# **PECOS RIVER COMPACT**

**Report of the River Master** 

Water Year 2021

Accounting Year 2022

**Final Report** 

Neil S. Grigg River Master of the Pecos River 905 Edwards Street Fort Collins, Colorado 80524

#### CONTENTS

Map of Pecos River Basin Showing Accounting Reaches

Purpose of the Report and Statement of Shortfall or Overage

Table of Annual and Accumulated Overage or Shortfall

Table 1. General Calculation of Annual Departures, T.A.F. (B.1.a.-d.)

Table 2. Flood Inflows, Alamogordo Dam to Artesia (B.3)

Table 3. Flood Inflows, Artesia to Carlsbad (B.4)

Table 4. Flood Inflows, Carlsbad - State Line (B.5.c)

Table 5. Depletion Due to Irrigation above Alamogordo Dam (C.1.a)

Table 6. Depletion Due to Santa Rosa Reservoir Operations (C.1.b)

Table 7. Carlsbad Springs New Water (B.4.c)

Table 8. Carlsbad Main Canal Seepage Lagged (B.4.c.(1)(e))

Table 9. Lake Avalon Leakage Lagged (B.4.c.(1)(g))

Table 10. Evaporation Loss at Lake Avalon (B.4.f)

Table 11. Change in Storage, Lake Avalon (B.4.g)

Table 12. Data Required for River Master Manual Calculations

Appendix: Response to States' Objections



Map of Pecos River Basin Showing Accounting Reaches

#### PECOS RIVER COMPACT Supreme Court of the United States No. 65, Original Amended Decree

Final Report of the River Master Water Year 2021 - Accounting Year 2022 June 25, 2022

<u>Purpose of the Report</u>. In its Amended Decree issued March 28, 1988 the Supreme Court of the United States appointed a River Master of the Pecos River and directed him to "... Deliver to the parties a Preliminary Report setting forth the tentative results of the calculations required by Section III.B.1 of this Decree by May 15 of the accounting year..." and to consider "... any written objections to the Preliminary Report submitted by the parties prior to June 15 of the accounting year..." and to deliver "... to the parties a Final Report setting forth the final results of the calculations required by Section III.B.1 of this Decree by July 1 of the accounting year." This is the required Final Report with the determination of:

a. The Article III(a) obligation;

b. Any shortfall or overage, which calculation shall disregard deliveries of water pursuant to an Approved Plan;

c. The net shortfall, if any, after subtracting any overages accumulated in previous years, beginning with water year 1987.

<u>Result of Calculations and Statement of Shortfall or Overage</u>. The results of the calculations in this Final Report show that New Mexico's delivery in Water Year 2021 was a shortfall of 4,400 acre-feet. The accumulated overage since the beginning of Water Year 1987 is 157,200 acre-feet.

Nif S. Gugg

Neil S. Grigg River Master of the Pecos River

|            | Pecos River Compact     |                        |
|------------|-------------------------|------------------------|
|            |                         |                        |
| Accur      | mulated Shortfall or Ov | erage                  |
|            | June 25, 2022           |                        |
|            |                         |                        |
|            | Annual Overage or       | Accumulated Overage or |
| Water Year | Shortfall, AF           | Shortfall, AF          |
|            |                         |                        |
| 1987       | 15,400                  | 15,400                 |
| 1988       | 23,600                  | 39,000                 |
| 1989       | 2,700                   | 41,700                 |
| 1990       | -14,100                 | 27,600                 |
| 1991       | -16,500                 | 11,100                 |
| 1992       | 10,900                  | 22,000                 |
| 1993       | 6,600                   | 28,600                 |
| 1994       | 5,900                   | 34,500                 |
| 1995       | -14,100                 | 20,400                 |
| 1996       | -6,700                  | 13,700                 |
| 1997       | 6,100                   | 19,800                 |
| 1998       | 1,700                   | 21,500                 |
| 1999       | 1,400                   | 22,900                 |
| 2000       | -12,300                 | 10,600                 |
| 2001       | -700                    | 9,900                  |
| 2002       | -3,000                  | 6,900                  |
| 2003       | 2,000                   | 8,900                  |
| 2004       | 8,300                   | 17,200                 |
| 2005       | 24,000                  | 41,200                 |
| 2006       | 26,100                  | 67,300                 |
| 2007       | 25,200                  | 92,500                 |
| 2008       | 6,000                   | 98,500                 |
| 2009       | 1,600                   | 100,100                |
| 2010       | -500                    | 99,600                 |
| 2011       | 500                     | 100,100                |
| 2012       | 1,900                   | 102,000                |
| 2013       | -6,300                  | 95,700                 |
| 2014       | 700                     | 96,400                 |
| 2015       | 27,300                  | 123,700                |
| 2016       | 27,200                  | 150,900                |
| 2017       | 19,900                  | 170,800                |
| 2018       | 5,300                   | 176,100                |
| 2019       | -9,800                  | 166,300                |
| 2020       | -4,700                  | 161,600                |
| 2021       | -4,400                  | 157,200                |

| Table 1. General Calculation of Annual Departures in TA | F (B.1)  |          |          |
|---------------------------------------------------------|----------|----------|----------|
| Water Year                                              | 2021     |          |          |
| 6/25/2022                                               |          |          |          |
| 0,20,2022                                               | WY 2019  | WY 2020  | WY 2021  |
| B 1 a Index Inflows                                     | 111 2010 | 111 2020 | 111 2021 |
| (1) Annual flood inflow                                 |          |          |          |
| (a) Gaged flow Paces P bel Alamogarda Dam               | 125.9    | 01.2     | 52.1     |
| (a) Gaged llow Fecos R bel Alamogoruo Dalli             | 123.0    | 91.3     | 33.1     |
| (b) Flood Inflow Alamogoruo - Artesia (Table 2)         | 17.4     | -7.0     | 45.7     |
| (c) Flood Innow Artesia - Cansbad (Table 3)             | 10.0     | 7.0      | 45.0     |
| (d) Flood Inflow Carisbad - State Line (Table 4)        | 6.7      | 1.2      | 29.7     |
| l otal (annual flood inflow)                            | 159.9    | 92.3     | 1/3.5    |
| (2) Index Inflow (3-year avg)                           |          |          | 141.9    |
|                                                         |          |          |          |
| B.1.b. 1947 Condition Delivery Obligation               |          |          | 56.6     |
| (Index Outflow)                                         |          |          |          |
|                                                         |          |          |          |
| B.1.c. Average Historical (Gaged) Outflow               |          |          |          |
| (1) Annual historical outflow                           |          |          |          |
| (a) Gaged Flow Pecos River at Red Bluff NM              | 45.8     | 36.8     | 65.2     |
| (b) Gaged Flow Delaware River nr Red Bluff NM           | 0.9      | 0.3      | 10.8     |
| (c) Metered diversions Permit 3254 into C-2713          | 0.4      | 0.4      | 0.4      |
| Total Annual Historical Outflow                         | 47 1     | 37.4     | 76.4     |
| (2) Average Historical Outflow (3-vr average)           |          | 07.1     | 53.6     |
|                                                         |          |          | 00.0     |
| B 1 d Annual Departure                                  |          |          | -3.0     |
|                                                         |          |          | -5.0     |
| C. Adjustments to Computed Departure                    |          |          |          |
| 1. Adjustments to Computed Departure                    |          |          |          |
| Adjustments for Depietions above Alam Dam               | 0.4      | 0.0      | 0.4      |
| a. Depletions Due to Irrigation (Table 5)               | 0.4      | 2.6      | -0.4     |
| b. Depl fr Operation of Santa Rosa Reservoir (Table 6)  | 4.5      | 3.7      | 1.9      |
| c. I ransfer of Water Use to Upstream of AD             | 0        | 0        | 0        |
|                                                         |          |          |          |
| Recomputed index innows                                 |          |          |          |
|                                                         | 400 7    | 07.0     | 54.0     |
| (a) Gaged flow Pecos R bel Alamogordo Dam               | 130.7    | 97.6     | 54.6     |
| (b) Flood Inflow Alamogordo - Artesia                   | 17.4     | -7.8     | 45.7     |
| (c) Flood Inflow Artesia - Carlsbad                     | 10.0     | 7.6      | 45.0     |
| (d) Flood Inflow Carlsbad - State Line                  | 6.7      | 1.2      | 29.7     |
| Total (annual flood inflow)                             | 164.8    | 98.6     | 175.0    |
| Recomputed Index Inflow (3-year avg)                    |          |          | 146.1    |
|                                                         |          |          |          |
| Recomputed 1947 Condition Del Outflow                   |          |          | 59.0     |
| (Index Outflow)                                         |          |          |          |
|                                                         |          |          |          |
| Recomputed Annual Departures                            |          |          | -5.4     |
|                                                         |          |          |          |
| Credits to New Mexico                                   |          |          |          |
| C.2 Depletions Due to McMillan Dike                     |          |          | 1.0      |
| C.3 Salvage Water Analysis                              |          |          | 0        |
| C.4 Unappropriated Flood Waters                         |          |          | 0        |
| C 5 Texas Water Stored in NM Reservoirs                 |          |          | 0        |
| C 6 Beneficial C U Delaware River Water                 |          |          | 0        |
|                                                         |          |          | 0        |
| Final Calculated Departure TAF                          |          |          | _4 /     |
|                                                         | 1        | I        |          |

| Table 2. Determination     | of Floo          | d Inflov      | ws, Alai                 | mogord  | o Dam | to Arte | sia (B.3 | 3)  |      |     |     |      |      |
|----------------------------|------------------|---------------|--------------------------|---------|-------|---------|----------|-----|------|-----|-----|------|------|
| Water Year                 | 2021             |               |                          |         |       |         |          |     |      |     |     |      |      |
| 5/7/2022                   |                  |               |                          |         |       |         |          |     |      |     |     |      |      |
|                            |                  |               |                          |         |       |         |          |     |      |     |     |      |      |
|                            |                  |               |                          |         |       |         |          |     |      |     |     |      |      |
|                            | JAN              | FEB           | MAR                      | APR     | MAY   | JUN     | JUL      | AUG | SEPT | OCT | NOV | DEC  | TOT  |
|                            |                  |               |                          |         |       |         |          |     |      |     |     |      |      |
| Flow bel Sumner Dam        | 1.1              | 1.1           | 5.4                      | 4.6     | 14.4  | 4.8     | 3.7      | 5.7 | 5.6  | 5.2 | 0.7 | 1.0  | 53.1 |
| FtSumner Irrig Div         | 0.0              | 0.0           | 5.1                      | 4.4     | 4.8   | 4.6     | 3.2      | 5.4 | 5.4  | 5.2 | 0.0 | 0.0  | 38.3 |
| Ft Sumner ID Return        | 0.8              | 0.6           | 1.4                      | 1.6     | 2.4   | 2.4     | 2.4      | 2.4 | 2.2  | 2.0 | 1.0 | 0.8  | 20.3 |
| Flow past FS IDist         | 1.9              | 1.7           | 1.7                      | 1.8     | 12.0  | 2.6     | 2.8      | 2.8 | 2.5  | 2.0 | 1.7 | 1.8  | 35.2 |
| Channel loss               | 0.2              | 0.2           | 0.5                      | 1.3     | 2.5   | 1.2     | 1.0      | 1.6 | 0.8  | 0.8 | 0.7 | 0.2  | 11.0 |
| Residual Flow              | 1.7              | 1.5           | 1.1                      | 0.5     | 9.5   | 1.4     | 1.8      | 1.2 | 1.7  | 1.3 | 1.0 | 1.6  | 24.2 |
| Base Inflow                | 2.0              | 1.9           | 1.9                      | 1.1     | 0.7   | 0.7     | 1.0      | 1.0 | 1.0  | 1.0 | 1.4 | 1.8  | 15.6 |
| River Pump Divers          | 0.0              | 0.0           | 0.0                      | 0.0     | 0.0   | 0.0     | 0.0      | 0.0 | 0.0  | 0.0 | 0.0 | 0.0  | 0.0  |
| Residual, Artesia          | 3.7              | 3.4           | 3.0                      | 1.5     | 10.3  | 2.0     | 2.9      | 2.1 | 2.7  | 2.3 | 2.4 | 3.4  | 39.8 |
| Pecos Flow Artesia         | 3.3              | 2.8           | 2.9                      | 1.9     | 5.4   | 13.3    | 36.5     | 7.9 | 3.3  | 2.3 | 2.7 | 3.2  | 85.5 |
| Flood Inflow, AD-Art       | -0.4             | -0.6          | -0.2                     | 0.4     | -4.9  | 11.3    | 33.7     | 5.8 | 0.6  | 0.1 | 0.3 | -0.2 | 45.7 |
|                            |                  |               |                          |         |       |         |          |     |      |     |     |      |      |
| Note: Whenever the com     | puted flo        | w past the Di | e District<br>strict equ | is less |       |         |          |     |      |     |     |      |      |
| return flow (Manual, B.3.d | ie now pa<br>i). |               | Strict equ               |         |       |         |          |     |      |     |     |      |      |
|                            |                  |               |                          |         |       |         |          |     |      |     |     |      |      |

| Table 3. Determination of Flood Inflows, Artesia to | Carlsbac | d (B.4) |      |      |      |      |      |      |      |      |      |      |        |
|-----------------------------------------------------|----------|---------|------|------|------|------|------|------|------|------|------|------|--------|
| Water Year                                          | 2021     |         |      |      |      |      |      |      |      |      |      |      |        |
| 5/7/2022                                            |          |         |      |      |      |      |      |      |      |      |      |      |        |
|                                                     |          |         |      |      |      |      |      |      |      |      |      |      |        |
|                                                     | JAN      | FEB     | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEPT | OCT  | NOV  | DEC  | TOT    |
|                                                     |          |         |      |      |      |      |      |      |      |      |      |      |        |
| Rio Penasco at Dayton                               | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.9  | 0.8  | 1.4  | 0.0  | 0.0  | 0.0  | 0.0  | 3.2    |
| Fourmile Draw nr Lakew                              | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.6  | 0.7  | 0.2  | 0.0  | 0.0  | 0.0  | 0.0  | 1.5    |
| South Seven Rivers                                  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 2.9  | 0.9  | 6.7  | 0.0  | 0.0  | 0.0  | 0.0  | 10.5   |
| Rocky Arroyo at Hwy Br                              | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 9.0  | 2.7  | 3.4  | 0.0  | 0.0  | 0.0  | 0.0  | 15.1   |
| Flood Inflow, Art-DS3                               | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 13.4 | 5.1  | 11.7 | 0.0  | 0.0  | 0.0  | 0.0  | 30.2   |
| Pecos R at Dam Site 3                               | 1.4      | 1.2     | 1.3  | 2.3  | 3.4  | 11.3 | 10.4 | 15.0 | 8.5  | 10.4 | 1.3  | 1.2  | 67.6   |
| CB Sprgs New Water (from Table 7)                   | -0.5     | -0.5    | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -5.567 |
| Total Inflow, DS3 - CB                              | 1.0      | 0.7     | 0.8  | 1.8  | 2.9  | 10.8 | 9.9  | 14.6 | 8.0  | 9.9  | 0.8  | 0.8  | 62.1   |
| Evap Loss, Lake Avalon (from Table 10)              | 0.2      | 0.3     | 0.5  | 0.3  | 0.4  | 0.2  | 0.5  | 0.4  | 0.5  | 0.4  | 0.2  | 0.2  | 4.1    |
| Storage Chg, Lake Avalon (from Table 11)            | 0.4      | 0.5     | 0.6  | -2.1 | 0.1  | 4.2  | -1.9 | 0.6  | -1.8 | -1.1 | -0.4 | 1.5  | 0.6    |
| Carls ID diversions                                 | 0.0      | 0.0     | 0.0  | 2.8  | 2.7  | 2.8  | 8.0  | 7.4  | 9.1  | 10.8 | 0.1  | 0.0  | 43.8   |
| 93% CID diver                                       | 0.0      | 0.0     | 0.0  | 2.6  | 2.5  | 2.6  | 7.5  | 6.9  | 8.5  | 10.1 | 0.1  | 0.0  | 40.7   |
| Other depletions                                    | 0.1      | 0.1     | 0.1  | 0.1  | 0.1  | 0.1  | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | 0.1  | 1.4    |
| Dark Canyon at Csbad                                | 0.0      | 0.0     | 0.0  | 0.0  | 0.5  | 12.1 | 4.2  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 16.8   |
| Pecos b Dark Canyon                                 | 0.9      | 0.9     | 1.0  | 0.8  | 1.4  | 19.2 | 8.8  | 6.8  | 1.8  | 1.7  | 1.6  | 2.1  | 46.9   |
| Pecos R at Carlsbad                                 | 0.9      | 0.9     | 1.0  | 0.8  | 0.9  | 7.0  | 4.6  | 6.8  | 1.8  | 1.7  | 1.6  | 2.1  | 30.1   |
| Total Outflow                                       | 1.6      | 1.7     | 2.1  | 1.8  | 4.1  | 14.1 | 10.8 | 14.9 | 9.0  | 11.2 | 1.5  | 4.0  | 76.9   |
| Flood Inflow, DS3-CB                                | 0.7      | 1.0     | 1.3  | 0.0  | 1.2  | 3.3  | 0.9  | 0.3  | 0.9  | 1.2  | 0.7  | 3.2  | 14.8   |
| Flood Inflow, Art-CB                                | 0.7      | 1.0     | 1.3  | 0.0  | 1.2  | 16.7 | 5.9  | 12.0 | 0.9  | 1.2  | 0.7  | 3.2  | 45.0   |

| Table 4. Su   | mmary Ta    | able for Com | putations, C   | arlsbad to S | tate Line (B | .5)  |
|---------------|-------------|--------------|----------------|--------------|--------------|------|
| Water Year    |             | 2020         |                |              |              |      |
| 6/25/2022     |             |              |                |              |              |      |
|               |             |              |                |              |              |      |
|               |             |              |                |              |              |      |
|               |             | BCB - RB     | Del R          | DC           |              |      |
|               |             | RM           |                |              |              |      |
| Jan           |             | 0.0          | 0.0            | 0.0          |              |      |
| Feb           |             | 0.1          | 0.0            | 0.0          |              |      |
| Mar           |             | 0.0          | 0.0            | 0.0          |              |      |
| Apr           |             | 0.0          | 0.0            | 0.0          |              |      |
| May           |             | 0.1          | 1.1            | 0.5          |              |      |
| Jun           |             | 5.4          | 2.9            | 0.0          |              |      |
| Jul           |             | 9.8          | 0.7            | 0.0          |              |      |
| Aug           |             | 3.1          | 5.7            | 0.0          |              |      |
| Sep           |             | 0.2          | 0.1            | 0.0          |              |      |
| Oct           |             | 0.2          | 0.0            | 0.0          |              |      |
| Nov           |             | 0.0          | 0.0            | 0.0          |              |      |
| Dec           |             | 0.0          | 0.0            | 0.0          |              |      |
| Total         |             | 18.8         | 10.4           | 0.5          |              |      |
|               |             |              |                |              |              |      |
|               |             |              |                |              |              |      |
| Summary of    | flood inflo | ows, Carlsba | id to State Li | ine, TAF     |              |      |
|               |             |              |                |              |              |      |
| Red Bluff - C | Carlsbad +  | F Dark C RM  | calcs)         |              |              | 19.3 |
| Delaware Ri   | iver        |              |                |              |              | 10.4 |
| Total Floo    | d Inflow,   | Carlsbad to  | State Line     |              |              | 29.7 |

| Table 5. Depletions Due to Irrigation Above Sumner Dam (C.1.a) |        |        |      |      |      |      |      |       |  |  |  |
|----------------------------------------------------------------|--------|--------|------|------|------|------|------|-------|--|--|--|
| Water Year                                                     | 2021   |        |      |      |      |      |      |       |  |  |  |
| 5/7/2022                                                       |        |        |      |      |      |      |      |       |  |  |  |
|                                                                | APR    | MAY    | JUN  | JUL  | AUG  | SEPT | OCT  | TOTAL |  |  |  |
|                                                                |        |        |      |      |      |      |      |       |  |  |  |
| Precip Las Vegas FAA AP                                        | 0.13   | 2.24   | 1.75 | 1.86 | 1.64 | 1.72 | 1.23 | 10.57 |  |  |  |
| Eff prec Las Veg FAA AP                                        | 0.13   | 2.02   | 1.62 | 1.71 | 1.53 | 1.60 | 1.17 | 9.78  |  |  |  |
| Precip Pecos Natl Monument                                     | 0.01   | 0.14   | 0.27 | 5.27 | 1.25 | 1.58 | 0.96 | 9.48  |  |  |  |
| Eff Precip Pecos RS                                            | 0.01   | 0.14   | 0.26 | 3.90 | 1.19 | 1.47 | 0.93 | 7.90  |  |  |  |
| Precip Santa Rosa                                              | 0.10   | 2.21   | 2.38 | 3.33 | 4.67 | 0.94 | 1.96 | 15.59 |  |  |  |
| Eff Precip Santa Ro                                            | 0.10   | 2.00   | 2.12 | 2.83 | 3.68 | 0.91 | 1.80 | 13.44 |  |  |  |
| Average eff precip, ft                                         | 0.01   | 0.12   | 0.11 | 0.23 | 0.18 | 0.11 | 0.11 | 0.86  |  |  |  |
| Consumptive use, ft                                            | 0.19   | 0.36   | 0.36 | 0.30 | 0.27 | 0.18 | 0.11 | 1.77  |  |  |  |
| Unit depletion rate (CU less eff precip), ft                   | 0.18   | 0.24   | 0.25 | 0.07 | 0.09 | 0.07 | 0.00 | 0.91  |  |  |  |
| Acres (most recent inventory)                                  | 11529  |        |      |      |      |      |      |       |  |  |  |
| Streamflow depletion (actual use), AF                          | 10440  |        |      |      |      |      |      |       |  |  |  |
| 1947 depletion, AF                                             | 10804  |        |      |      |      |      |      |       |  |  |  |
| Difference (actual use - 1947 depletion), TAF                  | -0.4   |        |      |      |      |      |      |       |  |  |  |
| Adjustment to Gaged Flow, Pecos River below                    | Sumner | Dam, T | AF = |      |      | -0.4 |      |       |  |  |  |

| Table 6. Depletion     | s Due to  | Santa R      | losa Res    | ervoir O    | peration    | s (C.1.b)    |                   |              |             |           |           |        |        |
|------------------------|-----------|--------------|-------------|-------------|-------------|--------------|-------------------|--------------|-------------|-----------|-----------|--------|--------|
| Water Year             | 2021      |              |             |             |             | , ,          |                   |              |             |           |           |        |        |
| 5/7/2022               |           |              |             |             |             |              |                   |              |             |           |           |        |        |
|                        |           |              |             |             |             |              |                   |              |             |           |           |        |        |
|                        | JAN       | FFB          | MAR         | APR         | MAY         | JUN          | JUI               | AUG          | SEPT        | OCT       | NOV       | DEC    | ΤΟΤΑΙ  |
| LS 2013 table (USBR).  | add 4.200 | ) feet to va | lue shown   | : LSR 199   | 7 tables us | ed (COE):    | Add 4.600         | ) feet to va | lue shown   | 001       |           | 520    | 101712 |
| Lk Sumner ga ht avg    | 49 56     | 51 60        | 51 67       | 50.72       | 48.14       | 39 44        | 44 33             | 42.98        | 41 70       | 39.06     | 40 86     | 45 09  |        |
| LS content, AF, avg    | 15040     | 17926        | 18032       | 16633       | 13266       | 5803         | 9348              | 8212         | 7266        | 5581      | 6688      | 10037  |        |
| LS area, acres, avg    | 1321      | 1512         | 1521        | 1426        | 1169        | 590          | 874               | 790          | 713         | 579       | 666       | 938    |        |
| LS evap, inches        | 4.20      | 4.49         | 9.08        | 12.05       | 12.72       | 15.45        | 12.12             | 11.52        | 11.22       | 8.91      | 6.85      | 6.76   | 115.36 |
| .77 LS Evap            | 3.23      | 3.46         | 6.99        | 9.28        | 9.79        | 11.90        | 9.33              | 8.87         | 8.64        | 6.86      | 5.27      | 5.20   | 88.83  |
| LS Precip, inches      | 0.12      | 0.02         | 0.18        | 0.30        | 1.27        | 2.73         | 4.98              | 1.35         | 0.63        | 0.96      | 0.00      | 0.00   | 12.54  |
| Net LS Evap, inches    | 3.11      | 3.44         | 6.81        | 8.98        | 8.52        | 9.17         | 4.35              | 7.52         | 8.01        | 5.90      | 5.27      | 5.20   | 76.29  |
| LSum Evaploss, TAF     | 0.34      | 0.43         | 0.86        | 1.07        | 0.83        | 0.45         | 0.32              | 0.50         | 0.48        | 0.28      | 0.29      | 0.41   | 6.26   |
|                        |           |              |             |             |             |              |                   |              |             |           |           |        |        |
| L S Rosa ga ht, avg*   | 94.02     | 94.15        | 94.21       | 94.09       | 93.75       | 93.39        | 101.91            | 112.32       | 116.74      | 116.43    | 116.10    | 115.81 |        |
| LSR content, AF, avg   | 3772      | 3817         | 3839        | 3796        | 3679        | 3556         | 7233              | 14860        | 19648       | 19279     | 18892     | 18328  |        |
| LSR area, acres, avg   | 348       | 351          | 352         | 350         | 343         | 337          | 536               | 969          | 1199        | 1182      | 1163      | 1136   |        |
| LSR evap, inches       | 3.72      | 4.98         | 8.58        | 10.43       | 9.06        | 11.09        | 10.25             | 10.50        | 9.01        | 6.83      | 4.77      | 3.76   | 92.98  |
| .77 LSR Evap           | 2.86      | 3.83         | 6.61        | 8.03        | 6.98        | 8.54         | 7.89              | 8.09         | 6.94        | 5.26      | 3.67      | 2.90   | 71.59  |
| LSR precip, inches     | 0.18      | 0.46         | 1.18        | 0.10        | 2.21        | 2.38         | 3.33              | 4.67         | 0.94        | 1.96      | 0.00      | 0.00   | 17.41  |
| Net LSR Evap, inches   | 2.68      | 3.37         | 5.43        | 7.93        | 4.77        | 6.16         | 4.56              | 3.42         | 6.00        | 3.30      | 3.67      | 2.90   | 54.18  |
| LSR Evaploss, TAF      | 0.08      | 0.10         | 0.16        | 0.23        | 0.14        | 0.17         | 0.20              | 0.28         | 0.60        | 0.32      | 0.36      | 0.27   | 2.91   |
| Total evaploss, TAF    | 0.42      | 0.53         | 1.02        | 1.30        | 0.97        | 0.62         | 0.52              | 0.77         | 1.08        | 0.61      | 0.65      | 0.68   | 9.17   |
| * Indicates below 4700 | ) ft      |              |             |             |             |              |                   |              |             |           |           |        |        |
| Sum contents, AF       | 18812     | 21743        | 21871       | 20429       | 16945       | 9359         | 16581             | 23072        | 26914       | 24860     | 25580     | 28365  |        |
| 1947 area, acres       | 1018      | 1143         | 1151        | 1039        | 1000        | 700          | 1000              | 1198         | 1440        | 1330      | 1384      | 1492   |        |
| 1947 evaploss, TAF     | 0.26      | 0.33         | 0.65        | 0.78        | 0.71        | 0.53         | 0.36              | 0.75         | 0.96        | 0.65      | 0.61      | 0.65   | 7.25   |
| current-1947evaploss   | 0.16      | 0.20         | 0.37        | 0.52        | 0.26        | 0.09         | 0.16              | 0.02         | 0.11        | -0.04     | 0.04      | 0.03   | 1.92   |
|                        |           |              |             |             |             | Annual ad    | justment f        | or excess e  | evaporation | า =       |           |        | 1.9    |
|                        |           |              |             |             |             |              |                   |              |             |           |           |        |        |
| ADJUSTMENT FOR E       | XCESSIVE  | E STORAG     | GE IN SAN   | TA ROSA     | RESERVO     | DIR          |                   |              |             |           |           |        |        |
|                        |           |              | 2020        | 2020        | 2021        | 2021         |                   |              |             |           |           |        |        |
|                        |           |              | Gage        | Storage     | Gage        | Storage      |                   |              |             |           |           |        |        |
| EndYear Sumner Sto     |           |              | 4248.30     | 13456       | 4246.73     | 11681        |                   |              |             |           |           |        |        |
| EndYear S R Sto        |           |              | 4794.00     | 3765        | 4715.67     | 18397        |                   |              |             |           |           |        |        |
| Sum                    |           |              |             | 17221       |             | 30078        |                   |              |             |           |           |        |        |
| Sto Adjustment, TAF    |           |              |             |             |             | 0.0          |                   |              |             |           |           |        |        |
| Adjustm Ex Evap, TAF   |           |              |             |             |             | 1.9          |                   |              |             |           |           |        |        |
| Total Adjustment, TAF  |           |              |             |             |             | 1.9          |                   |              |             |           |           |        |        |
|                        |           |              |             |             |             |              |                   |              |             |           |           |        |        |
|                        | Storage   | adjustmen    | t           |             |             |              |                   |              |             |           |           |        |        |
|                        | Both equ  | al or less   | than 129.3  | TAF, adju   | stment is z | zero         |                   |              |             |           |           |        |        |
|                        | Both gre  | ater than 1  | 129.3 TAF,  | subtract p  | revious fro | m current    | year              |              |             |           |           |        |        |
|                        | Current   | year less t  | han 129.3   | TAF, previ  | ous greate  | r than 129   | <u>.3 TAF, su</u> | btract prev  | ious year f | rom 129.3 | TAF       |        |        |
|                        | Current   | year greate  | er than 129 | 9.3 TAF, pr | evious yea  | ar less thar | n 129.3 TA        | F, subtract  | 129.3 TA    | from curi | rent year |        |        |
|                        |           |              |             |             |             |              |                   |              |             |           |           |        |        |

| Table 7. Carlsbad Springs New Water [B.4. | c.(2)] |      |        |      |        |
|-------------------------------------------|--------|------|--------|------|--------|
| Water Year                                | 2021   |      |        |      |        |
| 5/1/2022                                  |        |      |        |      |        |
|                                           |        | TAF  | AF/day | cfs  | Totals |
|                                           |        |      |        |      |        |
| Pecos R bel DC                            |        | 46.9 | 128.6  | 64.8 | 64.8   |
| Dark Canyon                               |        | 16.8 | 45.9   | 23.1 | 23.1   |
| Pecos R bel Lake Avalon                   |        | 15.9 | 43.3   | 21.9 | 21.9   |
| Depletion, cfs                            |        |      |        |      | 2.0    |
| CID lag seep, cfs (from Table 8)          |        |      |        |      | 3.9    |
| Return flow, cfs                          |        |      |        |      | 1.0    |
| Lake Av lagged seep, cfs (from Table 9)   |        |      |        |      | 21.6   |
| PR seepage, cfs                           |        |      |        |      | 3.0    |
| Carls new water, cfs                      |        |      |        |      | -7.69  |
| Carls new wat, TAF                        |        |      |        |      | -5.6   |
| Carls new wat monthly, TAF                |        |      |        |      | -0.5   |

| Table 8. Carls | bad Mair | n Canal S | Seepage | Lagged | [B.4.c.( | 2)(e)] |       |       |       |       |     |      |       |
|----------------|----------|-----------|---------|--------|----------|--------|-------|-------|-------|-------|-----|------|-------|
| Water Year     | 2021     |           |         |        |          |        |       |       |       |       |     |      |       |
| 5/7/2022       |          |           |         |        |          |        |       |       |       |       |     |      |       |
|                | JAN      | FEB       | MAR     | APR    | MAY      | JUN    | JUL   | AUG   | SEPT  | OCT   | NOV | DEC  | TOTAL |
|                |          |           |         |        |          |        |       |       |       |       |     |      |       |
| WY 2021        |          |           |         |        |          |        |       |       |       |       |     |      |       |
| CID, TAF       | 0.0      | 0.0       | 0.0     | 2.8    | 2.7      | 2.8    | 8.0   | 7.4   | 9.1   | 10.8  | 0.1 | 0.0  | 43.8  |
| days/mo        | 31       | 28        | 31      | 30     | 31       | 30     | 31    | 31    | 30    | 31    | 30  | 31   | 365   |
| cfs            | 0        | 0         | 0.0     | 47.8   | 44.2     | 46.3   | 130.5 | 120.6 | 152.9 | 175.9 | 1.4 | 0.0  | 60.0  |
| cfs, qtr avg   |          |           | 0.0     |        |          | 46.1   |       |       | 134.5 |       |     | 59.7 |       |
|                |          |           |         |        |          |        |       |       |       |       |     |      |       |
| WY 2020        |          | 1Q        | 2Q      | 3Q     | 4Q       |        |       |       |       |       |     |      |       |
| FLOWS, cfs     |          |           |         | 118.7  | 30.7     |        |       |       |       |       |     |      |       |
| SEVEN %        |          |           |         | 8.3    | 2.2      |        |       |       |       |       |     |      |       |
|                |          |           |         |        |          |        |       |       |       |       |     |      |       |
| WY 2021 lagg   | ed       | 1Q        | 2Q      | 3Q     | 4Q       |        |       |       |       |       |     |      |       |
| FLOWS, cfs     |          | 0.0       | 46.1    | 134.5  | 59.7     |        |       |       |       |       |     |      |       |
| SEVEN %        |          | 0.0       | 3.2     | 9.4    | 4.2      |        |       |       |       |       |     |      |       |
| LAG            |          | 2.1       | 2.0     | 5.8    | 5.8      | Avg =  | 3.9   | cfs   |       |       |     |      |       |

| Table 9. Lake                                                              | Avalon | Leakage | Lagged | [B.4.c.(2 | 2)(g)] |       |      |      |      |      |      |      |      |
|----------------------------------------------------------------------------|--------|---------|--------|-----------|--------|-------|------|------|------|------|------|------|------|
| Water Year                                                                 | 2021   |         |        |           |        |       |      |      |      |      |      |      |      |
| 6/25/2022                                                                  |        |         |        |           |        |       |      |      |      |      |      |      |      |
|                                                                            |        |         |        |           |        |       |      |      |      |      |      |      |      |
|                                                                            |        |         |        |           |        |       |      |      |      |      |      |      |      |
| WY 2021                                                                    | JAN    | FEB     | MAR    | APR       | MAY    | JUN   | JUL  | AUG  | SEPT | OCT  | NOV  | DEC  | TOT  |
|                                                                            |        |         |        |           |        |       |      |      |      |      |      |      |      |
| Elev NM rept                                                               | 74.2   | 74.8    | 75.5   | 73.8      | 73.1   | 73.2  | 77.0 | 77.0 | 75.8 | 74.5 | 73.5 | 74.4 |      |
| ga ht, avg*                                                                | 17.2   | 17.8    | 18.5   | 16.8      | 16.1   | 16.2  | 20.0 | 20.0 | 18.8 | 17.5 | 16.5 | 17.4 |      |
| cfs                                                                        | 20.0   | 23.2    | 26.2   | 18.5      | 15.0   | 15.5  | 33.7 | 33.4 | 28.1 | 21.8 | 16.7 | 21.3 |      |
| days                                                                       | 31     | 28      | 31     | 30        | 31     | 30    | 31   | 31   | 30   | 31   | 30   | 31   | 365  |
| cfs avg                                                                    | 23.1   |         |        | 16.3      |        |       | 31.7 |      |      | 20.0 |      |      | 22.8 |
|                                                                            |        |         |        |           |        |       |      |      |      |      |      |      |      |
| WY 2020                                                                    |        | 1Q      | 2Q     | 3Q        | 4Q     |       |      |      |      |      |      |      |      |
| cfs                                                                        |        |         |        | 18.8      | 14.7   |       |      |      |      |      |      |      |      |
|                                                                            |        |         |        |           |        |       |      |      |      |      |      |      |      |
| WY 2021 lagg                                                               | ed     | 1Q      | 2Q     | 3Q        | 4Q     |       |      |      |      |      |      |      |      |
| -                                                                          |        |         |        |           |        |       |      |      |      |      |      |      |      |
| cfs                                                                        |        | 23.1    | 16.3   | 31.7      | 20.0   |       |      |      |      |      |      |      |      |
| lag cfs                                                                    |        | 19.6    | 18.3   | 25.2      | 23.3   | Avg = | 21.6 | cfs  |      |      |      |      |      |
| * Computed as WS elev by NM Report minus Gage datum at 3157.0 (USBR datum) |        |         |        |           |        |       |      |      |      |      |      |      |      |

| Table 10. Evaporation Loss at Lake Avalon [B.4.d.(1)]                      |       |       |       |       |       |       |       |       |       |       |       |       |        |  |
|----------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--|
| Water Year                                                                 | 2021  |       |       |       |       |       |       |       |       |       |       |       |        |  |
| 5/7/2022                                                                   |       |       |       |       |       |       |       |       |       |       |       |       |        |  |
|                                                                            |       |       |       |       |       |       |       |       |       |       |       |       |        |  |
|                                                                            | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV   | DEC   | тот    |  |
| Av WS NM Rept                                                              | 74.16 | 74.82 | 75.45 | 73.84 | 73.12 | 73.21 | 77.01 | 76.95 | 75.84 | 74.52 | 73.47 | 74.42 |        |  |
| Avalon ga ht, avg, ft*                                                     | 17.16 | 17.82 | 18.45 | 16.84 | 16.12 | 16.21 | 20.01 | 19.95 | 18.84 | 17.52 | 16.47 | 17.42 |        |  |
| Avg area Avalon, ac**                                                      | 706   | 777   | 814   | 669   | 585   | 596   | 908   | 904   | 829   | 745   | 626   | 734   |        |  |
| Panevap Brantley, in.                                                      | 4.65  | 5.60  | 9.22  | 10.11 | 12.76 | 14.03 | 10.16 | 9.91  | 9.77  | 8.45  | 4.80  | 4.34  | 103.80 |  |
| Lakeevap Brantley, in.                                                     | 3.58  | 4.31  | 7.10  | 7.78  | 9.83  | 10.80 | 7.82  | 7.63  | 7.52  | 6.51  | 3.70  | 3.34  | 79.93  |  |
| Precip Brantley, in.                                                       | 0.25  | 0.20  | 0.05  | 1.97  | 0.75  | 6.42  | 1.09  | 2.12  | 0.70  | 0.46  | 0.42  | 0.00  | 14.43  |  |
| Netevap, inches                                                            | 3.33  | 4.11  | 7.05  | 5.81  | 9.08  | 4.38  | 6.73  | 5.51  | 6.82  | 6.05  | 3.28  | 3.34  | 65.50  |  |
| Evaploss Av, TAF                                                           | 0.20  | 0.27  | 0.48  | 0.32  | 0.44  | 0.22  | 0.51  | 0.42  | 0.47  | 0.38  | 0.17  | 0.20  | 4.07   |  |
| * Computed as WS elev by NM Report minus Gage datum at 3157.0 (USBR datum) |       |       |       |       |       |       |       |       |       |       |       |       |        |  |
| ** Based on 2006 USBR Area and Capacity Table                              |       |       |       |       |       |       |       |       |       |       |       |       |        |  |

| Table 11. Change ir                           | n Storage | e, Lake A | Avalon [E | 3.4.d.(2)] |           |           |         |       |      |      |      |      |      |     |
|-----------------------------------------------|-----------|-----------|-----------|------------|-----------|-----------|---------|-------|------|------|------|------|------|-----|
| (Gage heights are ei                          | nd of mo  | nth)      |           |            |           |           |         |       |      |      |      |      |      |     |
| Water Year                                    | 2021      |           |           |            |           |           |         |       |      |      |      |      |      |     |
| 5/7/2022                                      |           |           |           |            |           |           |         |       |      |      |      |      |      |     |
|                                               |           |           |           |            |           |           |         |       |      |      |      |      |      |     |
|                                               | DEC       | JAN       | FEB       | MAR        | APR       | MAY       | JUN     | JUL   | AUG  | SEPT | OCT  | NOV  | DEC  | тот |
|                                               | 2019      | 2020      |           |            |           |           |         |       |      |      |      |      |      |     |
| WS NM Rept                                    | 73.9      | 74.5      | 75.1      | 75.8       | 72.9      | 73.0      | 78.2    | 76.1  | 76.8 | 74.6 | 73.0 | 74.1 | 74.7 |     |
| Gage EOM, ft*                                 | 16.9      | 17.5      | 18.1      | 18.8       | 15.9      | 16.0      | 21.2    | 19.1  | 19.8 | 17.6 | 16.0 | 17.1 | 17.7 |     |
| Storage, AF**                                 | 1647      | 2073      | 2537      | 3107       | 1029      | 1085      | 5294    | 3357  | 3965 | 2147 | 1085 | 699  | 2223 |     |
| Change sto, TAF                               |           | 0.4       | 0.5       | 0.6        | -2.1      | 0.1       | 4.2     | -1.9  | 0.6  | -1.8 | -1.1 | -0.4 | 1.5  | 0.6 |
| * Computed as WS                              | elev by N | IM Repo   | rt minus  | Gage da    | atum at 3 | 3157.0 (l | JSBR da | itum) |      |      |      |      |      |     |
| ** Based on 2006 USBR Area and Capacity Table |           |           |           |            |           |           |         |       |      |      |      |      |      |     |

| Table 12. Data Required for    |              |              |              |              |         |          |        |         |              |       |       |       |        |
|--------------------------------|--------------|--------------|--------------|--------------|---------|----------|--------|---------|--------------|-------|-------|-------|--------|
| Water Year 2021                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| 5/9/2022                       | JAN          | FEB          | MAR          | APR          | MAY     | JUN      | JUL    | AUG     | SEPT         | OCT   | NOV   | DEC   | TOTAL  |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| STREAMFLOW GAGING RECC         | DRDS, T      | AF           |              |              |         |          |        |         |              |       |       |       |        |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| Pecos R b Sumner Dam           | 1.1          | 1.1          | 5.4          | 4.6          | 14.4    | 4.8      | 3.7    | 5.7     | 5.6          | 5.2   | 0.7   | 1.0   | 53.1   |
| Fort Sumner Main C             | 0.0          | 0.0          | 5.1          | 4.4          | 4.8     | 4.6      | 3.2    | 5.4     | 5.4          | 5.2   | 0.0   | 0.0   | 38.3   |
| Pecos R nr Artesia             | 3.3          | 2.8          | 2.9          | 1.9          | 5.4     | 13.3     | 36.5   | 7.9     | 3.3          | 2.3   | 2.7   | 3.2   | 85.5   |
| Rio Penasco at Dayton          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 0.9      | 0.8    | 1.4     | 0.0          | 0.0   | 0.0   | 0.0   | 3.2    |
| Fourmile Draw nr Lakewood      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 0.6      | 0.7    | 0.2     | 0.0          | 0.0   | 0.0   | 0.0   | 1.5    |
| South Seven Rivers nr Lkwd     | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 2.9      | 0.9    | 6.7     | 0.0          | 0.0   | 0.0   | 0.0   | 10.5   |
| Rocky Arroyo at Hwy Br nr      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 9.0      | 2.7    | 3.4     | 0.0          | 0.0   | 0.0   | 0.0   | 15.1   |
| Pecos R at Dam Site 3          | 1.4          | 1.2          | 1.3          | 2.3          | 3.4     | 11.3     | 10.4   | 15.0    | 8.5          | 10.4  | 1.3   | 1.2   | 67.6   |
| Pecos bel Avalon Dam           | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 5.5      | 3.5    | 6.8     | 0.0          | 0.0   | 0.0   | 0.0   | 15.9   |
| Carlsbad Main Canal            | 0.0          | 0.0          | 0.0          | 2.8          | 2.7     | 2.8      | 8.0    | 7.4     | 9.1          | 10.8  | 0.1   | 0.0   | 43.8   |
| Dark Canyon at Carlsbad        | 0            | 0            | 0            | 0            | 0.5     | 12.1     | 4.2    | 0.0     | 0.0          | 0.0   | 0.0   | 0.0   | 16.8   |
| Pecos below Dark Canyon        | 0.9          | 0.9          | 1.0          | 0.8          | 1.4     | 19.2     | 8.8    | 6.8     | 1.8          | 1.7   | 1.6   | 2.1   | 46.9   |
| Pecos R at Red Bluff           | 2.9          | 2.5          | 2.2          | 1./          | 2.5     | 13.1     | 14.5   | 11.9    | 3.5          | 3.5   | 3.5   | 3.4   | 65.2   |
| Delaware R nr Red Bluff        | 0.0          | 0.0          | 0.0          | 0.0          | 1.1     | 2.9      | 0.7    | 5.8     | 0.1          | 0.1   | 0.1   | 0.1   | 10.8   |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| Avalop gage bt, and mo         | 74.5         | 75.1         | 75.8         | 72.0         | 73.0    | 78.2     | 76.1   | 76.9    | 74.6         | 73.0  | 7/ 1  | 74.7  |        |
| Avalon gage ht, end mo         | 74.3         | 73.1         | 75.6         | 72.9         | 73.0    | 70.2     | 70.1   | 70.0    | 74.0         | 73.0  | 74.1  | 74.7  |        |
| Avaion gage ni, avg            | 74.Z         | 74.0<br>52.4 | 70.0<br>51.0 | 73.0<br>50.1 | 10.1    | 27.8     | 11.0   | 17.0    | 20.8         | 27.7  | 13.5  | 14.4  |        |
| Sumper Lake game, end mo       | 40.6         | 51.6         | 51.2         | 50.1         | 40.3    | 37.0     | 44.0   | 42.0    | 39.0<br>11.7 | 30.1  | 43.2  | 40.7  |        |
| Lake S Rosa ga bt, and mo      | 49.0<br>0/ 1 | 04.2         | 0/ 3         | 03.0         | 40.1    | 03.4     | 107.6  | 43.0    | 116.6        | 116.2 | 40.9  | 45.1  |        |
| Lake S Rosa ga ht, avg         | 94.0         | 94.2         | 94.0         | 94.1         | 93.7    | 03.4     | 107.0  | 112.3   | 116.7        | 116.4 | 116.0 | 115.8 |        |
|                                | * Value      | es for Si    | imner a      | hove 42      | 00 feet | for Sant | a Rosa | above 4 | 600 feet     | 110.4 | 110.1 | 110.0 |        |
|                                | Value        |              |              |              |         | or ound  |        |         |              |       |       |       |        |
| PRECIPITATION. INCHES          |              |              |              |              |         |          |        |         |              |       |       |       |        |
| ,,                             |              |              |              |              |         |          |        |         |              |       |       |       |        |
| Brantley Lake                  | 0.25         | 0.20         | 0.05         | 1.97         | 0.75    | 6.42     | 1.09   | 2.12    | 0.70         | 0.46  | 0.42  | 0.00  | 14.43  |
| Las Vegas FAA AP               | 0.01         | 0.07         | 0.19         | 0.13         | 2.24    | 1.75     | 1.86   | 1.64    | 1.72         | 1.23  | 0.26  | 0.00  | 11.10  |
| Pecos National Monument        | 0.46         | 0.70         | 1.83         | 0.01         | 0.14    | 0.27     | 5.27   | 1.25    | 1.58         | 0.96  | 0.01  | 0.66  | 13.14  |
| Santa Rosa                     | 0.18         | 0.46         | 1.18         | 0.10         | 2.21    | 2.38     | 3.33   | 4.67    | 0.94         | 1.96  | 0.00  | 0.00  | 17.41  |
| Lake Santa Rosa                | 0.18         | 0.46         | 1.18         | 0.10         | 2.21    | 2.38     | 3.33   | 4.67    | 0.94         | 1.96  | 0.00  | 0.00  | 17.41  |
| Sumner Lake                    | 0.12         | 0.02         | 0.18         | 0.30         | 1.27    | 2.73     | 4.98   | 1.35    | 0.63         | 0.96  | 0.00  | 0.00  | 12.54  |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| PAN EVAPORATION, INCHES        |              |              |              |              |         |          |        |         |              |       |       |       |        |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| Lake Santa Rosa                | 3.72         | 4.98         | 8.58         | 10.43        | 9.06    | 11.09    | 10.25  | 10.50   | 9.01         | 6.83  | 4.77  | 3.76  | 92.98  |
| Lake Sumner                    | 4.20         | 4.49         | 9.08         | 12.05        | 12.72   | 15.45    | 12.12  | 11.52   | 11.22        | 8.91  | 6.85  | 6.76  | 115.36 |
| Brantley Lake                  | 4.65         | 5.60         | 9.22         | 10.11        | 12.76   | 14.03    | 10.16  | 9.91    | 9.77         | 8.45  | 4.80  | 4.34  | 103.80 |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| OTHER REPORTS                  |              |              |              |              |         |          |        |         |              |       |       |       |        |
|                                |              |              |              |              |         |          |        |         |              |       |       |       |        |
| Base Acme-Art, TAF (USGS)      | 2.03         | 1.89         | 1.91         | 1.07         | 0.74    | 0.66     | 1.05   | 0.98    | 1.01         | 0.98  | 1.43  | 1.85  | 15.59  |
| Pump depl Ac-Artesia, TAF      | 0.00         | 0.00         | 0.00         | 0.00         | 0.00    | 0.00     | 0.00   | 0.00    | 0.00         | 0.00  | 0.00  | 0.00  | 0.00   |
| Pumping, C-2713, Malaga B      |              |              |              |              |         |          |        |         |              |       |       |       | 0.41   |
| NM irrig inv, acres (3/9/2000) |              |              |              |              |         |          |        |         |              |       |       |       | 11529  |
| NM Transfer water use, TAF     |              |              |              |              |         |          |        |         |              |       |       |       |        |
| NM salvaged water, TAF         |              |              |              |              | • • •   | ~ ~ ~    | • • •  | • • •   | • • •        | • • • | • • • | • • • | 0.0    |
| Texas, water stored NM, TAF    | 0.0          | 0.0          | 0.0          | 0.0          | 0.0     | 0.0      | 0.0    | 0.0     | 0.0          | 0.0   | 0.0   | 0.0   | 0.0    |
| Texas, use Del water, TAF      |              |              |              |              |         |          |        |         |              |       |       |       |        |

# **APPENDIX**

# RESPONSE TO STATES' OBJECTIONS

## **RESPONSE TO STATES' OBJECTIONS**

Final Report, Accounting Year 2022

### **NEW MEXICO'S OBJECTIONS**

#### Table 4. General Calculations of Annual Departures in TAF.

#### **FIF Calculations**

New Mexico found errors in the hydrograph scalping that led to incorrect values in Table 4. The errors were due to a corrupted spreadsheet formula in the scalped discharge values for Pecos River below Dark Canyon (PRbDC) beginning on June 26 and carrying through to August 28. For the monthly scalped flows before Dark Canyon Draw (DCD) flows are subtracted, New Mexico supplied the following estimates from its analysis (monthly totals in cfs-d):

|        | PR at Red Bluff | PR bel DC | FIF   |
|--------|-----------------|-----------|-------|
| June   | 9,293           | 5,954     | 3,339 |
| July   | 5,746           | 2,559     | 3,187 |
| August | 3,753           | 2,215     | 1,538 |

Converted to AF, the corresponding values are:

|        | PR at Red Bluff | PR bel DC | FIF   |
|--------|-----------------|-----------|-------|
| June   | 18,433          | 11,810    | 6,623 |
| July   | 11,397          | 5,076     | 6,321 |
| August | 7,444           | 4,393     | 3,051 |

Once the error is corrected it becomes clear that during the period of DCD inflows (June 29 -

Jul 11), the difference in scalped flows of Red Bluff and Below Dark Canyon gages became negative and the River Master's Manual (RMM) Section B.5.a.(3) applies, as New Mexico noted.

The general issue that is addressed by the Section B.5.a.(3) provision in the RMM is that if all DCD flows are added to the FIF for the Carlsbad to Red Bluff reach at the time that the difference in scalped inflows at the upstream and downstream gages goes negative, the overall FIF will be overestimated. The issue was triggered by relocation of the Pecos gage from above the DCD confluence to below it. When the gage was above DCD, the flow from Dark Canyon did not have to be added separately. Now, various hydrologic effects occur when DCD flows are gaged at Dark Canyon. If the gaged DCD flows are translated directly and without modification to the PRbDC gage, then the difference in scalped flows in the BCB to RB reach will be reduced by the DCD flows and adding them back in restores the historical condition. If, however, the difference in scalped flows is negative while DCD is flowing, then the indication is that the influence of the DCD flows on the PRbDC gage record has influenced the negative reading due to hydraulic effects. By subtracting DCD flows from the PR bel DC gaged flows and not adding them back in later, a new estimate of the actual FIF in the reach is obtained. The deduction of DCD flows can create a hydrograph at PRbDC that lacks a regular rise and fall, but considering this anomaly is implicit in the adjusted procedure.

To recompute the difference in scalped flows, the DCD flows were subtracted from the PRbDC flows to create a new flow record to find scalped flows for that gage. The River Master (RM) interpreted RMM Section B.5.a.(3) differently from NM. NM apparently only recomputed the FIF in June with deducted DCD to reach a new value for the period when the difference in scalped flows was negative for that month. New Mexico did not provide a spreadsheet, so the RM interpreted this from the text description provided. The RM's interpretation is that, because a flood event in the reach may begin before DCD flows appear at the PR bel DC gage, the scalping of flood flows at that gage should begin at the onset of the event causing the negative difference in scalped flows. This means that the new computation carried over into July to the end of the event at the RB gage on July 13.

|        | PRaRB | PRbDC  | Diff   |
|--------|-------|--------|--------|
|        |       |        |        |
| RM     |       |        |        |
| June   | 5,954 | 3,254  | 2,700  |
| July   | 5,402 | 467*   | 4,936* |
| August | 3,753 | 2,215  | 1,538  |
|        |       | Sum    | 9,174  |
|        |       |        |        |
| NM     |       |        |        |
| June   | 5,954 | 3,190  | 2,764  |
| July   | 5,746 | 3,099* | 4,764* |
| August | 3,753 | 2,215  | 1,538  |
|        |       | Sum    | 9,066  |

The RM's calculations are shown on the attached spreadsheet. The resulting differences in cfs-d between New Mexico's and the RM's procedure are shown in this table.

\* The RM recomputed the PRbDC scalped flows for July by deducting the DCD flows. NM did not deduct them, but added them back afterwards. This creates a small difference in the results.

#### Negative sign error

New Mexico noted that the negative sign error for April for the difference in scalped flood inflows. This objection is accepted.

#### **Result after considering New Mexico's objections**

A revised Table 4 is included in the Final Report. The overall difference in the RM's (29.7 TAF) and New Mexico's (29.6 TAF) computations is 0.1 TAF.

## **TEXAS' OBJECTIONS**

#### Table 4. General Calculations of Annual Departures (B.1) in TAF for WY 2021

Texas found the same error for June, July, and August. Texas recomputed the difference in scalped flood flows, but apparently did not deduct the DCD flows as prescribed by RMM Section B.5.a.(3). This resulted in a small difference in Table 4 totals. Texas computed 30.9 TAF and the RM's computation was 29.7 TAF.

#### Comment on Tables 8 and 9

Texas noted that 29 days was shown incorrectly for February in Table 9. This is accepted, and Tables 3, 7, and 9 were corrected accordingly.

## FINAL CALCULATED DEPARTURE

The Preliminary Report had a Final Calculated Departure as a shortfall of 17.2 TAF. After considering the states' objections, the Final Determination is a shortfall of 4.4 TAF.

#### Revised computations for FIF

| 2021 | I Water | vear    |       |             |                |       |       |      |      |        |      |      |       |           |      |
|------|---------|---------|-------|-------------|----------------|-------|-------|------|------|--------|------|------|-------|-----------|------|
|      |         |         | Va    | alues in cf | s-d            |       |       |      |      |        |      |      | Mor   | th totals |      |
|      |         | 6/25/22 | PRaRB |             |                | PRbDC |       |      | DCD  | PRbCB- | DCD  |      | PRaRB | PRbDC     | FIF  |
|      | Dav     | Yr Dav  | Q     | Base        | Diff           | Q     | Base  | Diff |      | Q      | Base | Diff |       |           |      |
|      |         |         |       |             |                | _     |       |      |      |        |      |      |       |           |      |
| JUN  | 1       | 152     | 66    | 28.0        | 38             | 53.1  | 13.52 | 40   |      | 53.1   | 13.5 | 39.6 |       |           |      |
|      | 2       | 153     | 56.1  | 27.9        | 28             | 30.3  | 13.38 | 17   |      | 30.3   | 13.4 | 16.9 |       |           |      |
|      | 3       | 154     | 76 1  | 27.7        | /8             | 32.3  | 13 24 | 10   |      | 32.3   | 13.2 | 10.0 |       |           |      |
|      | 3       | 155     | 70.1  | 27.6        | <del>-</del> 0 | 12.1  | 12.24 | 0    |      | 12.0   | 12.1 | 0.0  |       |           |      |
|      | 4       | 155     |       | 27.0        | 01             | 10.1  | 13.1  | 0    |      | 13.1   | 13.1 | 0.0  |       |           |      |
|      | 5       | 156     | 58.8  | 27.5        | 31             | 13.3  |       |      |      |        |      |      |       |           |      |
|      | 6       | 157     | 53.1  | 27.3        | 26             | 13.8  |       |      |      |        |      |      |       |           |      |
|      | 7       | 158     | 40    | 27.2        | 13             | 12.8  |       |      |      |        |      |      |       |           |      |
|      | 8       | 159     | 32.9  | 27.1        | 6              | 12.4  |       |      |      |        |      |      |       |           |      |
|      | 9       | 160     | 28.9  | 26.9        | 2              | 12.5  |       |      |      |        |      |      |       |           |      |
|      | 10      | 161     | 26.8  | 26.8        | 0              | 12.6  |       |      |      |        |      |      |       |           |      |
|      | 11      | 162     | 25.4  |             |                | 12.4  |       |      |      |        |      |      |       |           |      |
|      | 12      | 163     | 24.2  |             |                | 11.1  |       |      |      |        |      |      |       |           |      |
|      | 13      | 164     | 22.5  |             |                | 10.1  |       |      |      |        |      |      |       |           |      |
|      | 14      | 165     | 21.4  |             |                | 10    |       |      |      |        |      |      |       |           |      |
| .1   | 15      | 166     | 19 7  |             |                | 10 3  |       |      |      |        |      |      |       |           |      |
| Ű    | 16      | 167     | 10.2  |             |                | 10.2  |       |      |      |        |      |      |       |           |      |
|      | 17      | 169     | 17.0  |             |                | 10.2  |       |      |      |        |      |      |       |           |      |
|      | 1/      | 100     | 100   |             |                | 9.3/  |       |      |      |        |      |      |       |           |      |
|      | 18      | 169     | 16.8  |             |                | 9.59  |       |      |      |        |      |      |       |           |      |
|      | 19      | 170     | 15.4  |             |                | 10    |       |      |      |        |      |      |       |           |      |
|      | 20      | 1/1     | 14.5  |             |                | 10.8  |       |      |      |        |      |      |       |           |      |
|      | 21      | 172     | 14    |             |                | 10.7  |       |      |      |        |      |      |       |           |      |
|      | 22      | 173     | 13.7  |             |                | 8.35  |       |      |      |        |      |      |       |           |      |
|      | 23      | 174     | 15    |             |                | 12.2  |       |      |      |        |      |      |       |           |      |
|      | 24      | 175     | 16.2  |             |                | 10.7  |       |      |      |        |      |      |       |           |      |
|      | 25      | 176     | 16.1  |             |                | 9.84  |       |      |      |        |      |      |       |           |      |
|      | 26      | 177     | 16.4  |             |                | 11    | 11.0  | 0    |      | 11     | 11   | 0    |       |           |      |
|      | 27      | 178     | 18.6  | 18.6        | 0              | 16.7  | 13.6  | 3    |      | 16.7   | 13   | 3    |       |           |      |
|      | 28      | 179     | 635   | 20.9        | 614            | 50.2  | 16.2  | 34   |      | 50.2   | 16   | 34   |       |           |      |
|      | 29      | 180     | 86.2  | 23.2        | 63             | 6190  | 18 7  | 6171 | 4590 | 1600   | 18   | 1582 |       |           |      |
|      | 30      | 181     | 5060  | 25.4        | 5035           | 3030  | 21 3  | 3009 | 1450 | 1580   | 21   | 1559 | 5954  | 3254      | 2700 |
|      | 1       | 182     | 1760  | 20.4        | 1732           | 277   | 22.0  | 353  | 126  | 251    | 23   | 228  | 0004  | 0204      | 2100 |
| JUL  | 1       | 102     | 1700  | 20.0        | F02            | 1020  | 23.9  | 1004 | 964  | 166    | 20   | 140  |       |           |      |
|      | 2       | 103     | 623   | 20.0        | 595            | 1030  | 20.0  | F004 | 604  | 100    | 20   | 140  |       |           |      |
|      | 3       | 104     | 280   | 32.3        | 334            | 549   | 29.0  | 520  | 035  | -00    | 20   | -114 |       |           |      |
|      | 4       | 185     | 752   | 34.6        | /1/            | 224   | 31.6  | 192  | 163  | 61     | 30   | 31   |       |           |      |
|      | 5       | 186     | 353   | 36.9        | 316            | 214   | 34.2  | 180  | 215  | -1     | 33   | -34  |       |           |      |
|      | 6       | 187     | 327   | 39.1        | 288            | 270   | 36.8  | 233  | 88   | 182    | 35   | 147  |       |           |      |
|      | 7       | 188     | 393   | 41.4        | 352            | 92.2  | 39.3  | 53   | 2.8  | 89     | 38   | 52   |       |           |      |
|      | 8       | 189     | 273   | 43.7        | 229            | 55.1  | 41.9  | 13   | 2.1  | 53     | 40   | 13   |       |           |      |
|      | 9       | 190     | 177   | 46.0        | 131            | 45.3  | 44.5  | 1    | 0.0  | 45     | 43   | 3    |       |           |      |
|      | 10      | 191     | 115   | 48.3        | 67             | 44.5  | 44.5  | 0    | 8.9  | 36     | 45   | -9   |       |           |      |
|      | 11      | 192     | 82.3  | 50.6        | 32             | 41.7  |       |      | 0.4  |        |      |      |       |           |      |
|      | 12      | 193     | 67.7  | 52.8        | 15             | 46.5  |       |      |      |        |      |      |       |           |      |
|      | 13      | 194     | 60.7  | 55.1        | 5.6            | 183   |       |      |      |        |      |      |       |           |      |
| х    | 14      | 195     | 57.4  |             | -              | 232   |       |      |      |        |      |      |       |           |      |
|      | 15      | 196     | 167   |             |                | 170   |       |      |      |        |      |      |       |           |      |
|      | 16      | 197     | 240   |             |                | 121   |       |      |      |        |      |      |       |           |      |
|      | 17      | 108     | 105   |             |                | 65 7  |       |      |      |        |      |      |       |           |      |
|      | 18      | 100     | 16/   |             |                | 47 5  |       |      |      |        |      |      |       |           |      |
|      | 10      | 200     | 104   |             |                | 47.5  |       |      |      |        |      |      |       |           |      |
|      | 19      | 200     | 00    |             |                | 42.4  |       |      |      |        |      |      |       |           |      |
|      | 20      | 201     | 00    |             |                | 43.4  |       |      |      |        |      |      |       |           |      |
|      | 21      | 202     | /2.3  |             |                | 43.6  |       |      |      |        |      |      |       |           |      |
|      | 22      | 203     | 60.4  |             |                | 45.9  |       |      |      |        |      |      |       | L         |      |
|      | 23      | 204     | 61.4  |             |                | 46    |       |      |      |        |      |      |       |           |      |
| х    | 24      | 205     | 54.4  |             |                | 46.5  | 46.5  | 0    |      | 46.5   | 46.5 | 0    |       |           |      |
|      | 25      | 206     | 56.9  | 0.2429      | 57             | 51.7  | 46.4  | 5    |      | 51.7   | 46.4 | 5.3  |       |           |      |
|      | 26      | 207     | 62.4  | 0.4857      | 62             | 51.1  | 46.3  | 5    |      | 51.1   | 46.3 | 4.8  |       |           |      |
|      | 27      | 208     | 66.5  | 0.7286      | 66             | 46.3  | 46.3  | 0    |      | 46.3   | 46.3 | 0    |       |           |      |
|      | 28      | 209     | 63.8  | 0.9714      | 63             | 45.6  |       |      |      |        |      |      |       |           |      |
|      | 29      | 210     | 65.3  | 1.2143      | 64             | 46.7  |       |      |      |        |      |      |       |           |      |
| I    |         |         |       |             | <b>U</b> 1     |       | 1     | 1    | 1    | 1      | I    | L    | 1     | I         |      |

#### Revised computations for FIF

|     | 30 | 211 | 61.1 | 1.4571 | 60  | 48.2 |        |     |       |      |       |      |      |      |
|-----|----|-----|------|--------|-----|------|--------|-----|-------|------|-------|------|------|------|
| х   | 31 | 212 | 56.1 | 56.1   | 0   | 48.2 | 48.2   | 0   |       |      |       | 5402 | 467  | 4936 |
| AUG | 1  | 213 | 60.9 | 58.811 | 2   | 61.3 | 48.1   | 13  | 61.3  | 48.1 | 13.2  |      |      |      |
|     | 2  | 214 | 253  | 61.522 | 191 | 72.6 | 47.8   | 25  | 72.6  | 47.8 | 24.8  |      |      |      |
|     | 3  | 215 | 256  | 64.233 | 192 | 47.5 | 47.5   | 0   | 47.5  | 47.5 | 0.0   |      |      |      |
|     | 4  | 216 | 168  | 66.944 | 101 | 46.5 |        |     |       |      |       |      |      |      |
|     | 5  | 217 | 111  | 69.656 | 41  | 46.3 |        |     |       |      |       |      |      |      |
|     | 6  | 218 | 89.9 | 72.367 | 18  | 46.8 |        |     |       |      |       |      |      |      |
|     | 7  | 219 | 85.7 | 75.078 | 11  | 46.8 |        |     |       |      |       |      |      |      |
|     | 8  | 220 | 82.1 | 77.789 | 4   | 46.5 |        |     |       |      |       |      |      |      |
|     | 9  | 221 | 80.5 | 80.5   | 0   | 46   |        |     |       |      |       |      |      |      |
|     | 10 | 222 | 80.7 |        |     | 45.5 |        |     |       |      |       |      |      |      |
|     | 11 | 223 | 81.8 | 81.8   | 0   | 45.5 |        |     |       |      |       |      |      |      |
|     | 12 | 224 | 125  | 81.0   | 44  | 46.1 | 46.1   | 0   | 46.1  | 46.1 | 0.0   |      |      |      |
|     | 13 | 225 | 84.2 | 80.2   | 4   | 51.4 | 43.68  | 8   | 51.4  | 43.7 | 7.7   |      |      |      |
|     | 14 | 226 | 103  | 79.4   | 24  | 103  | 41.26  | 62  | 103.0 | 41.3 | 61.7  |      |      |      |
|     | 15 | 227 | 129  | 78.7   | 50  | 639  | 38.84  | 600 | 639.0 | 38.8 | 600.2 |      |      |      |
|     | 16 | 228 | 492  | 77.9   | 414 | 74.4 | 36.42  | 38  | 74.4  | 36.4 | 38.0  |      |      |      |
|     | 17 | 229 | 438  | 77.1   | 361 | 34   | 34     | 0   | 34.0  | 34.0 | 0.0   |      |      |      |
|     | 18 | 230 | 332  | 76.3   | 256 | 32.8 |        |     |       |      |       |      |      |      |
|     | 19 | 231 | 274  | 75.5   | 198 | 31.9 |        |     |       |      |       |      |      |      |
|     | 20 | 232 | 228  | 74.7   | 153 | 33.3 | 33.3   | 0   | 33.3  | 33.3 | 0.0   |      |      |      |
|     | 21 | 233 | 168  | 74.0   | 94  | 105  | 33.213 | 72  | 105.0 | 33.2 | 71.8  |      |      |      |
|     | 22 | 234 | 108  | 73.2   | 35  | 411  | 33.125 | 378 | 411.0 | 33.1 | 377.9 |      |      |      |
|     | 23 | 235 | 241  | 72.4   | 169 | 455  | 33.038 | 422 | 455.0 | 33.0 | 422.0 |      |      |      |
|     | 24 | 236 | 476  | 71.6   | 404 | 431  | 32.95  | 398 | 431.0 | 33.0 | 398.1 |      |      |      |
|     | 25 | 237 | 480  | 70.8   | 409 | 198  | 32.863 | 165 | 198.0 | 32.9 | 165.1 |      |      |      |
|     | 26 | 238 | 380  | 70.0   | 310 | 61.7 | 32.775 | 29  | 61.7  | 32.8 | 28.9  |      |      |      |
|     | 27 | 239 | 225  | 69.2   | 156 | 38.4 | 32.688 | 6   | 38.4  | 32.7 | 5.7   |      |      |      |
|     | 28 | 240 | 141  | 68.5   | 73  | 32.6 | 32.6   | 0   | 32.6  | 32.6 | 0.0   |      |      |      |
|     | 29 | 241 | 101  | 67.7   | 33  | 33   |        |     |       |      |       |      |      |      |
|     | 30 | 242 | 73   | 66.9   | 6   | 35.1 |        |     |       |      |       |      |      |      |
| х   | 31 | 243 | 66.1 | 66.1   | 0   | 35   |        |     |       |      |       | 3753 | 2215 | 1538 |