IoT would drop by $77 billion over the
next eight years if current interoperability practices
were restricted.12

A. Software Interfaces Enable Parallel
Innovation in Multiple Layers of
Hardware/Software Systems and
Accelerate Innovation by Enabling
Multiple Developers to Collaborate
Across Large Software Projects.

Software interfaces promote innovation by
breaking complex software systems into large
numbers of component parts that can be improved in
parallel. Rather than a single author capable of
limited creative iterations, software interfaces allow
a multitude of authors to work simultaneously.

To support the tremendous demand for new
software, the developer community has adopted a
number of universal practices. First, developers rely
on libraries of common software functions written by
others, rather than recode these functions themselves
for every project. This improves developer efficiency.
It is also standard practice for developers working on

12 Developers Alliance & NDP Analytics, Quantifying Risks to
Interoperability in the Software Industry (2017),
https://www.developersalliance.org/interoperability-report-
december-2017.

17

large projects to coordinate the efforts of several
individuals and create interoperable code modules
that can be connected and reconnected to achieve the
larger programming goal. This allows developers to
specialize and to tackle large tasks as part of a
community. Thirdly, industry has focused on isolating
the underlying device hardware from the software
above it by adopting a number of more standardized
platforms that bridge the gap between general
purpose software and proprietary hardware. This
creates opportunities to develop software programs
that run on many different devices without having to
rewrite new code for each device. In all cases, the key
enablers are software interfaces that connect code
blocks and manage the controlled transfer of
formatted information between layers and blocks of
software.

Because the use of software interfaces drives such
universal benefit, it is generally accepted in the
developer community that these structures should be
widely available and easy to implement. The result
has been the emergence of the open-source software
community to share code, repositories of published
APIs, and the rise of software platforms like Java and
Android to enable greater interoperability across a
wide range of devices. It has also led to the emergence
of reusable software development tools tailored to the
most popular software languages. A developer who
can master these tools gains efficiency and can then
apply these gains to a wide range of projects. This in
turn has led to competition amongst the software tool
builders to capture a broad community of developers
to increase the value of their programming platform—
a virtuous cycle. Simply put, interoperability is a

18

deeply embedded principle in modern software
development today.

B. Software Interfaces Promote
Competition and Increase Innovation by
Preventing Lock-In Between Otherwise
Independent Layers in
Hardware/Software Systems.

The interoperability of software systems hinges
on the interfaces between the many component parts.
Who has rights to these interfaces, and how those
rights are allocated, is critical to the future of
software development. This cannot be overstated.

If access to API declarations remains separate
and independent of rights to the implementing code
they represent, then the ability to collaborate and to
create interoperable software and hardware will
proceed at its current frenetic pace and the goals of
intellectual property law will be met. The advantage
of this arrangement is that it places no penalty on
developers for sharing, and it encourages market
competition by creating a mechanism for application
developers to easily call on the comparable APIs of
many competing implementing code authors. More
effective implementing code gets re-used more often
by the community, and thus the community as a
whole produces better software. The reputation and
prospects of the best authors rise accordingly,
providing them economic benefits in their future
work. If, on the other hand, the use and
implementation of API declarations are subject to
individual control, then these interfaces become a
choke point for monopoly control.

19

Conventional practice is for the developer of a new
API to “publish” the details of what functions their
new program performs, what parameters it requires,
and what limitations it might have. In addition, in
order for other developers to call the API from their
programs, the API author must publish the API
declaration. The implementing code may or may not
be published, but in either case industry
acknowledges that copyright in the implementing
code rests with the original author.

It is accepted in the developer community that the
API declaration itself is separate from the
implementing code. It is a unique, structured
shorthand for any remote block of code capable of
performing the named function consistent with the
limitations and requirements of the original API’s
published description. The actual code that sits
behind the API declaration is irrelevant to the calling
program, so long as it accepts the appropriate inputs
in the established form and performs the expected
actions. The implementing code likewise needs no
awareness of the overarching purpose of the
application software that calls it; its role is to accept
the rigidly formatted call, and to take the promised
actions in keeping with its published function.

It is also accepted in the industry that developers
are free to innovate on both sides of the API
declaration, creating new, complex programs that call
existing APIs, but also writing improved
implementing code in competition with an original
author. Of note, developers are not free to modify the
API declaration itself, because its strictly defined
structure and syntax are fundamental to its ability to

20

perform its function. An independent change to the
API declaration by the author of implementing code
on one side, or by a software developer seeking to
embed the API function in the developer’s own code,
would break the link between the two blocks of code
and render the entire API non-operational.

If API declarations are controlled by the author of
the original implementing code, innovation would be
seriously reduced. First, no one would be free to
improve on existing implementing code without
creating a new and unique API declaration—
requiring all existing application software which
called the old API to be updated. Second, developers
would be restricted to software and hardware
environments supported by the author of the API
declarations they chose to use. In either case, the
range of devices and services available to the public
would be vastly reduced, and the interoperability of
software and hardware would be severely impacted.

In addition, the process of licensing and allocating
the rights and obligations tied to API declarations
would emerge as an adjunct to software development.
Application developers would need certainty as to
whether an API author was committed to improving
and maintaining their API, how they would work to
promote its implementation in software tools and in a
range of hardware environments, and what licensing
terms would apply to the various ecosystem
participants involved. All this would take time,
energy, and investment that otherwise might go to
software development and innovation.

21

III. Restricted Rights in API Declarations and
Libraries are Inconsistent With Copyright
Law and the Nature of Software.

Copyright law enshrines a software developer’s
rights to the “creative works” embodied in written
software, as distinct from the functional elements of
software, which are not protected under either
copyright or patent law.13 Wherever Congress has
vested or restricted rights in a software developer’s
work it is to promote innovation, consistent with the
Constitution.14 Congress has specifically identified
the promotion of software interoperability as a goal of
copyright law.15

Restricting the rights of developers to the free and
open use of API declarations restricts interoperability
by giving the original author control over any future
innovation by other developers on either side. Given
that the relationship and character of and between
APIs is inherent in their form, restricted rights in the
structure of API libraries has a similar effect.

13 17 U.S.C. § 102(a) & (b).
14 See U.S. Const. art 1, § 8, cl. 8 (“Congress shall have Power . .
. To promote the Progress of Science and useful Arts, by securing
for limited Times to Authors and Inventors the exclusive Right
to their Writings and Discoveries”).
15 See, e.g., 17 U.S.C. § 1201(f)(1) (carving interoperability out of
the Digital Millennium Copyright Act).

22

A. Restrictions on API Declarations Would
Frustrate the Purpose of Copyright Law,
Because Free and Open APIs Promote
Innovation.

Shared API declarations enable independent and
parallel innovation in both the software that calls the
API and in the implementing code that responds to
the API call. Authors of application software that
relies on an API can write code confident that, should
a future author come up with a better implementation
of the API in question, their original software can
benefit without any modification. For creators of
APIs, the ability to innovate by creating a better
implementation of a popular API can have an
immediate impact by improving the performance of
all the applications that call it.

If API declarations were controlled by the original
author of the implementing code, competing API
authors would need to create unique API declarations
of their own—even for APIs whose function was
identical. In turn, application developers would need
to re-write their code to swap out the old API
declaration with the new one. In the worst case,
where the new and old API are only selectively
available in target operating environments,
developers might need to call both APIs, and
implement the code necessary to manage all possible
errors and conflicts that could arise as one, the other,
or both respond to the API call.

In either scenario above, each competing API
would need to find a unique API declaration for the
common function from a limited list of choices that

23

would satisfy the industry’s bias towards simple and
logically consistent terms and structures. Ultimately
this would deter competition in implementing code
and increase the effort for application developers to
write code that was interoperable with many
hardware environments.

The logical extension of applying copyright
protection to API declarations would be an absolute
monopoly on all implementing code written in the
future. Were a platform developer to simply look at
Java applications, read the API declarations they
contain, and, in complete ignorance of the existence of
the Java platform, create a new platform from the
ground up which was responsive to the visible API
declarations in application code, the platform
developer would conceivably infringe the original
author’s copyright.

Developers invest heavily in mastering a
particular programming language. The more places
where a specific language can be used, and the more
portable the resulting code is, the more valuable a
language is to learn and to master. If someone builds
a platform that allows this common language to be
used efficiently and in many foreign contexts, then
the language gains in popularity and its
attractiveness increases. If the platform is later
restricted however, developer investment in the
language is frustrated and innovation is reduced.

Software developers invested in learning the Java
programming language in reliance on the promise of

24

“write once, run anywhere.”16 At its heart, this
promise is a commitment that Java API
declarations—the software interface between “write”
and “run”—would be unrestricted. To the industry,
the promise was a library of free and open API
declarations and a commitment to encourage
platform adoption throughout the industry. That
Java’s authors separately licensed their
implementing code as part of a platform was
unremarkable and appropriate, as was Google’s
independent investment in its own re-
implementation. But in no way did the industry
anticipate that Java could later exert control over the
interface they had published.

If API declarations can be owned and licensed, the
value of the platform implementing code shifts from
the cost to re-implement (like Android), to the cost to
re-implement and to replace a developer community
invested in the related tools (once the community is
established). If, by extension, it becomes common for
all languages and platforms to manufacture this
value shift once their developer communities mature,
then developers will limit their investment in any
particular system, knowing its popularity is finite,
and efficiency and innovation will suffer.

16 App. to Pet. for Cert. 4a.

25

B. Copyright of API Declarations is
Inconsistent With the Letter of
Copyright Law, Because API
Declarations are Functional and Not
Creative.

Copyright protects a software developer’s creative
works.17 To be adopted successfully in the developer
community, API declarations must reflect some
logical relationship with the function of the
implementing code they call, otherwise they are hard
to remember and create ambiguous and unreadable
code. An enterprising developer could conceivably
publish API declarations using every reasonable term
that implies the “maximum value” statistical function
and point them to a single version of implementing
code, effectively cornering the market for this API.
This may sound extreme, but such behavior is
common elsewhere, as can be seen in the market for
domain names.18

Merger is the principle that where an idea “can
only be expressed in a limited number of ways,” the
means of expression “cannot be protected, lest one
author own the idea itself.”19 The exact form of an API
declaration is largely dictated by the overarching
rules of the computer language being used, the
structural and logical foundation of computer

17 17 U.S.C. § 102(a).
18 See Domain name speculation, Wikipedia,
https://en.wikipedia.org/w/index.php?title=Domain_name_spec
ulation&oldid=928471617.
19 Zalewski v. Cicero Builder Dev., Inc., 754 F.3d 95, 102–03 (2d
Cir. 2014).

26

programming, and the syntactic conventions of the
API collection involved. In general, “[API
declarations] communicate[] to programmers what
each program does, how it relates to the other
programs, and what you need to do to make it work.”20

Any variation from the accepted formula renders the
API declaration non-functional. Any new API
declaration must follow the rules of the languages and
libraries where it hopes to be embedded.

Even an original author that builds a novel
programming language and a suite of API
declarations is constrained in the creativity the
author can wield, given the established industry
norms around programming terms generally.
Elements which describe actions, functions, state, or
relationships are drawn from existing English, logic
and mathematics, and the computer languages that
have gone before. Where novel terms and symbols are
introduced, there is tremendous pressure for
defensible logic in the choice.

That is not to say that computer science eschews
creativity in its language. But the history of computer
science clearly differentiates between non-functional
terms (the “Java” language, for instance), and
functional terms that map to the underlying concepts
and operations that the computer is expected to
perform.

In addition to restrictions on creativity in the
form of API declarations, they are purely functional
in nature. Copyright law does not protect functional

20 Brief in Opposition 6.

27

works, or the functional aspects of otherwise creative
works.21,22 The sole purpose of an API declaration is
to stand-in-for and call the implementing code. An
API declaration is an operational line of code that
directs the program to pass control and execution to a
remote block of code before moving on to the next
program step. An API declaration does nothing by
itself to affect the application program’s goals. From
a developer’s perspective, it is a placeholder for the
remote implementing code that avoids recreating
equivalent implementing code, and the associated
operating environment, inside the calling program.

C. Absolute Restrictions on API
Declarations and Libraries are
Inconsistent with Established
Exceptions to Copyright Under the Law.

The doctrine of fair use limits the exclusive rights
that copyright provides when “rigid application of the
copyright statute . . . would stifle the very creativity
which that law is designed to foster.”23 The Copyright
Act recognizes that enabling interoperability of

21 17 U.S.C. § 102(b).
22 For example, the copyright office has determined that recipes
are uncopyrightable. See U.S. Copyright Office, Circular 33,
Works Not Protected by Copyright 2 (2017),
https://www.copyright.gov/circs/circ33.pdf.
23 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 577 (1994);
17 U.S.C. § 107.

28

software is one of the law’s goals.24 The law also
codifies a four-part test for determining fair use.25

In order for two software programs to
interoperate, at least some minimal exchange of
information is required—even to just acknowledge
each other. Java and Android API declarations, apart
from correct structure, symbology and syntax, include
terms which map to the specific implementing code
that is being addressed, along with any program
variables required for the implementing code to act
upon. The nature of software programming requires
an exact match between the line of code included in
the originating program, and what is expected by the
remote program—any variation results in a program
error. For this reason, API declarations are widely
shared and diligently scripted within the programmer
community, compiled, organized for easy retrieval,
and published in computer-language-specific libraries
for all to use.

The role of software interfaces to promote the
independent development of interoperable software is
acknowledged by copyright law.26 Java and Android
API declarations are necessary elements to achieve
interoperability between application programs and
the Java or Android implementing code. The only way
to enable interoperability is to re-use them exactly.
An independent application developer who wishes to
write code that interoperates with the Java or

24 See 17 U.S.C. 1201(f)(3).
25 17 U.S.C. § 107(1)–(4).
26 See 17 U.S.C. § 107(2).

29

Android platform necessarily must use the Java or
Android API declarations. An independent platform
developer who wishes to interoperate with Java or
Android applications necessarily must re-use the Java
or Android API declarations. This is in the nature of
software.

Section 107 includes as one of its factors “the
nature of the copyrighted work.”27 Accordingly, courts
should consider the various aspects of a creative work
with reference to the field in which the work
belongs.28 For example, in Andy Warhol Foundation
for the Visual Arts, Inc. v. Goldsmith, 382 F. Supp. 3d
312, 322–23 (S.D.N.Y. 2019), the court considered the
“protectable, original elements of a photograph
[which] include[d] ‘posing the subjects, lighting,
angle, selection of film and camera, evoking the
desired expression, and almost any other variant
involved.’” Id. at 322 (quoting Rogers v. Koons, 960
F.2d 301, 307 (2d Cir. 1992)). By contrast, aspects
such as lighting, angle, camera selection, and evoking
the desired expression would be irrelevant to
copyright in the fields of literature, architecture, or
software.

Notwithstanding the statutory language, courts
have consistently minimized the second factor in

27 Id.
28 “To evaluate whether a particular use qualifies as ‘fair use,’
[the court] must engage in an ‘open-ended and context-sensitive
inquiry.’” Swatch Grp. Mgmt. Servs. Ltd. v. Bloomberg L.P., 756
F.3d 73, 81 (2d Cir. 2014) (emphasis added) (quoting Blanch v.
Koons, 467 F.3d 244, 251 (2d Cir. 2006)).

30

assessing fair use.29 This factor may be of little
importance in areas where the application of
copyright is well understood, but copyright in
software is still largely misinterpreted and conflated
with copyright in prose or the written arts. Thus, the
nature of software is critical because it is significantly
different from that of literature, news reporting or
architecture. The copying of dozens of paragraphs
from a literary work may be a violation of copyright,
while the copying of every window from one
architectural design to another may not. Courts
recognize the distinct nature of the two fields, and no
court would analogize between the two. To dismiss
this factor in a fair use analysis of software is an error
courts should avoid.

The record in this case is replete with examples of
the court equating software with ordinary prose. A
court or a reasonable juror, aware of both literature
and software, should easily be able to determine that
the nature of the two is significantly different. For
example, the role of capitalization, spacing, and
punctuation in prose can be a creative element, while
in software it is usually rigidly formulaic and highly
functional. The challenge courts must overcome is to
recognize that, despite their similarities, the different
nature of software and prose is a significant factor
under copyright. The application of fair use must
recognize and accommodate this. API declarations are
not names, or labels, or chapter headings, or slogans.

29 “The second factor has rarely played a significant role in the
determination of a fair use dispute.” Authors Guild v. Google,
Inc., 804 F.3d 202, 220 (2d Cir. 2015) (citing William F. Patry,
Patry on Fair Use § 4.1 (2015)).

31

Their role and composition have no parallel in prose.
They are universally shared and fundamentally
important for innovation in software development,
past and future. Copyright should have no hold over
them.

CONCLUSION

To award copyright protection in a software
interface to a single author is inconsistent with
copyright law, established industry practice, and wise
public policy.

The judgment of the court of appeals should be
reversed.

Respectfully submitted,

James H. Hulme
Counsel of Record
Nadia A. Patel
ARENT FOX LLP
1717 K Street, NW
Washington, DC 20006
(202) 857-6000
james.hulme@arentfox.com

Bruce Gustafson
Developers Alliance
1201 Wilson Blvd., 25th Floor
Arlington, VA 22209
(202) 735-7333
Bruce@DevelopersAlliance.org

Attorneys for Amicus Curiae
Developers Alliance

