

No. __________
===

In The

Supreme Court of the United States
--------------------------------- ♦ ---------------------------------

NETSCOUT SYSTEMS, INC., NETSCOUT SYSTEMS TEXAS, LLC,
fka TEKTRONIX TEXAS, LLC dba TEKTRONIX COMMUNICATIONS,

Petitioners,

v.

PACKET INTELLIGENCE LLC,

Respondent.

--------------------------------- ♦ ---------------------------------

On Petition For A Writ Of Certiorari
To The United States Court Of Appeals

For The Federal Circuit

--------------------------------- ♦ ---------------------------------

SUPPLEMENTAL APPENDIX

--------------------------------- ♦ ---------------------------------

MICHAEL J. LYONS
AHREN C. HSU-HOFFMAN
THOMAS Y. NOLAN
MORGAN, LEWIS & BOCKIUS LLP
1400 Page Mill Road
Palo Alto, California 94304

ERIC KRAEUTLER
JULIE GOLDEMBERG
MORGAN, LEWIS & BOCKIUS LLP
1701 Market Street
Philadelphia, Pennsylvania 19103

WILLIAM R. PETERSON
 Counsel of Record
MORGAN, LEWIS & BOCKIUS LLP
1000 Louisiana Street, Suite 4000
Houston, Texas 77002
(713) 890-5188
william.peterson@morganlewis.com

JASON D. FRANK
MORGAN, LEWIS & BOCKIUS LLP
One Federal Street
Boston, Massachusetts 02110

Counsel for Petitioners

===
COCKLE LEGAL BRIEFS (800) 225-6964

WWW.COCKLELEGALBRIEFS.COM

VOLUME II

TABLE OF CONTENTS

Page

App. II-i

Patent 6,665,725, December 16, 2003 App. II-1

 Certificate of Correction, June 29, 2004 App. II-72

 Certificate of Correction, October 8, 2013 App. II-74

Patent 6,839,751, August 3, 2004 ... App. II-75

 Certificate of Correction, March 8, 2005 App. II-120

Patent 6,954,789, August 3, 2004 .. App. II-121

 Certificate of Correction, March 7, 2006 App. II-161

 Certificate of Correction, October 1, 2013 App. II-162

USOO6665725B1

(12) United States Patent (10) Patent No.: US 6,665,725 B1
Dietz et al. (45) Date of Patent: Dec. 16, 2003

(54) PROCESSING PROTOCOLSPECIFIC 5,414,704 A 5/1995 Spinney 370/60
INFORMATION IN PACKETS SPECIFIED BY (List continued on next page.)
A PROTOCOL DESCRIPTION LANGUAGE page.

OTHER PUBLICATIONS
(75) Inventors: Russell S. Dietz, San Jose, CA (US);

Andrew A. Koppenhaver, Littleton, “Technical Note: the Narus System,” Downloaded Apr. 29,
CO (US); James F. Torgerson, 1999 from www.narus.com, Narus Corporation, Redwood
Andover, MN (US) City California.

(73) Assignee: Hi/fn, Inc., Los Gatos, CA (US) E.'EC R. (N'Dinh
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm-Dov Rosenfeld; Inventek

patent is extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by 537 days.

A method of performing protocol Specific operations on a
(21) Appl. No.: 09/609,179 packet passing through a connection point on a computer

network. The packet contents conform to protocols of a
(22) Filed: Jun. 30, 2000 layered model wherein the protocol at a at a particular layer

level may include one or a set of child protocols defined for
Related U.S. Application Data that level. The method includes receiving the packet and

(60) Provisional application No. 60/141903, filed on Jun. 30, receiving a Set of protocol descriptions for protocols may be
1999. used in the packet. A protocol description for a particular

(51) Int. Cl. .. G06F 13/00 protocol at a particular layer level includes any child pro
(52) U.S. Cl. 709/230; 709/246; 709/228; tocols of the particular protocol, and for any child protocol,

370/389 where in the packet information related to the particular
(58) Field of Search 709/203, 206, child protocol may be found. A protocol description also

709/216, 217, 222, 246, 225, 228, 230, includes any protocol Specific operations to be performed on
232; 703/26; 370/489, 13, 17 the packet for the particular protocol at the particular layer

level. The method includes performing the protocol Specific
(56) References Cited operations on the packet specified by the set of protocol

descriptions based on the base protocol of the packet and the
U.S. PATENT DOCUMENTS children of the protocols used in the packet. A particular

4,736,320 A 4/1988 Bristol 343oo embodiment includes providing the protocol descriptions in
4,891.639 A 1/1990 Nakamura .340/825.5 a high-level protocol description language, and compiling to
5,101,402 A 3/1992 Chui et al. 370/17 the descriptions into a data Structure. The compiling may
5,247,517 A 9/1993 Ross et al. 370/85.5 further include compressing the data Structure into a com
5,247,693 A 9/1993 Bristol 709/203 pressed data Structure. The protocol Specific operations may
5,315,580 A 5/1994 Phaal 370/13 include parsing and extraction operations to eXtract identi

5: A s Miss et al... s fying information. The protocol Specific operations may also
2- - -a- a KC C al. include State processing operations defined for a particular

22, E. E. E.O.C. state of a conversational flow of the packet.
5,394,394 A 2/1995 Crowther et al. 370/60
5,414,650 A 5/1995 Hekhuis 364/715.02 17 Claims, 20 Drawing Sheets

- 324

502 PASER ANAZE DATABASE
? OF

FLOWS
PACKET (MEMORY)

ACOUSITO - ? 1504 - 1506
DEVICE

HOST hOS
PROCESSOF NEMORY

MONITOR
300

1510 1508

S. Ce
NETWORK sea
INTERFACE DISK
CARD &

DB

App. II-1

US 6,665,725 B1
Page 2

U.S. PATENT DOCUMENTS 5,787.253 A 7/1998 McCreery et al. 709/227
5,805,808 A 9/1998 Hansani et al. 709/203

5,430,709 A 7/1995 Galloway 370/13 5,812,529 A 9/1998 Czarnik et al. 370/245
3. A S. WE kvetal "70% 5,819,028 A 10/1998 Manghirmalani et al. ... 709/203

2 - - -2 f aclawsky et a ... 709/ 5,825,774. A 10/1998 Ready et al. 370/401
5,500,855 A 3/1996 Hershey et al... ... 370/17 5,826,017 A 10/1998 Holzmann 709/206 5,511,215 A 4/1996 Terasaka et al. 709/246 5.835,726 A 11/1998 Shwed et al. 709/228 5,568,471 A 10/1996 Hershey et al... ... 370/17 5,838,919 A 11/1998 Schwaller et al. ... 709/208 5,574,875 A 11/1996 Stansfield et al. ... 395/403 5,841,895 A 11/1998 Huffman 382/155 5,586.266 A 12/1996 Hershey et al... ... 709/216 5,850,386 A 12/1998 Anderson et al. 370/241 5,606,668 A 2/1997 Shwed 709/216 5,850,388 A 12/1998 Anderson et al. 370/252 5,608,662 A 3/1997 Large et al. 364/724.01 5,862,335 A 1/1999 Welch, Jr. et al. 709/232 5,634,009 A 5/1997 Iddon et al. 709/206 5,878.420 A 3/1999 de la Sale 707/10 5,651,002 A 7/1997 Van Seters et al. ... 370/392 : 5,893,155 A 4/1999 Cheriton 711/144 5,680,585 A 10/1997 Bruell 703/26 5,903,754 A 5/1999 Pearson 709/238 5,684.954 A 11/1997 Kaiserswerth et al. 709/203 5,917,821 A 6/1999 Gobuyan et al. 370/392 5,703,877 A 12/1997 Nuber et al. 370/395 : 6,014,380 A 1/2000 Hendel et al. 370/392 5,721.827 A 2/1998 Logan et al. 709/217 6,272,151 B1 * 8/2001 Gupta et al. 370/489 5,732.213 A 3/1998 Gessel et al. 709/216 6,430,409 B1 8/2002 Rossmann 455/422.1 5,740,355 A 4/1998 Watanabe et al. 395/183.21 6,516,337 B1 * 2/2003 Trippet al. 709/202
5,761,424 A 6/1998 Adams et al. ... 709/232 6.519.568 B1 * 2/2003 H tal TO5/1
5,764,638 A 6/1998 Ketchum 370/401 2- - - 2 f arvey et al. f
5,781,735 A 7/1998 Southard 709/238
5,784,298 A 7/1998 Hershey et al. 364/557 * cited by examiner

App. II-2

U.S. Patent Dec. 16, 2003 Sheet 1 of 20 US 6,665,725 B1

1OO -
CLIENT 4 108

- ANALYZER
1 O7

116

CLIENT 3
-N Y10

106 121

DATA COMMUNICATIONS
NETWORK

102

125

123
F 18
SERVER 2 105 Y--/

N CLIENT 2 CLIENT 1
112 O4

FIG. 1

App. II-3

US 6,665,725 B1

CN

Sheet 2 of 20 Dec. 16, 2003 U.S. Patent

App. II-4

App. II-5

U.S. Patent Dec. 16, 2003 Sheet 4 of 20 US 6,665,725 B1

402
HGH EVEL
PACKET

DECODING
DESCRIPTIONS

VRA

GENERATE PACKET
PARSE AND COMPLE STATE
EXTRACT DESCRIPTIONS INSTRUTIONS

OPERATIONS OPERATIONS

407

4O6 2ATTERNPARs (525 PROCESSOR
EXTRACTION INSTRUCTION
DATABASE DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTIO
DATABASE
MEMORY

400

FIG. 4

App. II-6

U.S. Patent Dec. 16, 2003 Sheet 5 of 20

510

OU-50
/nputpacket/ 5O2

US 6,665,725 B1

503 LOAD PACKET
COMPONENT

512

BUID
504 ORE INPACKE PACKET

KEY

FETCH NODE AND
PROCESS FROM
PATTERN

513

MORE NEXT
PATTERN PACKET
NODEST?

APPLY NODE AND
PROCESS TO
COMPONENT

AZ V

PATTERN
NODE

EXTRACT
509 ELEMENTS

FIG. 5

COMPONE 511

5OO

App. II-7

U.S. Patent Dec. 16, 2003 Sheet 6 of 20 US 6,665,725 B1

OU-601
PACKET 6O2

COMPONENT AND
PATTERN NODE

LOAD PACKET
COMPONENT 61O

LOAD KEY
BUFFER

YES

FETCH EXTRACTION (F)
AND PROCESS FRO

PATTERNS 605

603

604

MORE PACKE
COMPONENT

NO 611

606 NEXT
NO PACKET 609

COMPONEN
ORE EXTRACTION
ELEMENTS?

YES
6O7 APPLY EXTRACTION

ESSESS
6OO

MORE TO 608
EXTRACT?

YE

FIG. 6

App. II-8

U.S. Patent Dec. 16, 2003 Sheet 7 of 20 US 6,665,725 B1

OU-701
EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703 NODE ELEMENT 708

704 MORE PATTER OUTPUT TO
OREFA S? ANALYZER

YES (EB)
HASHKEYBUFFER
ELEMENT FROM 705
PATTERN NODE

PACKKEY & HAS

7O6 N

NEXT PACKET
COMPONENT

707

FIG. 7

709

700

App. II-9

U.S. Patent Dec. 16, 2003 Sheet 8 of 20 US 6,665,725 B1

OU-80
UFKB ENTRY FOR

PACKET 8O2

8OO Y
COMPUTE CONVERSATION. 803
RECORD BIN FROM HASH

RECQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

NO SETUFKBFOR
PACKETAS "NEW"

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET-NO servacs 8O8
YES

ORE BUCKET
805 IN THE BIN?

YES

809 MARK RECORDBN AND - 80
BUCKET IN PROCESS IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS FOUND"

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813 vC FIG. 8

App. II-10

U.S. Patent Dec. 16, 2003 Sheet 9 of 20 US 6,665,725 B1

90 902 910

RPC
BIND LOOKUF
REGUEST

909

EXTRACT PROGRAM

GET'PROGRAM',
VERSION', 'PORTAND
'PROTOCOL (TCP OR

UDP)

EXTRACT PORT

GET'PROGRAM',
'VERSION AND

"PROTOCOL (TCP OR
UDP)'

SAVE REGUEST

SAVE PROGRAM",
'VERSION AND

CREATE SERVER STAT

SAVE PROGRAM',
904 VERSION', 'PORTAND "PROTOCOL (TCP OR

'PROTOCOL (TCP OR UDP)' WITH
UDP)' WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORKADDRESS.
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKEAKEY.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

LOOKUP REGUES
FIND PROGRAM
AND VERSION

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

goo/ GET "PORTAND
"PROTOCOL (TCP

OR UDP)'.

FIG. 9

App. II-11

U.S. Patent Dec. 16, 2003 Sheet 10 of 20 US 6,665,725 B1

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

100 1031
1OO 1 OO4

INFO OUT
HOST INTERFACE MULTIPLEXR & CONTROLREGISTERS CONTRL IN

1031

1006 PATTERN
RECOGNITN
ENGINE
(PRE)

1007
EXTRACTION ENGINE

(SLICER)

1008

PARSER
OUTPUT PACKETKEY PACKET PARSER INPUT BUFFER

INPUT MEMORY BUFFER AND PAYLOA2
MEMORY

1012

1021

SE) INPUT BUFFER ANALYZER DATA REA)Y
INTERFACE INTERFACE
CONTROL CONTROL ANALYZER

VY

PACKET READY

1 O2
1023 FIG. 10 1027

App. II-12

U.S. Patent Dec. 16, 2003 Sheet 11 of 20 US 6,665,725 B1

1100 -
1101 103 1115 1118 1122

1107

SE
ENGINE ANZEF SST

() INTERFACE) INTER
AND FACE

C2SO (HIB) PROCESSR (ACIC)
INSTRUCN
DATABASE

(SPID)

FLOW
PARSER KEY INTER(-)BUFFER
FACE (UFKB)

PROCESSR
(SP) 1119 1123

INTER () FACE CONTROL
(UMC)

FLOW
INSERTION/
DELETION
ENGINE
(FIDE)

App. II-13

U.S. Patent Dec. 16, 2003 Sheet 12 of 20 US 6,665,725 B1

12O1

UFKB ENTRY FOR
PACKET WITH
STATUS"NEW"

1202

12OO
TA ACCESS

CONVERSATION 1203
RECORD BIN

REGUEST RECORD BIN/ 1204
BUCKET FROM CACHE

REQUESTNEXT NO
BUCKET FROM CBIN/BUCKETEMPTY 1205

1206 CACHE

YES

NO INSERT KEY AND HASH
P N BUCKET, MARK"USED

1208 WITH TIMESTAMP

YES

12O7

OMPARE CURRENT BIN-1209
AND BUCKETRECORD SET UFKBFOR PACKETAS KEY TO PACKET

DROP

1210

MARK RECORD BIN AND
BUCKET'IN PROCESS
AND NEW" IN CACHE

FOR RECORD IN CACHE

C 1213

FIG. 12

1211

App. II-14

U.S. Patent Dec. 16, 2003 Sheet 13 of 20 US 6,665,725 B1

1300 - UFKBENTRY FOR
PACKET WITH STATUS
"NEW OR FOUND" 1302

v
SET STATE PROCESSOR
INSTRUCTION POINTERTO 1303
ALUE FOUND IN UFKBENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED - 1305
ON THE STATE INSTRUCTION

PROCESSOR
INSTRUCTION NO DONE PROCESSING 1307
POINTERTO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

1308 YES
1310

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENTFLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

NSTRUCTION IN CURRENT
FLOW RECORD

d) ran
FIG. 13

App. II-15

App. II-16

US 6,665,725 B1

LO
y

LEXIOW/c)]

U.S. Patent

App. II-17

U.S. Patent Dec. 16, 2003 Sheet 16 of 20 US 6,665,725 B1

Src Hash (2

NL2 Ofset = 12
FIG 16

App. II-18

U.S. Patent Dec. 16, 2003 Sheet 17 of 20 US 6,665,725 B1

1702
1704

Offset 12. Type I/A

y 17O6

1708 Type (2)
Hash 1

1710) V- 1700
L NL3 Ofset = 14

FIG. 17A u/
-1

1712

yerASE/TyEE/ESA sigh/
////Kierifiér////Flag/Flag/6F56 L3 to CO diffs.

, Z/7Z/Protocol)Aé. Sheskyi
- 1

/25iors 3 Fagging/

FIG. 17B Protocol (1)
L4 Offset = L3+ (IHL14)

IDP = 0x0600*
IP = 0x0800*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OxOBAD*

VLOOP OXOBAE
VECHO = OxOBAF

NETBIOS-3COM = 0x3COO
Ox3CODE

DEC-MOP = 0x6001
DEC-RC E Ox60O2

DEC-DRP = 0x6003 *
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-THE Ox8OD5

ATALKARP = 0x80F3
IPX = 0x8137*

SNMP = 0x814Cit
IPv6 = 0x86DD

LOOPBACK - 0x9000
Apple = 0x080007

* L3 Decoding
L5 Decoding

1752

ICMP = 1
GMP = 2
GGP = 3
TCP = 6*
EGP = 8
IGRP = 9
PUP = 12

CHAOS - 16
UDP = 17*
DP = 22h

ISO-TP4 = 29
DDP = 37

ISO-IP = 8O
VIP = 83 it

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

App. II-19

US 6,665,725 B1 Sheet 18 of 20 Dec. 16, 2003 U.S. Patent

PROTOCOL

TYPE (ID)

FIG. 18A

EGIOO E LÅ8

O LO §2

?õõõIÒ È

FIG. 18B

App. II-20

U.S. Patent Dec. 16, 2003 Sheet 19 of 20 US 6,665,725 B1

1901

COMMON. PDL 1903

FLOWS.PDL 1905

VIRTUAL PDL 1907

191 ETHERNET.PDL

ETHERTYPE 1913

PPDL 1915

TCPPDL 1917

1919 RPC.PDL

92 NFS.PDL

1928/O FIG. 19

App. II-21

U.S. Patent Dec. 16, 2003 Sheet 20 0f 20 US 6,665,725 B1

READ IN PDL SOURCE 2003
MODULES

2 O O

PARSE MODULES FOR
SYNTAX 2005

FIRST PASS, CREATE
ALL PARSEELEMENTS 2007

2009 2NDPASS, BUILD FO
SIGNATURE ELEMENT

THIRD PASS, CREATE 2011
PAYLOAD ELEMENTS

FORTH PASS, BUILD 2013
STATES FOREACH LINK

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOREACH PDL

OUTPUT CPL
2019 INTERMEDIATEFILE

2021/O FIG. 2O

App. II-22

US 6,665,725 B1
1

PROCESSING PROTOCOLSPECIFIC
INFORMATION IN PACKETS SPECIFIED BY
A PROTOCOL DESCRIPTION LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Serial No. 60/141,903 for METHOD
AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/608,237 for
METHOD AND APPARATUS FOR MONITORING
TRAFFICINANETWORK, to inventors Dietz, et al.,
filed Jun. 30, 2000, and incorporated herein by refer
CCC.

U.S. patent application Ser. No. 09/608,126 for
RE-USING INFORMATION FROM DATA TRANS
ACTIONS FOR MAINTAINING STATISTICS IN
NETWORK MONITORING, to inventors Dietz, et al.,
filed Jun. 30, 2000, and incorporated herein by refer
CCC.

U.S. patent application Ser. No. 09/608,266 for ASSO
CIATIVE CACHE STRUCTURE FOR LOOKUPS
AND UPDATES OF FLOW RECORDS IN ANET
WORK MONITOR, to inventors Sarkissian, et al., filed
Jun. 30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,267 for STATE
PROCESSOR FOR PATTERN MATCHING IN A
NETWORK MONITOR DEVICE, to inventors
Sarkissian, et al., filed Jun. 30, 2000, and incorporated
herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, Spe
cifically to the real-time elucidation of packets communi
cated within a data network, including classification accord
ing to protocol and application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other interconnected
networks. In particular, there is a need for a real-time
network monitor that can provide details as to the applica
tion programs being used. Such a monitor Should enable
non-intrusive, remote detection, characterization, analysis,
and capture of all information passing through any point on
the network (i.e., of all packets and packet Streams passing
through any location in the network). Not only should all the
packets be detected and analyzed, but for each of these

15

25

35

40

45

50

55

60

65

2
packets the network monitor should determine the protocol
(e.g., http, ftp, H.323, VPN, etc.), the application/use within
the protocol (e.g., voice, Video, data, real-time data, etc.),
and an end user's pattern of use within each application or
the application context (e.g., options Selected, Service
delivered, duration, time of day, data requested, etc.). Also,
the network monitor should not be reliant upon server
resident information Such as log files. Rather, it should allow
a user Such as a network administrator or an Internet Service
provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis, and
to receive timely notification of network problems.
The recognizing and classifying in Such a network moni

tor should be at all protocol layer levels in conversational
flows that pass in either direction at a point in a network.
Furthermore, the monitor Should provide for properly ana
lyzing each of the packetS eXchanged between a client and
a Server, maintaining information relevant to the current
State of each of these conversational flows.

Related and incorporated by reference U.S. patent appli
cation Ser. No. 09/608,237 for METHOD AND APPARA
TUS FOR MONITORING TRAFFIC IN ANETWORK, to
inventors Dietz, et al, describes a network monitor that
includes carrying out protocol Specific operations on indi
vidual packets including extracting information from header
fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for
recognizing future packets as belonging to a previously
encountered flow. A parser Subsystem includes a parser for
recognizing different patterns in the packet that identify the
protocols used. For each protocol recognized, a Slicer
extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also
preferably generates a hash for rapidly identifying a flow
that may have this signature from a database of known
flows.
The flow Signature of the packet, the hash and at least

Some of the payload are passed to an analyzer Subsystem. In
a hardware embodiment, the analyzer Subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser Subsystem and for Storing Signatures
in process, a lookup/update engine (LUE) to lookup a
database of flow records for previously encountered con
Versational flows to determine whether a signature is from
an existing flow, a State processor (SP) for performing State
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
Storing the database of flows, and a cache for Speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, and to the
cache.

Each flow-entry includes one or more Statistical measures,
e.g., the packet count related to the flow, the time of arrival
of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE,
State processor, and FIDE operate independently from the
other two engines. The State processor performs one or more
operations Specific to the State of the flow.
A network analyzer should be able to analyze many

different protocols. At a base level, there are a number of
Standards used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay,
Digital Data Service, FDDI (Fiber Distributed Data
Interface), T1, and others. Many of these Standards employ
different packet and/or frame formats. For example, data is

App. II-23

US 6,665,725 B1
3

transmitted in ATM and frame-relay systems in the form of
fixed length packets (called “cells”) that are 53 octets (i.e.,
bytes) long. Several Such cells may be needed to make up the
information that might be included in the packet employed
by Some other protocol for the same payload information
for example in a conversational flow that uses the frame
relay Standard or the Ethernet protocol.

In order for a network monitor to be able to analyze
different packet or frame formats, the monitor needs to be
able to perform protocol Specific operations on each packet
with each packet carrying information conforming to dif
ferent protocols and related to different applications. For
example, the monitor needs to be able to parse packets of
different formats into fields to understand the data encapsu
lated in the different fields. As the number of possible packet
formatS or types increases, the amount of logic required to
parse these different packet formats also increases.

Prior art network monitors exist that parse individual
packets and look for information at different fields to use for
building a signature for identifying packets. Chiu, et al.,
describe a method for collecting information at the Session
level in a computer network in U.S. Pat. No. 5,101,402,
titled “APPARATUS AND METHOD FOR REAL-TIME
MONITORING OF NETWORK SESSIONS AND A
LOCAL AREANETWORK.” In this patent, there are fixed
locations Specified for particular types of packets. For
example, if a DECnet packet appears, the Chiu System looks
at Six specific fields (at 6 locations) in the packet in order to
identify the Session of the packet. If, on the other hand, an
IP packet appears, a different Set of Six locations are exam
ined. The system looks only at the lowest levels up to the
protocol layer. There are fixed locations for each of the fields
that specified the next level. With the proliferation of
protocols, clearly the Specifying of all the possible places to
look to determine the Session becomes more and more
difficult. Likewise, adding a new protocol or application is
difficult.

It is desirable to be able to adaptively determine the
locations and the information extracted from any packet for
the particular type of packet. In this way, an optimal Signa
ture may be defined using a protocol-dependent and packet
content-dependent definition of what to look for and where
to look for it in order to form a signature.

There thus is also a need for a network monitor that can
be tailored or adapted for different protocols and for different
application programs. There thus is also a need for a network
monitor that can accommodate new protocols and for new
application programs. There also is a need for means for
Specifying new protocols and new levels, including new
applications. There also is a need for a mechanism to
describe protocol Specific operations, including, for
example, what information is relevant to packets and pack
ets that need to be decoded, and to include Specifying
parsing operations and extraction operations. There also is a
need for a mechanism to describe State operations to perform
on packets that are at a particular State of recognition of a
flow in order to further recognize the flow.

SUMMARY

One embodiment of the invention is a method of per
forming protocol Specific operations on a packet passing
through a connection point on a computer network. The
packet contents conform to protocols of a layered model
wherein the protocol at a particular layer level may include
one or a set of child protocols defined for that level. The
method includes receiving the packet and receiving a set of

15

25

35

40

45

50

55

60

65

4
protocol descriptions for protocols may be used in the
packet. A protocol description for a particular protocol at a
particular layer level includes any child protocols of the
particular protocol, and for any child protocol, where in the
packet information related to the particular child protocol
may be found. A protocol description also includes any
protocol Specific operations to be performed on the packet
for the particular protocol at the particular layer level. The
method includes performing the protocol Specific operations
on the packet Specified by the Set of protocol descriptions
based on the base protocol of the packet and the children of
the protocols used in the packet. A particular embodiment
includes providing the protocol descriptions in a high-level
protocol description language, and compiling to the descrip
tions into a data Structure. The compiling may further
include compressing the data Structure into a compressed
data Structure. The protocol Specific operations may include
parsing and extraction operations to extract identifying
information. The protocol Specific operations may also
include State processing operations defined for a particular
State of a conversational flow of the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
Specific embodiment because Such embodiments are pro
Vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi
ment of the present invention in which a monitor is con
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
Starting, as an illustrative example, a conversational flow
between a client and Server on a network being monitored
and analyzed. A pair of flow Signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents Some of the possible flow Signa
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular Server
applications that produce the discrete application packet
eXchanges.

FIG. 3 is a functional block diagram of a process embodi
ment of the present invention that can operate as the packet
monitor shown in FIG.1. This process may be implemented
in Software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing proceSS used as
part of the parser in an embodiment of the inventive packet
monitor.

FIG. 6 is a flowchart of a packet element extraction
process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

App. II-24

US 6,665,725 B1
S

FIG. 10 is a functional block diagram of a hardware parser
Subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a State processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a State processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple functional block diagram of a proceSS
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in Software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor Such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and Some of the elements that may be
extracted to form a signature according to one aspect of the
invention.
FIG.17A is an example of the header of an Ethertype type

of Ethernet packet of FIG.16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a Signature
according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used
to Store elements of the pattern, parse and extraction data
base used by the parser Subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
Subsystem in accordance to another embodiment of the
invention.

FIG. 19 shows various PDL file modules to be compiled
together by the compiling process illustrated in FIG. 20 as
an example, in accordance with a compiling aspect of the
invention.

FIG. 20 is a flowchart of the process of compiling
high-level language files according to an aspect of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include Signal names. In most cases,
the names are Sufficiently descriptive, in other cases how
ever the Signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network
FIG. 1 represents a system embodiment of the present

invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104-107
and servers 110 and 112. The network is shown Schemati
cally as a cloud with Several network nodes and linkS shown

15

25

35

40

45

50

55

60

65

6
in the interior of the cloud. A monitor 108 examines the
packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with
each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, Such as connection point 123
between the network 102 and the interface 118 of the client
104, or Some other location, as indicated Schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity-for example an appli
cation program run by the client 104 (CLIENT 1) commu
nicating with another running on the server 110 (SERVER
2)-will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par
ticular application programs. The packets may need to be
parsed then analyzed in the context of various protocols, for
example, the transport through the application Session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in table from below,
Serves as a basic reference for understanding the function
ality of existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR
5 Session RPC, NBTBIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1. Physical Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

Diferent communications protocols employ different lev
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2-3).

In Some communication arts, the term “frame' generally
refers to encapsulated data at OSI layer 2, including a
destination address, control bits for flow control, the data or
payload, and CRC (cyclic redundancy check) data for error
checking. The term "packet' generally refers to encapsu
lated data at OSI layer 3. In the TCP/IP world, the term

App. II-25

US 6,665,725 B1
7

"datagram' is also used. In this specification, the term
"packet' is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields
and headers for transmission acroSS a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,” are generally Synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
Same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
Server to Send a type-A packet, but So will another. If,
though, the particular application program always follows a
type-A packet with the Sending of a type-B packet, and the
other application program does not, then in order to recog
nize packets of that application's conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. If Such is
recognized after a type-A packet, then the particular appli
cation program's conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
Simultaneously also in partial completion of identifying
other packet eXchanges that are parts of conversational flows
asSociated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of
packets on the network 102 passing by the monitor 108's
connection point can exceed a million per Second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
State of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
asSociated application programs according to the packets
that their executions produce, is a multi-step proceSS within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first "signature' is produced from Selected parts of a
packet that will allow monitor 108 to identify efficiently any
packets that belong to the same flow. In Some cases, that
packet type may be Sufficiently unique to enable the monitor
to identify the application that generated Such a packet in the
conversational flow. The Signature can then be used to
efficiently identify all future packets generated in traffic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program. In

15

25

35

40

45

50

55

60

65

8
Such a case, a Subsequent packet of a Second type-but that
potentially belongs to the same conversational flow-is
recognized by using the Signature. At Such a Second level,
then, only a few of those application programs will have
conversational flows that can produce Such a Second packet
type. At this level in the process of classification, all appli
cation programs that are not in the Set of those that lead to
Such a Sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the Second level Signature. For each packet, therefore,
the monitor parses the packet and generates a Signature to
determine if this signature identified a previously encoun
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the Sequence of
previously encountered packets (the State), and of the pos
Sible future Sequences Such a past Sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated Signature may
then be used to efficiently recognize future packets associ
ated with the same conversational flow. Such an arrange
ment makes it possible for the monitor 108 to cope with
millions of packets per Second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through Some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
Sends a message to Some general purpose processor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being eXchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple
mented with computer hardware and/or Software. The Sys
tem 300 is similar to monitor 108 in FIG.1. A packet 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi
level model, including what Server application produced the
packet.
The packet acquisition device is a common interface that

converts the physical Signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of different types-accomplished by compiler and
optimizer 310, (2) the processing parsing and extraction of

App. II-26

US 6,665,725 B1
9

Selected portions-of packets to generate an identifying
Signature-accomplished by parser Subsystem 301, and (3)
the analysis of the packets-accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocol specific information to parser subsystem 301 and to
analyzer Subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.
A flow is a Stream of packets being eXchanged between

any two addresses in the network. For each protocol there
are known to be Several fields, Such as the destination
(recipient), the Source (the Sender), and So forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
Such as checksums, and those parts are not used for identi
fication.

Parser Subsystem 301 examines the packets using pattern
recognition proceSS 304 that parses the packet and deter
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser Subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are Supplied from a
parsing-pattern-structures and extraction-operations data
base (parsing/extractions database) 308 filled by the com
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and States of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor
mation to extract for the purpose of identifying a flow, and
ultimately, applications and Services. The layer Selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.
When compiler and optimizer 310 executes, it generates

two sets of internal data structures. The first is the set of
parsing/extraction operations 308. The pattern Structures
include parsing information and describe what will be
recognized in the headers of packets, the extraction opera
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the different States and State transitions that occur in different
conversational flows, and the State operations that need to be
performed (e.g., patterns that need to be examined and new
Signatures that need to be built) during any State of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in Some embodiments the
layering Selections information is inherent rather than
explicitly described. For example, since a PDL file for a

15

25

35

40

45

50

55

60

65

10
protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buffer. The pattern
recognition process 304 is carried out by a pattern analysis
and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL-Intel-Xerox (DIX) packet. The PAR
also uses the pattern Structures and extraction operations
database 308 to identify the next protocol and parameters
asSociated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that
extracts Selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
Sequence and then processed in block 312 to build a unique
flow signature (also called a “key”) for this flow. A flow
Signature depends on the protocols used in the packet. For
Some protocols, the extracted components may include
Source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the Signature typically includes
the client and Server address pairs. The Signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the Signature using a hash
function. The purpose if using Such a hash is conventional
to spread flow-entries identified by the Signature acroSS a
database for efficient Searching. The hash generated is
preferably based on a hashing algorithm and Such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet-a parser record—that includes the signature (i.e.,
Selected portions of the packet), the hash, and the packet
itself to allow for any State processing that requires further
data from the packet. An improved embodiment of the parser
Subsystem might generate a parser record that has Some
predefined Structure and that includes the Signature, the
hash, Some flags related to Some of the fields in the parser
record, and parts of the packet's payload that the parser
Subsystem has determined might be required for further
processing, e.g., for State processing.

Note that alternate embodiments may use Some function
other than concatenation of the Selected portions of the
packet to make the identifying Signature. For example, Some
“digest function' of the concatenated Selected portions may
be used.
The parser record is passed onto lookup process 314

which looks in an internal data Store of records of known
flows that the System has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.
The parser record enters a buffer called the unified flow

key buffer (UFKB). The UFKB stores the data on flows in

App. II-27

US 6,665,725 B1
11

a data Structure that is similar to the parser record, but that
includes a field that can be modified. In particular, one or the
UFKB record fields Stores the packet Sequence number, and
another is filled with state information in the form of a
program counter for a State processor that implements State
processing 328.

The determination (316) of whether a record with the
Same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.

The flow-entry database 324 stores flow-entries that
include the unique flow-signature, State information, and
extracted information from the packet for updating flows,
and one or more Statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser Sub
system 301 (i.e., the hash in the UFKB record). The hash
Spreads the flows across the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a 16-bit hash gives two flow
entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that
another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise Stated or clear from the context.

If there is no flow-entry found matching the Signature, i.e.,
the Signature is for a new flow, then a protocol and State
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the State Sequence for a flow for this protocols this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of State
patterns and processes. Process 318 is then followed by any
State operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up flow-entry, if more classi
fication by State processing of the flow Signature is neces
Sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more Statistical measures Stored in
the flow-entry. In our embodiment, the Statistical measures
are Stored in counters in the flow-entry.

If State processing is required, State process 328 is com
menced. State processor 328 carries out any State operations
specified for the state of the flow and updates the state to the
next State according to a set of State instructions obtained
form the State pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol Stack,

15

25

35

40

45

50

55

60

65

12
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined State transition rules and State opera
tions as Specified in State processor instruction database 326.
A State transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
State processor is in a particular State-for example, in order
to evaluate a quantity needed to apply the State transition
rule. The State processor goes through each rule and each
State proceSS until the test is true, or there are no more tests
to perform.

In general, the Set of State operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a State that causes exiting the
System prior to completing the identification, but possibly
knowing more about what State and State processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of State
operations) at a particular State may build a new signature
for future recognition packets of the next State.
By maintaining the State of the flows and knowing that

new flows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) Single-packet protocol recognition of
flows, and (b) multiple-packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed Sub-flows that occur in Server
announcement type flows. What may seem to prior art
monitors to be Some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
Sub-flow associated with a previously encountered Sub-flow.

Thus, state processor 328 applies the first state operation
to the packet for this particular flow-entry. A process 330
decides if more operations need to be performed for this
State. If So, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed
that is, there are no more operations for this packet in this
state. A process 332 decides if there are further states to be
analyzed for this type of flow according to the State of the
flow and the protocol, in order to fully characterize the flow.
If not, the conversational flow has now been fully charac
terized and a process 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
Starts the State processing by using the last protocol recog
nized by the parser as an offset into a jump table (jump
vector). The jump table finds the State processor instructions
to use for that protocol in the State patterns and processes
database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or Subtract to perform the
test. For example, a common operation carried out by the
State processor is Searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides
whether the flow is at an end State. If not at an end State, the
flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is
determined that there are further States to be processed using
later packets, the flow-entry is updated in proceSS 322.
The flow-entry also is updated after classification final

ization So that any further packets belonging to this flow will

App. II-28

US 6,665,725 B1
13

be readily identified from their Signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes Storing States. The monitor of FIG.3 also generates
characteristic parts of packets-the Signatures-that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packet is identified
to be from a known flow, the state of the flow is known and
this knowledge enables State transition analysis to be per
formed in real time for each different protocol and applica
tion. In a complex analysis, State transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their State
analysis continued from a previously achieved State. When
enough packets related to an application of interest have
been processed, a final recognition State is ultimately
reached, i.e., a Set of States has been traversed by State
analysis to completely characterize the conversational flow.
The Signature for that final State enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particular set of State transitions
has been traversed for the first time and ends in a final State,
a short-cut recognition pattern-a Signature-can be gener
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
Simple operation, allowing high packet rates to be Success
fully monitored on the network.

In improved embodiments, Several State analyzers are run
in parallel So that a large number of protocols and applica
tions may be checked for. Every known protocol and appli
cation will have at least one unique Set of State transitions,
and can therefore be uniquely identified by watching Such
transitions.
When each new conversational flow Starts, Signatures that

recognize the flow are automatically generated on-the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the States of the Set
of State transitions for any potential application are further
traversed according to the State transition rules for the flow.
The new states for the flow-those associated with a set of
State transitions for one or more potential applications-are
added to the records of previously encountered States for
easy recognition and retrieval when a new packet in the flow
is encountered.

Detailed Operation
FIG. 4 diagrams an initialization system 400 that includes

the compilation process. That is, part of the initialization
generates the pattern Structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off-line or from a central location.

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have Zero or more children. Ethernet packets, for
example, have Several variants, each having a basic format
that remains Substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet-also

15

25

35

40

45

50

55

60

65

14
called an Ethernet Type/Version 2 and a DIX (DIGITAL
Intel-Xerox packet) -or an IEEE 803.2 packet. Continuing
with the IEEE 802.3 packet, one of the children nodes may
be the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media access control
address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the Signature.

FIG. 17A now shows the header information for the next
level (level-2) for an Ethertype packet 1700. For an Ether
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the
possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shown in table 1752.
The pattern, parse, and extraction database (pattern rec

ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional Structure that provides for rapidly Searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compressed form of
the 3-D structure is preferred.
An alternate embodiment of the data Structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3-D
structure of FIG. 18A, the data structure permits rapid
Searches to be performed by the pattern recognition process
304 by indexing locations in a memory rather than perform
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUTs) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a Slicer command, and
Some flags.
The pattern matching is carried out by finding particular

“child recognition codes' in the header fields, and using
these codes to index one or more of the LUTs. Each LUT
entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer

App. II-29

US 6,665,725 B1
15

selections 338, which describes the particular layering (sets
of trees of protocols) that the monitor is to be able to handle.
A compiler 403 compiles the descriptions. The set of

packet parse-and-extract operations 406 is generated (404),
and a set of packet State instructions and operations 407 is
generated (405) in the form of instructions for the state
processor that implements State processing process 328.
Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern,
parse, and extraction database 406 into the memory Systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG. 6; and the parsing Subsystem hardware
description and FIG. 10). Data files for each type of appli
cation and protocol to be recognized by the analyzer are also
downloaded from the State-processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11.).

Note that generating the packet parse and extraction
operations builds and links the three dimensional Structure
(one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and Subtrees to see which children
share common parents. When implemented in the form of
the LUTs, this proceSS can generate a single LUT from a
plurality of LUTs. The optimization process further
includes a compaction process that reduces the Space needed
to store the data of the PRD.
AS an example of compaction, consider the 3-D Structure

of FIG. 18A that can be thought of as a set of 2-D structures
each representing a protocol. To enable Saving Space by
using only one array per protocol which may have several
parents, in one embodiment, the pattern analysis SubproceSS
keeps a “current header' pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a
relative location starting with the start of header for the
particular protocol. Furthermore, each of the two
dimensional arrays is sparse. The next Step of the
optimization, is checking all the 2-D arrays against all the
other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often Sparsely populated in that
they each have only a Small number of valid entries. So, a
process of "folding” is next used to combine two or more
2-D arrays together into one physical 2-D array without
losing the identity of any of the original 2-D arrays (i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met. Multiple arrayS
may be combined into a single array as long as the individual
entries do not conflict with each other. A fold number is then
used to associate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem
301 functions. Starting at 501, the packet 302 is input to the
packet buffer in step 502. Step 503 loads the next (initially
the first) packet component from the packet 302. The packet
components are extracted from each packet 302 one element
at a time. A check is made (504) to determine if the
load-packet-component operation 503 Succeeded, indicating
that there was more in the packet to process. If not, indi
cating all components have been loaded, the parser Sub
system 301 builds the packet signature (512)-the next stage
(FIG. 6).

15

25

35

40

45

50

55

60

65

16
If a component is successfully loaded in 503, the node and

processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet
component. The parser Subsystem 301 checks (506) to
determine if the fetch pattern node operation 505 completed
Successfully, indicating there was a pattern node that loaded
in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattern matching process are
applied in 507 to the component extracted in 503. A pattern
match obtained in 507 (as indicated by test 508) means the
parser Subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser Subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns' loop between 508 and 505.
Once the parser Subsystem 301 completes all the patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).
Once all the packet components have been the loaded and

processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 moves to build a packet signature which is described in
FIG. 6 FIG. 6 is a flow chart for extracting the information
from which to build the packet signature. The flow starts at
601, which is the exit point 513 of FIG. 5. At this point
parser Subsystem 301 has a completed packet component
and a pattern node available in a buffer (602). Step 603 loads
the packet component available from the pattern analysis
process of FIG. 5. If the load completed (test 604), indicat
ing that there was indeed another packet component, the
parser Subsystem 301 fetches in 605 the extraction and
process elements received from the pattern node component
in 602. If the fetch was successful (test 606), indicating that
there are extraction elements to apply, the parser Subsystem
301 in step 607 applies that extraction process to the packet
component based on an extraction instruction received from
that pattern node. This removes and Saves an element from
the packet component.

In step 608, the parser Subsystem 301 checks if there is
more to extract from this component, and if not, the parser
Subsystem 301 moves back to 603 to load the next packet
component at hand and repeats the process. If the answer is
yes, then the parser Subsystem 301 moves to the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the Same packet component
if there is more to extract, or to a different packet component
if there is no more to extract.
The extraction process thus builds the Signature, extract

ing more and more components according to the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603 fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buffer (610)
and the parser Subsystem 301 proceeds to FIG. 7 to complete
the Signature generation process.

Referring now to FIG. 7, the process continues at 701. The
Signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705

App. II-30

US 6,665,725 B1
17

hashes the Signature buffer element based on the hash
elements that are found in the pattern node that is in the
element database. In 706 the resulting signature and the hash
are packed. In 707 the parser subsystem 301 moves on to the
next packet component which is loaded in 703.
The 703 to 707 loop continues until there are no more

patterns of elements left (test 704). Once all the patterns of
elements have been hashed, processes 304,306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the Signature used by the analyzer Subsystem
303.
A parser record is loaded into the analyzer, in particular,

into the UFKB in the form of a UFKB record which is
Similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a Signature, the hash and at least
parts of the payload. In 802 those elements are shown in the
form of a UFKB-entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number” from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache,
all data accesses to records in the flowchart of FIG. 8 are
Stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket
from that bin using the hash. If the cache Successfully
returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry's
Signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found”
indication allows the State processing 328 to begin proceSS
ing this UFKB element. The preferred hardware embodi
ment includes one or more State processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a Set of Statistical operations
is performed by a calculator for every packet analyzed. The
Statistical operations may include one or more of counting
the packets associated with the flow; determining Statistics
related to the size of packets of the flow; compiling Statistics
on differences between packets in each direction, for
example using timestamps, and determining Statistical rela
tionships of timestamps of packets in the same direction.
The Statistical measures are kept in the flow-entries. Other
Statistical measures also may be compiled. These Statistics
may be used singly or in combination by a Statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from the Statistical measures, for example to ascer
tain the network's ability to transfer information for this
application. Such analysis provides for measuring the qual
ity of Service of a conversation, measuring how well an
application is performing in the network, measuring network
resources consumed by an application, and So forth.
To provide for Such analyses, the lookup/update engine

updates one or more counters that are part of the flow-entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow, the time, and a differential time from the last timestamp
to the present timestamp.

15

25

35

40

45

50

55

60

65

18
It may be that the bucket of the bin did not lead to a

Signature match (test 808). In Such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, any Statistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the updatelookup engine ends with a UFKB-entry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In Such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.

The Hardware System
Each of the individual hardware elements through which

the data flows in the system are now described with refer
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodiment of FIG. 3, it would be clear to one skilled in the
art that the flow of FIG.3 may alternatively be implemented
in Software running on one or more general-purpose
processors, or only partly implemented in hardware. An
implementation of the invention that can operate in Software
is shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the Software system of FIG. 14 may be suitable for
slower networks. To one skilled in the art it would be clear
that more and more of the System may be implemented in
Software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as Subsystem 1000) as implemented in hard
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data
base memory, in which the extraction instructions are Stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004. Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.
A packet enters the parsing System via 1012 into a parser

input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The buffer 1008 and interface control 1022 connect to
a packet acquisition device (not shown). The buffer acqui
Sition device generates a packet Start Signal 1021 and the
interface control 1022 generates a next packet (i.e., ready to
receive data) signal 1023 to control the data flow into parser
input buffer memory 1008. Once a packet starts loading into
the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory
described in block 304 of FIG. 3. That is, protocol types and
asSociated headers for each protocol layer that exist in the
packet are determined.

App. II-31

US 6,665,725 B1
19

The PRE searches database 1001 and the packet in buffer
1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series
of linked lookup tables. Each lookup table uses eight bits of
addressing. The first lookup table is always at address Zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to Start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the first lookup table.

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to
the COP

The PRE 1006 includes of a comparison engine. The
comparison engine has a first Stage that checks the protocol
type field to determine if it is an 802.3 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a Second Stage. The first stage is the only
protocol level that is not programmable. The Second Stage
has two full sixteen bit content addressable memories
(CAMs) defined for future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also
generates a command for the extraction engine (also called
a "slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction
pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig
nature and the proceSS code is used to fetch the first
instruction from the instruction database 1002. Instructions
include an operation code and usually Source and destination
offsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow Signature.
The extractor contains another instruction called HASH.
This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting Selected element
(S) of the packet in the input buffer memory and transferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a
pipeline. That is, extraction engine 1007 performs extraction
operations on data in input buffer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa
tion is being simultaneously parsed by PRE 1006. This
provides high processing Speed Sufficient to accommodate
the high arrival rate Speed of packets.

Once all the Selected parts of the packet used to form the
Signature are extracted, the hash is loaded into parser output
buffer memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once

5

15

25

35

40

45

50

55

60

65

20
all the information of a packet is in the parser output buffer
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser Sub
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready Signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer Subsystem that performs the functions of the
analyzer Subsystem 303 of FIG.3. The analyzer is initialized
prior to operation, and initialization includes loading the
State processing information generated by the compilation
process 310 into a database memory for the State processing,
called state processor instruction database (SPID) memory
1109.
The analyzer subsystem 1100 includes a hostbus interface

1122 using an analyzer host interface controller 1118, which
in turn has access to a cache System 1115. The cache System
has bi-directional access to and from the State processor of
the system 1108. State processor 1108 is responsible for
initializing the State processor instruction database memory
1109 from information given over the host bus interface
1122.
With the SPID 1109 loaded, the analyzer subsystem 1100

receives parser records comprising packet signatures and
payloads that come from the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holds records of packets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable Status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1103: the lookup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple
mented by one or more finite state machines (FSM's). There
is bi-directional access between each of the finite State
machines and the unified flow key buffer 1103. The UFKB
record includes a field that Stores the packet Sequence
number, and another that is filled with state information in
the form of a program counter for the state processor 1108
that implements State processing 328. The Status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the State
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the State processor is done with the
current flow and to indicate what the next entry is for the
State processor. There also is provided a flag to indicate the
State processor is transferring processing of the UFKB-entry
to the flow insertion and deletion engine.
A new UFKB record is first processed by the LUE 1107.

A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
110 after being processed by the state processor 1108 or only
by the LUE. Whether or not a particular engine has been
applied to any unified flow key buffer entry is determined by
Status fields Set by the engines upon completion. In one
embodiment, a status flag in the UFKB-entry indicates
whether an entry is new or found. In other embodiments, the
LUE issues a flag to pass the entry to the State processor for
processing, and the required operations for a new record are
included in the SP instructions.

Note that each UFKB-entry may not need to be processed
by all three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

App. II-32

US 6,665,725 B1
21

Each of these three engines also has bi-directional acceSS
to a cache Subsystem 1115 that includes a caching engine.
Cache 1115 is designed to have information flowing in and
out of it from five different points within the system: the
three engines, external memory via a unified memory con
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that
includes a set of content addressable memory cells (CAMs)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the
cached flow-entries. The CAMS are arranged as a Stack
ordered from a top CAM to a bottom CAM. The bottom
CAM's pointerpoints to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, So the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
asSociative cache with a true LRU replacement policy.
The LUE 1107 first processes a UFKB-entry, and basi

cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buckets
from the cache. The cache System attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.
When a flow-entry is found using the hash, the LUE 1107

looks at each bucket and compares it using the Signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow-entries from the cache, a time Stamp in Set in the flow
key of the UFKB record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the Status for
the record is Set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is
ready to Start State processing. The identification and State
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector' for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the State processor to start State processing for
the particular protocol. For example, the jump vector jumps
to the Subroutine for processing the State.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountered flow, then a
calculator component enters one or more Statistical measures
Stored in the flow-entry, including the timestamp. In
addition, a time difference from the last Stored timestamp
may be Stored, and a packet count may be updated. The State
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi
cation is required, then the Status for the record is Set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
State processor to a Subroutine to State processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being Zero. If the

15

25

35

40

45

50

55

60

65

22
protocol identifier indicates more processing, then an indi
cation is made that the UFKB-entry is ready to start state
processing and the Status for the record is Set to indicate the
LUE has processed the record.
The state processor 1108 processes information in the

cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the State
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the Subroutine which
analyzes the protocol that was decoded.
The State Processor ALU (SPALU) contains all the

Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register
The Search Engine in turn contains the Target Search

Register Set, the Reference Search Register Set, and a
Compare block which compares two operands by exclusive
or-ing them together.

Thus, after the UFKB sets the program counter, a
Sequence of one or more State operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB-entry is used
to Set the State processor's instruction counter. The State
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test Something in the
unified flow key buffer or the flow-entry if it exists. The state
processor 1108 may have to test bits, do comparisons, add or
Subtract to perform the test.
The first state processor instruction is fetched in 1304

from the state processor instruction database memory 1109.
The State processor performs the one or more fetched
operations (1304). In our implementation, each single State
processor instruction is very primitive (e.g., a move, a
compare, etc.), So that many Such instructions need to be
performed on each unified flow key buffer entry. One aspect
of the State processor is its ability to Search for one or more
(up to four) reference Strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the State processor responsive to special
Searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then

App. II-33

US 6,665,725 B1
23

in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may
be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions
to be performed.

At this stage, a check is made in 1309 if the processing on
this particular packet has resulted in a final State. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. If indeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final States may need to put
a State in place that tells the System to remove a flow-for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.

Once the appropriate flow removal instruction as Specified
for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

Note that State processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the state processor is done. Furthermore, If
the flow needs to be inserted or deleted from the database of
flows, control is then passed on to the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
done by the state processor setting another flag in the UFKB
for this UFKB-entry indicating that the state processor is
passing processing of this entry to the flow insertion and
deletion engine.

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database So that they can be reused.

The process of flow insertion is now described with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFKB-entry that may be
new or that the State processor otherwise has indicated needs
to be created. FIG. 12 shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used' in the cache engine of cache 1115
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow Signature to the packet to Verify that all the elements are

15

25

35

40

45

50

55

60

65

24
in place to complete the record. In 1211 the System marks the
record bin and bucket as “in process” and as “new” in the
cache System (and hence in the external memory). In 1212,
the initial Statistical measures for the flow-record are Set in
the cache System. This in the preferred embodiment clearS
the Set of counters used to maintain Statistics, and may
perform other procedures for Statistical operations requires
by the analyzer for the first packet Seen for a particular flow.

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packet is Set as “drop, indicating that the System cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion
operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.
Once a set of operations is performed on a unified flow

key buffer entry by all of the engines required to access and
manage a particular packet and its flow Signature, the unified
flow key buffer entry is marked as “completed.” That
element will then be used by the parser interface for the next
packet and flow Signature coming in from the parsing and
extracting System.

All flow-entries are maintained in the external memory
and Some are maintained in the cache 1115. The cache
System 1115 is intelligent enough to access the flow database
and to understand the data Structures that exists on the other
Side of memory interface 1123. The lookup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache System once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache System if required
based on information in the unified flow key buffer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are Several interfaces to components of the System
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing System Such as a micropro
cessor or a multiplexor (MUX) system. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into Some other processing System to manage the
classification System and to extract data gathered by the
System.
The memory interface 1123 is designed to interface to any

of a variety of memory Systems that one may want to use to
store the flow-entries. One can use different types of
memory Systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic' interfaces. There is
a packet input interface 1012-a general interface that
works in tandem with the signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic Systems that can then feed packet
information into the parser. Another generic interface is the

App. II-34

US 6,665,725 B1
25

interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This
enables the parsing System to be managed by an external
System, for example a microprocessor or another kind of
external logic, and enables the external System to program
and otherwise control the parser.
The preferred embodiment of this aspect of the invention

is described in a hardware description language (HDL) Such
as VHDL or Verilog. It is designed and created in an HDL
So that it may be used as a Single chip System or, for instance,
integrated into another general-purpose System that is being
designed for purposes related to creating and analyzing
traffic within a network. Verilog or other HDL implemen
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA's). The
boundaries of these FPGA's are as follows. The parsing
Subsystem of FIG. 10 is implemented as two FPGAS; one
FPGA, and includes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGA includes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA. Por
tions of the State processor instruction database memory
1109 are maintained in external SRAM's. The lookup/
update engine 1107 and the flow insertion/deletion engine
1110 are in another FPGA. The Sixth FPGA includes the
cache system 1115, the unified memory control 1119, and the
analyzer host interface and control 1118.

Note that one can implement the System as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC's) such as FPGA's. It is antici
pated that in the future device densities will continue to
increase, So that the complete System may eventually form
a Sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention
FIG. 15 shows how an embodiment of the network

monitor 300 might be used to analyze traffic in a network
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are Supplied to
monitor 300. Monitor 300 comprises the parser Sub-system
301, which determines flow signatures, and analyzer Sub
System 303 that analyzes the flow signature of each packet.
A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which might be any processor, for example, a general
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMON probe, in which case the
host computer is coupled to a network interface card 1510
that is connected to the network 102.

The preferred embodiment of the invention is supported
by an optional Simple Network Management Protocol
(SNMP) implementation. FIG. 15 describes how one would,
for example, implement an RMON probe, where a network
interface card is used to send RMON information to the
network. Commercial SNMP implementations also are
available, and using Such an implementation can Simplify
the process of porting the preferred embodiment of the
invention to any platform.

15

25

35

40

45

50

55

60

65

26
In addition, MIB Compilers are available. An MIB Com

piler is a tool that greatly simplifies the creation and main
tenance of proprietary MIB extensions.

Examples of Packet Elucidation
Monitor 300, and in particular, analyzer 303 is capable of

carrying out State analysis for packet eXchanges that are
commonly referred to as "server announcement' type
eXchanges. Server announcement is a process used to ease
communications between a Server with multiple applications
that can all be Simultaneously accessed from multiple cli
ents. Many applications use a server announcement process
as a means of multiplexing a single port or Socket into many
applications and Services. With this type of exchange, mes
Sages are Sent on the network, in either a broadcast or
multicast approach, to announce a Server and application,
and all Stations in the network may receive and decode these
messages. The messages enable the Stations to derive the
appropriate connection point for communicating that par
ticular application with the particular Server. Using the
Server announcement method, a particular application com
municates using a Service channel, in the form of a TCP or
UDP socket or port as in the IP protocol Suite, or using a SAP
as in the Novell IPX protocol suite.
The analyzer 303 is also capable of carrying out “in

Stream analysis” of packet eXchanges. The “in-stream analy
Sis' method is used either as a primary or Secondary recog
nition process. As a primary process, in-stream analysis
assists in extracting detailed information which will be used
to further recognize both the Specific application and appli
cation component. A good example of in-stream analysis is
any Web-based application. For example, the commonly
used Point Cast Web information application can be recog
nized using this process, during the initial connection
between a PointCast Server and client, Specific key tokens
exist in the data eXchange that will result in a Signature being
generated to recognize PointCast.
The in-stream analysis proceSS may also be combined

with the Server announcement process. In many cases
in-Stream analysis will augment other recognition processes.
An example of combining in-stream analysis with Server
announcement can be found in busineSS applications Such as
SAP and BAAN.

"Session tracking” also is known as one of the primary
processes for tracking applications in client/server packet
eXchanges. The process of tracking Sessions requires an
initial connection to a predefined Socket or port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDP transport protocols of the IP protocol.

During the Session tracking, a client makes a request to a
Server using a specific port or Socket number. This initial
request will cause the server to create a TCP or UDP port to
eXchange the remainder of the data between the client and
the server. The server then replies to the request of the client
using this newly created port. The original port used by the
client to connect to the Server will never be used again
during this data eXchange.
One example of session tracking is TFTP (Trivial File

Transfer Protocol), a version of the TCP/IP FTP protocol
that has no directory or password capability. During the
client/server exchange process of TFTP, a specific port (port
number 69) is always used to initiate the packet exchange.
Thus, when the client begins the process of communicating,
a request is made to UDP port 69. Once the server receives
this request, a new port number is created on the Server. The

App. II-35

US 6,665,725 B1
27

Server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFTP; network
monitor 300 analyzes the initial request from the client and
generates a Signature for it. Monitor 300 uses that Signature
to recognize the reply. Monitor 300 also analyzes the reply
from the Server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data eXchange.

Network monitor 300 can also understand the current
State of particular connections in the network. Connection
oriented exchanges often benefit from State tracking to
correctly identify the application. An example is the com
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data eXchange is initiated, a TCP request for Synchroni
Zation message is sent. This message contains a specific
Sequence number that is used to track an acknowledgement
from the Server. Once the Server has acknowledged the
Synchronization request, data may be exchanged between
the client and the Server. When communication is no longer
required, the client Sends a finish or complete message to the
Server, and the Server acknowledges this finish request with
a reply containing the Sequence numbers from the request.
The States of Such a connection-oriented exchange relate to
the various types of connection and maintenance messages.

Server Announcement Example
The individual methods of Server announcement proto

cols vary. However, the basic underlying proceSS remains
Similar. A typical Server announcement message is Sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another aspect of the
invention, is Salvaged and maintained in the database of
flow-entries in the System. Because the announcement is
Sent to one or more Stations, the client involved in a future
packet eXchange with the Server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.
Sun-RPC is the implementation by Sun Microsystems,

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
Services of another on a remote machine. A Sun-RPC
example is now used to explain how monitor 300 can
capture Server announcements.
A remote program or client that wishes to use a Server or

procedure must establish a connection, for which the RPC
protocol can be used.

Each server running the Sun-RPC protocol must maintain
a proceSS and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the
Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of param
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport Socket
through the use of Specific request or a directed announce
ment. According to ICANN, port number 111 is associated
with Sun RPC.
As an example, consider a client (e.g., CLIENT 3 shown

as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

15

25

35

40

45

50

55

60

65

28
UDP or TCP socket. Once the port Mapper process on the
Sun RPC Server receives the request, the Specific mapping is
returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER2 (110 in FIG. 1) on port 111, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port 111 is always associated Sun RPC. This request
Specifies the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the
request. The Server also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server 110 sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the Specific port number (e.g., port number port) on
which future transactions will be accepted for the
Specific RPC program identifier (e.g., Program
program) and the protocol (UDP or TCP) for use.

It is desired that from now on every time that port number
port is used, the packet is associated with the application
program program until the number port no longer is to be
asSociated with the program program. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange So that future
packets that use the port number port will be associated by
the network monitor with the application program pro
gram.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program-Say
program-might be associated with a particular port
number, for example number port. One is by a broadcast
announcement of a particular association between an appli
cation service and a port number, called a Sun RPC port
Mapper Announcement. Another, is when Some Server-Say
the same SERVER 2-replies to some client-say CLIENT
1-requesting Some portMapper assignment with a RPC
portMapper Reply. Some other client-say CLIENT
2-might inadvertently See this request, and thus know that
for this particular server, SERVER 2, port number port is
asSociated with the application Service program. It is
desirable for the network monitor 300 to be able to associate
any packets to SERVER 2 using port number port with the
application program program.
FIG.9 represents a dataflow 900 of some operations in the

monitor 300 of FIG. 3 for Sun Remote Procedure Call.
Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server's interface to
the network 116. Further assume that Remote Procedure
Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the program,
version, and protocol to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the program, “version, and pro
tocol (UDP or TCP). Extract the TCP or UDP port
(process 909) which is 111 indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
Socket (i.e., dest for destination address, Src for Source

App. II-36

US 6,665,725 B1
29

address). Decode ports and mapping, save ports with
Socket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flow-entry is created in database 324. The saving of the
request is now complete.

At some later time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
Signature from the packet and recognize it from the previ
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
Signature in the flow-entry database. That Signature now
may be used to identify packets associated with the Server.

The server state creation step 904 can be reached not only
from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide a particular application Service. Embodiments of the
present invention preferably can analyze when an exchange
occurs between a client and a Server, and also can track those
Stations that have received the announcement of a Service in
the network.

The RPC Announcement portMapper announcement 902
is a broadcast. Such causes various clients to execute a
Similar Set of operations, for example, Saving the informa
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the Service
parameterS.

Thus monitor 300 creates and saves all Such states for
later classification of flows that relate to the particular
Service program.

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature and flow states. A plurality of packets
206-209 are exchanged, e.g., in an exemplary Sun Micro
systems Remote Procedure Call protocol. A method embodi
ment of the present invention might generate a pair of flow
signatures, “signature-1' 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup
pose packet 206 corresponds to Such a request Sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A Source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEY1230 in FIG. 2) will also contain
these two fields, so the parser Subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG.
2, if an address identifies the client 106 (shown also as 202),
the label used in the drawing is “C”. If such address
identifies the server 110 (shown also as server 204), the label
used in the drawing is “S”. The first two fields 214 and 215
in packet 206 are “S” and C” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “S” is an address numeri
cally less than address “C”. A third field “p' 216 identifies
the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are
used to communicate port numbers that are used. The
conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a Source-port pattern, and the hash pattern in field 218 is

15

25

35

40

45

50

55

60

65

30
used to identify the destination-port pattern. The order
indicates the client-Server message direction. A sixth field
denoted “i'” 219 is an element that is being requested by the
client from the server. A seventh field denoted “sa” 220 is
the service requested by the client from server 110. The
following eighth field “QA” 221 (for question mark) indi
cates that the client 106 wants to know what to use to access
application “sa'. A tenth field “QP 223 is used to indicate
that the client wants the Server to indicate what protocol to
use for the particular application.

Packet 206 initiates the Sequence of packet eXchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans
mitted to the server 110 on a well-known service connection
identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from
the server. It is the RPC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224-233. The destination
and Source addresses are carried in fields 224 and 225, e.g.,
indicated “C” and “S”, respectively. Notice the order is
now reversed, since the client-Server message direction is
from the server 110 to the client 106. The protocol “p' is
used as indicated in field 226. The request "i" is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol “p” in field 233.
The flow signature and flow states built up as a result of

this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser Subsystem 301 according
to the pattern and extraction operations database 308. This
Signature 210 includes a destination and a Source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best Spread of Signatures and hashes for the
lookup operations. In this case, therefore, Since we assume
“S”<“C”, the order is address “S” followed by client
address “C”. The next field used to build the signature is a
protocol field 242 extracted from packet 206's field 216, and
thus is the protocol “p". The next field used for the
Signature is field 243, which contains the destination Source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or Sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination of TCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p" that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups, are
directly determinable ("known”) at the parser level. So in
this case, the Signature KEY-1 points to a known application
denoted “a” (Sun RPC Bind Lookup), and a next-state that
the State processor should proceed to for more complex
recognition jobs, denoted as State “st' is placed in the field
245 of the flow-entry.
When the Sun RPC Bind Lookup reply is acquired, a flow

Signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
complete flow-entry is obtained, and in this flow-entry
indicates State “st'. The operations for State “st,” in the
State processor instruction database 326 instructs the State

App. II-37

US 6,665,725 B1
31

processor to build and Store a new flow Signature, shown as
KEY-2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a Source
addresses 250 and 251, respectively, for server “S” fol
lowed by (the numerically higher address) client “C”. A
protocol field 252 defines the protocol to be used, e.g., “p”,
which is obtained from the reply packet. A field 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application “a”. A next-state field 255 defines the next
State that the State processor should proceed to for more
complex recognition jobs, e.g., a state “st". In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
Service requested in the original Bind Lookup Request, and
each will be recognized because the signature KEY-2 will be
built in each case.

The two flow signatures 210 and 212 always order the
destination and source address fields with server “S” fol
lowed by client “C”. Such values are automatically filled in
when the addresses are first created in a particular flow
Signature. Preferably, large collections of flow Signatures are
kept in a lookup table in a least-to-highest order for the best
Spread of flow Signatures and hashes.

Thereafter, the client and Server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and Source address S and C, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p”,
and a field 263 defines the destination port number.
Some network-server application recognition jobs are So

Simple that only a single State transition has to occur to be
able to pinpoint the application that produced the packet.
Others require a Sequence of State transitions to occur in
order to match a known and predefined climb from State
to-State.

Thus the flow signature for the recognition of application
“a” is automatically set up by predefining what packet
eXchange Sequences occur for this example when a rela
tively simple Sun Microsystems Remote Procedure Call
bind lookup request instruction executes. More complicated
eXchanges than this may generate more than two flow
Signatures and their corresponding States. Each recognition
may involve Setting up a complex State transition diagram to
be traversed before a “final” resting state such as “st,” in
field 255 is reached. All these are used to build the final set
of flow Signatures for recognizing a particular application in
the future.

Embodiments of the present invention automatically gen
erate flow Signatures with the necessary recognition patterns
and State transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen
erating State transitions to Search for. Applications and
protocols, at any level, are recognized through State analysis
of Sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances Such as telephones,
“Internet' radios, pagers, and So forth. The term computer as
used herein encompasses all Such devices and a computer
network as used herein includes networks of Such comput
CS.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as

5

15

25

35

40

45

50

55

60

65

32
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true Spirit and Scope of the
present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called base
level). Each protocol is either a parent node of Some other
protocol at the next later or a terminal node. A parent node
links a protocol to other protocols (child protocols) that can
be at higher layer levels. Thus a protocol may have Zero or
more children.
AS an example of the tree Structure, consider an Ethernet

packet. One of the children nodes may be the IP protocol,
and one of the children of the IP protocol may be the TCP
protocol. Another child of the IP may be the UDP protocol.
A packet includes at least one header for each protocol

used. The child protocol of a particular protocol used in a
packet is indicated by the contents at a location within the
header of the particular protocol. The contents of the packet
that specify the child are in the form of a child recognition
pattern.
A network analyzer preferably can analyze many different

protocols. At a base level, there are a number of packet types
used in digital telecommunications, including Ethernet,
HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital
Data Service, FDDI (Fiber Distributed Data Interface), and
T1, among others. Many of these packet types use different
packet and/or frame formats. For example, data is transmit
ted in ATM and frame-relay systems in the form of fixed
length packets (called “cells') that are 53 octets (i.e., bytes)
long, Several Such cells may be needed to make up the
information that might be included in a Single packet of
Some other type.

Note that the term packet herein is intended to encompass
packets, datagrams, frames and cells. In general, a packet
format or frame format refers to how data is encapsulated
with various fields and headers for transmission acroSS a
network. For example, a data packet typically includes an
address destination field, a length field, an error correcting
code (ECC) field or cyclic redundancy check (CRC) field, as
well as headers and footers to identify the beginning and end
of the packet. The terms “packet format,” “frame format”
and “cell format are generally Synonymous.
The packet monitor 300 can analyze different protocols,

and thus can perform different protocol Specific operations
on a packet wherein the protocol headers of any protocol are
located at different locations depending on the parent pro
tocol or protocols used in the packet. Thus, the packet
monitor adapts to different protocols according to the con
tents of the packet. The locations and the information
extracted from any packet are adaptively determined for the
particular type of packet. For example, there is no fixed
definition of what to look for or where to look in order to
form the flow Signature. In Some prior art Systems, Such as
that described in U.S. Pat. No. 5,101,402 to Chiu, et al., there
are fixed locations Specified for particular types of packets.
With the proliferation of protocols, the specifying of all the
possible places to look to determine the Session becomes
more and more difficult. Likewise, adding a new protocol or
application is difficult. In the present invention, the number
of levels is variable for any protocol and is whatever number

App. II-38

US 6,665,725 B1
33

is Sufficient to uniquely identify as high up the level System
as we wish to go, all the way to the application level (in the
OSI model).

Even the same protocol may have different variants.
Ethernet packets for example, have Several known variants,
each having a basic format that remains Substantially the
same. An Ethernet packet (the root node) may be an Ether
type packet-also called an Ethernet Type/Version 2 and a
DIX (DIGITAL-Intel-Xerox packet)—or an IEEE Ethernet
(IEEE 803.x) packet. A monitor should be able to handle all
types of Ethernet protocols. With the Ethertype protocol, the
contents that indicate the child protocol is in one location,
while with an IEEE type, the child protocol is specified in a
different location. The child protocol is indicated by a child
recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media acceSS control
address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the Signature. Such information is also to
be specified in the parsing Structures and extraction opera
tions database 308. This includes all of the header informa
tion at this level in the form of 6 bytes of Dst MAC
information 1606 and 6 bytes of Src MAC information 1610.
Also specified are the Source and destination address
components, respectively, of the hash. These are shown as 2
byte Dst Hash 1608 from the Dst MAC address and the 2
byte Src Hash 1612 from the Src MAC address. Finally,
information is included (1614) on where to the header starts
for information related to the next layer level. In this case the
next layer level (level 2) information starts at packet offset
12.

FIG. 17A now shows the header information for the next
level (level-2) for an Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information
from the packet that indicates the next layer level is a
two-byte type field 1702 containing the child recognition
pattern for the next level. The remaining information 1704
is shown hatched because it not relevant for this level. The
list 1712 shows the possible children for an Ethertype packet
as indicated by what child recognition pattern is found offset
12.

Also shown is Some of the extracted part used for the
parser record and to locate the next header information. The
Signature part of the parser record includes extracted part
1702. Also included is the 1-byte Hash component 1710
from this information.
An offset field 1710 provides the offset to go to the next

level information, i.e., to locate the Start of the next layer
level header. For the Ethertype packet, the start of the next
layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example,
in an ATM System, each ATM packet comprises a five-Octet
“header” segment followed by a forty-eight octet “payload”
Segment. The header Segment of an ATM cell contains
information relating to the routing of the data contained in
the payload Segment. The header Segment also contains
traffic control information. Eight or twelve bits of the header
segment contain the Virtual Path Identifier (VPI), and six
teen bits of the header segment contain the Virtual Channel
Identifier (VCI). Each ATM exchange translates the abstract
routing information represented by the VPI and VCI bits into
the addresses of physical or logical network links and routes
each ATM cell appropriately.

15

25

35

40

45

50

55

60

65

34
FIG. 17B shows the structure of the header of one of the

possible next levels, that of the IP protocol. The possible
children of the IP protocol are shown in table 1752. The
header Starts at a different location (L3) depending on the
parent protocol. Also included in FIG. 17B are some of the
fields to be extracted for the Signature, and an indication of
where the next levels header would start in the packet.

Note that the information shown in FIGS. 16, 17A, and
17B would be specified to the monitor in the form of PDL
files and compiled into the database 308 of pattern structures
and extraction operations.
The parsing subsystem 301 performs operations on the

packet header data based on information Stored in the
database 308. Because data related to protocols can be
considered as organized in the form of a tree, it is required
in the parsing Subsystem to Search through data that is
originally organized in the form of a tree. Since real time
operation is preferable, it is required to carry out Such
Searches rapidly.

Data structures are known for efficiently Storing informa
tion organized as trees. Such Storage-efficient means typi
cally require arithmetic computations to determine pointers
to the data nodes. Searching using Such Storage-efficient data
Structures may therefore be too time consuming for the
present application. It is therefore desirable to Store the
protocol data in Some form that enables rapid Searches.

In accordance with another aspect of the invention, the
database 308 is stored in a memory and includes a data
Structure used to Store the protocol Specific operations that
are to be performed on a packet. In particular, a compressed
representation is used to Store information in the pattern
parse and extraction database 308 used by the pattern
recognition process 304 and the extraction process 306 in
the parser subsystem 301. The data structure is organized for
rapidly locating the child protocol related information by
using a set of one or more indices to index the contents of
the data structure. A data Structure entry includes an indi
cation of validity. Locating and identifying the child proto
col includes indexing the data structure until a valid entry is
found. Using the data Structure to Store the protocol infor
mation used by the pattern recognition engine (PRE) 1006
enables the parser subsystem 301 to perform rapid searches.

In one embodiment, the data structure is in the form of a
three-dimensional structure. Note that this three dimensional
Structure in turn is typically Stored in memory as a set of
two-dimensional Structures whereby one of the three dimen
Sions of the 3-D Structure is used as an indeX to a particular
2-D array. This forms a first index to the data structure.

FIG. 18A shows such a 3-D representation 1800 (which
may be considered as an indexed set of 2-D representations).
The three dimensions of this data structure are:

1. Type identifier 1:M). This is the identifier that identi
fies a type of protocol at a particular level. For example,
01 indicates an Ethernet frame. 64 indicates IP, 16
indicates an IEEE type Ethernet packet, etc. Depending
on how many protocols the packet parser can handle, M
may be a large number; M may grow over time as the
capability of analyzing more protocols is added to
monitor 300. When the 3-D structure is considered a set
of 2-D Structures, the type ID is an indeX to a particular
2-D structure.

2. Size 1:64). The size of the field of interest within the
packet.

3. Location 1:512). This is the offset location within the
packet, expressed as a number of octets (bytes).

At any one of these locations there may or may not be
valid data. Typically, there will not be valid data in most

App. II-39

US 6,665,725 B1
35

locations. The size of the 3-D array is Mby 64 by 512, which
can be large; M for example may be 10,000. This is a sparse
3-D matrix with most entries empty (i.e., invalid).

Each array entry includes a "node code' that indicates the
nature of the contents. This node code has one of four
values: (1) a “protocol node code indicating to the pattern
recognition process 304 that a known protocol has been
recognized as the next (i.e., child) protocol; (2) a “terminal”
node code indicating that there are no children for the
protocol presently being Searched, i.e., the node is a final
node in the protocol tree; (3) a “null” (also called “flush”)
node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and
other information are loaded into the data Structure by an
initialization that includes compilation process 310 based on
the PDL files 336 and the layering selections 338. The
following information is included for any entry in the data
Structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For
example, for an Ethernet type 2, the children are
Ethertype (IP, IPX, etc, as shown in 1712 of FIG. 17).
These children are compiled into the type codes. The
code for IP is 64, that for IPX is 83, etc.

(b) For each of the IDs in the list, a list of the child
recognition patterns that need to be compared. For
example, 64:0800 in the list indicates that the value
to look for is 0800 (hex) for the child to be type ID 64
(which is the IP protocol). 83:8137 in the list indi
cates that the value to look for is 8137 (hex) for the
child to be type ID 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the
identifying Signature for the flow. The format used is
(offset, length, flow signature value identifier), the
flow signature value identifier indicating where the
extracted entry goes in the Signature, including what
operations (AND, ORs, etc.) may need to be carried
out. If there is also a hash key component, for instance,
then information on that is included. For example, for
an Ethertype packet, the 2-byte type (1706 in FIG. 17)
is used in the Signature. Furthermore, a 1-byte hash
(1708 in FIG. 17A) of the type is included. . Note
furthermore, the child protocol starts at offset 14.

An additional item may be the “fold.” Folding is used to
reduce the Storage requirements for the 3-D Structure. Since
each 2-D array for each protocol ID may be sparsely
populated, multiple arrays may be combined into a single
2-D array as long as the individual entries do not conflict
with each other. A fold number is then used to associate each
element. For a given lookup, the fold number of the lookup
must match the fold number entry. Folding is described in
more detail below.

In the case of the Ethernet, the next protocol field may
indicate a length, which tells the parser that this is a IEEE
type packet, and that the next protocol is elsewhere.
Normally, the next protocol field contains a value which
identifies the next, i.e., child protocol.

The entry point for the parser Subsystem is called the
Virtual base layer and contains the possible first children,
i.e., the packet types. An example Set of protocols written in
a high level protocol description language (PDL) is included
herein. The set includes PDL files, and the file describing all
the possible entry points (i.e., the virtual base) is called
Virtual.pdl. There is only one child, 01, indicating the
Ethernet, in this file. Thus, the particular example can only
handle Ethernet packets. In practice, there can be multiple
entry points.

In one embodiment, the packet acquisition device pro
vides a header for every packet acquired and input into

5

15

25

35

40

45

50

55

60

65

36
monitor 300 indicating the type of packet. This header is
used to determine the virtual base layer entry point to the
parser Subsystem. Thus, even at the base layer, the parser
Subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base,
as obtained in the header Supplied by the acquisition device.
In the case of the example, this has ID value 01, which is the
2-D array in the overall 3-D structure for Ethernet packets.
Thus hardware implementing pattern analysis proceSS304

(e.g., pattern recognition engine (PRE) 1006 of FIG. 10)
searches to determine the children (if any) for the 2-D array
that has protocol ID 01. In the preferred embodiment that
uses the 3-D data structure, the hardware PRE 1006 searches
up to four lengths (i.e., sizes) simultaneously. Thus, the
process 304 Searches in groups of four lengths. Starting at
protocol ID 01, the first two sets of 3-D locations searched
C

(1, 1, 1) (1, 1, 2)
(1, 2, 1) (1, 2, 2)
(1, 3, 1) (1, 3, 2)
(1, 4, 1) (1, 4, 2)

At each Stage of a Search, the analysis process 304
examines the packet and the 3-D data Structure to See if there
is a match (by looking at the node code). If no valid data is
found, e.g., using the node code, the size is incremented (to
maximum of 4) and the offset is then incremented as well.

Continuing with the example, Suppose the pattern analysis
process 304 finds something at 1, 2, 12. By this, we mean
that the process 304 has found that for protocol ID value 01
(Ethernet) at packet offset 12, there is information in the
packet having a length of 2 bytes (octets) that may relate to
the next (child) protocol. The information, for example, may
be about a child for this protocol eXpressed as a child
recognition pattern. The list of possible child recognition
patterns that may be in that part of the packet is obtained
from the data Structure.
The Ethernet packet Structure comes in two flavors, the

Ethertype packet and newer IEEE types, and the packet
location that indicates the child is different for both. The
location that for the Ethertype packet indicates the child is
a “length” for the IEEE type, so a determination is made for
the Ethernet packet whether the “next protocol” location
contains a value or a length (this is called a “LENGTH'
operation). A successful LENGTH operation is indicated by
contents less than or equal to 05DC, then this is an IEEE
type Ethernet frame. In Such a case, the child recognition
pattern is looked for elsewhere. Otherwise, the location
contains a value that indicates the child.

Note that while this capability of the entry being a value
(e.g., for a child protocol ID) or a length (indicating further
analysis to determine the child protocol) is only used for
Ethernet packets, in the future, other packets may end up
being modified. Accordingly, this capability in the form of a
macro in the PDL files still enables such future packets to be
decoded.

Continuing with the example, suppose that the LENGTH
operation fails. In that case, we have an Ethertype packet,
and the next protocol field (containing the child recognition
pattern) is 2 bytes long starting at offset 12 as shown as
packet field 1702 in FIG. 17A. This will be one of the
children of the Ethertype shown in table 1712 in FIG. 17A.
The PRE uses the information in the data structure to check
what the ID code is for the found 2-byte child recognition
pattern. For example, if the child recognition pattern is 0800

App. II-40

US 6,665,725 B1
37

(Hex), then the protocol is IP. If the child recognition pattern
is OBAD (Hex) the protocol is VIP (VINES).

Note that an alternate embodiment may keep a separate
table that includes all the child recognition patterns and their
corresponding protocol ID's
To follow the example, Suppose the child recognition

pattern at 1, 2, 12 is 0800, indicating IP. The ID code for
the IP protocol is 64). To continue with the Ethertype
example, once the parser matches one of the possible
children for the protocl-in the example, the protocol type
is IP with an ID of 64-then the parser continues the search
for the next level. The ID is 64, the length is unknown, and
offset is known to be equal or larger than 14 bytes (12 offset
for type, plus 2, the length of type), so the Search of the 3-D
Structure commences from location (64, 1) at packet offset
14. A populated node is found at (64.2) at packet offset 14.
Heading details are shown as 1750 in FIG. 17B. The
possible children are shown in table 1752.

Alternatively, Suppose that at (1, 2, 12) there was a length
1211. This indicates that this is an IEEE type Ethernet
frame, which stores its type elsewhere. The PRE now
continues its Search at the same level, but for a new ID, that
of an IEEE type Ethernet frame. An IEEE Ethernet packet
has protocol ID 16, so the PRE continues its search of the
three-dimensional Space with ID 16Starting at packet offset
14.

In our example, Suppose there is a “protocol node code
found at (16, 2) at packet offset 14, and the next protocol is
specified by child recognition pattern 0800. This indicates
that the child is the IP protocol, which has type ID 64. Thus
the Search continues, starting at (64, 1) at packet offset 16.
Compression.
AS noted above, the 3-D data structure is very large, and

sparsely populated. For example, if 32 bytes are Stored at
each location, then the length is Mby 64 by 512 by 32 bytes,
which is M. megabytes. If M = 10,000, then this is about 10
gigabytes. It is not practical to include 10 Gbyte of memory
in the parser Subsystem for storing the database 308. Thus a
compressed form of Storing the data is used in the preferred
embodiment. The compression is preferably carried out by
an optimizer component of the compilation process 310.

Recall that the data structure is sparse. Different embodi
ments may use different compression Schemes that take
advantage of the Sparseness of the data structure. One
embodiment uses a modification of multi-dimensional run
length encoding.

Another embodiment uses a Smaller number two
dimensional Structures to Store the information that other
wise would be in one large three-dimensional Structure. The
Second Scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3-D array 1800 can be
considered a set of 2-D arrays, one 2-D array for each
protocol (i.e., each value of the protocol ID). The 2-D
structures are shown as 1802-1, 1802-2,..., 1802-M for up
to M protocol ID's. One table entry is shown as 1804. Note
that the gaps in table are used to illustrate that each 2-D
Structure table is typically large.

Consider the Set of trees that represent the possible
protocols. Each node represents a protocol, and a protocol
may have a child or be a terminal protocol. The base (root)
of the tree has all packet types as children. The other nodes
form the nodes in the tree at various levels from level 1 to
the final terminal nodes of the tree. Thus, one element in the
base node may reference node ID 1, another element in the
base node may reference node ID 2 and So on. AS the tree
is traversed from the root, there may be points in the tree
where the same node is referenced next. This would occur,

5

15

25

35

40

45

50

55

60

65

38
for example, when an application protocol like Telnet can
run on several transport connections like TCP or UDP.
Rather than repeating the Telnet node, only one node is
represented in the patterns database 308 which can have
Several parents. This eliminates considerable Space explo
SO.

Each 2-D structure in FIG. 18A represents a protocol. To
enable Saving Space by using only one array per protocol
which may have Several parents, in one embodiment, the
pattern analysis Subprocess keeps a “current header' pointer.
Each location (offset) index for each protocol 2-D array in
the 3-D structure is a relative location starting with the start
of header for the particular protocol.

Each of the two-dimensional arrayS is sparse. The next
Step of the optimization, is checking all the 2-D arrayS
against all the other 2-D arrays to find out which ones can
share memory. Many of these 2-D arrays are often sparsely
populated in that they each have only a Small number of
valid entries. So, a process of "folding is next used to
combine two or more 2-D arrays together into one physical
2-D array without losing the identity of any of the original
2-D arrays (i.e., all the 2-D arrays continue to exist
logically). Folding can occur between any 2-D arrays irre
Spective of their location in the tree as long as certain
conditions are met.
ASSume two 2-D arrays are being considered for folding.

Call the first 2-D arrays A and the second 2-D array B. Since
both 2-D arrays are partially populated, 2-D array B can be
combined with 2-D arrays A if and only if none of the
individual elements of these two 2-D arrays that have the
same 2-D location conflict. If the result is foldable, then the
valid entries of 2-D array B are combined with the valid
entries of 2-D array A yielding one physical 2-D array.
However, it is necessary to be able to distinguish the original
2-D array A entries from those of 2-D array B. For example,
if a parent protocol of the protocol represented by 2-D array
B wants to reference the protocol ID of 2-D array B, it must
now reference 2-D array A instead. However, only the
entries that were in the original 2-D array B are valid entries
for that lookup. To accomplish this, each element in any
given 2-D array is tagged with a fold number. When the
original tree is created, all elements in all the 2-D arrays are
initialized with a fold value of Zero. Subsequently, if 2-D
array B is folded into 2-D array A, all valid elements of 2-D
array B are copied to the corresponding locations in 2-D
array A and are given different fold numbers than any of the
elements in 2-D array A. For example, if both 2-D array A
and 2-D array B were original 2-D arrays in the tree (i.e., not
previously folded) then, after folding, all the 2-D array A
entries would still have fold 0 and the 2-D array B entries
would now all have a fold value of 1. After 2-D array B is
folded into 2-D array A, the parents of 2-D array B need to
be notified of the change in the 2-D array physical location
of their children and the associated change in the expected
fold value.

This folding process can also occur between two 2-D
arrays that have already been folded, as long as none of the
individual elements of the two 2-D arrays conflict for the
Same 2-D array location. AS before, each of the valid
elements in 2-D array B must have fold numbers assigned to
them that are unique from those of 2-D array A. This is
accomplished by adding a fixed value to all the 2-D array B
fold numbers as they are merged into 2-D array A. This fixed
value is one larger than the largest fold value in the original
2-D array A. It is important to note that the fold number for
any given 2-D array is relative to that 2-D array only and
does not span acroSS the entire tree of 2-D arrayS.

App. II-41

US 6,665,725 B1
39

This process of folding can now be attempted between all
combinations of two 2-D arrays until there are no more
candidates that qualify for folding. By doing this, the total
number of 2-D arrays can be significantly reduced.
Whenever a fold occurs, the 3-D structure (i.e., all 2-D

arrays) must be searched for the parents of the 2-D array
being folded into another array. The matching pattern which
previously was mapped to a protocol ID identifying a single
2-D array must now be replaced with the 2-D array ID and
the next fold number (i.e., expected fold).

Thus, in the compressed data Structure, each entry valid
entry includes the fold number for that entry, and
additionally, the expected fold for the child.
An alternate embodiment of the data Structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3-D
Structure described above, it permits rapid Searches to be
performed by the pattern recognition process 304 by index
ing locations in a memory rather than performing address
link computations. The structure, like that of FIG. 18A, is
Suitable for implementation in hardware, for example, for
implementation to work with the pattern recognition engine
(PRE) 1006 of FIG. 10.
A table 1850, called the protocol table (PT) has an entry

for each protocol known by the monitor 300, and includes
Some of the characteristics of each protocol, including a
description of where the field that Specifies next protocol
(the child recognition pattern) can be found in the header, the
length of the next protocol field, flags to indicate the header
length and type, and one or more Slicer commands, the Slicer
can build the key components and hash components for the
packet at this protocol at this layer level.

For any protocol, there also are one or more lookup tables
(LUTs). Thus database 308 for this embodiment also
includes a set of LUTS 1870. Each LUT has 256 entries
indexed by one byte of the child recognition pattern that is
extracted from the next protocol field in the packet. Such a
protocol Specification may be several bytes long, and So
several of LUTs 1870 may need to be looked up for any
protocol.

Each LUTs entry includes a 2-bit “node code” that
indicates the nature of the contents, including its validity.
This node code has one of four values: (1) a “protocol” node
code indicating to the pattern recognition engine 1006 that
a known protocol has been recognized; (2) an “intermediate'
node code, indicating that a multi-byte protocol code has
been partially recognized, thus permitting chaining a Series
of LUTs together before; (3) a “terminal” node code indi
cating that there are no children for the protocol presently
being Searched, i.e., the node is a final node in the protocol
tree; (4) a “null” (also called “flush” and “invalid”) node
code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include
the next LUT number, the next protocol number (for looking
up the protocol table 1850), the fold of the LUT entry, and
the next fold to expect. Like in the embodiment implement
ing a compressed form of the 3-D representation, folding is
used to reduce the Storage requirements for the Set of LUTs.
Since the LUTs 1870 may be sparsely populated, multiple
LUTs may be combined into a single LUT as long as the
individual entries do not conflict with each other. A fold
number is then used to associate each element with its
original LUT.

For a given lookup, the fold number of the lookup must
match the fold number in the lookup table. The expected fold
is obtained from the previous table lookup (the “next fold to
expect” field). The present implementation uses 5-bits to
describe the fold and thus allows up to 32 tables to be folded
into one table.

5

15

25

35

40

45

50

55

60

65

40
When using the data structure of FIG. 18B, when a packet

arrives at the parser, the virtual base has been pre-pended or
is known. The virtual base entry tells the packet recognition
engine where to find the first child recognition pattern in the
packet. The pattern recognition engine then extracts the
child recognition pattern bytes from the packet and uses
them as an address into the virtual base table (the first LUT).
If the entry looked up in the specified next LUT by this
method matches the expected next fold value Specified in the
virtual base entry, the lookup is deemed valid. The node
code is then examined. If it is an intermediate node then the
next table field obtained from the LUT lookup is used as the
most significant bits of the address. The next expected fold
is also extracted from the entry. The pattern recognition
engine 1006 then uses the next byte from the child recog
nition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues until a terminal
code is found. The next (initially base layer) protocol is
looked up in the protocol table 1850 to provide the PRE
1006 with information on what field in the packet (in input
buffer memory 1008 of parser subsystem 1000) to use for
obtaining the child recognition pattern of the next protocol,
including the Size of the field. The child recognition pattern
bytes are fetched from the input buffer memory 1008. The
number of bytes making up the child recognition pattern is
also now known.
The first byte of the protocol code bytes is used as the

lookup in the next LUT. If a LUT lookup results in a node
code indicating a protocol node or a terminal node, the Next
LUT and next expected fold is set, and the “next protocol”
from LUT lookup is used as an index into the protocol table
1850. This provides the instructions to the slicer 1007, and
where in the packet to obtain the field for the next protocol.
Thus, the PRE 1006 continues until it is done processing all
the fields (i.e., the protocols), as indicated by the terminal
node code reached.

Note that when a child recognition pattern is checked
against a table there is always an expected fold. If the
expected fold matches the fold information in the table, it is
used to decide what to do next. If the fold does not match,
the optimizer is finished.

Note also that an alternate embodiment may use different
size LUTs, and then index a LUT by a different amount of
the child recognition pattern.
The present implementation of this embodiment allows

for child recognition patterns of up to four bytes. Child
recognition patterns of more than 4 bytes are regarded as
Special cases.

In the preferred embodiment, the database is generated by
the compiler process 310. The compiler process first builds
a single protocol table of all the links between protocols.
LinkS consist of the connection between parent and child
protocols. Each protocol can have Zero or more children. If
a protocol has children, a link is created that consists of the
parent protocol, the child protocol, the child recognition
pattern, and the child recognition pattern size. The compiler
first extracts child recognition patterns that are greater than
two bytes long. Since there are only a few of these, they are
handled Separately. NeXt Sub links are created for each link
that has a child recognition pattern size of two.

All the links are then formed into the LUTs of 256 entries.
Optimization is then carried out. The first step in the

optimization is checking all the tables against all the other
tables to find out which ones can share a table. This process
proceeds the same way as described above for two
dimensional arrayS, but now for the Sparse lookup tables.

Part of the initialization process (e.g., compiler process
310) loads a slicer instruction database with data items

App. II-42

US 6,665,725 B1
41

including of instruction, Source address, destination address,
and length. The PRE 1006 when it sends a slicer instruction
Sends this instruction as an offset into the Slicer instruction
database. The instruction or Op code tells the slicer what to
extract from the incoming packet and where to put it in the
flow signature. Writing into certain fields of the flow Signa
ture automatically generates a hash. The instruction can also
tell the Slicer how to determine the connection Status of
certain protocols.

Note that alternate embodiments may generate the
pattern, parse and extraction database other than by com
piling PDL files.

The Compilation Process
The compilation process 310 is now described in more

detail. This process 310 includes creating the parsing pat
terns and extractions database 308 that provides the parsing
Subsystem 301 with the information needed to parse packets
and extract identifying information, and the State processing
instructions database 326 that provides the State processes
that need to be performed in the State processing operation
328.

Input to the compiler includes a Set of files that describe
each of the protocols that can occur. These files are in a
convenient protocol description language (PDL) which is a
high level language. PDL is used for Specifying new proto
cols and new levels, including new applications. The PDL is
independent of the different types of packets and protocols
that may be used in the computer network. A set of PDL files
is used to describe what information is relevant to packets
and packets that need to be decoded. The PDL is further used
to Specify State analysis operations. Thus, the parser Sub
System and the analyzer Subsystems can adapt and be
adapted to a variety of different kinds of headers, layers, and
components and need to be extracted or evaluated, for
example, in order to build up a unique signature.

There is one file for each packet type and each protocol.
Thus there is a PDL file for Ethernet packets and there is a
PDL file for frame relay packets. The PDL files are compiled
to form one or more databases that enable monitor 300 to
perform different protocol Specific operations on a packet
wherein the protocol headers of any protocol are located at
different locations depending on the parent protocol or
protocols used in the packet. Thus, the packet monitor adapts
to different protocols according to the contents of the packet.
In particular, the parser Subsystem 301 is able to extract
different types of data for different types of packets. For
example, the monitor can know how to interpret a Ethernet
packet, including decoding the header information, and also
how to interpret an frame relay packet, including decoding
the header information.

The Set of PDL files, for example, may include a generic
Ethernet packet file. There also is included a PDL file for
each variation Ethernet file, for example, an EEE Ethernet
file.

The PDL file for a protocol provides the information
needed by compilation process 310 to generate the database
308. That database in turn tells the parser subsystem how to
parse and/or extract information, including one or more of
what protocol-specific components of the packet to extract
for the flow Signature, how to use the components to build
the flow signature, where in the packet to look for these
components, where to look for any child protocols, and what
child recognition patterns to look for. For Some protocols,
the extracted components may include Source and destina
tion addresses, and the PDL file may include the order to use

15

25

35

40

45

50

55

60

65

42
these addresses to build the key. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus the PDL file for an Ethernet
packet includes information on how the parsing Subsystem
is to extract the Source and destination addresses, including
where the locations and sizes of those addresses are. In a
frame-relay base layer, for example, there are no specific end
point addresses that help to identify the flow better, so for
those type of packets, the PDL file does not include infor
mation that will cause the parser Subsystem to extract the
end-point addresses.
Some protocols also include information on connections.

TCP is an example of such a protocol. Such protocol use
connection identifiers that exist in every packet. The PDL
file for Such a protocol includes information about what
those connection identifiers are, where they are, and what
their length is. In the example of TCP, for example running
over IP, these are port numbers. The PDL file also includes
information about whether or not there are States that apply
to connections and disconnections and what the possible
children are States. So, at each of these levels, the packet
monitor 300 learns more about the packet. The packet
monitor 300 can identify that a particular packet is part of a
particular flow using the connection identifier. Once the flow
is identified, the System can determine the current State and
what States to apply that deal with connections or discon
nections that exist in the next layer up to these particular
packets.

For the particular PDL used in the preferred embodiment,
a PDL file may include none or more FIELD statement each
defining a specific String of bits or bytes (i.e., a field) in the
packet. A PDL file may further include none or more
GROUP statements each used to tie together several defined
fields. A set of Such tied together fields is called a group. A
PDL file may further include none or more PROTOCOL
Statements each defining the order of the fields and groups
within the header of the protocol. A PDL file may further
include none or more FLOW statements each defining a flow
by describing where the address, protocol type, and port
numbers are in a packet. The FLOW statement includes a
description of how children flows of this protocol are
determined using State operations. States associated may
have State operations that may be used for managing and
maintaining new States learned as more packets of a flow are
analyzed.

FIG. 19 shows a set of PDL files for a layering structure
for an Ethernet packet that runs TCP on top of IP. The
contents of these PDL files are attached as an APPENDIX
hereto. Common.pdl (1903) is a file containing the common
protocol definitions, i.e., Some field definitions for com
monly used fields in various network protocols. Flows.pdl
(1905) is a file containing general flow definitions. Virtu
alpdl (1907) is a PDL file containing the definition for the
VirtualBase layer used. Ethernet.pdl (1911) is the PDL file
containing the definition for the Ethernet packet. The deci
sion on Ethertype vs. IEEE type Ethernet file is described
herein. If this is Ethertype, the selection is made from the file
Ethertype.pdl (1913). In an alternate embodiment, the Ether
type Selection definition may be in the same Ethernet file
1911. In a typical implementation, PDL files for other
Ethernet types would be included. IPpdl (1915) is a PDL file
containing the packet definitions for the Internet Protocol.
TCP.pdl (1917) is the PDL file containing the packet defi
nitions for the Transmission Control Protocol, which in this
case is a transport Service for the IP protocol. In addition to
extracting the protocol information the TCP protocol defi
nition file assists in the process of identification of connec

App. II-43

US 6,665,725 B1
43

tions for the processing of States. In a typical Set of files,
there also would be a file UDP.pdl for the User Datagram
Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file file
containing the packet definitions for Remote Procedure
Calls.

NFS.pdl (1921) is a PDL file containing the packet
definitions for the Network File System. Other PDL files
would typically be included for all the protocols that might
be encountered by monitor 300.

Input to the compilation process 310 is the set of PDL files
(e.g., the files of FIG. 19) for all protocols of interest. Input
to process 310 may also include layering information shown
in FIG. 3 as datagram layer selections 338. The layer
Selections information describes the layering of the
protocols-what protocol(s) may be on top of any particular
protocols. For example, IP may run over Ethernet, and also
over many other types of packets. TCP may run on top of IP.
UDP also may run on top of IP. When no layering informa
tion is explicitly included, it is inherent; the PDL files
include the children protocols, and this provides the layering
information.

The compiling process 310 is illustrated in FIG. 20. The
compiler loads the PDL source files into a scratch pad
memory (step 2003) and reviews the files for the correct
syntax (parse step 2005). Once completed, the compiler
creates an intermediate file containing all the parse elements
(step 2007). The intermediate file in a format called “Com
piled Protocol Language” (CPL). CPL instructions have a
fixed layer format, and include all of the patterns,
extractions, and States required for each layer and for the
entire tree for a layer. The CPL file includes the number of
protocols and the protocol definitions. A protocol definition
for each protocol can include one or more of the protocol
name, the protocol ID, a header Section, a group identifica
tion Section, Sections for any particular layers, announce
ment Sections, a payload Section, a children Section, and a
states section. The CPL file is then run by the optimizer to
create the final databases that will be used by monitor 300.
It would be clear to those in the art that alternate imple
mentations of the compilation process 310 may include a
different form of intermediate output, or no intermediate
output at all, directly generating the final database(s).

After the parse elements have been created, the compiler
builds the flow signature elements (step 2009). This creates
the extraction operations in CPL that are required at each
level for each PDL module for the building of the flow
Signature (and hash key) and for links between layers
(2009).

With the flow signature operations complete, the PDL
compiler creates (Step 2011) the operations required to
extract the payload elements from each PDL module. These
payload elements are used by states in other PDL modules
at higher layers in the processing.
The last pass is to create the State operations required by

each PDL module. The state operations are complied from
the PDL files and created in CPL form for later use (2013).

The CPL file is now run through an optimizer that
generates the final databases used by monitor 300.

PROTOCOL DEFINITION LANGUAGE (PDL)
REFERENCE GUIDE (VERSION AO.02)

Included herein is this reference guide (the “guide”) for
the page description language (PDL) which, in one aspect of
the invention, permits the automatic generation of the data
bases used by the parser and analyzer Sub-Systems, and also
allows for including new and modified protocols and appli
cations to the capability of the monitor.

15

25

35

40

45

50

55

60

65

44
COPYRIGHT NOTICE

A portion of this of this document included with the patent
contains material which is Subject to copyright protection.
The copyright owner (Apptitude, Inc., of San Jose, Calif.,
formerly Technically Elite, Inc.) has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure or this document, as it appears in the
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever. Copy
rightC) 1997-1999 by Apptitude, Inc. (formerly Technically
Elite, Inc.). All Rights Reserved.

1. INTRODUCTION

The inventive protocol Definition Language (PDL) is a
Special purpose language used to describe network protocols
and all the fields within the protocol headers. Within this
guide, protocol descriptions (PDL files) are referred to as
PDL or rules when there in no risk of confusion with other
types of descriptions.
PDL uses both form and organization similar to the data

Structure definition part of the C programming language and
the PERL scripting language. Since PDL was derived from
a language used to decode network packet contact, the
authors have mixed the language format with the require
ments of packet decoding. This results in an expressive
language that is very familiar and comfortable for describing
packet content and the details required representing a flow.

1.1 Summary
The PDL is a non-procedural Forth Generation language

(4GL). This means is describes what needs to be done
without describing how to do it. The details of how are
hidden in the compiler and the Compiled Protocol Layout
(CPL) optimization utility.

In addition, it is used to describe network flows by
defining which fields are the address fields, which are the
protocol type fields, etc.
Once a PDL file is written, it is compiled using the

Netscope compiler (nsc), which produces the MeterFlow
database (MeterFlow.db) and the Netscope database
(Netscope.db). The MeterFlow database contains the flow
definitions and the NetScope database contains the protocol
header definitions.

These databases are used by programs like: mfkeys,
which produces flow keys (also called flow signatures);
mfcpl, which produces flow definitions in CPL format;
mfpkts which produces Sample packets of all known proto
cols; and netscope, which decodes SnifferTM and tcpdump
files.

1.2 Guide Conventions

The following conventions will be used throughout this
guide:

Small courier typeface indicates C code examples or
function names. Functions are written with parentheses after
them function (O), variables are written just as their names
variables, and structure names are written prefixed with
"struct” struct packet.

Italics indicate a filename (for instance, mworkS/base/h/
base.h). Filenames will usually be written relative to the root
directory of the distribution.

Constants are expressed in decimal, unless written
“OX ... ', the C language notation for hexadecimal numbers.

Note that any contents on any line in a PDL file following
two hyphen (--) are ignored by the compiler. That is, they are
COmmentS.

App. II-44

US 6,665,725 B1
45

2. PROGRAM STRUCTURE

A MeterFlow PDL decodes and flow set is a non-empty
Sequence of Statements.

There are four basic types of Statements or definitions
available in MeterFlow PDL:

FIELD,
GROUP
PROTOCOL and
FLOW.

2.1 Field Definitions

The FIELD definition is used to define a specific string of
bits or bytes in the packet. The FIELD definition has the
following format:
Name FIELD

SYNTAX Type {Enums
DISPLAY-HINT “FormatString”
LENGTH “Expression”
FLAGS FieldFlags
ENCAP FieldName , FieldName2
LOOKUP LookupType Filename
ENCODING EncodingType
DEFAULT “value'
DESCRIPTION “Description”
Where only the FIELD and SYNTAX lines are required.

All the other lines are attribute lines, which define special
characteristics about the FIELD. Attribute lines are optional
and may appear in any order. Each of the attribute lines are
described in detail below:
2.1.1 SYNTAX Type {Enums})

This attribute defines the type and, if the type is an INT,
BYTESTRING, BITSTRING, or SNMPSEQUENCE type,
the enumerated values for the FIELD. The currently defined
types are:

INT(numEits)
UNSIGNED INT(numBits)

Integer that is numBits bits long.
Unsigned integer that is numBits
bits long.
String that is numBytesbytes long.
String that ranges in size from
R1 to R2 bytes.

BYTESTRING(numEytes)
BYTESTRING(R1 ... R2)

BITSTRING(numEits) String that is numBits bits long.
LSTRING(len Bytes) String with lenBytes header.
NSTRING Null terminated string.
DNSSTRING DNS encoded string.
SNMPOID SNMP Object Identifier.
SNMPSEQUENCE SNMP Sequence.
SNMPTIMETICKS SNMP TimeTicks.
COMBO field1 field2 Combination pseudo field.

2.1.2. DISPLAY-HINT “FormatString”
This attribute is for specifying how the value of the

FIELD is displayed. The currently supported formats are:

Numx Print as a num byte hexidecimal number.
Numd Print as a num byte decimal number.
Numo Print as a num byte octal number.
Numb Print as a num byte binary number.
Numa Print num bytes in ASCII format.
Text Print as ASCII text.
HexDump Print in hexdump format.

5

15

25

35

40

45

50

55

60

65

46
2.1.3 LENGTH “Expression”

This attribute defines an expression for determining the
FIELD's length. Expressions are arithmetic and can refer to
the value of other FIELD's in the packet by adding a S to the
referenced field's name. For example, “(StcpHeaderLen4)-
20” is a valid expression if tcpHeaderLen is another field
defined for the current packet.
2.1.4 FLAGS FieldFlags
The attribute defines some special flags for a FIELD. The

currently Supported FieldFlags are:

SAMELAYER Display field on the same layer as the previous field.
NOLABEL Don't display the field name with the value.
NOSHOW Decode the field but don’t display it.
SWAPPED The integer value is swapped.

2.1.5 ENCAP FieldName, FieldName2
This attribute defines how one packet is encapsulated

inside another. Which packet is determined by the value of
the FieldName field. If no packet is found using FieldName
then FieldName2 is tried.
2.1.6 LOOKUP LookupType Filename

This attribute defines how to lookup the name for a
particular FIELD value. The currently supported Lookup
Types are:

SERVICE Use getservbyport().
HOSTNAME Use gethostbyaddr().
MACADDRESS Use SMETERFLOW/conf/mac2ip.cf.
FILE file Use file to lookup value.

2.1.7 ENCODING EncodingType
This attribute defines how a FIELD is encoded. Currently,

the only supported EncodingType is BER (for Basic Encod
ing Rules defined by ASN.1).
2.1.8 DEFAULT “value'

This attribute defines the default value to be used for this
field when generating Sample packets of this protocol.
2.1.9 DESCRIPTION “Description”

This attribute defines the description of the FIELD. It is
used for informational purposes only.

2.2 Group Definitions
The GROUP definition is used to tie several related

FIELDs together. The GROUP definition has the following
format:
Name GROUP
LENGTH “Expression”
OPTIONAL “Condition'
SUMMARIZE “Condition”: “Format String”

“Condition”: “FormatString” . . .)
DESCRIPTION “Description”
::={Name=FieldOrGroup, Name=FieldorCroup ... }
Where only the GROUP and ::=lines are required. All the

other lines are attribute lines, which define Special charac
teristics for the GROUP. Attribute lines are optional and may
appear in any order. Each attribute line is described in detail
below:
2.2.1 LENGTH “Expression”

This attribute defines an expression for determining the
GROUP's length. Expressions are arithmetic and can refer
to the value of other FIELD's in the packet by adding a Sto
the referenced field's name. For example,

App. II-45

US 6,665,725 B1
47

“(StcpHeaderLen 4)-20” is a valid expression if tcpHead
erLen is another field defined for the current packet.
2.2.2 OPTIONAL “Condition

This attribute defines a condition for determining whether
a GROUP is present or not. Valid conditions are defined in
the Conditions section below.
2.2.3 SUMMARIZE “Condition”: “FormatString”
“Condition":“FormatString” . . .)
This attribute defines how a GROUP will be displayed in

Detail mode. A different format (FormatString) can be
specified for each condition (Condition). Valid conditions
are defined in the Conditions section below. Any FIELD's
value can be referenced within the FormatString by pro
ceeding the FIELD's name with a S. In addition to FIELD
names there are several other special S keywords:

SLAYER Displays the current protocol layer.
SGROUP Displays the entire GROUP as a table.
SLABEL Displays the GROUP label.
Sfield Displays the field value (use

enumerated name if available).
S:field Displays the field value (in raw format).

2.2.4 DESCRIPITION “Description”
This attribute defines the description of the GROUP. It is

used for informational purposes only.
22.5 ::= { Name = Field Or Group
Name=FieldOrGroup ... }

This defines the order of the fields and subgroups within
the GROUP

I,

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of
the FIELDs and GROUPs within the protocol header. The
PROTOCOL definition has the following format:
Name PROTOCOL

SUMMARIZE “Condition":“FormatString” “Condition
":“FormatString" . . .)

DESCRIPTION “Description”
REFERENCE “Reference’
::= {Name=FieldOrGroup, Name=FieldOrGroup ... }
Where only the PROTOCOL and ::=lines are required. All

the other lines are attribute lines, which define Special
characteristics for the PROTOCOL. Attribute lines are
optional and may appear in any order. Each attribute line is
described in detail below:

2.3.1 SUMMARIZE “Condition”: “FormatString”
“Condition":“FormatString". . .)
This attribute defines how a PROTOCOL will be dis

played in Summary mode. A different format (FormatString)
can be specified for each condition (Condition). Valid con
ditions are defined in the Conditions section below. Any
FIELD's value can be referenced within the FormatString by
proceeding the FIELD's name with a S. In addition to
FIELD names there are several other special S keywords:

SLAYER Displays the current protocol layer.
SVARBIND Displays the entire SNMP VarBind list.
Sfield Displays the field value (use

enumerated name if available).

15

25

35

40

45

50

55

60

65

-continued

S:field Displays the field value (in raw format).
S#field Counts all occurrences of field.
S*field Lists all occurrences of field.

2.3.2. DESCRIPTION “Description”
This attribute defines the description of the PROTOCOL.

It is used for informational purposes only.
2.3.3 REFERENCE “Reference’

This attribute defines the reference material used to deter
mine the protocol format. It is used for informational pur

::= { Name = Field Or Group
poses only.
23.4 I,
Name=FieldOrGroup ... }

This defines the Order of the FIELDS and GROUPS within
the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by
describing where the address, protocol type, and port num
bers are in a packet. The FLOW definition has the following
format:
Name FLOW

HEADER Option, Option . . .)
DLC-LAYER {Option, Option . . .)
NET-LAYER {Option, Option ... }
CONNECTION Option, Option . . .
PAYLOAD {Option, Option ... }
CHILDREN Option, Option . . .)
STATE-BASED
STATES “Definitions'
Where only the FLOW line is required. All the other lines

are attribute lines, which define Special characteristics for
the FLOW. Attribute lines are optional and may appear in
any order. However, at least one attribute line must be
present. Each attribute line is described in detail below:
2.4.1 HEADER Option, Option . . .)

This attribute is used to describe the length of the protocol
header. The currently Supported Options are:

LENGTH = number
LENGTH = field

Header is a fixed length of size number.
Header is variable length determined
by value of field.
The units of the header length are
in 32-bit words rather than bytes.

IN-WORDS

2.4.2 DLC-LAYER (Option, Option . . .)
If the protocol is a data link layer protocol, this attribute

describes it. The currently Supported Options are:

DESTINATION = field Indicates which field is the DLC
destination address.
Indicates which field is the DLC
source address.

SOURCE = field

PROTOCOL Indicates this is a data link
layer protocol.

TUNNELING Indicates this is a tunneling protocol.

2.4.3 NET-LAYER (Option, Option ... }
If the protocol is a network layer protocol, then this

attribute describes it. The currently supported Options are:

App. II-46

US 6,665,725 B1
49

DESTINATION = field Indicates which field is the
network destination address.
Indicates which field is the
network source address.
Indicates this is a tunneling protocol.
Indicates this protocol supports
fragmentation. There are currently
two fragmentation types: IPV4 and
IPV6.

SOURCE = field

TUNNELING
FRAGMENTATION = type

2.4.4 CONNECTION Option, Option ... }
If the protocol is a connection-oriented protocol, then this

attribute describes how connections are established and torn
down. The currently Supported Options are:

IDENTIFIER = field Indicates the connection
identifier field.
Indicates when a connection
is being initiated.
Indicates when a connection
has been established.
Indicates when a connection
is being torn down.
Indicates when a connection
has been torn down.
Indicates this is a
connection-oriented protocol
but the parent protocol is
where the connection is
established.

CONNECT-START = “flag”

CONNECT.COMPLETE = “flag

DISCONNECT-START = “flag”

DISCONNECT.COMPLETE = “flag”

INHERITED

2.45 PAYLOAD {Option, Option ... }
This attribute describes how much of the payload from a

packet of this type should be stored for later use during
analysis. The currently Supported Options are:

INCLUDE-HEADER Indicates that the protocol header
should be included.
Indicates how many bytes of the payload
should be stored.
Indicates which field contains the payload.

LENGTH = number

DATA = field

2.4.6 CHILDREN Option, Option . . .)
This attribute describes how children protocols are deter

mined. The currently Supported Options are:

DESTINATION = field
SOURCE = field
LLCCHECK = flow

Indicates which field is the destination port.
Indicates which field is the source port.
Indicates that if the DESTINATION field
is less than 0 x 05DC then use flow
instead of the current flow definition.

2.47 STATE-BASED
This attribute indicates that the flow is a state-based flow.

2.48 STATES “Definitions'
This attribute describes how children flows of this pro

tocol are determined using States. See the State Definitions
Section below for how these states are defined.

2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMA
RIZE attributes and may consist of the following:

1O

15

25

35

40

45

50

55

60

65

SO

Value1 == Value2 Value1 equals Value2.
Works with string values.

Value1 = Value2 Value1 does not equal Value2.
Works with string values.

Value1 <= Value2 Value1 is less than or equal to Value2.
Value1 >= Value2 Value1 is greater than or equal to Value2.
Value1 < Value2 Value1 is less than Value2.
Value1 > Value2 Value1 is greater than Value2.
Field m/regex/ Field matches the regular expression regex.

Where Valuel and Value2 can be either FIELD references
(field names preceded by a S) or constant values. Note that
compound conditional Statements (using AND and OR) are
not currently Supported.

26 STATE DEFINITIONS

Many applications running over data networks utilize
complex methods of classifying traffic through the use of
multiple States. State definitions are used for managing and
maintaining learned States from traffic derived from the
network.

The basic format of a state definition is:

State Name: Operand Parameters Operand
Parameters . . .)

The various States of a particular flow are described using
the following operands:
2.6.1 CHECKCONNECT, Operand

Checks for connection. Once connected executeS oper
and.
26.2 GOTO State

Goes to State, using the current packet.
2.63 NEXT State

Goes to State, using the next packet.
2.6.4 DEFAULT Operand

Executes operand when all other operands fail.
2.6.5 CHILD Protocol
Jump to child protocol and perform State-based process

ing (if any) in the child.
2.6.6 WAIT Numpackets, Operand1, Operand2

Waits the Specified number of packets. Executes operand1
when the Specified number of packets have been received.
ExecuteS operand2 when a packet is received but it is leSS
than the number of Specified packets.
2.6.7 MATCH 'String Weight Offset LF-offset Range
LF-range, Operand

Searches for a String in the packet, executes operand if
found.

2.6.8 CONSTANT Number Offset Range, Operand
Checks for a constant in a packet, executes operand if

found.

2.6.9 EXTRACTIP Offset Destination, Operand
Extracts an IP address from the packet and then executes

operand.
2.6.10 EXTRACTPORT Offset Destination, Operand

Extracts a port number from the packet and then executes
operand.
2.6.11 CREATEREDIRECTEDFLOW. Operand

Creates a redirected flow and then executes operand.

App. II-47

US 6,665,725 B1
S1

3. EXAMPLE PDL RULES

The following section contains several examples of PDL
Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:

MacAddress FIELD
SYNTAX BYTESTRING (6)
DISPLAY-HINT “1x:
LOOKUP MACADDRESS
DESCRIPTION

“MAC layer physical address'
etherType FIELD

SYNTAX INT(16)
DISPLAY-HINT “1x:
LOOKUP FILE “EtherType.cf.
DESCRIPTION

“Ethernet type field”
etherData FIELD

SYNTAX BYTESTRING(46.1500)
ENCAP etherType
DISPLAY-HINT “HexDump”
DESCRIPTION

“Ethernet data
ethernet PROTOCOL

DESCRIPTION
“Protocol format for an Ethernet frame

REFERENCE “RFC 894
::= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,

Data=etherData }
ethernet FLOW

HEADER LENGTH-14 }
DLC-LAYER {
SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

CHILDREN DESTINATION=EtherType,
LLC-CHECK=llc }

3.2 IP Version 4

Here is an example of the PDL for the IP protocol:

ipAddress FIELD
SYNTAX BYTESTRING(4)
DISPLAY-HINT “1d.
LOOKUP HOSTNAME
DESCRIPTION

“IP address
ipversion FIELD

SYNTAX INT(4)
DEFAULT 4

ipHeaderLength FIELD
SYNTAX INT(4)

ipTypeOfService FIELD
SYNTAX BITSTRING(8) { minCost(1),

maxReliability(2),
maxThruput(3),
minDelay (4) }

ipLength FIELD
SYNTAX UNSIGNED INT(16)

ipFlags FIELD
SYNTAX BITSTRING(3) { moreFrags(0),

dontFrag(1)}
IpFragmentOffset FIELD

SYNTAX INT(13)
ipProtocol FIELD

SYNTAX INT(8)
LOOKUP FILE “IpProtocol.cf.

1O

15

25

35

40

45

50

55

60

65

52

-continued

ipData FIELD
SYNTAX BYTESTRING(0.1500)
ENCAP ipProtocol
DISPLAY-HINT “HexDump”

ip PROTOCOL
SUMMARIZE
“SFragmentOffset = 0”

“IpFragment ID=SIdentification Offset=SFragmentoffset
*“Default :

“IP Protocol=SProtocol
DESCRIPTION

“Protocol format for the Internet Protocol
REFERENCE “RFC 791

::= { Version=ipVersion, HeaderLength=ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,
Identification=UInt16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData }

ip FLOW
HEADER LENGTH=Header Length, IN-WORDS
NET-LAYER {

SOURCE=IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

CHILDREN DESTINATION=Protocol }
ipFragData FIELD

SYNTAX BYTESTRING(1.1500)
LENGTH “ipLength - ipHeaderLength * 4
DISPLAY-HINT “HexDump”

ipFragment GROUP
OPTIONAL “SFragmentOffset - O

::= { Data=ipFragData }
ipOptionCode FIELD

SYNTAX INT(8) { ipRR(0x07), ipTimestamp(Ox44),
ipLSRR(0x83),
ipsSRR(0x89) }

DESCRIPTION
“IP option code”

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION

“Length of IP option
ipOptionData FIELD

SYNTAX BYTESTRING(0.1500)
ENCAP ipOptionCode
DISPLAY-HINT “HexDump”

ipOptions GROUP
LENGTH “(ipHeaderLength * 4) - 20

::= { Code=ipOptionCode, Length=ipOptionLength, Pointer=UInt8,
Data=ipOption Data }

3.3 TCP

Here is an example of the PDL for the TCP protocol:

tepPort FIELD
SYNTAX UNSIGNED INT(16)
LOOKUP FILE “TepPort.cf.

tepHeader Len FIELD
SYNTAX INT(4)

topFlags FIELD
SYNTAX BITSTRING(12) { fin(0), syn(1), rst (2), psh(3),

ack(4), urg(5) }
tepData FIELD

SYNTAX BYTESTRING(0.1564)
LENGTH" (SipLength- (SipHeaderLength 4)) -
(StepHeaderLen; 4)
ENCAP topport
DISPLAY-HINT “HexDump”

top PROTOCOL

App. II-48

US 6,665,725 B1
S3

-continued

SUMMARIZE
“Default
“TCPACK=SAck WIN=SWindowSize

DESCRIPTION
“Protocol format for the Transmission Control Protocol

REFERENCE “RFC 793
::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,

Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=UInt16, Checksum=ByteStr2,
UrgentPointer=UInt16, Options=tcpCoptions, Data=tcpData }

top FLOW
HEADER LENGTH=HeaderLength, IN-WORDS
CONNECTION {

IDENTIFIER=SequenceNum,
CONNECT-START-“TepFlags:1”,
CONNECT COMPLETE=“TepFlags:4,
DISCONNECT-START-“TepFlags:0,
DISCONNECT.COMPLETE=“TepFlags:4”

PAYLOAD (INCLUDE-HEADER }
CHILDREN DESTINATION=DestPort, SOURCE-SrcPort

topOptionKind FIELD
SYNTAX UNSIGNED INT(8) tcpoptEnd(0),
topNop(1),

topMSS(2), tcpWscale(3), tcpTimestamp(4) }
DESCRIPTION

“Type of TCP option”
topOption DataFIELD

SYNTAX BYTESTRING(0.1500)
ENCAP tepOptionKind
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

topOptions GROUP
LENGTH “(StepHeader Len * 4) - 20”

::= { Option=tcpCoptionKind, OptionLength=UInt8,
Option Data=tcpCoption Data }

tcpMSS PROTOCOL
::= { MaxSegmentSize=UInt16 }

3.4 HTTP (With State)
Here is an example of the PDL for the HTTP protocol:

httpData FIELD
SYNTAX BYTESTRING(1.1500)
LENGTH “(SipLength - (SipHeaderLength * 4)) -

(StepHeaderLen * 4)
“Text
NOLABEL

PROTOCOL
SUMMARIZE

“ShttpData m/GETHTTPIHEAD POST? :
“HTTP ShttpData”

“ShttpData m/Ddate Sserver Lllast
Mmodified? :

“HTTP ShttpData”
“ShttpData m/Ccontent-?” :

“HTTP ShttpData”
ShttpData mf-HTML.cf. :

“HTTPHTML document
ShttpData m/ GIF?:

“HTTP GIF image
“Default:

“HTTP Data
DESCRIPTION

“Protocol format for HTTP
::= { Data=httpData }
http FLOW
HEADER LENGTH=0}
CONNECTION INHERITED }
PAYLOAD (INCLUDE-HEADER, DATA=Data, LENGTH=256}
STATES

DISPLAY-HINT
FLAGS
http

“SO: CHECKCONNECT, GOTO S1
DEFAULT NEXT SO

15

25

35

40

45

50

55

60

65

S4

-continued

S1: WAIT 2, GOTO S2, NEXT S1
DEFAULT NEXT SO

S2: MATCH
Wn\rn 900 OO 255 0, NEXT S3
Vnyn 900 OO 255 0, NEXT S3
POST ?tds? 500 0 1271,

CHILD sybaseWebsql
“.hts HTTP/1.0 5040 1271,

CHILD sybase.Jdbc
jdbc:sybase:Tas 5040 1271,

CHILD sybaseTds
PCN-The Poin 500 4 1 255 0,

CHILD pointcast
“t: BW-C- 100 4 1 255 0,

CHILD backweb
DEFAULT NEXT S3

S3: MATCH
Wn\rn 50 00 00, NEXT S3
Vnyn 50 00 00, NEXT S3
Content-Type: 800 00 255 0,

CHILD mime
PCN-The Poin 500 4 1 255 0,

CHILD pointcast
“t: BW-C- 100 4 1 255 0,

CHILD backweb
DEFAULT NEXT SO

sybaseWebsql FLOW
STATE-BASED

sybase.Jdbc FLOW
STATE-BASED

sybaseTas FLOW
STATE-BASED

pointcast FLOW
STATE-BASED

backweb FLOW
STATE-BASED

mime FLOW
STATE-BASED
STATES

* SO: MATCH
application 900 0 0 1 0,

CHILD mimeApplication
audio 900 0 0 1 0,

CHILD mimeAudio
image 500 0 1 0,

CHILD mimeImage
text 500 0 1 0,

CHILD mimeText
video 500 0 1 0,

CHILD mimeVideo
x-world 500 4 1 255 0,

CHILD mimexworld
DEFAULT GOTO SO
mimApplication FLOW

STATE-BASED
mimeAudio FLOW

STATE-BASED
STATES
“SO: MATCH

basic OO 0 0 1 0,
CHILD pdBasicAudio

midi OO 0 0 1 0,
CHILD pdMidi

impeg OO 0 0 1 0,
CHILD pdMpeg2Audio

vnd.rn-realaudio OO 0 0 1 0,
CHILD pdRealAudio

waw OO 0 0 1 0,
CHILD dWay

x-aiff OO 0 0 1 0,
CHILD pdAiff

x-midi OO 0 0 1 0,
CHILD pdMidi

x-mpeg OO 0 0 1 0,
CHILD pdMpeg2Audio

x-mpgurl OO 0 0 1 0,
CHILD pdMpeg3Audio

App. II-49

US 6,665,725 B1

-continued

x-pn-realaudio 100 0 0 1 0,
CHILD pdRealAudio

x-wav 100 0 0 1 0,
CHILD pdWav

DEFAULT GOTO SO
mimeImage FLOW

STATE-BASED
mimeText FLOW

STATE-BASED
mimeVideo FLOW

STATE-BASED
mimexworld FLOW

STATE-BASED
pdBasicAudio FLOW

STATE-BASED
pdMidi FLOW

STATE-BASED
pdMpeg2Audio FLOW

STATE-BASED
pdMpeg3Audio FLOW

STATE-BASED
pdRealAudio FLOW

STATE-BASED
pdWav FLOW

STATE-BASED
pdAiff FLOW

STATE-BASED

Embodiments of the present invention automatically gen
erate flow Signatures with the necessary recognition patterns
and State transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen
erating State transitions to Search for. Applications and
protocols, at any level, are recognized through State analysis
of Sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of

15

25

S6
devices, including network appliances Such as telephones,
“Internet' radios, pagers, and So forth. The term computer as
used herein encompasses all Such devices and a computer
network as used herein includes networks of Such comput
CS.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true Spirit and Scope of the
present invention.

APPENDIX: SOME PDL FILES

The following pages include Some PDL files as examples.
Included herein are the PDL contents of the following files.
A reference to PDL is also included herein. Note that any
contents on any line following two hyphen (--) are ignored
by the compiler. That is, they are comments.

common.pdl.,
flows.pdl;
Virtual.pdl.,
ethernet.pdl.,
IEEE8032.pdl and IEEE8033.pdl (ethertype files);

TCP.pd1 and UDP.pdl;
RPC.pdl;
NFS.pdl; and
HTTP.pdl.

-- Common.pdl - Common protocol definitions

-- Description:
This file contains some field definitions for commonly used fields
in various network protocols.

-- Copyright:
Copyright (c) 1996-1999 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: Common.pdl.v 1.7 1999/04/13 15:47:56 skip Exp S

FIELD
SYNTAX INT(4)
FIELD
SYNTAX INT(8)
FIELD
SYNTAX INT(16)

Int24 FIELD
SYNTAX INT(24)

Int32 FIELD
SYNTAX INT(32)

Into4 FIELD
SYNTAX INT(64)

Unt& FIELD
SYNTAX UNSIGNED INT(8)

Unt16 FIELD
SYNTAX UNSIGNED INT(16)

Unt24 FIELD
SYNTAX UNSIGNED INT(24)

UInt32 FIELD

App. II-50

US 6,665,725 B1
57

-continued

SYNTAX UNSIGNED INT(32)
UInte4 FIELD

SYNTAX UNSIGNED INT(64)
Snt16 FIELD

SYNTAX INT(16)
FLAGS SWAPPED

SUInt16 FIELD
SYNTAX UNSIGNED INT(16)
FLAGS SWAPPED

SInt32 FIELD
SYNTAX INT(32)
FLAGS SWAPPED

ByteStr1 FIELD
SYNTAX BYTESTRING(1)

ByteStr2 FIELD
SYNTAX BYTESTRING(2)

ByteStr4 FIELD
SYNTAX BYTESTRING(4)

Pad1 FIELD
SYNTAX BYTESTRING(1)
FLAGS NOSHOW

Pad FIELD
SYNTAX BYTESTRING(2)
FLAGS NOSHOW

Pad3 FIELD
SYNTAX BYTESTRING(3)
FLAGS NOSHOW

Pad4 FIELD
SYNTAX BYTESTRING(4)
FLAGS NOSHOW

Pad5 FIELD
SYNTAX BYTESTRING(5)
FLAGS NOSHOW

macAddress FIELD
SYNTAX BYTESTRING(6)
DISPLAY-HINT “1x:
LOOKUP MACADDRESS
DESCRIPTION

“MAC layer physical address'
ipAddress FIELD

SYNTAX BYTESTRING(4)
DISPLAY-HINT “1d.
LOOKUP HOSTNAME
DESCRIPTION

“IP address
ipv6Address FIELD

SYNTAX BYTESTRING(16)
DISPLAY-HINT “1d.
DESCRIPTION

“IPV6 address

-- Flows.pdl - General FLOW definitions

-- Description:
This file contains general flow definitions.

-- Copyright:
Copyright (c) 1998-1999 Apptitude, Inc.
(fomerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: Flows.pdl.lv 1.12 1999/04/13 15:47:57 skip Exp S

chaosnet FLOW
spanningTree FLOW
Sila FLOW
OracleTNS FLOW

PAYLOAD (INCLUDE-HEADER, LENGTH-256 }
ciscoOUIFLOW

1gmp FLOW
GGP FLOW
ST FLOW

58

App. II-51

US 6,665,725 B1
59

-continued

egp FLOW
igp FLOW
BBN-RCC-MON FLOW
NVP2 FLOW
PUP FLOW
ARGUS FLOW
EMCON FLOW
XNET FLOW
MUX FLOW
DCN-MEAS FLOW
HMP FLOW
PRM FLOW
TRUNK1 FLOW
TRUNK2 FLOW
LEAF1 FLOW
LEAF2 FLOW
RDP FLOW
IRTP FLOW
ISO-TP4 FLOW
NETBLT, FLOW
MFE-NSP FLOW
MERITINP FLOW
SEP FLOW
PC3 FLOW
IDPR FLOW
XTP FLOW
DDP FLOW
IDPR-CMTP FLOW
TPPs FLOW
IL FLOW
SIP FLOW
SDRP FLOW
SIP-SR FLOW
SIP-FRAG FLOW
IDRP FLOW
RSVP FLOW
MHRP FLOW
BNA FLOW
SIPP-ESP FLOW
SIPP-AH FLOW
INLSP FLOW
SWIPE FLOW
NHRP FLOW
CFTP FLOW
SAT EXPAK FLOW
KRYPTOLAN FLOW
RVD FLOW
IPPC FLOW
SAT MON FLOW
VISA FLOW
IPCV FLOW
CPNX FLOW
CPHB FLOW
WSN FLOW
PVP FLOW
BR-SATMON FLOW
SUN-ND FLOW
WB-MON FLOW
WB-EXPAK FLOW
ISO-IP FLOW
VMTP FLOW
SECURE-VMTP FLOW
TTP FLOW
NSFNETIGP FLOW
DGP FLOW
TCF FLOW
IGRP FLOW
OSPFIGP FLOW
Sprite-RPC FLOW
LARP FLOW
MTP FLOW
AX25 FLOW
IPIP FLOW
MICP FLOW
SCC-SP FLOW
ETHERIP FLOW
encap FLOW
GMTP FLOW

60

App. II-52

US 6,665,725 B1
61

-continued

-- UDP Protocols
compressnet FLOW
rje FLOW
CCO FLOW
discard FLOW
systat FLOW
daytime FLOW
qotd FLOW
msp FLOW
chargen FLOW
bif FLOW
who FLOW
syslog FLOW
loadav FLOW
notify FLOW
acmaint dbd FLOW
acmaint transd FLOW
puparp FLOW
applix FLOW
OCK FLOW

-- TCP Protocols

topmux FLOW
telnet FLOW

CONNECTION INHERITED }
privMail FLOW
nsw-fe FLOW
msg-icp FLOW
msg-auth FLOW
disp FLOW
privPrint FLOW
time FLOW
rap FLOW
rip FLOW
graphics FLOW
acSeWe FLOW

nicname FLOW
mpm-flags FLOW
mpm FLOW
mpm-snd FLOW
ni-ftp FLOW
auditol FLOW
finger FLOW
re-mail-ck FLOW
la-maint FLOW
Xns-time FLOW
Xns-ch FLOW
isi-gl FLOW
Xns-auth FLOW
privTerm FLOW
Xns-mail FLOW
privFile FLOW
ni-mail FLOW
aCaS FLOW
covia FLOW
tacacs-ds FLOW
sqlnet FLOW
gopher FLOW
netris-1 FLOW
netris-2 FLOW
netris-3 FLOW
netris-4 FLOW
privDial FLOW
deos FLOW
privRJE FLOW
vettcp FLOW
hosts2-ins FLOW
xfer FLOW
ctf FLOW
mit-ml-dev FLOW
mfcobol FLOW
kerberos FLOW
su-mit-tg FLOW
dnsix FLOW
mit-dov FLOW
mpp FLOW
dep FLOW
objcall FLOW

App. II-53

Supdup FLOW
dixie FLOW
swift-rvf FLOW
tacnews FLOW
metagram FLOW
newacct FLOW
hostname FLOW
iso-tsap FLOW
gppitnp FLOW
CSnet-nS FLOW
threeCom-tsmux
rtelnet FLOW
Snagas FLOW
mcidas FLOW
auth FLOW
audionews FLOW
sftp FLOW
ansanotify FLOW
uucp-path FLOW
sqlserv FLOW
cfdptkt FLOW
erpc FLOW
smakynet FLOW
ntp FLOW
ansatrader FLOW
locus-map FLOW
unitary FLOW
locus-con FLOW
gss-xlicen FLOW
pwdgen FLOW
cisco-fna FLOW
cisco-tna FLOW
cisco-sys FLOW
StatSrw FLOW
ingres-net FLOW
loc-Srv FLOW
profile FLOW
emfis-data FLOW
emfis-cnt FLOW
bl-idm FLOW
imap2 FLOW
CWS FLOW
laaC FLOW
iso-tp0 FLOW
iso-ip FLOW
COS FLOW
aed-512 FLOW
sql-net FLOW
hems FLOW
bftp FLOW
Sgmp FLOW
netsc-prod FLOW
netsc-dev FLOW
sqlsrv FLOW
knet-cmp FLOW
pcmail-srv FLOW
nss-routing FLOW
Sgmp-traps FLOW
cmip-man FLOW
cmip-agent FLOW
Xns-courier FLOW
S-le FLOW
al FLOW
SWC FLOW
SeC FLOW
print-Srv FLOW
multiplex FLOW
cl-1 FLOW
xyplex-mux FLOW
mailq FLOW
winnet FLOW
genrad-mux FLOW
Xdmcp FLOW
nextstep FLOW
bgp FLOW
ris FLOW
unify FLOW
audit FLOW
ocbinder FLOW

-continued

FLOW

US 6,665,725 B1
64

App. II-54

OCSCWC

remote-kis
kis
aci
mumps

gacp
prospero
OS-S

Srimp
irc

FLOW
FLOW

FLOW
FLOW
FLOW
FLOW
FLOW

FLOW
FLOW

FLOW
FLOW

dnó-nlm-aud FLOW
dnó-Smm-red FLOW
dils
dis-mon
SX

SC

at-rtmp
at-nbp
at-3
at-echo
at-5
at-Zis
at-7
at-8
tam
Z39-50
anet
Vmpwscs
softpc
atls
dbase
mpp
uarps
imap3
1n-spx
rsh-spx
cdc
S-CaS

ink
disp3270
pdap
aWSew

ZSCW

atServ
csi-sgwp
clearcase
ulistserv
egent-1
egent-2
hassle
nip
ETOS

dSETOS
is 99c
is 99s
hip-collector

aS

ibm-app
aSa

aurp
unidata-ldm
ldap
uis
synotics-relay
synotics-broker
dis
embl-ndt
netcp
netware-ip
mptin
kryptolan
work-sol
ups
genie
decap
nced

hip-managed-node
hp-alarm-mgr FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW
FLOW
FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW
FLOW
FLOW
FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW
FLOW
FLOW
FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW
FLOW
FLOW

FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW
FLOW

FLOW
FLOW

FLOW
FLOW

FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW

FLOW

FLOW
FLOW

-continued

US 6,665,725 B1

App. II-55

-continued

67

incld FLOW
imsp FLOW
timbuktu FLOW
prim-sm FLOW
prm-nim. FLOW
decladebug FLOW
rint FLOW
synoptics-trap FLOW
smsp FLOW
infoseek FLOW
bnet FLOW
silverplatter FLOW
OX FLOW
hyper-g FLOW
ariell FLOW
Smpte FLOW
ariel2 FLOW
ariel3 FLOW
opc-job-start FLOW
opc-job-track FLOW
icad-el FLOW
smartsdp FLOW
Svrloc FLOW
OCS Cill FLOW
OCS all FLOW
utmpsd FLOW
utmpcd FLOW
iasd FLOW
ninsp FLOW
mobileip-agent FLOW
mobilip-min FLOW
dina-cml FLOW
conscim FLOW
disfgw FLOW
dasp FLOW
Sgcp FLOW
decvms-sysmgt FLOW
cvc hostd FLOW
https FLOW

CONNECTION INHERITED }
Smpp FLOW
microsoft-ds FLOW
ddm-rdb FLOW
ddm-dfm FLOW
ddm-byte FLOW
as-servermap FLOW
tServer FLOW
CXCC FLOW

CONNECTION INHERITED }
login FLOW

CONNECTION INHERITED }
cmd FLOW

CONNECTION INHERITED }
printer FLOW

CONNECTION INHERITED }
talk FLOW

CONNECTION INHERITED }
ntalk FLOW

CONNECTION INHERITED }
utime FLOW
efs FLOW
timed FLOW
tempo FLOW
courier FLOW
conference FLOW
netnews FLOW
netwall FLOW
apertus-ldp FLOW
Llucp FLOW
uucp-rlogin FLOW
klogin FLOW
kshell FLOW
new-rwho FLOW
disf FLOW
remotefs FLOW
rmonitor FLOW
monitor FLOW
chshell FLOW
p9fs FLOW

US 6,665,725 B1
68

App. II-56

US 6,665,725 B1
69 70

-continued

whoami FLOW
meter FLOW
ipcserver FLOW

FLOW
nqs FLOW
sift-uft FLOW
npmp-trap FLOW
npmp-local FLOW
npmp-gui FLOW
ginad FLOW
doom FLOW
mdqs FLOW
elcsd FLOW
entrustmanager FLOW
netviewdm1 FLOW
netviewdm2 FLOW
netviewdm3 FLOW
netgw FLOW
netrcs FLOW
flexilm FLOW
fujitsu-dev FLOW
ris-cm FLOW
kerberos-adm FLOW
rfile FLOW
pump FLOW
qrh FLOW
rrh FLOW
tell FLOW
nlogin FLOW
CO FLOW
S FLOW
Xe FLOW
quotad FLOW
cycleserv FLOW
OSCW FLOW
webster FLOW
phonebook FLOW
vid FLOW
cadlock FLOW
rtip FLOW
cycleserv2 FLOW
submit FLOW
rpasswd FLOW
entomb FLOW
Wpages FLOW
Wpgs FLOW
concert FLOW
mdbs daemon FLOW
device FLOW
Xtreelic FLOW
maitrd FLOW
busboy FLOW
garcon FLOW
puprouter FLOW
socks FLOW

-- Virtual.pdl - Virtual Layer definition

-- Description:
This file contains the definition for the VirtualBase layer used
by the embodiment.

-- Copyright:
Copyright (c) 1998-1999 Apptitude,
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: Virtual.pdl.v 1.13 1999/04/13 15:48:03 skip Exp S

-- This includes two things: the flow signature (called FLOWKEY) that the
-- system that is going to use.

-- note that not all elements are in the HASH. Reason is that these non-HASHED
-- elements may be varied without the HASH changing, which allows the system
-- to look up multiple buckets with a single HASH. That is, the MeyMatchFlag,
-- StateStatus Flag and MulipacketID may be varied.

FLOWKEY {

App. II-57

US 6,665,725 B1
71

-continued

Key MatchFlags, -- to tell the system which of the in-HASH elements have to
-- match for the this particular flow record.

-- Flows for which complete signatures may not yet have
-- been generated may then be stored in the system

StateStatusFlags,
Group Id1 IN-HASH, -- user defined
Group Id2 IN-HASH, -- user defined
DLCProtocol IN-HASH, , -- data link protocol - lowest level we

-- evaluate. It is the type for the
-- Ethernet V 2

NetworkProtocol IN-HASH, -- IP, etc.
TunnelProtocol IN-HASH, -- IP over IPx, etc.
TunnelTransport IN-HASH,
TransportProtocol IN-HASH,
ApplicationProtocol IN-HASH,
DLCAddresses(8) IN-HASH, -- lowest level address
NetworkAddresses(16) IN-HASH,
TunnelAddresses(16) IN-HASH,
ConnectionIds IN-HASH,
MultiPacketd -- used for fragmentaion purposes

-- now define all of the children. In this example, only one virtual
-- child - Ethernet.
virtualChildren FIELD

SYNTAX INT(*) { ethernet (1)}
-- now define the base for the children. In this case, it is the same as
-- for the overall system. There may be multiples.
VirtualBase PROTOCOL
::= { VirtualChildren=virtualChildren

-- The following is the header that every packet has to have and
-- that is placed into the system by the packet acquisition system.

VirtualBase FLOW
HEADER LENGTH-8 }
CHILDREN DESTINATION=VirtualChildren } -- this will be

-- Ethernet for this example.

-- the VirtualBAse will be 01 for these packets.

-- Ethernet.pdl - Ethernet frame definition

-- Description:
This file contains the definition for the Ethernet frame. In this

-- PDL file, the decision on EtherType vs. IEEE is made. If this is
-- EtherType, the selection is made from this file. It would be possible
-- to move the EtherType selection to another file, if that would assist
-- in the modularity.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: Ethernet.pdl.v 1.13 1999/01/26 15:15:57 skip Exp S

-- Enumerated type of a 16 bit integer that contains all of the
-- possible values of interest in the etherType field of an
-- Ethernet V2 packet.

etherType FIELD
SYNTAX INT(16) {xns(0x0600), ip(0x0800),

chaos.net(Ox0804), arp(0x0806),
vines(Oxbad),
vinesLoop(OxObae), vinesLoop (Ox80c4),
vinesEcho (Oxbaf), vines Echo(0x80c5),
netbios(Ox3c00, netbios(Ox3c01),
netbios(Ox3c02), netbios(Ox3c03),
netbios(Ox3c04), netbios(Ox3c05),
netbios(Ox3c06), netbios(Ox3c07)
netbios(Ox3c08), netbios(Ox3c09)
netbios(Ox3c0a), netbios(Ox3cOb),
netbios(Ox3cOc), netbios(Ox3cOd)
dec(0x6000), mop(0x6001), mop2(0x6002)
drp(0x6003), lat(0x6004), decDiag(0x6005),

App. II-58

US 6,665,725 B1
73

-continued

lavcCOx6007), rarp(0x8035), appleTalk(0x809b),
sna(0x80d5), aarp(Ox8Of3), ipx(Ox8137)
Snmp(0x814c), ipv6(Ox86dd), loopback(0x9000) }

DISPLAY-HINT “1x:
LOOKUP FILE “EtherType.cf.
DESCRIPTION

“Ethernet type field”

-- The unformatted data field in and Ethernet V2 type frame

etherData FIELD
SYNTAX BYTESTRING(46.1500)
ENCAP etherType
DISPLAY-HINT “HexDump”
DESCRIPTION

“Ethernet data

-- The layout and structure of an Ethernet V2 type frame with
-- the address and protocol fields in the correct offset position
ethernet PROTOCOL

DESCRIPTION
“Protocol format for an Ethernet frame

REFERENCE “RFC 894
::= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,

Data=etherData)

-- The elements from this Ethernet frame used to build a flow key
-- to classify and track the traffic. Notice that the total length
-- of the header for this tyoe of packet is fixed and at 14 bytes or
-- octets in length. The special field, LLC-CHECK, is specific to
-- Ethernet frames for the decoding of the base Ethernet type value.
-- If it is NOT LLC, the protocol field in the flow is set to the
-- EtherType value decoded from the packet.

ethernet FLOW
HEADER LENGTH-14 }
DLC-LAYER {

SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

CHILDREN DESTINATION=EtherType, LLC-CHECK=11c }

-- IEEE8022.pdl - IEEE 802.2 frame definitions

-- Description:
This file contains the definition for the IEEE 802.2 Link Layer
protocols including the SNAP (Sub-network Access Protocol).

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: IEEE8022.pdiv i.18 1999/01/26 15:15:58 skip Exp S

-- IEEE 802.2 LLC

11cSap FIELD
SYNTAX INT(16) { ipx(0xFFFF), ipx(0xEOEO), isoNet (0xFEFE),

netbios(0xFOFO), vsnap(OXAAAA), ip(0x0606),
vines(OxBCBC), xns(Ox8080), spanningTree(Ox4242),
sna(OxOcOc), sna(0x0808), sna(0x0404) }

DISPLAY-HINT “x:
DESCRIPTION

“Service Access Point
11cControl FIELD

-- This is a special field. When the decoder encounters this field, it
-- invokes the hard-coded LLC decoder to decode the rest of the packet.
-- This is necessary because LLC decoding requires the ability to
-- handle forward references which the current PDL format does not
-- support at this time.
SYNTAX UNSIGNED INT(8)
DESCRIPTION

“Control field

App. II-59

US 6,665,725 B1
75

-continued

11cPduType FIELD
SYNTAX BITSTRING(2) { 11cInformation(0), 11cSupervisory(1),

11cInformation (2), 11cUnnumbererd (3) }
11cData FIELD

SYNTAX BYTESTRING(38.1492)
ENCAP 11cPduType
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

11c PROTOCOL
SUMMARIZE

“S11cPduType == 11cUnnumbered” :
“LLC (SSAP) SModifier”

“$11cPduType == 11cSupervisory :
“LLC (SSAP) SFunction N(R)=SNR”

“S11cPduType == 02:
“LLC (SSAP) N(R)=SNRN(S)=SNS

“Default
“LLC (SSAP) $11cPduType”

DESCRIPTION
“IEEE 802.2 LLC frame format

::= { SAP=11cSap, Control=11cControl, Data=11cData }
11c FLOW

HEADER LENGTH-3 }
DLC-LAYER { PROTOCOL}
CHILDREN DESTINATION-SAP }

11cUnnumbered Data FIELD
SYNTAX BYTESTRING(0.1500)
ENCAP 11cSap
DISPLAY-HINT “HexDump”

11cUnnumbered PROTOCOL
SUMMARIZE

“Default:
“LLC (SSAP) SModifier”

::= { Data=11cUnnumberedData }
11cSupervisoryData FIELD

SYNTAX BYTESTRING(0.1500)
DISPLAY-HINT “HexDump”

11cSupervisory PROTOCOL
SUMMARIZE

“Default:
“LLC (SSAP) SFunction N(R)=SNR”

::= { Data=11cSupervisoryData }
11cInformationData FIELD

SYNTAX BYTESTRING(0.1500)
ENCAP 11cSap
DISPLAY-HINT “HexDump”

11cInformation PROTOCOL
SUMMARIZE

“Default:
“LLC (SSAP) N(R)=SNRN(S)=SNS

::= { Data=11cInformation Data }
-- SNAP

snapOrgCode FIELD
SYNTAX BYTESTRING(3) { snap(“00:00:00, ciscooU1("00:00:0C),

appleOUI(“08:00:07)
DESCRIPTION

“Protocol ID or Organizational Code'
vsnapData FIELD

SYNTAX BYTESTRING(46.1500)
ENCAP snapOrgCode
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”
DESCRIPTION

“SNAP LLC data
vsnap PROTOCOL

DESCRIPTION
“SNAP LLC Frame

::= { OrgCode=SnapCrgCode, Data=vsnapData }
vsnap FLOW

HEADER LENGTH-3 }
DLC-LAYER PROTOCOL}
CHILDREN DESTINATION=OrgCode :

snapType FIELD
SYNTAX INT(16) {xns(Ox0600), ip(0x0800), arp(0x0806)

vines (Oxbad),
mop(0x6001), mop2(0x6002), drp(0x6003),
lat(0x6004), decidiag(0x6005), lavcCOx6007)

App. II-60

US 6,665,725 B1
77

-continued

rarp(Ox8035), appleTalk(0x809B), sna(0x80d5),
aarp(0x80F3), ipx(0x8137), snimp(Ox814c), ipv6(Ox86dd) }

DISPLAY-HINT “1x:
LOOKUP FILE “EtherType.cf.
DESCRIPTION
“SNAP type field”

snapData FIELD
SYNTAX BYTESTRING(46.1500)
ENCAP snapType
DISPLAY-HINT “HexDump”
DESCRIPTION

“SNAP data
Snap PROTOCOL

SUMMARIZE
“SOrgCode == 00:00:00”
“SNAP Type=SSnapType”

“Default
“VSNAP Org=SOrgCode Type=SSnapType”

DESCRIPTION
“SNAP Frame

::={ SnapType=snapType, Data=snapData }
Snap FLOW

HEADER LENGTH-2}
DLC-LAYER { PROTOCOL}
CHILDREN DESTINATION=SnapType }

-- IEEE8023.pdl - IEEE 802.3 frame definitions
-- Description:

This file contains the definition for the IEEE 802.3 (Ethernet)
protocols.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: IEEE8023.pdl.v 1.7 1999/01/26 15:15:58 skip Exp S

-- IEEE 802.3

ieee8023Length FIELD
SYNTAX UNSIGNED INT(16)

ieee8023Data FIELD
SYNTAX BYTESTRING(38.1492)
ENCAP =11c
LENGTH “Sieee8023Length”
DISPLAY-HINT “HexDump”

ieee8023 PROTOCOL
DESCRIPTION

“IEEE 802.3 (Ethernet) frame”
REFERENCE “RFC 1042

::= { MacDest=macAddress, Mac:Src=macAddress, Length=ieee8023Length,
Data=ieee8023Data }

-- IP.pdl - Internet Protocol (IP) definitions

-- Description:
This file contains the packet definitions for the Internet
Protocol. These elements are all of the fields, templates and

-- processes required to recognize, decode and classify IP datagrams
-- found within packets.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: IPpdl.v 1.14 1999/01/26 15:15:58 skip Exp S

-- The following are the fields that make up an IP datagram.
-- Some of these fields are used to recognize datagram elements, build

App. II-61

US 6,665,725 B1
79

-continued

-- flow signatures and determine the next layer in the decode process.

ipVersion FIELD
SYNTAX INT(4)
DEFAULT 4

ipHeaderLength FIELD
SYNTAX INT(4)

ipTypeOfService FIELD
SYNTAXBITSTRING(8) { minCost(1), maxReliability(2),

maxThruput(3), minDelay (4) }
ipLength FIELD

SYNTAX UNSIGNED INT(16)

-- This field will tell us if we need to do special processing to support
-- the payload of the datagram existing in multiple packets.

ipFlags FIELD
SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(1)}

ipFragmentOffset FIELD
SYNTAX INT(13)

-- This field is used to determine the children or next layer of the
-- datagram.

ipProtocol FIELD
SYNTAX INT(8)
LOOKUP FILE “IpProtocol.cf.

ipData FIELD
SYNTAX BYTESTRING(0.1500)
ENCAP ipProtocol
DISPLAY-HINT “HexDump”

-- Detailed packet layout for the IP datagram. This includes all fields
-- and format. All offsets are relative to the beginning of the header.
ip PROTOCOL

SUMMARIZE
“SFragmentOffset = 0”:

“IPFragment ID=SIdentification Offset=SFragmentOffset
“Default:

“IP Protocol=SProtocol
DESCRIPTION

“Protocol format for the Internet Protocol
REFERENCE “RFC 791

::= { Version=ipVersion, HeaderLength=ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,
Identification=UInt16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData }

-- This is the description of the signature elements required to build a flow
-- that includes the IP network layer protocol. Notice that the flow builds on
-- the lower layers. Only the fields required to complete IP are included.
-- This flow requires the support of the fragmentation engine as well as the
-- potential of having a tunnel. The child field is found from the IP
-- protocol field

ip FLOW
HEADER LENGTH=HeaderLength, IN-WORDS
NET-LAYER {
SOURCE=IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

CHILDREN DESTINATION=Protocol }
ipFragData FIELD

SYNTAX BYTESTRING(1.1500)
LENGTH “SipLength - SipHeaderLength * 4
DISPLAY-HINT “HexDump”

ipFragment Group
OPTIONAL “SFragmentOffset - O

::= { Data=ipFragData }
ipOptionCode FIELD

SYNTAXINT(8) {ipRR(0x07), ipTimestamp(Ox44),
ipLSRR(0x83), ipsSRR(0x89) }

DESCRIPTION
“IP option code”

80

App. II-62

US 6,665,725 B1
81

-continued

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION

“Length of IP option
ipOption Data FIELD

SYNTAX BYTESTRING(0.1500)
ENCAP ipOptionCode
DISPLAY-HINT “HexDump”

ipOptions GROUP
LENGTH “(SipHeaderLength * 4) - 20

::= { Code=ipOptionCode, Length=ipOptionLength, Pointer=UInt8,
Data=ipOption Data }

-- TCP.pdl - Transmission Control Protocol (TCP) definitions
-- Description:

This file contains the packet definitions for the Transmission
Control Protocol. This protocol is a transport service for

-- the IP protocol. In addition to extracting the protocol information
-- the TCP protocol assists in the process of identification of connections
-- for the processing of states.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.
-- RCS:

SId: TCP.pdl.v 1.9 1999/01/26 15:16:02 skip Exp S

-- This is the 16 bit field where the child protocol is located for
-- the next layer beyond TCP.

tepPort FIELD
SYNTAX UNSIGNED INT(16)
LOOKUP FILE “TepPort.cf.

tepHeader Len FIELD
SYNTAX INT(4)

topFlags FIELD
SYNTAXBITSTRING (12) { fin(0), syn(1), rst(2), psh(3), ack(4), urg(5) }

tepData FIELD
SYNTAX BYTESTRING(0.1564)
LENGTH “(SipLength - (SipHeaderLength * 4)) - (StepHeaderLen * 4)
ENCAP topPort
DISPLAY-HINT “HexDump”

-- The layout of the TCP datagram found in a packet. Offset based on the
-- beginning of the header for TCP.
tcp PROTOCOL

SUMMARIZE
“Default:

“TCPACK=SAck WIN=SWindowSize
DESCRIPTION

“Protocol format for the Transmission Control Protocol
REFERENCE “RFC 793

::= { Srcport=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=UInt16, Checksum=ByteStr2,
UrgentPointer=UInt16, Options=tcpCoptions, Data=tcpData }

-- The flow elements required to build a key for a TCP datagram.
-- Noticed that this FLOW description has a CONNECTION section. This is
-- used to describe what connection state is reached for each setting
-- of the TcpFlags field.

top FLOW
HEADER LENGTH=HeaderLength, IN-WORDS
CONNECTION {

IDENTIFIER=SequenceNum,
CONNECT-START-“TepFlags:1”,
CONNECT.COMPLETE=“TepFlags:4,
DISCONNECT-START-“TepFlags:0,
DISCONNECT.COMPLETE=“TepFlags:4”

PAYLOAD (INCLUDE-HEADER }
CHILDREN DESTINATION=DestPort, SOURCE-SrcPort

topOptionKind FIELD
SYNTAX UNSIGNED INT(8) { tepOptEnd(0), tcpNop(1), tcpMSS(2),

App. II-63

US 6,665,725 B1
83

-continued

tepWscale(3), tcpTimestamp(4) }
DESCRIPTION

“Type of TCP option”
topOption Data FIELD

SYNTAX BYTESTRING(0.1500)
ENCAP tepOptionKind
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

topOptions GROUP
LENGTH “(StepHeaderLen * 4) - 20”
SUMMARIZE

“Default:
“Option=SOption, Len=SOptionLength, SOption Data'

::= { Option=tcpCoptionKind, optionLength=UInt8, Option Data=tcpCoption Data }
tepMSS PROTCCOL
::= { MaxSegmentSize=UInt16

-- UDP.pdl - User Datagram Protocol (UDP) definitions

-- Description:
This file contains the packet definitions for the User Datagram
Protocol.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Technically Elite, Inc.)

All rights reserved.

-- RCS:
SId: UDP.pdl.v 1.9 1999/01/26 15:16:02 skip Exp S

udpPort FIELD
SYNTAX UNSIGNED INT(16)
LOOKUPFILE “Udpport.cf.

udpLength FIELD
SYNTAX UNSIGNED INT(16)

udpData FIELD
SYNTAX BYTESTRING(0.1500)
ENCAP udpPort
DISPLAY-HINT “HexDump”

udp PROTOCOL
SUMARIZE

“Default:
“UDP Dest=SDestPort Src=SSrcPort

DESCRIPTION
“Protocol format for the User Datagram Protocol.”

REFERENCE “RFC 768
::= { SrcPort=udpPort, DestPort=udpPort, Length=udpLength,

Checksum=ByteStr2, Data=udpData }
udp FLOW

HEADER LENGTH-8 }
CHILDREN DESTINATION=DestPort, SOURCE=Sreport

-- RPC.pdl - Remote Procedure Calls (RPC) definitions

-- Description:
This file contains the packet definitions for Remote Procedure
Calls.

-- Copyright:
Copyright (c) 1994-1999 Apptitude,
(formerly Technically Elite, Inc.)

All rights reserved.
-- RCS:

SId: RPC.pdl.v 1.7 1999/01/26 15:16:01 skip Exp S

rpcType FIELD
SYNTAX UNSIGNED INT(32) { rpcCall(O), rpcReply(1)}

rpcData FIELD
SYNTAX BYTESTRING(0.100)
ENCAP rpcType
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

rpc PROTOCOL
SUMMARIZE

“SType == rpcCall”

App. II-64

US 6,665,725 B1
85

-continued

“RPCSProgram”
“SReplyStatus == rpcAcceptedReply:
“RPC Reply Status=SStatus”

“SReplyStatus == rpcDenied Reply
“RPC Reply Status=S:Status, AuthStatus=SAuthStatus'

“Default
“RPCSProgram”

DESCRIPTION
“Protocol format for RPC

REFERENCE
“RFC 1057

::= { XID=UInt32, Type=rpcType, Data=rpcData }
rpc FLOW

HEADER LENGTH=0}
PAYLOAD DATA=XID, LENGTH-256}

rpcProgram FIELD
SYNTAX UNSIGNED INT(32) {portMapper(100000), infs(100003),

mount(100005), lockManager(100021), status.Monitor(100024)}
rpcProcedure GROUP

SUMMARIZE
“Default:

“Program=SProgram, Version=SVersion, Procedure=SProcedure'
::= { Program=rpcProgram, Version=UInt32, Procedure=UInt32
rpcAuthFlavor FIELD

SYNTAX UNSIGNED INT(32) { null(O), unix(1), short (2) }
rpcMachine FIELD

SYNTAX LSTRING(4)
rpcGroup GROUP

LENGTH “SNumGroups * 4
::= { Gid=Int32 }
rpcCredentials GROUP

LENGTH “SCredential Length”
::= { Stamp=UInt32, Machine=rpcMachine, Uid=Int32, Gid=Int32,

NumCiroups=UInt32, Groups=rpcGroup
rpcVerifierData FIELD

SYNTAX BYTESTRING(0.400)
LENGTH “SVerifier Length”

rpcEncap FIELD
SYNTAX COMBO Program Procedure
LOOKUP FILE “RPC.cf

rpcCalData FIELD
SYNTAX BYTESTRING(0.100)
ENCAP rpcEncap
DISPLAY-HINT “HexDump”

rpcCall PROTOCOL
DESCRIPTION

“Protocol format for RPC call
::= { RPCVersion=UInt32, Procedure=rpcProcedure,

CredentialAuthFlavor=rpcAuthFlavor, Credential Length=UInt32,
Credentials=rpcCredentials,
Verifier AuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,
Verifier=rpcVerifierData, Encap=rpcEncap, Data=rpcCall Data }

rpcReplyStatus FIELD
SYNTAX INT(32) { rpcAcceptedReply(0), rpcDenied Reply(1)}

rpcReplyData FIELD
SYNTAX BYTESTRING(0.40000)
ENCAP rpcReplyStatus
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

rpcReply PROTOCOL
DESCRIPTION

“Protocol format for RPC reply
::= { ReplyStatus=rpcReplyStatus, Data=rpcReplyData }
rpcAcceptStatus FIELD

SYNTAX INT(32) { Success(O), ProgUnavail(1), ProgMismatch (2),
ProcUnavail(3), Garbage Args(4), SystemError(5)

rpcAcceptEncap FIELD
SYNTAX BYTESTRING(O)
FLAGS NOSHOW

rpcAcceptData FIELD
SYNTAX BYTESTRING(0.40000)
ENCAP rpcAcceptEncap
DISPLAY-HINT “HexDump”

App. II-65

US 6,665,725 B1
87

-continued

rpcAcceptedReply PROTOCOL
::= { Verifier AuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,

Verifier=rpcVerifierData, Status=rpcAcceptStatus,
Encap=rpcAcceptEncap, Data=rpcAcceptData }

rpcDeniedstatus FIELD
SYNTAX INT(32) { rpcVersionMismatch(O), rpcAuthError(1)}

rpcAuthStatus FIELD
SYNTAX INT(32) { Okay(0), BadCredential(1), RejectedCredential(2),

BadVerifier(3), ReDectedVerifier(4), TooWeak(5),
Invalid Response(6), Failed(7) }

rpcDenied Reply PROTOCOL
::= { Status=rpcDeniedStatus, AuthStatus=rpcAuthStatus

rpcBindLookup PROTOCOL
SUMMARIZE

“Default:
“RPC GetPort Prog=SProg, Ver=SVer, Proto=SProtocol”

::= { Prog=rpcProgram, Ver=UInt32, Protocol=UInt32
rpcBindLookupReply PROTOCOL

SUMMARIZE
“Default
“RPC GetPortReply Port=SPort”

::= { Port=UInt32 }

-- NFS.pdl - Network File System (NFS) definitions

-- Description:
This file contains the packet definitions for the Network File
System.

-- Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.
(formerly Techhically Elite, Inc.)

All rights reserved.
-- RCS:

SId: NFS.pdl.lv 1.3 1999/01/26 15:15:59 skip Exp S

nfsString FIELD
SYNTAX LSTRING(4)

nfshandle FIELD
SYNTAX BYTESTRING(32)
DISPLAY-HINT “16xyn s

nfsData FIELD
SYNTAX BYTESTRING(0.100)
DISPLAY-HINT “HexDump”

nfsAccess PROTOCOL
SUMMARIZE

“Default:
“NFS Access SFlename

::= { Handle=nfsHandle, Filename=nfsString }
nfsStatus FIELD

SYNTAX INT(32) { OK(0), NoSuchFile(2) }
nfsAccessReply PROTOCOL

SUMMARIZE
“Default:
“NFS Access Reply SStatus”

::= { Status=nfsStatus
nfsMode FIELD

SYNTAX UNSIGNED INT(32)
DISPLAY-HINT “40

nfsCreate PROTOCOL
SUMMARIZE

“Default:
“NFS Create SFlename

::= { Handle=nfsHandle, Filename=nfsString, Filler=Int8, Mode=nfsMode,
Uid=Int32, Gid=Int32, Size=Int32, AccessTime=Inté4, ModTime=Inté4}

nfsFileType FIELD
SYNTAX INT(32) { Regular(1), Directory(2)}

nfsCreateReply PROTOCOL
SUMMARIZE

“Default:
“NFS CreateReply SStatus”

::= { Status=nfsStatus, Handle=nfsHandle, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Inté4, FileSysld=UInt32, FileId=UInt32,
AccessTime=Inté4, ModTime=Inté4, InodeChangeTime=Inté4}

nfsRead PROTOCOL

88

App. II-66

App. II-67

91

-continued

infsRemoveDir PROTOCOL
SUMMARIZE

“Default:
“NFS Rim Dir SName

::= { Handle=nfsHandle, Name=nfsString
nfsRemoveDirReply PROTOCOL

SUMMARIZE
“Default:
“NFS Rm DirReply SStatus”

::= { Status=nfsStatus
infsMakeDir PROTOCOL

SUMMARIZE
“Default:
“NFS MkDir SName

::= { Handle=nfsHandle, Name=nfsString
nfsMakeDirReply PROTOCOL

SUMMARIZE
“Default:
“NFS MkDirReply SStatus”

::= { Status=nfsStatus
nfsRemove PROTOCOL

SUMMARIZE
“Default:
“NFS Remove SName

::= { Handle=nfsHandle, Name=nfsString
nfsRemoveReply PROTOCOL

SUMMARIZE
“Default:
“NFS RemoveReply SStatus”

::= { Status=nfsStatus

US 6,665,725 B1

HTTP.pdl - Hypertext Transfer Protocol (HTTP) definitions

Description:
This file contains the packet definitions for the Hypertext Transfer
Protocol.

Copyright:
Copyright (c) 1994-1999 Apptitude, Inc.
(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
SId: HTTP.pdl.v 1.13 1999/04/13 15:47:57 skip Exp S

httpData FIELD

http

SYNTAX BYTESTRING(1.1500)
LENGTH “(SipLength - (SipHeaderLength * 4)) - (StepHeaderLen

DISPLAY-HINT “Text
FLAGS NOLABEL
PROTOCOL
SUMMARIZE

“ShttpData m/GETHTTPIHEAD POST? :
“HTTP ShttpData”

“ShttpData m/Ddate Sserver IL1 ast-Mmodified? :
“HTTP ShttpData”

“ShttpData m/ Ccontent-f:
“HTTP ShttpData”

“ShttpData m/ <HTML.cf. :
“HTTP (HTML document

“ShttpData m? GIF?:
“HTTP GIF image

“Default:
“HTTP Data

DESCRIPTION
“Protocol format for HTTP

http FLOW
CONNECTION INHERITED }
PAYLOAD (INCLUDE-HEADER, DATA=Data, LENGTH=256}
STATES

“SO: CHECKCONNECT, GOTO S1
DEFAULT NEXT SO

S1: WAIT 2, GOTO S2, NEXT S1
DEFAULT NEXT SO

S2: NATCH
Wn\rn 900 OO 255 0, NEXT S3

92

App. II-68

sybaseWebsql

sybase.Jdbc

sybaseTas

pointcast

backweb

mime

93
US 6,665,725 B1

-continued

Vnyin
POST ?tds?

“.hts HTTP/1.0
jdbc:sybase:Tds
PCN-The Poin

“t: BW-C-
DEFAULT NEXT S3

S3: MATCH
Wn\rn
Vnyin
Content-Type:
PCN-The Poin

“t: BW-C-
DEFAULT NEXT SO

FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
STATES

“SO: MATCH
'application
audio
image
text
video
x-world

900 00 255 0, NEXT 53
500 0 1271, CHILD sybaseWebsq1
5040 1271, CHILD sybase.Jdbc
5040 1271, CHILD sybaseTds

500 4 1 255 0, CHILD pointcast
100 4 1 255 0, CHILD backweb

50 00 00, NEXT S3
50 00 00, NEXT S3

800 00 255 0, CHILD mime
500 4 1 255 0, CHILD pointcast
100 4 1 255 0, CHILD backweb

9000 0 1 0, CHILD mimeApplication
900 0 0 1 0, CHILD mimeAudio
500 0 1 0, CHILD mimeImage
500 0 1 0, CHILD mimeText
500 0 1 0, CHILD mimeVideo

500 4 1 255 0, CHILD mimeXworld
DEFAULT GOTO SO

mimeApplication FLOW
STATE-BASED

mimeAudio FLOW
STATE-BASED
STATES

mimeImage

mimeText

mimeVideo

mimexworld

pdBasicAudio

pdMidi

pdMpeg2Audio

pdMpeg3Audio

pdRealAudio

pdWav

pdAiff

FLOW

MATCH
basic 1000 0 1 0, CHILD pdBasicAudio
midi 1000 0 1 0, CHILD pdMidi
impeg 1000 0 1 0, CHILD pdMpeg2Audio
vnd.m-realaudio 1000 0 1 0, CHILD pdRealAudio
waw 1000 0 1 0, CHILD pdWav
x-aiff 1000 0 1 0, CHILD pdAiff
x-midi 1000 0 1 0, CHILD pdMidi
x-mpeg 1000 0 1 0, CHILD pdMpeg2Audio
x-mpgurl 1000 0 1 0, CHILD pdMpeg3Audio
x-pn-realaudio 1000 0 1 0, CHILD pdRealAudio
x-wav 1000 0 1 0, CHILD pdWav

DEFAULT GOTO SO

STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED

94

App. II-69

US 6,665,725 B1
95

What is claimed is:
1. A method of performing protocol Specific operations on

a packet passing through a connection point on a computer
network, the method comprising:

(a) receiving the packet:
(b) receiving a set of protocol descriptions for a plurality

of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par
ticular layer level information at one or more loca
tions in the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is Stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol Specific operation to
be performed on the packet for the particular proto
col at the particular layer level, the one or more
protocol Specific operations to be performed on the
packet for the particular protocol at the particular
layer level; and

(c) performing the protocol specific operations on the
packet Specified by the Set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

the method further comprising:
Storing a database in a memory, the database generated

from the Set of protocol descriptions and including a
data Structure containing information on the possible
protocols and organized for locating the child protocol
related information for any protocol, the data Structure
contents indexed by a set of one or more indices, the
database entry indexed by a particular set of indeX
values including an indication of validity,

wherein the child protocol related information includes a
child recognition pattern,
wherein step (c) of performing the protocol specific opera
tions includes, at any particular protocol layer level Starting
from the base level, Searching the packet at the particular
protocol for the child field, the Searching including indexing
the data structure until a valid entry is found, and
whereby the data Structure is configured for rapid Searches
using the index Set.

2. A method according to claim 1, wherein the protocol
descriptions are provided in a protocol description language,
the method further comprising:

compiling the PDL descriptions to produce the database.
3. A method according to claim 1, wherein the data

Structure comprises a set of arrays, each array identified by
a first index, at least one array for each protocol, each array
further indexed by a Second indeX being the location in the
packet where the child protocol related information is
Stored, Such that finding a valid entry in the data structure
provides the location in the packet for finding the child
recognition pattern for an identified protocol.

4. A method according to claim 3, wherein each array is
further indexed by a third index being the size of the region
in the packet where the child protocol related information is
Stored, Such that finding a valid entry in the data structure
provides the location and the size of the region in the packet
for finding the child recognition pattern.

1O

15

25

35

40

45

50

55

60

65

96
5. A method according to claim 4, wherein the data

Structure is compressed according to a compression Scheme
that takes advantage of the Sparseness of valid entries in the
data Structure.

6. A method according to claim 5, wherein the compres
Sion Scheme combines two or more arrays that have no
conflicting common entries.

7. A method according to claim 1, wherein the data
Structure includes a set of tables, each table identified by a
first index, at least one table for each protocol, each table
further indexed by a Second indeX being the child recogni
tion pattern, the data structure further including a table that
for each protocol provides the location in the packet where
the child protocol related information is Stored, Such that
finding a valid entry in the data Structure provides the
location in the packet for finding the child recognition
pattern for an identified protocol.

8. A method according to claim 7, wherein the data
Structure is compressed according to a compression Scheme
that takes advantage of the Sparseness of valid entries in the
set of tables.

9. A method according to claim 8, wherein the compres
Sion Scheme combines two or more tables that have no
conflicting common entries.

10. A method of performing protocol Specific operations
on a packet passing through a connection point on a com
puter network, the method comprising:

(a) receiving the packet;
(b) receiving a set of protocol descriptions for a plurality

of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par
ticular layer level information at one or more loca
tions In the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is Stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto
col at the particular layer level, the one or more
protocol Specific operations to be performed on the
packet for the particular protocol at the particular
layer level: and

(c) performing the protocol specific operations on the
packet Specified by the Set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

wherein the protocol Specific operations include one or more
parsing and extraction operations on the packet to extract
Selected portions of the packet to form a function of the
Selected portions for identifying the packet as belonging to
a conversational flow.

11. A method according to claim 10, wherein step (c) of
performing protocol Specific operations is performed recur
sively for any children of the children.

12. A method according to claim 10, wherein which
protocol specific operations are performed is step (c)
depends on the contents of the packet Such that the method
adapts to different protocols according to the contents of the
packet.

13. A method according to claim 10, wherein the protocol
descriptions are provided in a protocol description language.

App. II-70

US 6,665,725 B1
97

14. A method according to claim 13, further comprising:
compiling the PDL descriptions to produce a database and

Store the database in a memory, the database generated
from the Set of protocol descriptions and including a
data Structure containing information on the possible
protocols and organized for locating the child protocol
related information for any protocol, the data Structure
contents indexed by a set of one or more indices, the
database entry indexed by a particular set of indeX
values including an indication of validity,

wherein the child protocol related information includes a
child recognition pattern, and
wherein the Step of performing the protocol Specific opera
tions includes, at any particular protocol layer level Starting
from the base level, Searching the packet at the particular
protocol for the child field, the Searching including indexing
the data structure until a valid entry is found,
whereby the data Structure is configured for rapid Searches
using the index Set.

15. A method according to claim 10, further comprising:
looking up a flow-entry database comprising at least one

flow-entry for each previously encountered conversa
tional flow, the looking up using at least Some of the
Selected packet portions and determining if the packet
matches an flow-entry in the flow-entry database

if the packet is of an existing flow, classifying the packet
as belonging to the found existing flow; and

if the packet is of a new flow, Storing a new flow-entry for
the new flow in the flow-entry database, including
identifying information for future packets to be iden
tified with the new flow-entry;

wherein for at least one protocol, the parsing and extraction
operations depend on the contents of one or more packet
headers.

16. A method according to claim 10, wherein the protocol
Specific operations further include one or more State pro
cessing operations that are a function of the State of the flow
of the packet.

5

15

25

35

98
17. A method of performing protocol Specific operations

on a packet passing through a connection point on a com
puter network, the method comprising:

(a) receiving the packet;
(b) receiving a set of protocol descriptions for a plurality

of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par
ticular layer level information at one or more loca
tions in the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is Stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto
col at the particular layer level, the one or more
protocol Specific operations to be performed on the
packet for the particular protocol at the particular
layer level; and

(c) performing the protocol specific operations on the
packet Specified by the Set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

wherein the packet belongs to a conversational flow of
packets having a Set of one or more States, and wherein the
protocol Specific operations include one or more State pro
cessing operations that are a function of the state of the
conversational flow of the packet, the State of the conver
sational flow of the packet being indicative of the Sequence
of any previously encountered packets of the same conver
sational flow as the packet.

k k k k k

App. II-71

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 1 of 2
DATED : December 16, 2003
INVENTOR(S) : Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6
Line 47, change “NBTBIOS' to -- NETBIOS --.
Line 55, change “Diferent” to -- Different --.

Column 16
Line 27, change “FIG. 6 FIG 6” to
-- FIG. 6.
FIG6 --.

Column 18
Line 17, change "updatelookup' to -- update-lookup --.

Column 25
Line 38, change "Server-Say” to -- Server—Say --.

Column 53,
Line 4, change “Default” to -- “Default' : --.
Line 45, shift “DISPLAY-HINT to the right so its beginning lines up with the
beginning of “SYNTAX” in line 42 and with the beginning of “LENGTH' in line 43.
Line 46, shift “FLAGS’ to the right So its beginning lines up with the beginning of
“SYNTAX” in line 42 and with the beginning of “LENGTH" in line 43.

Column 61
Aprox. line 32, change “rip” to -- r1p --.

Column 71
Line 9, from the bottom, change “netbios (0x3c00, to -- netbios (0x3c00) --.

Column 73
AprOX. Line 25, change "tyop' to -- type --.

Column 79
Line 4 from the bottom, change “SYNTAXINT(8) to -- SYNTAX INT (8) --.

App. II-72

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 2 of 2
DATED : December 16, 2003
INVENTOR(S) : Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 81
Approx. line 41, change “SYNTAXBITSRING(12) to -- SYNTAX BITSTRING
(12) --.

Column 83
Approx. line 36, change “LOOKUPFILE” to -- LOOKUP FILE--.

Column 93
Approx. line 45, change “vnd.m-relaudio” to -- 'vnd.rn-realaudio' --.

Column 96
Line 38, change “In” to -- in --.

Signed and Sealed this

Twenty-ninth Day of June, 2004

WDJ
JON W. DUDAS

Acting Director of the United States Patent and Trademark Office

App. II-73

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 1 of 1
APPLICATIONNO. : 09/609179
DATED : December 16, 2003
INVENTOR(S) : Russell S. Dietz, Andrew A. Koppenhaver and James F. Torgerson

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change “searching the packet at the particular protocol
to-searching the packet at the particular protocol level--.

Signed and Sealed this
Eighth Day of October, 2013

2
2-Y xx

s? *é-...sé - . . 26-e- 2. 13
Teresa Stanek Rea

Deputy Director of the United States Patent and Trademark Office

App. II-74

USOO6839751B1

(12) United States Patent (10) Patent No.: US 6,839,751 B1
Dietz et al. (45) Date of Patent: Jan. 4, 2005

(54) RE-USING INFORMATION FROM DATA 6,330,226 B1 * 12/2001 Chapman et al. 370/232
TRANSACTIONS FOR MAINTAINING 6,363,056 B1 * 3/2002 Beigi et al. 370/252

6,381,306 B1 * 4/2002 Lawson et al. 379/32 STATISTICS IN NETWORK MONITORING 6.424,624 B1 * 7/2002 Galand et al. 370/231
6.453345 B2 9/2002 Trcka et al. 709/224

(75) Inventors: Russell S. Dietz, San Jose, CA (US); 6,625,657 B1 * 85.8 Ri al. - - - 29:
Joseph R. Maixner, Aptos, CA (US); 6,651,099 B1 * 11/2003 Dietz et al. 709/224
Andrew A. K. h Littlet Any openniver ten, OTHER PUBLICATIONS

NOV94: Packet Filtering in the SNMP Remote Monitor ;
(73) Assignee: Hi/fn, Inc., Los Gatos, CA (US) www.skrymir.com/dobbs/articles/1994/9411/9411h/

9411 h.htm.*
(*) Notice: Subject to any disclaimer, the term of this GTrace-A Graphical Traceroute Tool authored by Ram

patent is extended or adjusted under 35 Periakaruppan, Evi Nemeth ; http://www.caida.org/out
U.S.C. 154(b) by 728 days. reach/papers/1999/GTrace/index.xml.*

Advanced Methods for Storage and Retrieval in Image ;
(21) Appl. No.: 09/608,126 http://www.cs.itulane.edu/www/Prototype/proposal.html;

1998.*
(22) Filed: Jun. 30, 2000 Measurement and analvsis of the digital DECT propagation y 9. propag

channel; IEEE 1998.*
Related U.S. Application Data sk -

(60) Provisional application No. 60/141903, filed on Jun. 30, cited by examiner
1999. Primary Examiner Thong Vu

(51) Int. Cl. .. G06F 15/173 (74) Attorney, Agent, or Firm--Dov Rosenfeld; Inventek

(58) Field of Search 709/223, 224,
709/231, 232, 230; 370/252, 231; 379/32; A method of and monitor apparatus for analyzing a flow of

704/43; 714/39; 340/825 packets passing through a connection point on a computer
network. The method includes receiving a packet from a

(56) References Cited packet acquisition device, and looking up a flow-entry
database containing flow-entries for previously encountered

U.S. PATENT DOCUMENTS conversational flows. The looking up to determine if the
4,972,453 A 11/1990 Daniel et all 379/9.03 received packet is of an existing flow. Each and every packet
5.53533s. A 7/1996 Krause et al... 709/222 is processed. If the packet is of an existing flow, the method
5703877 A 12/1997 Nuber et al. 370/395 updates the flow-entry of the existing flow, including Storing
5,720,032 A * 2/1998 Picazo, Jr. et al........... 709/250 one or more Statistical measures kept in the flow-entry. If the
5,761,429 A * 6/1998 Thompson 709/224 packet is of a new flow, the method Stores a new flow-entry
5,799,154. A * 8/1998 Kuriyan 709/223 for the new flow in the flow-entry database, including
5,802,054 A : 9/1998 Bellenger 370/401 Storing one or more Statistical measures kept in the flow
5,850,388 A * 12/1998 Anderson et al. 370/252 entry. The Statistical measures are used to determine metrics
5,892,754 A 4/1999 Kompella et al. 370/236 lated to the fl Th tri be b trics f 6,097.699 A 8/2000 Chen et al. so related to line Ilow. I ne metrics may be base metrics Irom
6115393 A 9/2000 Engel et al. 370/469 which quality of Service metrics are determined, or may be
6269,330 B1 7/2001 Cidon et al. ... 704/43 the quality of Service metrics.
6.279,113 B1 * 8/2001 Vaidya 713/201
6,282.570 B1 * 8/2001 Leung et al. 709/224 21 Claims, 18 Drawing Sheets

r
CLIENT 3

-
O6

CLIENT 4 client
107

108
ANAYZER

16
--/

SERVER 3
21

O
1

DATA COMMUNCATIONS
NETWORK

SERVER 2
-

2

-

CLIENT 2-7 CLIENT1

O2

125

23

05

App. II-75

U.S. Patent Jan. 4, 2005 Sheet 1 of 18 US 6,839,751 B1

100

-N ANAYZER
1 O7

116

Fl SERVER 2
CLIENT 3

N 106 121
Y10

DATA COMMUNICATIONS
NETWORK

102

125

123
118

SERVER 2 - 105 - Y -/
-N CLIENT 2-1 CLIENT 1

112 104

FIG. 1

App. II-76

App. II-77

App. II-78

U.S. Patent Jan. 4, 2005 Sheet 4 of 18 US 6,839,751 B1

402
HGH LEVEL
PACKET

DECODING

GENERATE PACKET PACKET COMPLE STATE
PARSE AND DESCRIPTIONS INSTRUCTION
EXTRACT AND

OPERATIONS OPERATIONS

4O6 2ATTENPARs PRóCessor
EXTRACTION INSTRUCTION
DATABASE DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

400

O

FIG. 4

App. II-79

U.S. Patent Jan. 4, 2005 Sheet 5 of 18

LOAD PACKET
COMPONENT

ORE INPACKE2.

503

504

FETCH NODE AND
PROCESS FROM
PATTERN

APPLY NOD AND
PROCESS TO
COMPONENT

51O
w V

PATTERN
NODE

509

US 6,839,751 B1

PACKET
KEY

513
MORE NEXT

PATTERN PACKET
NODES COMPONE 51

5OO

App. II-80

U.S. Patent Jan. 4, 2005 Sheet 6 of 18 US 6,839,751 B1

OU-601
PACKET 602

COMPONENT AND
PATTERN NODE

LOAD PACKET
COMPONENT 610

O4

LOAD KEY
BUFFER

YES

FETCH EXTRACTION (F)
AND PROCESS FROM

PATTERNS 605

603

6

MORE PACKE
COMPONENT

NO 611

606 NEXT
NO PACKET 609

COMPONEN
ORE EXTRACTION
ELEMENTS?

YES
6O7 APPLY EXTRACTION

SRES
6OO

MORE TO 608
EXTRACT?

YE

FIG. 6

App. II-81

U.S. Patent Jan. 4, 2005 Sheet 7 of 18 US 6,839,751 B1

OU-701
EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703 NODE ELEMENT 708

704 MORE PATTERN OUTPUT TO ORE, ANALYZER

YES (EB)
HASHKEYBUFFER
ELEMENT FROM 705
PATTERN NODE

709

700

NEXT PACKET
COMPONENT

FIG. 7

PACKKEY & HAS

7O6 N

707

App. II-82

U.S. Patent Jan. 4, 2005 Sheet 8 of 18 US 6,839,751 B1

O 8O1

UFKBENTRY FOR 802
PACKET

8OO Y
COMPUTE CONVERSATION-803
RECORD BIN FROM HASH

REGUEST RECORD BIN/
BUCKET FROM CACHE 804

806

NO SETUFKBFOR
PACKETAS"NEW"

COMPARE CURRENT BIN 807
AND BUCKETRECORD KEY

TO PACKET

NEXT BUCKET-NO service 808
YES

ORE BUCKET
805 IN THE BIN?

YES

809 MARK RECORD BIN AND 810
BUCKET IN PROCESS IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 ASFOUND"

812 UPDATE STATISTICS FOR
RECORD IN CACHE

98 vC FIG. 8

App. II-83

U.S. Patent Jan. 4, 2005

901 902

ANNOUNCME
PORTMAPPER PORTMAPPER

EXTRACT PROGRAM

GET PROGRAM',
VERSION', 'PORTAND
"PROTOCOL (TCP OR

UDP)

903

CREATE SERVER STATE

SAVE PROGRAM",
VERSION', 'PORTAND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

904

LOOKUP REGUES
FIND PROGRAM"
AND VERSION
WITHOOKUP OF
SOURCE NETWORK

ADDRESS.

go/

FIG. 9

Sheet 9 of 18 US 6,839,751 B1

9 O

RPC
BIND LOOKUP
REGUEST

909

EXTRACT PORT

GET PROGRAM",
"VERSION AND

'PROTOCOL (TCP OR
UDP)

SAVE REGUEST
SAVE PROGRAM",
'VERSION AND

'PROTOCOL (TCP OR
UDP) WITH

DESTINATION
NETWORKADDRESS.
BOTH MAKE A KEY.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

GET "PORT AND
'PROTOCOL (TCP

OR UDP)'.

App. II-84

U.S. Patent Jan. 4, 2005 Sheet 10 0f 18 US 6,839,751 B1

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

1 OO 1 O31
100 1004

INFOOUT
HOST INTERFACE MULTIPLEXR 8 CONTROLREGISTERS CONTRL IN

1031

1 OO6 PATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)

1008

PARSER
PACKET \ PARSER INPUT BUFFER OUTPUT PACKETKEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1021

PAERT INPUT BUFFER ANALYZER DATA READ
NTERFACE INTERFACE
CONTROL CONTROL

ANALYZER
V A.

PACKET READY

1 O2
1023 FIG. 1 O O27

App. II-85

U.S. Patent Jan. 4, 2005 Sheet 11 of 18 US 6,839,751 B1

1100 -
101 11 O3 1115 1118 °

EE ENGINE ANALYZER SST
INTERFACES INTER A59 FACE
C2SO (HIB) PROCESSR ()

INSTRUCN
DATABASE

(SPID)

UNIFIED
FLOW

PARSER KEY INTERK.BUFFER
FACE (UFKB)

PROCESSR
(SP) 1119 112

UNIFIED MEMORY
MEMORY AN INTER CONTROL FACE
(UMC)

FLOW
INSERTION/ CDELET6N-)
ENGINE
(FIDE)

1110

FIG. 11

App. II-86

U.S. Patent Jan. 4, 2005 Sheet 12 of 18 US 6,839,751 B1

UFKB ENTRY FOR
PACKET WITH
STATUS"NEW"

1202

1200
TA ACCESS

CONVERSATION 1203
RECORD BIN

REGUEST RECORD BIN/ 1204
BUCKET FROM CACHE

RECQUEST NEXT
BUCKET FROM BN/BUCKETEMPTY 1205

12O6 CACHE

YES

No NSERKEYAND HAS 12O7 N BUCKET, MARK"USED
1208 WITH TIMESTAMP

YES
OMPARE CURRENT BIN 1209
AND BUCKETRECORD

KEY TO PACKET
1210

SET UFKBFOR
PACKETAS
DROP

MARK RECORD BIN AND
BUCKET'IN PROCESS
AND "NEW" IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1211

1213

FIG. 12

App. II-87

U.S. Patent Jan. 4, 2005 Sheet 13 0f 18 US 6,839,751 B1

Quito
1300 - NA UFKBENTRY FOR

PACKET WITH STATUS
"NEW OR 'FOUND" 1302

SET STATE PROCESSOR
INSTRUCTION POINTERTO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1307
POINTERTO STATES FOR THIS

VALUE FOUND IN PACKET2
CURRENT STATE

3O8 YES
131 O

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTER IN

CURRENT FLOW
RECORD

TATES FOR THIS FLOW2

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

App. II-88

US 6,839,751 B1 Sheet 14 of 18 Jan. 4, 2005 U.S. Patent

WESÅSETTS I HESHWCH

App. II-89

US 6,839,751 B1 U.S. Patent

EOLAEC] NOLLISIQOOV LEXIOWE

App. II-90

U.S. Patent Jan. 4, 2005 Sheet 16 of 18 US 6,839,751 B1

NL2 Ofset = 12
FIG 16

App. II-91

U.S. Patent Jan. 4, 2005

1702
1704

offset 12613 YType I/////////A

y 1706

1708 Type (2)
Hash 1

FIG. 17A
1712

SEEZ L3 to ////serifier/Flag?/Flag/6ffs
E, AIE/Protocol)Ale/Cheskyi,

//////95iis,8. Fadzig//////////
- 1)

Protocol (1)
L4 Offset = L3 + (IHL/4)

Sheet 17 0f 18

ul

US 6,839,751 B1

IDP = 0x06OO*
IP = 0x0800

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OxOBAD*

VLOOP OxOBAE
VECHO = OxOBAF

NETBIOS-3COM: Ox3COO
Ox3CODE

DEC-MOPE Ox6001
DEC-RC = 0x6002

DEC-DRP = 0x6003 *
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B
VLOOP = 0x80C4
VECHO = 0x80C5
SNATH = 0x8005

ATALKARP = 0x80F3
IPX = 0x8137*

SNMP = 0x814Cit
IPv6 - 0x86DD *

LOOPBACK = 0x9000
Apple = 0x080007

* L3 Decoding
L5 Decoding

1752

ICMP = 1
GMP = 2
GGP = 3
TCP = 6*
EGP = 8
IGRP = 9
PUP = 12

CHAOS E 16
UDP = 17 *
DP = 22#.

SO-TP4 = 29
DDP = 37

ISO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

App. II-92

US 6,839,751 B1 Sheet 18 of 18 Jan. 4, 2005

PROTOCOL

U.S. Patent

870

1802-2

1. UT NUM
)

1802-1

' ; / / / / / // #7777777777,
L

FIG. 18B

App. II-93

US 6,839,751 B1
1

RE-USING INFORMATION FROM DATA
TRANSACTIONS FOR MAINTAINING

STATISTICS IN NETWORK MONITORING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/141,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN ANET
WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/608,237 for
METHOD AND APPARATUS FOR MONITORING
TRAFFICINANETWORK, to inventors Dietz, et al., filed
Jun. 30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/609,179 for PRO
CESSING PROTOCOL SPECIFIC INFORMATION IN
PACKETS SPECIFIED BY APROTOCOL DESCRIPTION
LANGUAGE, to inventors Koppenhaver, et al., filed Jun.
30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,266 for ASSO
CIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK
MONITOR, to inventors Sarkissian, et al., filed Jun. 30,
2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,267 for STATE
PROCESSOR FOR PATTERN MATCHING IN A NET
WORK MONITOR DEVICE, to inventors Sarkissian, et al.,
filed Jun. 30, 2000, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, Spe
cifically to the real-time elucidation of packets communi
cated within a data network, including classification accord
ing to protocol and application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other interconnected
networks. In particular, there is a need for a real-time
network monitor that can provide details as to the applica
tion programs being used. Such a monitor Should enable
non-intrusive, remote detection, characterization, analysis,
and capture of all information passing through any point on
the network (i.e., of all packets and packet Streams passing
through any location in the network). Not only should all the
packets be detected and analyzed, but for each of these
packets the network monitor should determine the protocol
(e.g., http, ftp, H.323, VPN, etc.), the application/use within
the protocol (e.g., voice, Video, data, real-time data, etc.),

15

25

35

40

45

50

55

60

65

2
and an end user's pattern of use within each application or
the application context (e.g., options Selected, Service
delivered, duration, time of day, data requested, etc.). Also,
the network monitor should not be reliant upon server
resident information Such as log files. Rather, it should allow
a user Such as a network administrator or an Internet Service
provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis, and
to receive timely notificatior of network problems.

Related and incorporated by reference U.S. patent appli
cation Ser. No. 09/607,237 for METHOD AND APPARA
TUS FOR MONITORING TRAFFIC IN ANETWORK, to
inventors Dietz, et al, describes a network monitor that
includes carrying out protocol Specific operations on indi
vidual packets including extracting information from header
fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for
recognizing future packets as belonging to a previously
encountered flow. A parser Subsystem includes a parser for
recognizing different patterns in the packet that identify the
protocols used. For each protocol recognized, a Slicer
extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also
preferably generates a hash for rapidly identifying a flow
that may have this signature from a database of known
flows.
The flow Signature of the packet, the hash and at least

Some of the payload are passed to an analyzer Subsystem. In
a hardware embodiment, the analyzer Subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser Subsystem and for Storing Signatures
in process, a lookup/update engine (LUE) to lookup a
database of flow records for previously encountered con
Versational flows to determine whether a signature is from
an existing flow, a State processor (SP) for performing State
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
Storing the database of flows, and a cache for Speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, and to the
cache.

Each flow-entry includes one or more Statistical measures,
e.g., the packet count related to the flow, the time of arrival
of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE,
State processor, and FIDE operate independently from the
other two engines. The State processor performs one or more
operations Specific to the State of the flow.

It is advantageous to collect Statistics on packets passing
through a point in a network rather than to Simply count each
and every packet. By maintaining Statistical measures in the
flow-entries related to a conversational flow, embodiments
of the present invention enable Specific metrics to be col
lected in real-time that otherwise would not be possible. For
example, it is desirable to maintain metrics related to
bi-directional conversations based on the entire flow for
each exchange in the conversation. By maintaining the State
of flow, embodiments of the present invention also enable
certain metrics related to the states of flows to be deter
mined.
Most prior-art network traffic monitors that use statistical

metrics collect only end-point and end-of-Session related
Statistics. Examples of Such commonly used metrics include
packet counts, byte counts, Session connection time, Session
timeouts, Session and transport response times and others.

App. II-94

US 6,839,751 B1
3

All of these deal with events that can be directly related to
an event in a Single packet. These prior-art Systems cannot
collect Some important performance metrics that are related
to a complete Sequence of packets of a flow or to Several
disjointed Sequences of the same flow in a network.
Time based metrics on application data packets are impor

tant. Such metrics could be determined if all the timestamps
and related data could be stored and forwarded for later
analysis. However when faced with thousands or millions of
conversations per Second on ever faster networks, Storing all
the data, even if compressed, would take too much
processing, memory, and manager down load time to be
practical.

Thus there is a need for maintaining and reporting time
base metrics from Statistical measures accumulated from
packets in a flow.

Network data is properly modeled as a population and not
a Sample. Thus, all the data needs to be processed. Because
of the nature of application protocols, just Sampling Some of
the packets may not give good measured related to flows.
Missing just one critical packet, Such as one the Specified an
additional port that data will be transmitted on, or what
application will be run, can cause valid data to be lost.

Thus there is also a need for maintaining and reporting
time-base metricS from Statistical measures accumulated
from every packet in a flow.

There also is a need to determine metrics related to a
Sequence of events. A good example is relative jitter. Mea
Suring the time from the end of one packet in one direction
to another packet with the same signature in the same
direction collects data that relates normal jitter. This type of
jitter metric is good for measuring broad signal quality in a
packet network. However, it is not specific to the payload or
data item being transported in a cluster of packets.

Using the State processing described herein, because the
State processor can Search for Specific data payloads,
embodiments of monitor 300 can be programmed to collect
the same jitter metric for a group of packets in a flow that are
all related to a specific data payload. This allows the
inventive System to provide metrics more focused on the
type of quality related to a Set of packets. This in general is
more desirable than metrics related to Single packets when
evaluating the performance of a System in a network.

Specifically, the monitor system 300 can be programmed
to maintain any type of metric at any State of a conversa
tional flow. Also the system 300 can have the actual statistics
programmed into the State at any point. This enables
embodiments of the monitor System to collect metrics
related to network usage and performance, as well as metrics
related to Specific States or Sequences of packets.
Some of the Specific metrics that can be collected only

with States are events related to a group of traffic in one
direction, events related to the Status of a communication
Sequence in one or both directions, events related to the
eXchange of packets for a specific application in a specific
Sequence. This is only a Small Sample of the metrics that
requires an engine that can relate the State of a flow to a Set
of metrics.

In addition, because the monitor 300 provides greater
Visibility to the Specific application in a conversation or flow,
the monitor 300 can be programmed to collect metrics that
may be specific to that type of application or Service. In other
word, if a flow is for an Oracle Database server, an embodi
ment of monitor 300 could collect the number of packets
required to complete a transaction. Only with both State and
application classification can this type of metric be derived
from the network.

15

25

35

40

45

50

55

60

65

4
Because the monitor 300 can be programmed to collect a

diverse Set of metrics, the System can be used as a data
Source for metrics required in a number of environments. In
particular, the metricS may be used to monitor and analyze
the quality and performance of traffic flows related to a
Specific Set of applications. Other implementation could
include metrics related to billing and charge-back for Spe
cific traffic flow and events with the traffic flows. Yet other
implementations could be programmed to provide metrics
useful for troubleshooting and capacity planning and related
directly to a focused application and Service.

SUMMARY

Another aspect of the invention is determining quality of
Service metrics based on each and every packet. A method
of and monitor apparatus for analyzing a flow of packets
passing through a connection point on a computer network
are disclosed that may include Such quality of Service
metrics. The method includes receiving a packet from a
packet acquisition device, and looking up a flow-entry
database containing flow-entries for previously encountered
conversational flows. The looking up to determine if the
received packet is of an existing flow. Each and every packet
is processed. If the packet is of an existing flow, the method
updates the flow-entry of the existing flow, including Storing
one or more Statistical measures kept in the flow-entry. If the
packet is of a new flow, the method Stores a new flow-entry
for the new flow in the flow-entry database, including
Storing one or more Statistical measures kept in the flow
entry. The Statistical measures are used to determine metrics
related to the flow. The metrics may be base metrics from
which quality of Service metrics are determined, or may be
the quality of Service metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
Specific embodiment because Such embodiments are pro
Vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi
ment of the present invention in which a monitor is con
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of Some of
the packets and their formats that might be exchanged in
Starting, as an illustrative example, a conversational flow
between a client and Server on a network being monitored
and analyzed. A pair of flow Signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents Some of the possible flow Signa
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular Server
applications that produce the discrete application packet
eXchanges.

FIG. 3 is a functional block diagram of a process embodi
ment of the present invention that can operate as the packet
monitor shown in FIG.1. This process may be implemented
in Software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing proceSS used as
part of the parser in an embodiment of the inventive packet
monitor.

App. II-95

US 6,839,751 B1
S

FIG. 6 is a flowchart of a packet element extraction
process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser
Subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a State processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a State processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple functional block diagram of a proceSS
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in Software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor Such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and Some of the elements that may be
extracted to form a signature according to one aspect of the
invention.
FIG.17A is an example of the header of an Ethertype type

of Ethernet packet of FIG.16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a Signature
according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used
to Store elements of the pattern, parse and extraction data
base used by the parser Subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
Subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include Signal names. In most cases,
the names are Sufficiently descriptive, in other cases how
ever the Signal names are not needed to understand the
operation and practice of the invention.
Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102

15

25

35

40

45

50

55

60

65

6
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104-107
and servers 110 and 112. The network is shown Schemati
cally as a cloud with Several network nodes and links shown
in the interior of the cloud. A monitor 108 examines the
packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with
each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, Such as connection point 123
between the network 102 and the interface 118 of the client
104, or Some other location, as indicated Schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity-for example an appli
cation program run by the client 104 (CLIENT 1) commu
nicating with another running on the server 110 (SERVER
2)-will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par
ticular application programs. The packets may need to be
parsed then analyzed in the context of various protocols, for
example, the transport through the application Session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in table form below,
Serves as a basic reference for understanding the function
ality of existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR
5 Session RPC, NETBIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1. Physical Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

Different communication protocols employ different lev
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2-3).

In So communication arts, the term "frame' generally
refers to encapsulated data at OSI layer 2, including a
destination address, control bits for flow control, the data or

App. II-96

US 6,839,751 B1
7

payload, and CRC (cyclic redundancy check) data for error
checking. The term "packet' generally refers to encapsu
lated data at OSI layer 3. In the TCP/IP world, the term
"datagram' is also used. In this specification, the term
"packet' is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields
and headers for transmission acroSS a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,” are generally Synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
Same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
Server to Send a type-A packet, but So will another. If,
though, the particular application program always follows a
type-A packet with the Sending of a type-B packet, and the
other application program does not, then in order to recog
nize packets of that application's conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. If Such is
recognized after a type-A packet, then the particular appli
cation program's conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet eXchanges that are parts of conversational flows
asSociated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of
packets on the network 102 passing by the monitor 108's
connection point can exceed a million per Second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
State of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
asSociated application programs according to the packets
that their executions produce, is a multi-step proceSS within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first "signature' is produced from Selected parts of a
packet that will allow monitor 108 to identify efficiently any
packets that belong to the same flow. In Some cases, that
packet type may be Sufficiently unique to enable the monitor
to identify the application that generated Such a packet in the
conversational flow. The Signature can then be used to
efficiently identify all future packets generated in traffic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are

15

25

35

40

45

50

55

60

65

8
necessary to identify the associated application program. In
Such a case, a Subsequent packet of a Second type-but that
potentially belongs to the same conversational flow-is
recognized by using the Signature. At Such a Second level,
then, only a few of those application programs will have
conversational flows that can produce Such a Second packet
type. At this level in the process of classification, all appli
cation programs that are not in the Set of those that lead to
Such a Sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the Second level Signature. For each packet, therefore,
the monitor parses the packet and generates a Signature to
determine if this signature identified a previously encoun
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the Sequence of
previously encountered packets (the State), and of the pos
Sible future Sequences Such a past Sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated Signature may
then be used to efficiently recognize future packets associ
ated with the same conversational flow. Such an arrange
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.
Another aspect of the invention is adding Eavesdropping.

In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through Some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
Sends a message to Some general purpose processor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being eXchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.
The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple
mented with computer hardware and/or Software. The Sys
tem 300 is similar to monitor 108 in FIG.1. A packet 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi
level model, including what Server application produced the
packet.
The packet acquisition device is a common interface that

converts the physical Signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of different types-accomplished by compiler and
optimizer 310, (2) the processing parsing and extraction of
Selected portions-of packets to generate an identifying

App. II-97

US 6,839,751 B1
9

Signature-accomplished by parser Subsystem 301, and (3)
the analysis of the packets-accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocol specific information to parser subsystem 301 and to
analyzer Subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.
A flow is a Stream of packets being eXchanged between

any two addresses in the network. For each protocol there
are known to be Several fields, Such as the destination
(recipient), the Source (the Sender), and So forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
Such as checksums, and those parts are not used for identi
fication.

Parser Subsystem 301 examines the packets using pattern
recognition proceSS 304 that parses the packet and deter
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser Subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are Supplied from a
parsing-pattern-structures and extraction-operations data
base (parsing/extractions database) 308 filled by the com
piler and optimizer 310.
The protocol description language (PDL) files 336

describes both patterns and States of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor
mation to extract for the purpose of identifying a flow, and
ultimately, applications and Services. The layer Selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.
When compiler and optimizer 310 executes, it generates

two sets of internal data structures. The first is the set of
parsing/extraction operations 308. The pattern Structures
include parsing information and describe what will be
recognized in the headers of packets, the extraction opera
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the different States and State transitions that occur in different
conversational flows, and the State operations that need to be
performed (e.g., patterns that need to be examined and new
Signatures that need to be built) during any State of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in Some embodiments the
layering Selections information is inherent rather than
explicitly described. For example, since a PDL file for a
protocol includes the child protocols, the parent protocols
also may be determined.

15

25

35

40

45

50

55

60

65

10
In the preferred embodiment, the packet 302 from the

acquisition device is input into a packet buffer. The pattern
recognition process 304 is carried out by a pattern analysis
and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL-Intel-Xerox (DIX) packet. The PAR
also uses the pattern Structures and extraction operations
database 308 to identify the next protocol and parameters
asSociated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that
extracts Selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
Sequence and then processed in block 312 to build a unique
flow signature (also called a “key”) for this flow. A flow
Signature depends on the protocols used in the packet. For
Some protocols, the extracted components may include
Source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the Signature typically includes
the client and Server address pairs. The Signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the Signature using a hash
function. The purpose if using Such a hash is conventional
to spread flow-entries identified by the Signature acroSS a
database for efficient Searching. The hash generated is
preferably based on a hashing algorithm and Such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet-a parser record—that includes the signature (i.e.,
Selected portions of the packet), the hash, and the packet
itself to allow for any State processing that requires further
data from the packet. An improved embodiment of the parser
Subsystem might generate a parser record that has Some
predefined Structure and that includes the Signature, the
hash, Some flags related to Some of the fields in the parser
record, and parts of the packet's payload that the parser
Subsystem has determined might be required for further
processing, e.g., for State processing.

Note that alternate embodiments may use Some function
other than concatenation of the Selected portions of the
packet to make the identifying Signature. For example, Some
“digest function' of the concatenated Selected portions may
be used.
The parser record is passed onto lookup process 314

which looks in an internal data Store of records of known
flows that the System has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.
The parser record enters a buffer called the unified flow

key buffer (UFKB). The UFKB stores the data on flows in
a data Structure that is similar to the parser record, but that
includes a field that can be modified. In particular, one or the

App. II-98

US 6,839,751 B1
11

UFKB record fields Stores the packet Sequence number, and
another is filled with state information in the form of a
program counter for a State processor that implements State
processing 328.
The determination (316) of whether a record with the

Same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.

The flow-entry database 324 stores flow-entries that
include the unique flow-signature, State information, and
extracted information from the packet for updating flows,
and one or more Statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser Sub
system 301 (i.e., the hash in the UFKB record). The hash
Spreads the flows across the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a 16-bit hash gives two flow
entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that
another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise Stated or clear from the context.

If there is no flow-entry found matching the Signature, i.e.,
the Signature is for a new flow, then a protocol and State
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the State Sequence for a flow for this protocols this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of State
patterns and processes. Process 318 is then followed by any
State operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up flow-entry, if more classi
fication by State processing of the flow Signature is neces
Sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more Statistical measures Stored in
the flow-entry. In our embodiment, the Statistical measures
are Stored in counters in the flow-entry.

If State processing is required, State process 328 is com
menced. State processor 328 carries out any State operations
specified for the state of the flow and updates the state to the
next State according to a set of State instructions obtained
form the State pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol Stack,
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state

15

25

35

40

45

50

55

60

65

12
based on predefined State transition rules and State opera
tions as Specified in State processor instruction database 326.
A State transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
State processor is in a particular State-for example, in order
to evaluate a quantity needed to apply the State transition
rule. The State processor goes through each rule and each
State proceSS until the test is true, or there are no more tests
to perform.

In general, the Set of State operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a State that causes exiting the
System prior to completing the identification, but possibly
knowing more about what State and State processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of State
operations) at a particular State may build a new signature
for future recognition packets of the next State.
By maintaining the State of the flows and knowing that

new flows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) Single-packet protocol recognition of
flows, and (b) multiple-packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed Sub-flows that occur in Server
announcement type flows. What may seem to prior art
monitors to be Some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
Sub-flow associated with a previously encountered Sub-flow.

Thus, State processor 328 applies the first State operation
to the packet for this particular flow-entry. A process 330
decides if more operations need to be performed for this
State. If So, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed
that is, there are no more operations for this packet in this
state. A process 332 decides if there are further states to be
analyzed for this type of flow according to the State of the
flow and the protocol, in order to fully characterize the flow.
If not, the conversational flow has now been fully charac
terized and a process 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
Starts the State processing by using the last protocol recog
nized by the parser as an offset into a jump table (jump
vector). The jump table finds the State processor instructions
to use for that protocol in the State patterns and processes
database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or Subtract to perform the
test. For example, a common operation carried out by the
State processor is Searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides
whether the flow is at an end State. If not at an end State, the
flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is
determined that there are further States to be processed using
later packets, the flow-entry is updated in proceSS 322.
The flow-entry also is updated after classification final

ization So that any further packets belonging to this flow will
be readily identified from their Signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

App. II-99

US 6,839,751 B1
13

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes Storing States. The monitor of FIG.3 also generates
characteristic parts of packets-the Signatures-that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packet is identified
to be from a known flow, the state of the flow is known and
this knowledge enables State transition analysis to be per
formed in real time for each different protocol and applica
tion. In a complex analysis, State transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their State
analysis continued from a previously achieved State. When
enough packets related to an application of interest have
been processed, a final recognition State is ultimately
reached, i.e., a Set of States has been traversed by State
analysis to completely characterize the conversational flow.
The Signature for that final State enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particular set of State transitions
has been traversed for the first time and ends in a final State,
a short-cut recognition pattern-a signature-an be gener
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
Simple operation, allowing high packet rates to be Success
fully monitored on the network.

In improved embodiments, Several State analyzers are run
in parallel So that a large number of protocols and applica
tions may be checked for. Every known protocol and appli
cation will have at least one unique Set of State transitions,
and can therefore be uniquely identified by watching such
transitions.
When each new conversational flow Starts, Signatures that

recognize the flow are automatically generated on-the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the States of the Set
of State transitions for any potential application are further
traversed according to the State transition rules for the flow.
The new states for the flow-those associated with a set of
State transitions for one or more potential applications-are
added to the records of previously encountered States for
easy recognition and retrieval when a new packet in the flow
is encountered.
Detailed operation

FIG. 4 diagrams an initialization system 400 that includes
the compilation process. That is, part of the initialization
generates the pattern Structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off-line or from a central location.

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have Zero or more children. Ethernet packets, for
example, have Several variants, each having a basic format
that remains Substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet—also
called an Ethernet Type/Version 2 and a DIX (DIGITAL
Intel-Xerox packet) -or an IEEE 803.2 packet. Continuing
with the IEEE 802.3 packet, one of the children nodes may
be the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and

15

25

35

40

45

50

55

60

65

14
includes information on the destination media access control
address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the Signature.

FIG. 17A now shows the header information for the next
level (level-2) for an Ethertype packet 1700. For an Ether
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the
possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shown in table 1752.
The pattern, parse, and extraction database (pattern rec

ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional Structure that provides for rapidly Searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compressed form of
the 3-D structure is preferred.
An alternate embodiment of the data Structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3-D
structure of FIG. 18A, the data structure permits rapid
Searches to be performed by the pattern recognition process
304 by indexing locations in a memory rather than perform
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUTs) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a Slicer command, and
Some flags.
The pattern matching is carried out by finding particular

“child recognition codes' in the header fields, and using
these codes to index one or more of the LUTs. Each LUT
entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer
selections 338, which describes the particular layering (sets
of trees of protocols) that the monitor is to be able to handle.
A compiler 403 compiles the descriptions. The set of

packet parse-and-extract operations 406 is generated (404),
and a set of packet State instructions and operations 407 is
generated (405) in the form of instructions for the state
processor that implements State processing process 328.
Data files for each type of application and protocol to be

App. II-100

US 6,839,751 B1
15

recognized by the analyzer are downloaded from the pattern,
parse, and extraction database 406 into the memory Systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG. 6; and the parsing Subsystem hardware
description and FIG. 10). Data files for each type of appli
cation and protocol to be recognized by the analyzer are also
downloaded from the State-processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11.).

Note that generating the packet parse and extraction
operations builds and links the three dimensional Structure
(one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and Subtrees to see which children
share common parents. When implemented in the form of
the LUTs, this proceSS can generate a single LUT from a
plurality of LUTs. The optimization process further
includes a compaction process that reduces the Space needed
to store the data of the PRD.
AS an example of compaction, consider the 3-D Structure

of FIG. 18A that can be thought of as a set of 2-D structures
each representing a protocol. To enable Saving Space by
using only one array per protocol which may have Several
parents, in one embodiment, the pattern analysis SubproceSS
keeps a “current header' pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a
relative location starting with the start of header for the
particular protocol. Furthermore, each of the two
dimensional arrays is sparse. The next step of the
optimization, is checking all the 2-D arrays against all the
other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often Sparsely populated in that
they each have only a Small number of valid entries. So, a
process of "folding” is next used to combine two or more
2-D arrays together into one physical 2-D array without
losing the identity of any of the original 2-D arrays (i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met. Multiple arrayS
may be combined into a single array as long as the individual
entries do not conflict with each other. A fold number is then
used to associate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem
301 functions. Starting at 501, the packet 302 is input to the
packet buffer in step 502. Step 503 loads the next (initially
the first) packet component from the packet 302. The packet
components are extracted from each packet 302 one element
at a time. A check is made (504) to determine if the
load-packet-component operation 503 Succeeded, indicating
that there was more in the packet to process. If not, indi
cating all components have been loaded, the parser Sub
system 301 builds the packet signature (512)-the next stage
(FIG. 6).

If a component is successfully loaded in 503, the node and
processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet
component. The parser Subsystem 301 checks (506) to
determine if the fetch pattern node operation 505 completed
Successfully, indicating there was a pattern node that loaded

15

25

35

40

45

50

55

60

65

16
in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattern matching process are
applied in 507 to the component extracted in 503. A pattern
match obtained in 507 (as indicated by test 508) means the
parser Subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser Subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns' loop between 508 and 505.
Once the parser Subsystem 301 completes all the patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).
Once all the packet components have been the loaded and

processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 moves to build a packet signature which is described in
FIG. 6

FIG. 6 is a flow chart for extracting the information from
which to build the packet signature. The flow starts at 601,
which is the exit point 513 of FIG. 5. At this point parser
Subsystem 301 has a completed packet component and a
pattern node available in a buffer (602). Step 603 loads the
packet component available from the pattern analysis pro
cess of FIG. 5. If the load completed (test 604), indicating
that there was indeed another packet component, the parser
Subsystem 301 fetches in 605 the extraction and process
elements received from the pattern node component in 602.
If the fetch was successful (test 606), indicating that there
are extraction elements to apply, the parser subsystem 301 in
Step 607 applies that extraction process to the packet com
ponent based on an extraction instruction received from that
pattern node. This removes and Saves an element from the
packet component.

In step 608, the parser Subsystem 301 checks if there is
more to extract from this component, and if not, the parser
Subsystem 301 moves back to 603 to load the next packet
component at hand and repeats the process. If the answer is
yes, then the parser Subsystem 301 moves to the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the Same packet component
if there is more to extract, or to a different packet component
if there is no more to extract.
The extraction process thus builds the Signature, extract

ing more and more components according to the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603 fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buffer (610)
and the parser Subsystem 301 proceeds to FIG. 7 to complete
the Signature generation process.

Referring now to FIG. 7, the process continues at 701. The
Signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705
hashes the Signature buffer element based on the hash
elements that are found in the pattern node that is in the
element database. In 706 the resulting signature and the hash
are packed. In 707 the parser Subsystem 301 moves on to the
next packet component which is loaded in 703.
The 703 to 707 loop continues until there are no more

patterns of elements left (test 704). Once all the patterns of
App. II-101

US 6,839,751 B1
17

elements have been hashed, processes 304,306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the Signature used by the analyzer Subsystem
303.
A parser record is loaded into the analyzer, in particular,

into the UFKB in the form of a UFKB record which is
Similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a Signature, the hash and at least
parts of the payload. In 802 those elements are shown in the
form of a UFKB-entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number” from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache,
all data accesses to records in the flowchart of FIG. 8 are
Stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket
from that bin using the hash. If the cache Successfully
returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry's
Signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found”
indication allows the State processing 328 to begin proceSS
ing this UFKB element. The preferred hardware embodi
ment includes one or more State processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a Set of Statistical operations
is performed by a calculator for every packet analyzed. The
Statistical operations may include one or more of counting
the packets associated with the flow; determining Statistics
related to the size of packets of the flow; compiling Statistics
on differences between packets in each direction, for
example using timestamps, and determining Statistical rela
tionships of timestamps of packets in the same direction.
The Statistical measures are kept in the flow-entries. Other
Statistical measures also may be compiled. These Statistics
may be used singly or in combination by a Statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from the Statistical measures, for example to ascer
tain the network's ability to transfer information for this
application. Such analysis provides for measuring the qual
ity of Service of a conversation, measuring how well an
application is performing in the network, measuring network
resources consumed by an application, and So forth.
To provide for Such analyses, the lookup/update engine

updates one or more counters that are part of the flow-entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow, the time, and a differential time from the last timestamp
to the present timestamp.

It may be that the bucket of the bin did not lead to a
Signature match (test 808). In Such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

15

25

35

40

45

50

55

60

65

18
If no match was found, the packet belongs to a new (not

previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, any Statistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In Such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.
The Hardware System

Each of the individual hardware elements through which
the data flows in the system are now described with refer
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodiment of FIG. 3, it would be clear to one skilled in the
art that the flow of FIG.3 may alternatively be implemented
in Software running on one or more general-purpose
processors, or only partly implemented in hardware. An
implementation of the invention that can operate in Software
is shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the Software system of FIG. 14 may be suitable for
slower networks. To one skilled in the art it would be clear
that more and more of the System may be implemented in
Software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as subsystem 1000) as implemented in hard
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data
base memory, in which the extraction instructions are Stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004. Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.
A packet enters the parsing System via 1012 into a parser

input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The buffer 1008 and interface control 1022 connect to
a packet acquisition device (not shown). The buffer acqui
Sition device generates a packet Start Signal 1021 and the
interface control 1022 generates a next packet (i.e., ready to
receive data) signal 1023 to control the data flow into parser
input buffer memory 1008. Once a packet starts loading into
the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory
described in block 304 of FIG. 3. That is, protocol types and
asSociated headers for each protocol layer that exist in the
packet are determined.
The PRE searches database 1001 and the packet in buffer

1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series
of linked lookup tables. Each lookup table uses eight bits of
addressing. The first lookup table is always at address Zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the first lookup table.

App. II-102

US 6,839,751 B1
19

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to
the COP

The PRE 1006 includes of a comparison engine. The
comparison engine has a first Stage that checks the protocol
type field to determine if it is an 802.3 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a Second Stage. The first stage is the only
protocol level that is not programmable. The Second Stage
has two full sixteen bit content addressable memories
(CAMs) defined for future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also
generates a command for the extraction engine (also called
a "slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction
pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig
nature and the proceSS code is used to fetch the first
instruction from the instruction database 1002. Instructions
include an operation code and usually Source and destination
offsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow Signature.
The extractor contains another instruction called HASH.
This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting Selected element
(S) of the packet in the input buffer memory and transferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a
pipeline. That is, extraction engine 1007 performs extraction
operations on data in input buffer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa
tion is being simultaneously parsed by PRE 1006. This
provides high processing Speed Sufficient to accommodate
the high arrival rate Speed of packets.

Once all the Selected parts of the packet used to form the
Signature are extracted, the hash is loaded into parser output
buffer memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser Sub
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready Signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer Subsystem that performs the functions of the
analyzer Subsystem 303 of FIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the
State processing information generated by the compilation
process 310 into a database memory for the State processing,
called state processor instruction database (SPID) memory
1109.

15

25

35

40

45

50

55

60

65

20
The analyzer subsystem 1100 includes a hostbus interface

1122 using an analyzer host interface controller 1118, which
in turn has access to a cache System 1115. The cache System
has bi-directional access to and from the State processor of
the system 1108. State processor 1108 is responsible for
initializing the State processor instruction database memory
1109 from information given over the host bus interface
1122.
With the SPID 1109 loaded, the analyzer subsystem 1100

receives parser records comprising packet signatures and
payloads that come from the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holds records of packets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable Status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1103: the lookup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple
mented by one or more finite state machines (FSM's). There
is bi-directional access between each of the finite State
machines and the unified flow key buffer 1103. The UFKB
record includes a field that Stores the packet Sequence
number, and another that is filled with state information in
the form of a program counter for the state processor 1108
that implements State processing 328. The Status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the State
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the State processor is done with the
current flow and to indicate what the next entry is for the
State processor. There also is provided a flag to indicate the
State processor is transferring processing of the UFKB-entry
to the flow insertion and deletion engine.
A new UFKB record is first processed by the LUE 1107.

A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
1110 after being processed by the state processor 1108 or
only by the LUE. Whether or not a particular engine has
been applied to any unified flow key buffer entry is deter
mined by Status fields Set by the engines upon completion.
In one embodiment, a status flag in the UFKB-entry indi
cates whether an entry is new or found. In other
embodiments, the LUE issues a flag to pass the entry to the
State processor for processing, and the required operations
for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed
by all three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

Each of these three engines also has bi-directional access
to a cache Subsystem 1115 that includes a caching engine.
Cache 1115 is designed to have information flowing in and
out of it from five different points within the system: the
three engines, external memory via a unified memory con
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.
The cache subsystem 1115 is an associative cache that

includes a set of content addressable memory cells (CAMs)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the

App. II-103

US 6,839,751 B1
21

cached flow-entries. The CAMS are arranged as a Stack
ordered from a top CAM to a bottom CAM. The bottom
CAM's pointerpoints to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, So the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
asSociative cache with a true LRU replacement policy.
The LUE 1107 first processes a UFKB-entry, and basi

cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buckets
from the cache. The cache System attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.
When a flow-entry is found using the hash, the LUE 1107

looks at each bucket and compares it using the Signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow-entries from the cache, a time Stamp in Set in the flow
key of the UFKB record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the Status for
the record is Set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is
ready to Start State processing. The identification and State
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector' for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the State processor to start State processing for
the particular protocol. For example, the jump vector jumps
to the Subroutine for processing the State.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountered flow, then a
calculator component enters one or more Statistical measures
Stored in the flow-entry, including the timestamp. In
addition, a time difference from the last Stored timestamp
may be Stored, and a packet count may be updated. The State
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi
cation is required, then the Status for the record is Set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
State processor to a Subroutine to State processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being Zero. If the
protocol identifier indicates more processing, then an indi
cation is made that the UFKB-entry is ready to start state
processing and the Status for the record is Set to indicate the
LUE has processed the record.
The state processor 1108 processes information in the

cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the State
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an

15

25

35

40

45

50

55

60

65

22
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the Subroutine which
analyzes the protocol that was decoded.
The State Processor ALU (SPALU) contains all the

Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register
The Search Engine in turn contains the Target Search

Register Set, the Reference Search Register Set, and a
Compare block which compares two operands by exclusive
or-ing them together.

Thus, after the UFKB sets the program counter, a
Sequence of one or more State operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB-entry is used
to Set the State processor's instruction counter. The State
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test Something in the
unified flow key buffer or the flow-entry if it exists. The state
processor 1108 may have to test bits, do comparisons, add or
Subtract to perform the test.
The first state processor instruction is fetched in 1304

from the state processor instruction database memory 1109.
The State processor performs the one or more fetched
operations (1304). In our implementation, each single State
processor instruction is very primitive (e.g., a move, a
compare, etc.), So that many Such instructions need to be
performed on each unified flow key buffer entry. One aspect
of the State processor is its ability to Search for one or more
(up to four) reference Strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the State processor responsive to special
Searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then
in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may
be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.
The next instruction to be performed is now fetched

(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions
to be performed.
At this stage, a check is made in 1309 if the processing on

this particular packet has resulted in a final State. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. If indeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final States may need to put

App. II-104

US 6,839,751 B1
23

a State in place that tells the System to remove a flow-for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.
Once the appropriate flow removal instruction as Specified

for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

Note that State processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the State process or is done. Furthermore,
If the flow needs to be inserted or deleted from the database
of flows, control is then passed on to the flow insertion/
deletion engine 1110 for that flow Signature and packet entry.
This is done by the State processor Setting another flag in the
UFKB for this UFKB-entry indicating that the state proces
Sor is passing processing of this entry to the flow insertion
and deletion engine.
The flow insertion and deletion engine 1110 is responsible

for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database So that they can be reused.

The process of flow insertion is now described with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFKB-entry that may be
new or that the State processor otherwise has indicated needs
to be created. FIG. 12 shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used' in the cache engine of cache 1115
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow Signature to the packet to Verify that all the elements are
in place to complete the record. In 1211 the System marks the
record bin and bucket as “in process” and as “new” in the
cache System (and hence in the external memory). In 1212,
the initial Statistical measures for the flow-record are Set in
the cache System. This in the preferred embodiment clearS
the Set of counters used to maintain Statistics, and may
perform other procedures for Statistical operations requires
by the analyzer for the first packet Seen for a particular flow.

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packet is Set as “drop, indicating that the System cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion

15

25

35

40

45

50

55

60

65

24
operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.
Once a set of operations is performed on a unified flow

key buffer entry by all of the engines required to access and
manage a particular packet and its flow Signature, the unified
flow key buffer entry is marked as “completed.” That
element will then be used by the parser interface for the next
packet and flow Signature coming in from the parsing and
extracting System.

All flow-entries are maintained in the external memory
and Some are maintained in the cache 1115. The cache
System 1115 is intelligent enough to access the flow database
and to understand the data Structures that exists on the other
Side of memory interface 1123. The lookup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache System once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache System if required
based on information in the unified flow key buffer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are Several interfaces to components of the System
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing System Such as a micropro
cessor or a multiplexor (MUX) system. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into Some other processing System to manage the
classification System and to extract data gathered by the
System.
The memory interface 1123 is designed to interface to any

of a variety of memory Systems that one may want to use to
store the flow-entries. One can use different types of
memory Systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic' interfaces. There is
a packet input interface 1012-a general interface that
works in tandem with the signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic Systems that can then feed packet
information into the parser. Another generic interface is the
interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This
enables the parsing System to be managed by an external
System, for example a microprocessor or another kind of
external logic, and enables the external System to program
and otherwise control the parser.
The preferred embodiment of this aspect of the invention

is described in a hardware description language (HDL) Such
as VHDL or Verilog. It is designed and created in an HDL
So that it may be used as a single chip System or, for instance,
integrated into another general-purpose System that is being
designed for purposes related to creating and analyzing
traffic within a network. Verilog or other HDL implemen
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA's). The
boundaries of these FPGA's are as follows. The parsing

App. II-105

US 6,839,751 B1
25

Subsystem of FIG. 10 is implemented as two FPGAS; one
FPGA, and includes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGA includes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA. Por
tions of the State processor instruction database memory
1109 are maintained in external SRAM's. The lookup/
update engine 1107 and the flow insertion/deletion engine
1110 are in another FPGA. The Sixth FPGA includes the
cache system 1115, the unified memory control 1119, and the
analyzer host interface and control 1118.

Note that one can implement the System as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC's) such as FPGA's. It is antici
pated that in the future device densities will continue to
increase, So that the complete System may eventually form
a Sub-unit (a “core”) of a larger single chip unit.
Operation of the Invention

FIG. 15 shows how an embodiment of the network
monitor 300 might be used to analyze traffic in a network
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are Supplied to
monitor 300. Monitor 300 comprises the parser Sub-system
301, which determines flow signatures, and analyzer Sub
System 303 that analyzes the flow signature of each packet.
A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which might be any processor, for example, a general
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMON probe, in which case the
host computer is coupled to a network interface card 1510
that is connected to the network 102.

The preferred embodiment of the invention is supported
by an optional Simple Network Management Protocol
(SNMP) implementation. FIG. 15 describes-how one would,
for example, implement an RMON probe, where a network
interface card is used to send RMON information to the
network. Commercial SNMP implementations also are
available, and using Such an implementation can Simplify
the process of porting the preferred embodiment of the
invention to any platform.

In addition, MIB Compilers are available. An MIB Com
piler is a tool that greatly simplifies the creation and main
tenance of proprietary MIB extensions.
Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of
carrying out State analysis for packet eXchanges that are
commonly referred to as "server announcement' type
eXchanges. Server announcement is a process used to ease
communications between a Server with multiple applications
that can all be Simultaneously accessed from multiple cli
ents. Many applications use a server announcement proceSS
as a means of multiplexing a single port or Socket into many
applications and Services. With this type of eXchange, mes
Sages are Sent on the network, in either a broadcast or
multicast approach, to announce a Server and application,
and all Stations in the network may receive and decode these
messages. The messages enable the Stations to derive the
appropriate connection point for communicating that par
ticular application with the particular Server. Using the
Server announcement method, a particular application com

15

25

35

40

45

50

55

60

65

26
municates using a Service channel, in the form of a TCP or
UDP socket or port as in the IP protocol Suite, or using a SAP
as in the Novell IPX protocol suite.
The analyzer 303 is also capable of carrying out “in

Stream analysis” of packet eXchanges. The “in-stream analy
Sis' method is used either as a primary or Secondary recog
nition process. As a primary process, in-stream analysis
assists in extracting detailed information which will be used
to further recognize both the Specific application and appli
cation component. A good example of in-stream analysis is
any Web-based application. For example, the commonly
used Point Cast Web information application can be recog
nized using this process, during the initial connection
between a PointCast Server and client, Specific key tokens
exist in the data eXchange that will result in a Signature being
generated to recognize PointCast.
The in-stream analysis proceSS may also be combined

with the Server announcement process. In many cases
in-Stream analysis will augment other recognition processes.
An example of combining in-stream analysis with Server
announcement can be found in busineSS applications Such as
SAP and BAAN.

"Session tracking” also is known as one of the primary
processes for tracking applications in client/server packet
eXchanges. The process of tracking Sessions requires an
initial connection to a predefined Socket or port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDP transport protocols of the IP protocol.

During the Session tracking, a client makes a request to a
Server using a specific port or Socket number. This initial
request will cause the server to create a TCP or UDP port to
eXchange the remainder of the data between the client and
the server. The server then replies to the request of the client
using this newly created port. The original port used by the
client to connect to the Server will never be used again
during this data eXchange.
One example of session tracking is TFTP (Trivial File

Transfer Protocol), a version of the TCP/IP FTP protocol
that has no directory or password capability. During the
client/server exchange process of TFTP, a specific port (port
number 69) is always used to initiate the packet exchange.
Thus, when the client begins the process of communicating,
a request is made to UDP port 69. Once the server receives
this request, a new port number is created on the Server. The
Server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFTP; network
monitor 300 analyzes the initial request from the client and
generates a signature for it. Monitor 300 uses that Signature
to recognize the reply. Monitor 300 also analyzes the reply
from the Server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data eXchange.
Network monitor 300 can also understand the current

State of particular connections in the network. Connection
oriented exchanges often benefit from State tracking to
correctly identify the application. An example is the com
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data eXchange is initiated, a TCP request for Synchroni
Zation message is sent. This message contains a specific
Sequence number that is used to track an acknowledgement
from the Server. Once the Server has acknowledged the
Synchronization request, data may be exchanged between
the client and the Server. When communication is no longer
required, the client Sends a finish or complete message to the
Server, and the Server acknowledges this finish request with

App. II-106

US 6,839,751 B1
27

a reply containing the Sequence numbers from the request.
The States of Such a connection-oriented exchange relate to
the various types of connection and maintenance messages.
Server Announcement Example

The individual methods of Server announcement proto
cols vary. However, the basic underlying proceSS remains
Similar. A typical Server announcement message is Sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another aspect of the
invention, is Salvaged and maintained in the database of
flow-entries in the System. Because the announcement is
Sent to one or more Stations, the client involved in a future
packet eXchange with the Server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.
Sun-RPC is the implementation by Sun Microsystems,

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
Services of another on a remote machine. A Sun-RPC
example is now used to explain how monitor 300 can
capture Server announcements.
A remote program or client that wishes to use a Server or

procedure must establish a connection, for which the RPC
protocol can be used.

Each server running the Sun-RPC protocol must maintain
a proceSS and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the
Internet Corporation for ASSigned Names and Numbers,
www.icann.org), which manages the huge number of param
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport Socket
through the use of Specific request or a directed announce
ment. According to ICANN, port number 111 is associated
with Sun RPC.
As an example, consider a client (e.g., CLIENT 3 shown

as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the
Sun RPC Server receives the request, the Specific mapping is
returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER2 (110 in FIG. 1) on port 111, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port 111 is always associated Sun RPC. This request
Specifies the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the
request. The Server also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server 110 sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the specific port number (e.g., port number port) on
which future transactions will be accepted for the
Specific RPC program identifier (e.g., Program
program) and the protocol (UDP or TCP) for use.

It is desired that from now on every time that port number
port is used, the packet is associated with the application
program program until the number port no longer is to be

15

25

35

40

45

50

55

60

65

28
asSociated with the program program. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange So that future
packets that use the port number port will be associated by
the network monitor with the application program pro
gram.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program-Say
program-might be associated with a particular port
number, for example number port. One is by a broadcast
announcement of a particular association between an appli
cation service and a port number, called a Sun RPC port
Mapper Announcement. Another, is when Some Server-Say
the same SERVER 2-replies to some client-say CLIENT
1-requesting Some portMapper assignment with a RPC
portMapper Reply. Some other client-say CLIENT
2-might inadvertently See this request, and thus know that
for this particular server, SERVER 2, port number port is
asSociated with the application Service program. It is
desirable for the network monitor 300 to be able to associate
any packets to SERVER 2 using port number port with the
application program program.
FIG.9 represents a dataflow 900 of some operations in the

monitor 300 of FIG. 3 for Sun Remote Procedure Call.
Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server's interface to
the network 116. Further assume that Remote Procedure
Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the program,
version, and protocol to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the program, “version, and pro
tocol (UDP or TCP). Extract the TCP or UDP port
(process 909) which is 111 indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
Socket (i.e., dest for destination address, Src for Source
address). Decode ports and mapping, save ports with
Socket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flow-entry is created in database 324. The saving of the
request is now complete.

At some later time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
Signature from the packet and recognize it from the previ
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
Signature in the flow-entry database. That Signature now
may be used to identify packets associated with the Server.
The server state creation step 904 can be reached not only

from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide a particular application Service. Embodiments of the
present invention preferably can analyze when an exchange
occurs between a client and a Server, and also can track those
Stations that have received the announcement of a Service in
the network.
The RPC Announcement portMapper announcement 902

is a broadcast. Such causes various clients to execute a

App. II-107

US 6,839,751 B1
29

Similar Set of operations, for example, Saving the informa
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the Service
parameterS.

Thus monitor 300 creates and saves all Such states for
later classification of flows that relate to the particular
Service program.

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature and flow states. A plurality of packets
206-209 are exchanged, e.g., in an exemplary Sun Micro
systems Remote Procedure Call protocol. A method embodi
ment of the present invention might generate a pair of flow
signatures, “signature-1' 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup
pose packet 206 corresponds to Such a request Sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A Source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEY1230 in FIG. 2) will also contain
these two fields, so the parser Subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG.
2, if an address identifies the client 106 (shown also as 202),
the label used in the drawing is “C”. If such address
identifies the server 110 (shown also as server 204), the label
used in the drawing is “S”. The first two fields 214 and 215
in packet 206 are “S” and “C” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “S” is an address numeri
cally less than address “C”. A third field “p' 216 identifies
the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are
used to communicate port numbers that are used. The
conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a Source-port pattern, and the hash pattern in field 218 is
used to identify the destination-port pattern. The order
indicates the client-Server message direction. A sixth field
denoted “i'” 219 is an element that is being requested by the
client from the server. A seventh field denoted “sa” 220 is
the service requested by the client from server 110. The
following eighth field “QA” 221 (for question mark) indi
cates that the client 106 wants to know what to use to access
application “sa'. A tenth field “QP” 223 is used to indicate
that the client wants the Server to indicate what protocol to
use for the particular application.

Packet 206 initiates the Sequence of packet eXchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans
mitted to the server 110 on a well-known service connection
identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from
the server. It is the RPC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224-233. The destination
and Source addresses are carried in fields 224 and 225, e.g.,
indicated “C” and “S”, respectively. Notice the order is
now reversed, since the client-Server message direction is
from the server 110 to the client 106. The protocol “p' is
used as indicated in field 226. The request "i" is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol “p” in field 233.

15

25

35

40

45

50

55

60

65

30
The flow signature and flow states built up as a result of

this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser Subsystem 301 according
to the pattern and extraction operations database 308. This
Signature 210 includes a destination and a Source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best Spread of Signatures and hashes for the
lookup operations. In this case, therefore, Since we assume
“S”<“C”, the order is address “S” followed by client
address “C”. The next field used to build the signature is a
protocol field 242 extracted from packet 206's field 216, and
thus is the protocol “p". The next field used for the
Signature is field 243, which contains the destination Source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or Sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination of TCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p" that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups, are
directly determinable ("known”) at the parser level. So in
this case, the Signature KEY-1 points to a known application
denoted “a” (Sun RPC Bind Lookup), and a next-state that
the state processor should proceed to for more complex
recognition jobs, denoted as State “st” is placed in the field
245 of the flow-entry.
When the Sun RPC Bind Lookup reply is acquired, a flow

Signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
complete flow-entry is obtained, and in this flow-entry
indicates State “st'. The operations for State “st,” in the
State processor instruction database 326 instructs the State
processor to build and Store a new flow signature, shown as
KEY-2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a Source
addresses 250 and 251, respectively, for server “S” fol
lowed by (the numerically higher address) client “C”. A
protocol field 252 defines the protocol to be used, e.g., “p”
which is obtained from the reply packet. A field 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application “a”. A next-state field 255 defines the next
State that the State processor should proceed to for more
complex recognition jobs, e.g., a state “st". In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
Service requested in the original Bind Lookup Request, and
each will be recognized because the signature KEY-2 will be
built in each case.
The two flow signatures 210 and 212 always order the

destination and source address fields with server “S” fol
lowed by client “C”. Such values are automatically filled in
when the addresses are first created in a particular flow
Signature. Preferably, large collections of flow Signatures are
kept in a lookup table in a least-to-highest order for the best
Spread of flow Signatures and hashes.

App. II-108

US 6,839,751 B1
31

Thereafter, the client and Server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and Source address S and C, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p”,
and a field 263 defines the destination port number.
Some network-Server application recognition jobs are So

Simple that only a single State transition has to occur to be
able to pinpoint the application that produced the packet.
Others require a Sequence of State transitions to occur in
order to match a known and predefined climb from State
to-State.

Thus the flow signature for the recognition of application
“a” is automatically set up by predefining what packet
eXchange Sequences occur for this example when a rela
tively simple Sun Microsystems Remote Procedure Call
bind lookup request instruction executes. More complicated
eXchanges than this may generate more than two flow
Signatures and their corresponding States. Each recognition
may involve Setting up a complex State transition diagram to
be traversed before a “final” resting state such as “st,” in
field 255 is reached. All these are used to build the final set
of flow Signatures for recognizing a particular application in
the future.
Re-Using Information from Flows for Maintaining Metrics
The flow-entry of each flow stores a set of statistical

measures for the flow, including the total number of packets
in the flow, the time of arrival, and the differential time from
the last arrival.

Referring again to FIG. 3, the State processing proceSS
328 performs operations defined for the state of the flow, for
example for the particular protocol so far identified for the
flow. One aspect of the invention is that from time to time,
a Set of one or more metrics related t the flow may be
determined using one or more of the Statistical measures
Stored in the flow-entry. Such metric determining may be
carried out, for example, by the State processor running
instructions in the State processor instruction and pattern
database 326. Such metrics may then be sent by the analyzer
Subsystem to a host computer connected to the monitor.
Alternatively, Such metric determining may be carried out by
a processor connected to the flow-entry database 324. In our
preferred hardware implementation shown in FIG. 10, an
analyzer host interface and control 1118 may be configured
to configured to acceSS flow-entry records via cache System
1115 to output to a processor via the hostbus interface. The
processor may then do the reporting of the base metrics.

FIG. 15 describes how the monitor system can be set up
with a host computer 1504. The monitor 300 sends metrics
from time to time to the host computer 1504, and the host
computer 1504 carries out part of the analysis.

This following section describes how the monitor of the
invention can be used to monitor the Quality of Service
(QOS) by providing QOS Metrics.
Quality of Service Traffic Statistics (Metrics)

This next Section defines the common Structure that may
be applied for the Quality of Service (QOS) Metrics accord
ing to one aspect of the invention. It also defines the
“original” (or “base”) set of metrics that may be determined
in an embodiment of the invention to support QOS. The base
metrics are determined as part of State processing or by a
processor connected to monitor 300, and the QOS metrics
are determined from the base metrics by the host computer
1504. The main reason for the breakdown is that the
complete QOS metricS may be computationally complex,
involving Square roots and other functions requiring more
computational resources than may be available in real time.

15

25

35

40

45

50

55

60

65

32
The base functions are chosen to be simple to calculate in
real time and from which complete QOS metrics may be
determined. Other breakdowns of functions clearly are pos
sible within the scope of the invention.
Such metric determining may be carried out, for example,

by the State processor running instructions in the State
processor instruction and pattern database 326. Such base
metrics may then be sent by the analyzer Subsystem via a
microprocessor or logic circuit connected to the monitor.
Alternatively, Such metric determining may be carried out by
a microprocessor (or Some other logic) connected to the
flow-entry database 324. In our preferred hardware imple
mentation shown in FIGS. 10 and 11, such a microprocessor
is connected cache System 1115 via an analyzer host inter
face and control 1118 and host bus interface. These com
ponents may be configured to access flow-entry records via
cache system 1115 to enable the microprocessor to deter
mine and report the base metrics.
The QOS Metrics may broken into the following Metrics

Groups. The names are descriptive. The list is not
exhaustive, and other metrics may be used. The QOS metrics
below include client-to-server (CS) and server-to-client (SC)
metrics.

Traffic Metrics Such as CSTraffic and SCTraffic.
Jitter Metrics Such as CSTraffic and CS Traffic.
EXchange Re Sp on Se Metric S Such

CS Exchange Response Time Start To Start,
CS Exchange Response Time End To Start,
CS Exchange Response Time Start To End,
SC Exchange Response Time Start To Start,
SCExchangeResponseTimeEndToStart, and SCExchang
eResponseTimeStartToEnd.
Transaction Response Metric S. Such as

CSTransaction Response Time Start To Start,
CS Application Response Time End To Start,
CS Application Response Time Start To End,
S C Transaction Response Time Start To Start,
SCApplicationResponseTimeEndToStart, and SCApplica
tion ResponseTimeStartToEnd.

Connection Metrics such as Connection Establishment
and ConnectionGracefulTermination, and Connection Tim
eoutTermination.

S

Connection Sequence Me tric S. Such as
CS Connection Re transmissions,
SC Connection Re transmissions, and
CSConnectionOutOfCorders, SCConnectionOutOfC)rders.

Connection Window Metrics, CSConnectionWindow,
SCConnectionWindow, CSConnection FrozenWindows,
SC Connection Frozen Windows,
CSConnectionClosed Windows, and SCConnectionClosed
Windows.
OOS Base Metrics
The Simplest means of representing a group of data is by

frequency distributions in Sub-ranges. In the preferred
embodiment, there are Some rules in creating the Sub-ranges.
First the range needs to be known. Second a Sub-range size
needs to be determined. Fixed Sub-range Sizes are preferred,
alternate embodiments may use variable Sub-range sizes.

Determining complete frequency distributions may be
computationally expensive. Thus, the preferred embodiment
uses metricS determined by Summation functions on the
individual data elements in a population.
The metrics reporting process provides data that can be

used to calculate useful Statistical measurements. In one
embodiment, the metrics reporting process is part of the State
processing that is carried out from time to time according to
the State, and in another embodiment, the metricS reporting

App. II-109

US 6,839,751 B1
33

proceSS carried out from time to time by a microprocessor
having access to flow records. Preferably, the metrics report
ing process provides base metricS and the final QOS metrics
calculations are carried out by the host computer 1504. In
addition to keeping the real time State processing Simple, the
partitioning of the tasks in this way provides metrics that are
Scalable. For example, the base metricS from two intervals
may be combined to metrics for larger intervals.

Consider, for example is the arithmetic mean defined as
the sum of the data divided by the number of data elements.

X =
N

Two base metrics provided by the metricS reporting
proceSS are the Sum of the X, and the number of elements N.
The host computer 1504 performs the division to obtain the
average. Furthermore, two sets base metrics for two inter
vals may be combined by adding the sum of the X's and by
adding the number of elements to get a combined Sum and
number of elements. The average formula then works just
the same.

The base metricS have been chosen to maximize the
amount of data available while minimizing the amount of
memory needed to Store the metric and minimizing the
processing requirement needed to generate the metric. The
base metrics are provided in a metric data Structure that
contains five unsigned integer values.
N count of the number of data points for the metric.
XX Sum of all the data point values for the metric.
X(X) sum of all the data point values squared for the

metric.
X. maximum data point value for the metric.
X minimum data point value for the metric.
A metric is used to describe events over a time interval.

The base metrics are determined from Statistical measures
maintained in flow-entries. It is not necessary to cache all the
events and then count them at the end of the interval. The
base metrics have also been designed to be easily Scaleable
in terms of combining adjacent intervals.

The following rules are applied when combining base
metrics for contiguous time intervals.
N XEN

X.na. MAXOX)
X, MIN(X)
In addition to the above five values, a “trend’ indicator is

included in the preferred embodiment data structure. This is
provided by an enumerated type. The reason for this is that
the preferred method of generating trend information is by
Subtract an initial first value for the interval from the final
value for the interval. Only the sign of the resulting number
may have value, for example, to determine an indication of
trend.

Typical operations that may be performed on the base
metrics include:
Number N.

Freatiency
i y Tineinterval

Maximum X.
Minimum X.

15

25

35

40

45

50

55

60

65

34
Range R=X-X it.'

XX Arithmetic Mean X = N

X (X2)
Root Mean Square RMS = N

Wariance O =
N N

Standard Deviation O =

X (X-X) (), X2)-2X (XX) + N(X)
N N

Trend information, which may be the trend between
polled intervals and the trend within an interval. Trend
ing between polled intervals is a management applica
tion function. Typically the management Station would
trend on the average of the reported interval. The trend
within an interval is presented as an enumerated type
and can easily be generated by Subtracting the first
value in the interval from the last and assigning trend
based on the Sign value.

Alternate Embodiments

One or more of the following different data elements may
be included in various implementation of the metric.

Sum of the deltas (i.e., differential values). The trend
enumeration can be based on this easy calculation.

Sum of the absolute values of the delta values. This would
provide a measurement of the overall movement within
an interval.

Sum of positive delta Values and Sum of the negative delta
values. Expanding each of these with an associated
count and maximum would give nice information.

The statistical measurement of skew can be obtained by
adding X(X) to the existing metric.

The Statistical measurement of kurtosis can be obtained
by adding X(X) and X (X") to the existing metric.

Data to calculate a slope of a least-Squares line through
the data.

Various metrics are now described in more detail.

Traffic Metrics

CSTraffic

Definition

This metric contains information about the volume of
traffic measured for a given application and either a specific
Client-Server Pair or a specific Server and all of its clients.

This information duplicates, Somewhat, that which may
be found in the standard, RMON II, AL/NL Matrix Tables.
It has been included here for convenience to applications
and the associated benefit of improved performance by
avoiding the need to access different functional RMON
areas when performing QOS Analysis.

App. II-110

US 6,839,751 B1
35

Metric Specification

Metric Applicability Units Description

N Applicable Packets Count of the # of Packets
from the Client(s) to the Server

XE Applicable Octets Sum total of the # of Octets in
these packets from the Client(s)
to the Server.

Maximum Not Applicable
Minimum Not Applicable

SCTraffic
Definition

This metric contains information about the volume of
traffic measured for a given application and either a specific
Client-Server Pair or a specific Server and all of its clients.

This information duplicates, Somewhat, that which may
be found in the standard, RMON II, AL/NL Matrix Tables.
It has been included here for convenience to applications
and the associated benefit of improved performance by
avoiding the need to access different functional RMON
areas when performing QOS Analysis.

Metric Specification

Metric Applicability Units Description

N Applicable Packets Count of the # of Packets
from the Server to the Client(s)

XE Applicable Octets Sum total of the # of Octets
in these packets from the Server
to the Client(s).

Maximum Not Applicable
Minimum Not Applicable

Jitter Metrics
CSJitter
Definition

This metric contains information about the Jitter (e.g.
Inter-packet Gap) measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSJitter
measures the Jitter for Data Messages from the Client to the
Server.
A Data Message starts with the 1 Transport Protocol

Data Packet/Unit (TPDU) from the Client to the Server and
is demarcated (or terminated) by 1' Subsequent Data Packet
in the other direction. Client to Server Inter-packet Gaps are
measured between Data packets within the Message. Note
that in our implementalions, ACKnowledgements are not
considered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets. The interval
between the last packet in a Data Message from the Client
to the Server and the 1 packet of the Next Message in the
Same direction is not interpreted as an Inter-Packet Gap.

Metric Specification

Metric Applicability Units Description

N Applicable Inter- Count of the # of Inter-Packet
Packet Gaps measured for Data from the
Gaps Client(s) to the Server

15

25

35

40

45

50

55

60

65

36

-continued

Metric Specification

Metric Applicability Units Description

XE Applicable uSeconds Sum total of the Delta Times in
these Inter-Packet Gaps

Maximum Applicable uSeconds The maximum Delta Time of Inter
Packet Gaps measured
The minimum Delta Time of Inter
Packet Gaps measured.

Minimum Applicable uSeconds

SCJitter

Definition

This metric contains information about the Jitter (e.g.
Inter-packet Gap) measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCJitter
measures the Jitter for Data Messages from the Client to the
Server.

A Data Message starts with the 1 Transport Protocol
Data Packet/Unit (TPDU) from the Server to the Client and
is demarcated (or terminated) by 1' subsequent Data Packet
in the other direction. Server to Client Inter-packet Gaps are
measured between Data packets within the Message. Note
that in our implementalions, ACKnowledgements are not
considered within the measurement of this metric.

Metric Specification

Metric Applicability Units Description

N Applicable Inter- Count of the # of Inter-Packet
Packet Gaps measured for Data from
Gaps the Server to the Client(s).

XE Applicable uSeconds Sum total of the Delta Times
in these Inter-Packet Gaps.

Maximum Applicable uSeconds The maximum Delta Time of
Inter-Packet Gaps measured

Minimum Applicable uSeconds The minimum Delta Time of
Inter-Packet Gaps measured.

Exchange Response Metrics
CSExchangeResponseTimeStartToStart
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan
geResponseTimeStartToStart measures the response time
between start of Data Messages from the Client to the Server
and the Start of their Subsequent response Data Messages
from the Server to the Client.

A Client->Server Data Message starts with the 1 Trans
port Protocol Data Packet/Unit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1 subse
quent Data Packet in the other direction. The total time
between the start of the Client->Server Data Message and
the start of the Server->Client Data Message is measured
with this metric. Note that ACKnowledgements are not
considered within the measurement of this metric.

App. II-111

US 6,839,751 B1
37

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client-> Count of the # Client->Server
Server Messages measured for Data
Messages Exchanges from the Client(s)

to the Server
XE Applicable uSeconds Sum total of the Start-to-Start

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum Start-to-Start
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum Start-to-Start
Delta Time of these Exchange
Response Times

CSExchangeResponseTimeEndToStart
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan
geResponseTimeEndToStart measures the response time
between end of Data Messages from the Client to the Server
and the Start of their Subsequent response Data Messages
from the Server to the Client.
A Client->Server Data Message starts with the 1 Trans

port Protocol Data Packet/Unit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1' subse
quent Data Packet in the other direction. The total time
between the end of the Client->Server Data Message and the
start of the Server->Client Data Message is measured with
this metric. Note that ACKnowledgements are not consid
ered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client-> Count of the # Client->Server
Server Messages measured for Data
Messages Exchanges from the Client(s)

to the Server
XE Applicable uSeconds Sum total of the End-to-Start

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum End-to-Start
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum End-to-Start
Delta Time of these Exchange
Response Times

CSExchangeResponseTimeStartToEnd
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan
geResponseTimeEndToStart measures the response time
between Start of Data Messages from the Client to the
Server and the End of their subsequent response Data
Messages from the Server to the Client.

1O

15

25

35

40

45

50

55

60

65

38
A Client->Server Data Message starts with the 1 Trans

port Protocol Data Packet/Unit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1 subse
quent Data Packet in the other direction. The end of the
Response Message in the other direction (e.g. from the
Server to the Client) is demarcated by the last data of the
Message prior to the 1 data packet of the next Client to
Server Message. The total time between the start of the
Client->Server Data Message and the end of the Server
>Client Data Message is measured with this metric. Note
that ACKnowledgements are not considered within the
measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client-> Count of the # Client->Server
Server and Server->Client Exchange
Message message pairs measured for Data
Exchanges Exchanges from the Client(s)

to the Server
XE Applicable uSeconds Sum total of the Start-to-End

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum Start-to-End
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Exchange Response
Times

SCExchangeResponseTimeStartToStart
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCExchan
geResponseTimeStartToStart measures the response time
between start of Data Messages from the Server to the Client
and the Start of their Subsequent response Data Messages
from the Client to the Server.

A Server->Client Data Message starts with the 1 Trans
port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by 1' subse
quent Data Packet in the other direction. The total time
between the start of the Server->Client Data Message and
the start of the Client->Sever Data Message is measured
with this metric. Note that ACKnowledgements are not
considered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Server-> Count of the # Server->Client
Client Messages measured for Data
Messages Exchanges from the Client(s)

to the Server
XE Applicable uSeconds Sum total of the Start-to-Start

Delta Times in these Exchange
Response Times

App. II-112

US 6,839,751 B1
39

-continued

Metric Specification

Metric Applicability Units Description

Maximum Applicable uSeconds The maximum Start-to-Start
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum Start-to-Start
Delta Time of these Exchange
Response Times

SCExchangeResponseTimeEndToStart
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCExchan
geResponseTimeEndToStart measures the response time
between end of Data Messages from the Server to the Client
and the Start of their Subsequent response Data Messages
from the Client to the Server.
A Server->Client Data Message starts with the 1 Trans

port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by 1' subse
quent Data Packet in the other direction. The total time
between the end of the Server->Client Data Message and the
start of the Client->Server Data Message is measured with
this metric. Note that ACKnowledgements are not consid
ered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Server-> Count of the # Server->Client
Client Messages measured for Data
Messages Exchanges from the Client(s)

to the Server
XE Applicable uSeconds Sum total of the End-to-Start

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum End-to-Start
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta
Time of these Exchange Response
Times

SCExchangeResponseTimeStartToEnd
Definition

This metric contains information about the Transport
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCExchan
geResponseTimeEndToStart measures the response time
between Start of Data Messages from the Server to the
Client and the End of their subsequent response Data
Messages from the Client to the Server.
A Server->Client Data Message starts with the 1 Trans

port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by 1. Subse
quent Data Packet in the other direction. The end of the
Response Message in the other direction (e.g. from the
Server to the Client) is demarcated by the last data of the
Message prior to the 1 data packet of the next Server to

1O

15

25

35

40

50

55

60

65

40
Client Message. The total time between the start of the
Server->Client Data Message and the end of the Client
>Server Data Message is measured with this metric. Note
that ACKnowledgements are not considered within the
measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

N Applicable Client- Count of the # Server->Client
Server and Client->Server Exchange
Message message pairs measured for Data
Exchanges Exchanges from the Server to the

Client(s)
XE Applicable uSeconds Sum total of the Start-to-End

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta
Time of these Exchange Response
Times

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Exchange Response
Times

Transaction Response Metrics
CSTransaction ResponseTimeStartToStart
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSTrans
actionResponseTimeStartToStart measures the response
time between Start of an application transaction from the
Client to the Server and the start of their subsequent trans
action response from the Server to the Client.
A Client->Server transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) of a transaction request
from the Client to the Server and is demarcated (or
terminated) by 1. Subsequent data packet of the response to
the transaction request. The total time between the Start of
the Client->Server transaction request and the Start of the
actual transaction response from the Server->Client is mea
Sured with this metric.

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of CSExchan
geResponseTimeStartToStart.

Metric Specification

Metric Applicability Units Description

N Applicable Client->Svir Count of the # Client->Server
Transaction Transaction Requests measured
Requests for Application requests from

the Client(s) to the Server
XE Applicable uSeconds Sum total of the Start-to-Start

Delta Times in these Application
Response Times

Maximum Applicable uSeconds The maximum Start-to-Start
Delta Time of these Application
Response Times

App. II-113

US 6,839,751 B1
41

-continued

Metric Specification

Metric Applicability Units Description

The minimum Start-to-Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds

CSApplication ResponseTimeEndToStart
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSA.p-
plicationResponseTimeEndToStart measures the response
time between end of an application transaction from the
Client to the Server and the start of their subsequent trans
action response from the Server to the Client.
A Client->Server transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) of a transaction request
from the Client to the Server and is demarcated (or
terminated) by 1. Subsequent data packet of the response to
the transaction request The total time between the end of the
Client->Server transaction request and the Start of the actual
transaction response from the Server->Client is measured
with this metric

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of CSExchan
geResponseTimeEndToStart.

Metric Specification

Metric Applicability Units Description

N Applicable Client->Svir Count of the # Client->Server
Transaction Transaction Requests measured
Requests for Application requests from

the Client(s) to the Server
XE Applicable uSeconds Sum total of the End-to-Start

Delta Times in these Application
Response Times

Maximum Applicable uSeconds The maximum End-to-Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum End-to-Start
Delta Time of these Application
Response Times

CSApplication ResponseTimeStartToEnd
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSTrans
actionResponseTimeStartToEnd measures the response time
between Start of an application transaction from the Client
to the Server and the End of their subsequent transaction
response from the Server to the Client.
A Client->Server transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) a transaction request
from the Client to the Server and is demarcated (or
terminated) by 1' Subsequent data packet of the response to
the transaction request. The end of the Transaction Response

15

25

35

40

45

50

55

60

65

42
in the other direction (e.g. from the Server to the Client) is
demarcated by the last data of the transaction response prior
to the 1 data of the next Client to Server Transaction
Request. The total time between the start of the Client
>Server transaction request and the end of the Server
>Client transaction response is measured with this metric.

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of CSExchan
geResponseTimeStartToEnd.

Metric Specification

Metric Applicability Units Description

N Applicable Client-> Count of the # Client<->Server
Server request/response pairs measured
Transactions for transactions from the

Client(s) to the Server
XE Applicable uSeconds Sum total of the Start-to-End

Delta Times in these Application
Response Times

Maximum Applicable uSeconds The maximum Start-to-End
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Application
Response Times

SCTransactionResponseTimeStartToStart
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, SCTrans
actionResponseTimeStartToStart measures the response
time between Start of an application transaction from the
Server to the Client and the start of their subsequent trans
action response from the Client to the Server.
A Server->Client transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) of a transaction request
from the Server to the Client and is demarcated (or
terminated) by 1. Subsequent data packet of the response to
the transaction request. The total time between the Start of
the Server->Client transaction request and the Start of the
actual transaction response from the Client->Server is mea
Sured with this metric.

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of SCExchan
geResponseTimeStartToStart.

Metric Specification

Metric Applicability Units Description

N Applicable Svr->Client Count of the # Server->
Transaction Client Transaction Requests
Requests measured for Application

requests from the Server to
the Client(s)

App. II-114

US 6,839,751 B1
43

-continued

Metric Specification

Metric Applicability Units Description

XE Applicable uSeconds Sum total of the Start-to-Start
Delta Times in these Application
Response Times

Maximum Applicable uSeconds The maximum Start-to-Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum Start-to-Start
Delta Time of these Application
Response Times

SCApplicationResponseTimeEndToStart
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, SCAp
plicationResponseTimeEndToStart measures the response
time between end of an application transaction from the
Server to the Client a and the start of their subsequent
transaction response from the Client to the Server.
A Server->Client transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) of a transaction request
from the Server to the Client and is demarcated (or
terminated) by 1' Subsequent data packet of the response to
the transaction request The total time between the end of the
Server->Client transaction request and the Start of the actual
transaction response from the Client->Server is measured
with this metric

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of SCExchan
geResponseTimeEndToStart.

Metric Specification

Metric Applicability Units Description

N Applicable Svr -> Client Count of the #Server ->
Transaction Client Transaction
Requests Requests measured for

Application requests
from the Server to the Client(s)
Sum total of the End-to-Start
Delta Times in
these Application Response
Times
The maximum End-to-Start
Delta Time of
these Application Response
Times
The minimum End-to-Start
Delta Time of
these Application Response
Times

XE Applicable uSeconds

uSeconds Maximum Applicable

Minimum Applicable uSeconds

SCApplicationResponseTimeStartToEnd
Definition

This metric contains information about the Application
level response time measured for application transactions for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, SCTrans
actionResponseTimeStartToEnd measures the response time

15

25

35

40

45

50

55

60

65

44
between Start of an application transaction from the Server
to the Client and the End of their subsequent transaction
response from the Client to the Server.
A Server->Client transaction starts with the 1 Transport

Protocol Data Packet/Unit (TPDU) a transaction request
from the Server to the Client and is demarcated (or
terminated) by 1' Subsequent data packet of the response to
the transaction request. The end of the Transaction Response
in the other direction (e.g. from the Client to the Server) is
demarcated by the last data of the transaction response prior
to the 1 data of the next Server to Client Transaction
Request. The total time between the start of the Server
>Client transaction request and the end of the Client->Server
transaction response is measured with this metric.

This metric is considered a “best-effort' measurement.
Systems implementing this metric should make a “best
effort” to demarcate the Start and end of requests and
responses with the Specific application's definition of a
logical transaction. The lowest level of Support for this
metric would make this metric the equivalent of SCExchan
geResponseTimeStartToEnd.

Metric Specification

Metric Applicability Units Description

N Applicable Server -> Count of the # Server <->
Client Client request/response pairs
Transactions measured for transactions

from the Server to the Client(s)
XE Applicable uSeconds Sum total of the Start-to-End

Delta Times in
these Application Response
Times

Maximum Applicable uSeconds The maximum Start-to-End
Delta Time of
these Application Response
Times

Minimum Applicable uSeconds The minimum Start-to-End
Delta Time of
these Application Response
Times

Connection Metrics
ConnectionEstablishment
Definition

This metric contains information about the transport-level
connection establishment for a given application and either
a specific Client-Server Pair or a specific Server and all of
its clients. Specifically, ConnectionsEstablishment measures
number of connections established the Client(s) to the
Server. The information contain, in essence, includes:
Transport Connections Successfully established
Set-up Times of the established connections
Max. it of Simultaneous established connections.

Failed Connection establishment attempts (due to either
timeout or rejection)

Note that the “if of CURRENT Established Transport
Connections” may be derived from this metric along with
the Connection GracefulTermination and Connection Tim
eoutTermination metrics, as follows:
current connections:=="# Successfully established”

“#terminated gracefully'
“#terminated by time-out”

The set-up time of a connection is defined to be the delta
time between the first transport-level, Connection Establish
ment Request (i.e., SYN, CR-TPDU, etc.) and the first Data
Packet eXchanged on the connection.

App. II-115

US 6,839,751 B1
45

Metric Specification

Metric Applicability Units Description

Count of the # Connections
Established from
the Client(s) to the Server
Sum total of the Connection
Set-up Times in
these Established connections
Count of the MAXIMUM
simultaneous # Connections
Established from the Client(s)
to the Server
Count of the Failed
simultaneous # Connections
Established from the Client(s)
to the Server

N Applicable Connections

XE Applicable uSeconds

Maximum Applicable Connections

Not
Applicable

Minimum Connections

ConnectionGraceful Termination
Definition

This metric contains information about the transport-level
connections terminated gracefully for a given application
and either a specific Client-Server Pair or a specific Server
and all of its clients. Specifically, Connections.GracefulTer
mination measures gracefully terminated connections both
in Volume and Summary connection duration. The informa
tion contain, in essence, includes:
Gracefully terminated Transport Connections
Durations (lifetimes) of gracefully terminated connec

tions.

Metric Specification

Metric Applicability Units Description

N Applicable Connections Count of the # Connections
Gracefully Terminated
between Client(s) to the Server

XE Applicable mSeconds Sum total of the Connection
Durations (Lifetimes) of
these terminated connections

Maximum Not
Applicable

Minimum Not
Applicable

Connection TimeoutTermination
Definition

This metric contains information about the transport-level
connections terminated non-gracefully (e.g. Timed-Out) for
a given application and either a Specific Client-Server Pair or
a specific Server and all of its clients. Specifically, Connec
tionsTimeOut Termination measures previously established
and timed-out connections both in Volume and Summary
connection duration. The information contain, in essence,
includes:

Timed-out Transport Connections
Durations (lifetimes) of timed-out terminated connec

tions.
The duration factor of this metric is considered a “best

effort' measurement. Independent network monitoring
devices cannot really know when network entities actually
detect connection timeout conditions and hence may need to
extrapolate or estimate when connection timeouts actually
OCC.

5

15

25

35

40

45

50

55

60

65

46

Metric Specification

Metric Applicability Units Description

N Applicable Connections Count of the # Connections
Timed-out between Client(s)
to the Server

XE Applicable mSeconds Sum total of the Connection
Durations (Lifetimes) of these
terminated connections

Maximum Not
Applicable

Minimum Not
Applicable

Connection Sequence Metrics
CSConnectionRetransmissions
Definition

This metric contains information about the transport-level
connection health for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnection Retransmissions mea
Sures number of actual events within established connection
lifetimes in which Transport, data-bearing PDUs (packets)
from the Client->Server were retransmitted.

Note that retransmission events as seen by the Network
Monitoring device indicate the “duplicate” presence of a
TPDU as observed on the network.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the #Data TPDU
retransmissions from the
Client(s) to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

SCConnectionRetransmissions
Definition

This metric contains information about the transport-level
connection health for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnection Retransmissions mea
Sures number of actual events within established connection
lifetimes in which Transport, data-bearing PDUs (packets)
from the Server->Client were retransmitted.

Note that retransmission events as seen by the Network
Monitoring device indicate the “duplicate” presence of a
TPDU as observed on the network.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the #Data
TPDU retransmissions
from the Server to the Client(s)

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

CSConnectionOutOfC)rders
Definition

This metric contains information about the transport-level
connection health for a given application and either a

App. II-116

US 6,839,751 B1
47

specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionOutOfCorders measures
number of actual events within established connection life
times in which Transport, data-bearing PDUs (packets) from
the Client->Server were detected as being out of Sequential
order.

Note that retransmissions (or duplicates) are considered to
be different than out-of-order events and are tracked Sepa
rately in the CSConnection Retransmissions metric.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Out-of-Order
TPDU events from the Client(s)
to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

SCConnectionOutOfC)rders
Definition

This metric contains information about the transport-level
connection health for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionOutOfCorders measures
number of actual events within established connection life
times in which Transport, data-bearing PDUs (packets) from
the Server->Client were detected as being out of Sequential
order.

Note that retransmissions (or duplicates) are considered to
be different than out-of-order events and are tracked Sepa
rately in the SCConnection Retransmissions metric.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Out-of-Order
TPDU events from the Server
to the Client(s)

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

Connection Window Metrics
CSConnectionWindow
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionWindow measures num
ber of Transport-level Acknowledges within established
connection lifetimes and their relative sizes from the Client
>Server.

Note that the number of DATA TPDUs (packets) may be
estimated by differencing the Acknowledge count of this
metric and the overall traffic from the Client to the Server
(see CSTraffic above). A slight error in this calculation may
occur due to Connection Establishment and Termination
TPDUS, but it should not be significant.

5

15

25

35

40

45

50

55

60

65

48

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACKTPDU
retransmissions from the
Client(s) to the Server

XE Not Applicable Increments Sum total of the Window
Sizes of the Acknowledges

Maximum Not Applicable Increments The maximum Window Size
of these Acknowledges

Minimum Not Applicable Increments The minimum Window Size
of these Acknowledges

SCConnectionWindow
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SSConnectionWindow measures num
ber of Transport-level Acknowledges within established
connection lifetimes and their relative sizes from the to
Server->Client.

Note that the number of DATA TPDUs (packets) may be
estimated by differencing the Acknowledge count of this
metric and the overall traffic from the Client to the Server
(see SCTraffic above). A slight error in this calculation may
occur due to Connection Establishment and Termination
TPDUS, but it should not be significant.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACKTPDU
retransmissions from the Server
to the Client(s)

XE Applicable Increments Sum total of the Window
Sizes of the Acknowledges

Maximum Applicable Increments The maximum Window Size
of these Acknowledges

Minimum Applicable Increments The minimum Window Size
of these Acknowledges

CSConnectionFrozenWindows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CS ConnectionWindow measures num
ber of Transport-level Acknowledges from Client->Server
within established connection lifetimes which validly
acknowledge data, but either

failed to increase the upper window edge,
reduced the upper window edge

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the #ACKTPDU with
frozen/reduced windows from
the Client(s) to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

App. II-117

US 6,839,751 B1
49

SCConnectionFrozenWindows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionWindow measures num
ber of Transport-level Acknowledges from Server->Client
within established connection lifetimes which validly
acknowledge data, but either

failed to increase the upper window edge,
reduced the upper window edge

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the #ACKTPDU with
frozen/reduced windows from
the Client(s) to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

CSConnectionClosed Windows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionWindow measures num
ber of Transport-level Acknowledges from Client->Server
within established connection lifetimes which fully closed
the acknowledge/sequence window.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK
TPDU with Closed windows
from the Client(s)
to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

SCConnectionClosed Windows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionWindow measures num
ber of Transport-level Acknowledges from Server->Client
within established connection lifetimes which fully closed
the acknowledge/sequence window.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # ACK
TPDU with Closed windows
from the Client(s) to the Server

XE Not Applicable
Maximum Not Applicable
Minimum Not Applicable

Embodiments of the present invention automatically gen
erate flow Signatures with the necessary recognition patterns

5

15

25

35

40

45

50

55

60

65

SO
and State transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen
erating State transitions to Search for. Applications and
protocols, at any level, are recognized through State analysis
of Sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances Such as telephones,
“Internet' radios, pagers, and So forth. The term computer as
used herein encompasses all Such devices and a computer
network as used herein includes networks of Such comput
CS.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true Spirit and Scope of the
present invention.
What is claimed is:
1. A method of analyzing a flow of packets passing

through a connection point on a computer network, the
method comprising:

(a) receiving a packet from a packet acquisition device
coupled to the connection point;

(b) for each received packet, looking up a flow-entry
database for containing one or more flow-entries for
previously encountered conversational flows, the look
ing up to determine if the received packet is of an
existing flow, a conversational flow including an
eXchange of a Sequence of one or more packets in any
direction between two network entities as a result of a
particular activity using a particular layered set of one
or more network protocols, a conversational flow fur
ther having a set of one or more States, including an
initial State,

(c) if the packet is of an existing flow, identifying the last
encountered State of the flow, performing any State
operations Specified for the State of the flow, and
updating the flow-entry of the existing flow including
Storing one or more Statistical measures kept in the
flow-entry; and

d) if the packet is of a new flow, performing any state
operations required for the initial State of the new flow
and storing a new flow-entry for the new flow in the
flow-entry database, including Storing one or more
Statistical measures kept in the flow-entry,

wherein every packet passing though the connection point is
received by the packet acquisition device, and
wherein at least one step of the set consisting of of step (a)
and Step (b) includes identifying the protocol being used in
the packet from a plurality of protocols at a plurality of
protocol layer levels,
such that the flow-entry database is to store flow entries for
a plurality of conversational flows using a plurality of
protocols, at a plurality of layer levels, including levels
above the network layer.

2. A method according to claim 1, wherein step (b)
includes

extracting identifying portions from the packet,
wherein the extracting at any layer level is a function of the
protocol being used at the layer level, and
wherein the looking up uses a function of the identifying
portions.

App. II-118

US 6,839,751 B1
S1

3. A method according to claim 1, wherein the Steps are
carried out in real time on each packet passing through the
connection point.

4. A method according to claim 1, wherein the one or
more Statistical measures include measures Selected from the
Set consisting of the total packet count for the flow, the time,
and a differential time from the last entered time to the
present time.

5. A method according to claim 1, further including
reporting one or more metrics related to the flow of a
flow-entry from one or more of the Statistical measures in the
flow-entry.

6. A method according to claim 1, wherein the metrics
include one or more quality of Service (QOS) metrics.

7. A method according to claim 5, wherein the reporting
is carried out from time to time, and wherein the one or more
metrics are base metrics related to the time interval from the
last reporting time.

8. A method according to claim 7, further comprising
calculating one or more quality of Service (QOS) metrics
from the base metrics.

9. A method according to claim 7, wherein the one or
more metrics are Selected to be Scalable Such that metrics
from contiguous time intervals may be combined to deter
mine respective metricS for the combined interval.

10. A method according to claim 1, wherein step (c)
includes if the packet is of an existing flow, identifying the
last encountered State of the flow and performing any State
operations Specified for the State of the flow Starting from the
last encountered State of the flow; and wherein step (d)
includes if the packet is of a new flow, performing any State
operations required for the initial State of the new flow.

11. A method according to claim 10, further including
reporting one or more metrics related to the flow of a
flow-entry from one or more of the Statistical measures in the
flow-entry.

12. A method according to claim 11, wherein the reporting
is carried out from time to time, and wherein the one or more
metrics are base metrics related to the time interval from the
last reporting time.

13. A method according to claim 12, wherein the reporting
is part of the State operations for the State of the flow.

14. A method according to claim 10, wherein the state
operations include updating the flow-entry, including Storing
identifying information for future packets to be identified
with the flow-entry.

15. A method according to claim 14, further including
receiving further packets, wherein the State processing of
each received packet of a flow furthers the identifying of the
application program of the flow.

16. A method according to claim 15, wherein one or more
metrics related to the State of the flow are determined as part
of the state operations specified for the state of the flow.

17. A packet monitor for examining packets passing
through a connection point on a computer network, each
packets conforming to one or more protocols, the monitor
comprising:

1O

15

25

35

40

45

50

52
(a) a packet acquisition device coupled to the connection

point and configured to receive packets passing through
the connection point;

(b) a memory for Storing a database for containing one or
more flow-entries for previously encountered conver
sational flows to which a received packet may belong,
a conversational flow including an exchange of a
Sequence of one or more packets in any direction
between two network entities as a result of a particular
activity using a particular layered Set of one or more
network protocols, a conversational flow further having
a Set of one or more States, including an initial State; and

(c) an analyzer Subsystem coupled to the packet acquisi
tion device configured to lookup for each received
packet whether a received packet belongs to a flow
entry in the flow-entry database, to update the flow
entry of the existing flow including Storing one or more
Statistical measures kept in the flow-entry in the case
that the packet is of an existing flow, and to Store a new
flow-entry for the new flow in the flow-entry database,
including Storing one or more Statistical measures kept
in the flow-entry if the packet is of a new flow,

wherein the analyzer Subsystem is further configured to
identify the protocol being used in the packet from a
plurality of protocols at a plurality of protocol layer levels,
and
wherein the database is to store flow entries for a plurality
of conversational flows using a plurality of protocols, at a
plurality of layer levels, including levels above the network
layer.

18. A packet monitor according to claim 17, further
comprising:

a parser Subsystem coupled to the packet acquisition
device and to the analyzer Subsystem configured to
extract identifying information from a received packet,

wherein each flow-entry is identified by identifying infor
mation Stored in the flow-entry, and wherein the cache
lookup uses a function of the extracted identifying informa
tion.

19. A packet monitor according to claim 17, wherein the
one or more Statistical measures include measures Selected
from the Set consisting of the total packet count for the flow,
the time, and a differential time from the last entered time to
the present time.

20. A packet monitor according to claim 17, further
including a Statistical processor configured to determine one
or more metrics related to a flow from one or more of the
statistical measures in the flow-entry of the flow.

21. A packet monitor according to claim 20, wherein the
Statistical processor determine and reports the one or more
metrics from time to time.

App. II-119

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,839,751 B1 Page 1 of 1
DATED : January 4, 2005
INVENTOR(S) : Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6
Line 65, please change “In So” to -- In Some --.

Column 13
Line 23, please change, “pattern—a signature—an be' to -- pattern—a signature—can
be --.

Column 51
Line 13, please change "claim 1' to -- claim 7 --.

Signed and Sealed this

Eighth Day of March, 2005

WDJ
JON W. DUDAS

Director of the United States Patent and Trademark Office

App. II-120

USOO6954789B2

(12) United States Patent (10) Patent No.: US 6,954,789 B2
Dietz et al. (45) Date of Patent: Oct. 11, 2005

(54) METHOD AND APPARATUS FOR FOREIGN PATENT DOCUMENTS
MONITORING TRAFFIC IN A NETWORK JP 2003-44510 A 2/2003

(75) Inventors: Russell S. Dietz, San Jose, CA (US); OTHER PUBLICATIONS
Joseph R. Maixner, Aptos, CA (US);
Andrew A. Koppenhaver, Littleton, Advanced Methods for Storage and Retrieval in Image;
CO (US); William H. Bares, http://www.cs.itulane.edu/ww/Prototype/proposal.html;
Germantown, TN (US); Haig A. 1998.
Sarkissian, San Antonio, TX (US);
James F. Torgerson, Andover, MN (Continued)
(US) Primary Examiner Moustafa M. Meky

(73) Assignee: Hi/fn, Inc., Los Gatos, CA (US) (74) Attorney, Agent, or Firm--Dov Rosenfeld; Inventek
- (57) ABSTRACT

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 A monitor for and a method of examining packets passing
U.S.C. 154(b) by 0 days. through a connection point on a computer network. Each

packets conforms to one or more protocols. The method
(21) Appl. No.: 10/684,776 includes receiving a packet from a packet acquisition device

and performing one or more parsing/extraction operations
(22) Filed: Oct. 14, 2003 on the packet to create a parser record comprising a function
(65) Prior Publication Data of Selected portions of the packet. The parsing/extraction

operations depend on one or more of the protocols to which
US 2004/0083299 A1 Apr. 29, 2004 the packet conforms. The method further includes looking

O O up a flow-entry database containing flow-entries for previ
Related U.S. Application Data ously encountered conversational flows. The lookup uses the

Selected packet portions and determining if the packet is of
(63) Sylpri.N.608.237, filed on Jun. an existing flow. If the packet is of an existing flow, the
(60) Provisional application No. 60/141903, filed on Jun. 30, t li R. E, as less tO R

1999. eXISung Ilow, and II line pacKel ISOI a new Ilow, Line meuno
7 stores a new flow-entry for the new flow in the flow-entry

(51) Int. C. - GO6F 15/173 database, including identifying information for future pack

(52) U.S. Cl. .. 709/224; 370/392 ets to be identified with the new flow-entry. For the packet
(58) Field of Search 709/200, 201, of an existing flow, the method updates the flow-entry of the

709/220, 223, 224, 231, 232, 236, 238-240, existing flow. Such updating may include Storing one or
246; 370/389, 392 more Statistical measures. Any Stage of a flow, State is

maintained, and the method performs any State processing
(56) References Cited for an identified state to further the process of identifying the

U.S. PATENT DOCUMENTS

3,949,369 A 4/1976 Churchill, Jr. 711/128
4,458.310 A 7/1984 Chang 711/119
4,559,618 A 12/1985 Houseman et al. 365/49

(Continued)

PARSER 30

Exact
NIFYING

INFORMATIC
{Elly

3LDUNUE
-ConVERSATIO

AfterNARs
AND

EXTRACTION
DATABASE

310
RXESSOR
NSTRUCTIN
DATABASE COMPLER

AND
PTIMZER

PROTOCOL.
SCPTC

LANGUAGE

ATASRAM
Ayer

SELECTIONS

PROTOCOL
& STATE
ENFCAT

STATE
PCSSN
dialos

flow. The method thus examines each and every packet
passing through the connection point in real time until the
application program associated with the conversational flow
is determined.

49 Claims, 18 Drawing Sheets

324

LookiP O
FROM
KNOWN
RECOR8
(DB324
AACE

YS

318

R
CLASSIFICATIO

320
YES

"Low"
KNOWN
RCR

ANALY2ER
303

App. II-121

US 6,954,789 B2
Page 2

U.S. PATENT DOCUMENTS 5.835,726. A 11/1998 Shwed et al. 395/200.59
5,838,919 A 11/1998 Schwaller et al. 395/200.54

4,736,320 A 4/1988 Bristol 364/300 5,841,895 A 11/1998 Huffman 382/155
4,891,639 A 1/1990 Nakamura 340/825.5 5,850,386 A 12/1998 Anderson et al. 370/241
4,910,668 A 3/1990 Okamoto et al. 711/207 5,850,388 A 12/1998 Anderson et al. 370/252
4,972,453 A 11/1990 Daniel, III et al. 379/10 5,862,335 A 1/1999 Welch, Jr. et al. 395/200.54
5,101,402 A 3/1992 Chiu et al. 370/17 5,878.420 A 3/1999 de la Salle 707/10
5,247,517 A 9/1993 Ross et al. .. 370/85.5 5,893,155 A 4/1999 Cheriton 711/144
5,247,693 A 9/1993 Bristol 395/800 5,903,754 A 5/1999 Pearson 395/680
5,249,292 A 9/1993 Chiappa 395/650 5,917,821 A 6/1999 Gobuyan et al. 370/392
5,315,580 A 5/1994 Phaal ... 370/13 6,003,123 A 12/1999 Carter et al. 711/207
5,339,268 A 8/1994 Machida 365/49 6,014,380 A 1/2000 Hendel et al. 370/392
5,351.243 A 9/1994 Kalkunte et al. 370/92 6,097.699 A 8/2000 Chen et al. .. 370/231
5,365,514. A 11/1994. Hershey et al. 370/17 6,115,393 A 9/2000 Engel et al. 370/469
5,375,070 A 12/1994 Hershey et al. 364/550 6,118,760 A 9/2000 Zaumen et al. 370/229
5,394,394 A 2/1995 Crowther et al. 370/60 6.243,667 B1 * 6/2001 Kerr et al. 703/27
5,414,650 A 5/1995 Hekhuis 364/715.02 6,269,330 B1, 7/2001 Cidon et al. 704/43
5,414,704 A 5/1995 Spinney 370/60 6,272,151 B1 8/2001 Gupta et al. 370/489
5,430,709 A 7/1995 Galloway 370/13 6.279,113 B1 8/2001 Vaidya 713/201
5,432,776 A 7/1995 Harper 370/17 6,282.570 B1 8/2001 Leung et al. 709/224
5,493,689 A 2/1996 Waclawsky et al. 395/821 6,330,226 B1 12/2001 Chapman et al. 370/232
5,500,855 A 3/1996 Hershey et al. 370/17 6,363,056 B1 3/2002 Beigi et al. 370/252
5,511,213 A 4/1996 Correa 395/800 6,381,306 B1 4/2002 Lawson et al. 379/32
5,511,215. A 4/1996 Terasaka et al. 395/800 6,424,624 B1 7/2002 Galand et al. 370/231
5.530,834 A 6/1996 Colloff et al. 711/136 6,430,409 B1 8/2002 Rossmann .. 455/422.1
5.530,958 A 6/1996 Agarwal et al. .. 711/3 6,452,915 B1 * 9/2002 Jorgensen 370/238
5.535,338 A 7/1996 Krause et al. 395/2002 6,453,345 B2 9/2002 Trcka et al. 709/224
5,568,471 A 10/1996 Hershey et al. 370/17 6,453,360 B1 * 9/2002 Muller et al. 709/250
5,574,875 A 11/1996 Stansfield et al. 395/403 6,466,985 B1 * 10/2002 Goyal et al. 709/238
5,586,266 A 12/1996 Hershey et al......... 395/200.11 6,483,804 B1 * 11/2002 Muller et al. 370/230
5,606,668 A 2/1997 Shwed 395/200.11 6,510,509 B1 * 1/2003 Chopra et al. ... 712/13
5,608,662 A 3/1997 Large et al. . 364/724.01 6,516,337 B1 2/2003 Tripp et al. 709/202
5,634,009 A 5/1997 Iddon et al. ... 395/200.11 6,519,568 B1 2/2003 Harvey et al. 705/1
5,651,002 A 7/1997 Van Seters et al. ... 370/392 6,570,875 B1 * 5/2003 Hegde - - - - - 370/389
5,680,585. A 10/1997 Bruell 703/26 6,625,657 B1 9/2003 Bullard 709/237
5,684.954. A 11/1997 Kaiserswerth et al. ... 395/2002 6,651,099 B1 11/2003 Dietz et al. 709/224
5,703,877 A 12/1997 Nuber et al. 370/395 6,791.947 B2 * 9/2004 Oskouyet al. 370/238
5,720,032 A 2/1998 Picazo, Jr. et al........ 395/2002
5,721.827 A 2/1998 Logan et al. 709/217 OTHER PUBLICATIONS
5,732.213 A 3/1998 Gessel et al. 395/200.11
5,740,355. A 4/1998 Watanabe et al....... 395/183.21. Measurement and Analysis of the Digital DECT propagation
5,749,087 A 5/1998 Hoover et al. 711/108 Channel; IEEE, 1998.
5,761,424 A 6/1998 Adams et al. . 395/200.47 R, Periakaruppam and E. Nemeth. “GTrace-A Graphical
5,761,429 A 6/1998 Thompson 709/224 Traceroute Tool. 1999 USenix LISA. Available on
5,764,638 A 6/1998 Ketchum 370/401 www.caida.org, URL: http://www.caida.org/outreach/pa
5,781,735 A 7/1998 Southard - - - - - - - 395/200.54 pers/1999/GTrace/GTrace.pdf.

5.2. A 2. 1998 Hershey et al. 364/557 W. Stallings. “Packet Filtering in the SNMP Remote Moni
2 a? /1998 McCreery et al. 395/200.61 ss

5,799,154 A 8/1998 Kuriyan 709/223 tor. Nov. 1994. Available on www.ddj.com, URL: http://
5,802,054 A 9/1998 Bellenger 370/401 www.dd.com/documents/s=1013/dd9411h/9411h.htm.
5,805,808 A 9/1998 Hasani et al. 395/2002 “Technical Note: the Narus System,” Downloaded Apr. 29,
5,812,529 A 9/1998 Czarnik et al. 370/245 1999 from www.narus.com, Narus Corporation, Redwood
5,819,028 A 10/1998 Manghirmalani City California.

et al. 395/185.1
5,825,774. A 10/1998 Ready et al. 370/401 * cited by examiner

App. II-122

U.S. Patent Oct. 11, 2005 Sheet 1 of 18 US 6,954,789 B2

100 108 CLIENT 4
N ANALYZER
107

116
C

SERVER 2 CLIENT 3 y
O N

106 121

DATA COMMUNICATIONS
NETWORK

1 O2

125

123
118

H 105
N CLIENT 2 CLIENT 1

O4
112

FIG. 1

App. II-123

US 6,954,789 B2 Sheet 2 of 18 Oct. 11, 2005 U.S. Patent

Z HEAHES NO]] VO|ToHdV

8 LNBITO : 901) ZOZ|

App. II-124

US 6,954,789 B2 Sheet 3 of 18 Oct. 11, 2005 U.S. Patent

LOWH_LXE

019

App. II-125

U.S. Patent

404

Oct. 11, 2005

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

406 2ATTERN, PARSE AND
EXTRACTION
DATABASE

SUBSYSTEM
MEMORY

408

LOAD
PARSING

Sheet 4 of 18

O-Y-40

402
HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

COMPLE
DESCRIPTIONS

403

409

LOAD STATE
NSTRUCTIO
DATABASE
MEMORY

US 6,954,789 B2

405

VRA

PACKET
STATE

OPERATIONS

407

STATE
PROCESSOR
NSTRUCTION
DATABASE

400

App. II-126

U.S. Patent Oct. 11, 2005 Sheet 5 of 18 US 6,954,789 B2

LOAD PACKET
COMPONENT

ORE IN PACKEC

503

PACKET
KEY

504

FETCH NODE AND
PROCESS FROM
PAERN

513
MORE
PATTERN
NODES

NEXT
PACKET

COMPONE 511

As Y NOD AN
PROCESS TO
COMPONENT

51O.
5OO V

PATTERN
NODE

509

App. II-127

U.S. Patent Oct. 11, 2005 Sheet 6 of 18 US 6,954,789 B2

O 601

PACKET 602
COMPONENT AND
PATTERN NODE

603
LOAD PACKET
COMPONENT 610

604
MORE PACKE LOAD KEY

BUFFER COMPONENT

YES

FETCH EXTRACTION ()
AND PROCESS FRO

PAERNS 605

NO 611

606 NEXT
NO PACKET 609

COMPONEN
ORE EXTRACTION
ELEMENTS?

YES
6O7 APPLY EXTRACTIO

ES P N
600

MORE TO 608
EXTRACT?

YE

F.G. 6

App. II-128

U.S. Patent Oct. 11, 2005 Sheet 7 of 18 US 6,954,789 B2

EY BUFFER AND 702
PATTERN NODES

LOAD PATTERN
703 NODE EUEMENT 708

704 MORE PATER AE
NODES2

YES (FB
ASHKEY BUFFER
ELEMENT FROM 705
PATTERN NODE

709

PACK KEY & HAS

NEXT PACKET
COMPONEN

700

FG. 7

App. II-129

U.S. Patent Oct. 11, 2005 Sheet 8 of 18 US 6,954,789 B2

OU-80
UFKB ENTRY FOR

800 Y
COMPUTE CONVERSATION-803 RECORD BIN FROM HASH

RECQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

NO SETUFKBFOR
PACKETAS "NEW"

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET-NC searcs 808
YES

ORE BUCKET
805 IN THE BIN?

YES

809
MARK RECORD BIN AND 810
BUCKET 'N PROCESS IN
CACHE AND MESTAMP

SET UFKB FOR PACKET
AS FOUND" 811

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813 vO FIG. 8

App. II-130

U.S. Patent Oct. 11, 2005 Sheet 9 of 18 US 6,954,789 B2

901 902 910

RPC
BND LOOKUP
REOUEST ANNOUNCME

PORTMAPPER PORTMAPP

909

EXTRACT PROGRAM

GET'PROGRAM",
"VERSION', 'PORT AND
'PROTOCOL (TCP OR

UDP)

EXTRACT PORT

GET 'PROGRAM",
'VERSION AND

'PROTOCOL (TCP OR
UDP)

SAVE REGUEST

SAVE PROGRAM',
"VERSION" AND

CREATE SERVER STATE

SAVE PROGRAM",
904 "VERSION", "PORT AND "PROTocol (TCP oR

'PROTOCOL (TCP OR UDP)' WITH
UDP)' WITH NETWORK DESTINATION
ADDRESSN SERVER NETWORKADDRESS.
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKE A KEY.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

LOOKUP REGUES
FND PROGRAM"
AND "VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS,

go/
GET "PORTAND
'PROTOCOL (TCP

OR UDP)'.

FIG. 9

App. II-131

U.S. Patent Oct. 11, 2005 Sheet 10 of 18 US 6,954,789 B2

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

1 OO O31
1 OO 1004

INFOOUT
HOST INTERFACE MULTIPLEXR & CONTROLREGISTERS CONTRN

1031

1 OO6
PATTERN 1007

RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)

to
A 7m PARSER

OUTPUT PACKETKEY PARSER INPUT BUFFER
INPUT MEMORY BUFFER AND PAYLOAZ

MEMORY
1012

1021

PACKET
INPUT BUFFER
INTERFACE
CONTROL

START ANALYZER DATA READY
INTERFACE
CONTROL VX

PACKET READY

02

1023 FIG. 1O 1027

App. II-132

U.S. Patent Oct. 11, 2005 Sheet 11 of 18 US 6,954,789 B2

1100 -

10 1 103 115 111s 12
1 O7

SEE ANALYZEF ENGINE HOST 'SS
(LUE) () INTERAC (). INTER

FACE
STATE C9NTROL (HiB)

PROCESSR (ACIC)
INSTRUCN
DATABASE

UNFED
FLOW

PARSER KEY
INTER.K.BUFFER
FACE (UFKB)

PROCESSR
(SP) 1119 112

UNIFIED MEMORY

ENGINE
(FIDE)

App. II-133

U.S. Patent Oct. 11, 2005 Sheet 12 of 18 US 6,954,789 B2

201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW"

12O2

ACCESS
CONVERSATION
RECORD BIN

REOUEST RECORD BIN/
BUCKET FROM CACHE

CBN/BUCKETEMPTY

12O3

1204

RECUEST NEXT
BUCKET FROM

CACHE
NO

1205 12O6

YES

12O7 NSERT KEY AND HASH
B N BUCKET, MARK"USED

1208 WITH TIMESTAMP

ES
OMPARE CURRENT BIN1 1209

121 O AND BUCKETRECORD SET UFKBFOR
PACKETAS
'DROP'

KEY TO PACKET

MARK RECORD BN AND
BUCKET IN PROCESS'
AND "NEW" N CACHE

FOR RECORD IN CACHE

C 23

FIG. 12

1211

App. II-134

U.S. Patent Oct. 11, 2005 Sheet 13 of 18 US 6,954,789 B2

Qu-o
1300 - UFKB ENTRY FOR

PACKET WITH STATUS
"NEW" o "FOUND" 1302

SET STATE PROCESSOR
NSTRUCTION POINTERTO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED - 1305
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1307
POINTERTO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

1308 YES
131 O

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTERN TATES FOR THIS FLO

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

INSTRUCTION IN CURRENT
FLOW RECORD

d) ran
FIG. 13

App. II-135

SISÄTIVN\/ ELVIS

ON

US 6,954,789 B2 U.S. Patent

App. II-136

App. II-137

U.S. Patent Oct. 11, 2005 Sheet 16 of 18 US 6,954,789 B2

Dst MAC (6)
Dst Hash (2

App. II-138

U.S. Patent Oct. 11, 2005

1702
\ 1704

offset 12. SType /////////A

y 1706

1708 Type (2)
h 1

17 O) YK- 1700

NL3 Ofset = 14

FIG. 17A
1712

YES/SEEEEEEEEErg/
L3 to W Ag/ ffs

... (IFTHApostly-A551:
- 1)

//////535, Eadgig////////////

Protocol (1)
L4 Offset = L3 + (IHL14)

Sheet 17 of 18

FIG. 17B

DP = 0x06OO
IP = 0x0800

CHAOSNET = OxO804
ARP = 0x0806
VIP = OxOBAD

VLOOP = OxOBAE
VECHO = 0x0BAF

NETBIOS-3COM = 0x3COO -
Ox3COD

DEC-MOP - 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003 *
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH - 0x80D5"

ATALKARP = 0x80F3
IPX = 0x8137

SNMP - 0x814C#
Pv6 = 0x86DD"

LOOPBACK = 0x9000
Apple = 0x080007

* L3 Decoding
L5 Decoding

1752

CMP = 1
GMP at 2
GGP = 3
TCP = 6
EGP = 8
IGRP = 9
PUP = 12

CHAOS = 16
UDP = 1.7"
IDP = 22 it

SO-TP4 = 29
DDP = 37 if

ISO-IP = 8O
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

US 6,954,789 B2

App. II-139

US 6,954,789 B2 Sheet 18 of 18 Oct. 11, 2005 U.S. Patent

PROTOCOL

! //TTTTTT / / / / 7-7-7-7-77, [// 7-7-7-7-7-7',
A-1800

// 7-7-7-7-77-7-7-7 H10NET CITE |-3

####### #######7’ 1642

}, /777777777 ?? [IIIIIIII TOCOLO?Hd
FIG. 18B

App. II-140

US 6,954,789 B2
1

METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This invention is a continuation of U.S. patent application
Ser. No. 09/608,237 for METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK to inventors
Dietz, et al., filed Jun. 30, 2000, now U.S. Pat. No. 6,651,
099, the contents of which are incorporated herein by
reference.

This invention claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/141,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN ANET
WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to the assignee of the present
invention:

U.S. patent application Ser. No. 09/609,179 for PRO
CESSING PROTOCOL SPECIFIC INFORMATION IN
PACKETS SPECIFIED BY APROTOCOL DESCRIPTION
LANGUAGE, to inventors Koppenhaver, et al., filed Jun.
30, 2000, now U.S. Pat. No. 6,665,725, and incorporated
herein by reference.

U.S. patent application Ser. No. 09/608,126 for
RE-USING INFORMATION FROM DATA TRANSAC
TIONS FOR MAINTAINING STATISTICS IN NET
WORK MONITORING, to inventors Dietz, et al., filed Jun.
30, 2000, now U.S. Pat. No. 6,839,751, and incorporated
herein by reference.

U.S. patent application Ser. No. 09/608,266 for ASSO
CIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK
MONITOR, to inventors Sarkissian, et al., filed Jun. 30,
2000, now U.S. Pat. No. 6,771,646, and incorporated herein
by reference.

U.S. patent application Ser. No. 09/608,267 for STATE
PROCESSOR FOR PATTERN MATCHING IN A NET
WORK MONITOR DEVICE, to inventors Sarkissian, et al.,
filed Jun. 30, 2000, now U.S. Pat. No. 6,789,116, and
incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, Spe
cifically to the real-time elucidation of packets communi
cated within a data network, including classification accord
ing to protocol and application program.

BACKGROUND TO THE PRESENT
INVENTION

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other internets-an
“internet' being any plurality of interconnected networks
which forms a larger, single network. With the growth of
networks used as a collection of clients obtaining Services
from one or more Servers on the network, it is increasingly
important to be able to monitor the use of those Services and
to rate them accordingly. Such objective information, for
example, as which Services (i.e., application programs) are
being used, who is using them, how often they have been
accessed, and for how long, is very useful in the mainte
nance and continued operation of these networks. It is

15

25

35

40

45

50

55

60

65

2
especially important that Selected users be able to acceSS a
network remotely in order to generate reports on network
use in real time. Similarly, a need exists for a real-time
network monitor that can provide alarms notifying Selected
users of problems that may occur with the network or site.
One prior art monitoring method uses log files. In this

method, Selected network activities may be analyzed retro
Spectively by reviewing log files, which are maintained by
network Servers and gateways. Log file monitors must
access this data and analyze (“mine') its contents to deter
mine Statistics about the Server or gateway. Several problems
exist with this method, however. First, log file information
does not provide a map of real-time usage; and Secondly, log
file mining does not Supply complete information. This
method relies on logs maintained by numerous network
devices and Servers, which requires that the information be
Subjected to refining and correlation. Also, Sometimes infor
mation is simply not available to any gateway or Server in
order to make a log file entry.
One Such case, for example, would be information con

cerning NetMeeting(R) (Microsoft Corporation, Redmond,
Wash.) Sessions in which two computers connect directly on
the network and the data is never Seen by a Server or a
gateWay.

Another disadvantage of creating log files is that the
process requires data logging features of network elements
to be enabled, placing a Substantial load on the device, which
results in a Subsequent decline in network performance.
Additionally, log files can grow rapidly, there is no Standard
means of Storage for them, and they require a significant
amount of maintenance.

Though Netflow(R) (Cisco Systems, Inc., San Jose, Calif.),
RMON2, and other network monitors are available for the
real-time monitoring of networks, they lack Visibility into
application content and are typically limited to providing
network layer level information.

Pattern-matching parser techniques wherein a packet is
parsed and pattern filters are applied are also known, but
these too are limited in how deep into the protocol Stack they
can examine packets.
Some prior art packet monitors classify packets into

connection flows. The term “connection flow” is commonly
used to describe all the packets involved with a single
connection. A conversational flow, on the other hand, is the
Sequence of packets that are exchanged in any direction as
a result of an activity-for instance, the running of an
application on a Server as requested by a client. It is desirable
to be able to identify and classify conversational flows rather
than only connection flows. The reason for this is that Some
conversational flows involve more than one connection, and
Some even involve more than one exchange of packets
between a client and Server. This is particularly true when
using client/server protocols such as RPC, DCOMP, and
SAP, which enable a service to be set up or defined prior to
any use of that Service.
An example of such a case is the SAP (Service Adver

tising Protocol), a NetWare (Novell Systems, Provo, Utah)
protocol used to identify the Services and addresses of
Servers attached to a network. In the initial eXchange, a client
might send a SAP request to a server for print service. The
server would then send a SAP reply that identifies a par
ticular address-for example, SAPi?5-as the print service
on that Server. Such responses might be used to update a
table in a router, for instance, known as a Server Information
Table. A client who has inadvertently seen this reply or who
has access to the table (via the router that has the Service

App. II-141

US 6,954,789 B2
3

Information Table) would know that SAPH5 for this particu
lar Server is a print Service. Therefore, in order to print data
on the Server, Such a client would not need to make a request
for a print Service, but would simply Send data to be printed
Specifying SAPiS. Like the previous exchange, the trans
mission of data to be printed also involves an exchange
between a client and a Server, but requires a Second con
nection and is therefore independent of the initial eXchange.
In order to eliminate the possibility of disjointed conversa
tional eXchanges, it is desirable for a network packet monitor
to be able to “virtually concatenate”-that is, to link-the
first eXchange with the Second. If the clients were the same,
the two packet eXchanges would then be correctly identified
as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include
RPC (Remote Procedure Call); DCOM (Distributed Com
ponent Object Model), formerly called Network OLE
(Microsoft Corporation, Redmond, Wash.); and CORBA
(Common Object Request Broker Architecture). RPC is a
programming interface from Sun MicroSystems (Palo Alto,
Calif.) that allows one program to use the Services of another
program in a remote machine. DCOM, Microsoft's coun
terpart to CORBA, defines the remote procedure call that
allows those objects-objects are Self-contained Software
modules-to be run remotely over the network. And
CORBA, a standard from the Object Management Group
(OMG) for communicating between distributed objects,
provides a way to execute programs (objects) written in
different programming languages running on different plat
forms regardless of where they reside in a network.
What is needed, therefore, is a network monitor that

makes it possible to continuously analyze all user Sessions
on a heavily trafficked network. Such a monitor should
enable non-intrusive, remote detection, characterization,
analysis, and capture of all information passing through any
point on the network (i.e., of all packets and packet streams
passing through any location in the network). Not only
should all the packets be detected and analyzed, but for each
of these packets the network monitor should determine the
protocol (e.g., http, ftp, H.323, VPN, etc.), the application/
use within the protocol (e.g., voice, Video, data, real-time
data, etc.), and an end user's pattern of use within each
application or the application context (e.g., options selected,
Service delivered, duration, time of day, data requested, etc.).
Also, the network monitor should not be reliant upon Server
resident information Such as log files. Rather, it should allow
a user Such as a network administrator or an Internet Service
provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis, and
to receive timely notification of network problems.

Considering the previous SAP example again, because
one features of the invention is to correctly identify the
Second exchange as being associated with a print Service on
that Server, Such exchange would even be recognized if the
clients were not the same. What distinguishes this invention
from prior art network monitors is that it has the ability to
recognize disjointed flows as belonging to the same conver
sational flow.

The data value in monitoring network communications
has been recognized by many inventors. Chiu, et al.,
describe a method for collecting information at the Session
level in a computer network in U.S. Pat. No. 5,101,402,
titled “APPARATUS AND METHOD FOR REAL-TIME
MONITORING OF NETWORK SESSIONS AND A
LOCAL AREA NETWORK” (the “402 patent”). The 402
patent Specifies fixed locations for particular types of pack

15

25

35

40

45

50

55

60

65

4
ets to extract information to identify Session of a packet. For
example, if a DECnet packet appears, the 402 patent looks
at Six specific fields (at 6 locations) in the packet in order to
identify the Session of the packet. If, on the other hand, an
IP packet appears, a different Set of six different locations is
specified for an IP packet. With the proliferation of
protocols, clearly the Specifying of all the possible places to
look to determine the Session becomes more and more
difficult. Likewise, adding a new protocol or application is
difficult. In the present invention, the locations examined
and the information extracted from any packet are adap
tively determined from information in the packet for the
particular type of packet. There is no fixed definition of what
to look for and where to look in order to form an identifying
Signature. A monitor implementation of the present
invention, for example, adapts to handle differently IEEE
802.3 packet from the older Ethernet Type 2 (or Version 2)
DIX (Digital-Intel-Xerox) packet.
The 402 patent System is able to recognize up to the

Session layer. In the present invention, the number of levels
examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever
level is Sufficient to uniquely identify to a required level,
even all the way to the application level (in the OSI model).

Other prior art systems also are known. Phael describes a
network activity monitor that processes only randomly
selected packets in U.S. Pat. No. 5,315,580, titled “NET
WORK MONITORING DEVICE AND SYSTEM. Naka
mura teaches a network monitoring System in U.S. Pat. No.
4,891,639, titled “MONITORING SYSTEM OF NET.
WORK.” Ross, et al., teach a method and apparatus for
analyzing and monitoring network activity in U.S. Pat. No.
5,247,517, titled “METHOD AND APPARATUS FOR
ANALYSIS NETWORKS,” McCreery, et al., describe an
Internet activity monitor that decodes packet data at the
Internet protocol level layer in U.S. Pat. No. 5,787.253,
titled “APPARATUS AND METHOD OF ANALYZING
INTERNET ACTIVITY.” The McCreery method decodes
IP-packets. It goes through the decoding operations for each
packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implemen
tation of the present invention, a signature is built for every
flow Such that future packets of the flow are easily recog
nized. When a new packet in the flow arrives, the recogni
tion proceSS can commence from where it last left off, and
a new Signature built to recognize new packets of the flow.

SUMMARY

In its various embodiments the present invention provides
a network monitor that can accomplish one or more of the
following objects and advantages:

Recognize and classify all packets that are exchanges
between a client and Server into respective client/server
applications.

Recognize and classify at all protocol layer levels con
Versational flows that pass in either direction at a point
in a network.

Determine the connection and flow progreSS between
clients and Servers according to the individual packets
eXchanged over a network.

Be used to help tune the performance of a network
according to the current mix of client/server applica
tions requiring network resources.

Maintain statistics relevant to the mix of client/server
applications using network resources.

Report on the occurrences of Specific Sequences of pack
ets used by particular applications for client/server
network conversational flows.

App. II-142

US 6,954,789 B2
S

Other aspects of embodiments of the invention are:
Properly analyzing each of the packetS eXchanged
between a client and a Server and maintaining infor
mation relevant to the current State of each of these
conversational flows.

Providing a flexible processing System that can be tailored
or adapted as new applications enter the client/server
market.

Maintaining Statistics relevant to the conversational flows
in a client/Sever network as classified by an individual
application.

Reporting a specific identifier, which may be used by
other network-oriented devices to identify the series of
packets with a specific application for a specific client/
Server network conversational flow.

In general, the embodiments of the present invention
overcome the problems and disadvantages of the art.
AS described herein, one embodiment analyzes each of

the packets passing through any point in the network in
either direction, in order to derive the actual application used
to communicate between a client and a Server. Note that
there could be Several Simultaneous and overlapping appli
cations executing over the network that are independent and
asynchronous.
A monitor embodiment of the invention successfully

classifies each of the individual packets as they are seen on
the network. The contents of the packets are parsed and
Selected parts are assembled into a signature (also called a
key) that may then be used identify further packets of the
Same conversational flow, for example to further analyze the
flow and ultimately to recognize the application program.
Thus the key is a function of the selected parts, and in the
preferred embodiment, the function is a concatenation of the
Selected parts. The preferred embodiment forms and remem
bers the State of any conversational flow, which is deter
mined by the relationship between individual packets and
the entire conversational flow over the network. By remem
bering the state of a flow in this way, the embodiment
determines the context of the conversational flow, including
the application program it relates to and parameterS Such as
the time, length of the conversational flow, data rate, etc.

The monitor is flexible to adapt to future applications
developed for client/server networks. New protocols and
protocol combinations may be incorporated by compiling
files written in a high-level protocol description language.

The monitor embodiment of the present invention is
preferably implemented in application-Specific integrated
circuits (ASIC) or field programmable gate arrays (FPGA).
In one embodiment, the monitor comprises a parser Sub
System that forms a Signature from a packet. The monitor
further comprises an analyzer Subsystem that receives the
Signature from the parser Subsystem.
A packet acquisition device Such as a media acceSS

controller (MAC) or a segmentation and reassemble module
is used to provide packets to the parser Subsystem of the
monitor.

In a hardware implementation, the parsing Subsystem
comprises two Sub-parts, the pattern analysis and recogni
tion engine (PRE), and an extraction engine (slicer). The
PRE interprets each packet, and in particular, interprets
individual fields in each packet according to a pattern
database.

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree. Each protocol is
either a parent node or a terminal node. A parent node links
a protocol to other protocols (child protocols) that can be at

15

25

35

40

45

50

55

60

65

6
higher layer levels. For example, An Ethernet packet (the
root node) may be an Ethertype packet—also called an
Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox
packet) or an IEEE 802.3 packet. Continuing with the
IEEE 802.3-type packet, one of the children nodes may be
the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.
The pattern database includes a description of the differ

ent headers of packets and their contents, and how these
relate to the different nodes in a tree. The PRE traverses the
tree as far as it can. If a node does not include a link to a
deeper level, pattern matching is declared complete. Note
that protocols can be the children of Several parents. If a
unique node was generated for each of the possible parent/
child trees, the pattern database might become excessively
large. Instead, child nodes are shared among multiple
parents, thus compacting the pattern database.

Finally the PRE can be used on its own when only
protocol recognition is required.

For each protocol recognized, the Slicer extracts important
packet elements from the packet. These form a Signature
(i.e., key) for the packet. The Slicer also preferably generates
a hash for rapidly identifying a flow that may have this
Signature from a database of known flows.
The flow Signature of the packet, the hash and at least

Some of the payload are passed to an analyzer Subsystem. In
a hardware embodiment, the analyzer Subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser Subsystem and for Storing Signatures
in process, a lookup/update engine (LUE) to lookup a
database of flow records for previously encountered con
versational flows to determine whether a signature is from
an existing flow, a State processor (SP) for performing State
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
Storing the database of flows, and a cache for Speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, and to the
cache.
The unified flow key buffer thus contains the flow signa

ture of the packet, the hash and at least Some of the payload
for analysis in the analyzer Subsystem. Many operations can
be performed to further elucidate the identity of the appli
cation program content of the packet involved in the client/
Server conversational flow while a packet Signature exists in
the unified flow signature buffer. In the particular hardware
embodiment of the analyzer subsystem several flows may be
processed in parallel, and multiple flow Signatures from all
the packets being analyzed in parallel may be held in the one
UFKB.
The first Step in the packet analysis process of a packet

from the parser Subsystem is to lookup the instance in the
current database of known packet flow Signatures. A lookup/
update engine (LUE) accomplishes this task using first the
hash, and then the flow signature. The Search is carried out
in the cache and if there is no flow with a matching Signature
in the cache, the lookup engine attempts to retrieve the flow
from the flow database in the memory. The flow-entry for
previously encountered flows preferably includes State
information, which is used in the State processor to execute
any operations defined for the State, and to determine the
next State. A typical State operation may be to Search for one
or more known reference Strings in the payload of the packet
Stored in the UFKB.
Once the lookup processing by the LUE has been com

pleted a flag Stating whether it is found or is new is Set within
the unified flow signature buffer structure for this packet

App. II-143

US 6,954,789 B2
7

flow Signature. For an existing flow, the flow-entry is
updated by a calculator component of the LUE that adds
values to counters in the flow-entry database used to Store
one or more Statistical measures of the flow. The counters are
used for determining network usage metrics on the flow.

After the packet flow Signature has been looked up and
contents of the current flow signature are in the database, a
State processor can begin analyzing the packet payload to
further elucidate the identity of the application program
component of this packet. The exact operation of the State
processor and functions performed by it will vary depending
on the current packet Sequence in the Stream of a conver
sational flow. The State processor moves to the next logical
operation Stored from the previous packet Seen with this
Same flow Signature. If any processing is required on this
packet, the State processor will execute instructions from a
database of State instruction for this State until there are
either no more left or the instruction Signifies processing.

In the preferred embodiment, the State processor functions
are programmable to provide for analyzing new application
programs, and new Sequences of packets and States that can
arise from using Such application.

If during the lookup proceSS for this particular packet flow
Signature, the flow is required to be inserted into the active
database, a flow insertion and deletion engine (FIDE) is
initiated. The State processor also may create new flow
Signatures and thus may instruct the flow insertion and
deletion engine to add a new flow to the database as a new
item.

In the preferred hardware embodiment, each of the LUE,
State processor, and FIDE operate independently from the
other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
Specific embodiment because Such embodiments are pro
Vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi
ment of the present invention in which a monitor is con
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of Some of
the packets and their formats that might be exchanged in
Starting, as an illustrative example, a conversational flow
between a client and Server on a network being monitored
and analyzed. A pair of flow Signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents Some of the possible flow Signa
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular Server
applications that produce the discrete application packet
eXchanges.

FIG. 3 is a functional block diagram of a process embodi
ment of the present invention that can operate as the packet
monitor shown in FIG.1. This process may be implemented
in Software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing proceSS used as
part of the parser in an embodiment of the inventive packet
monitor.

15

25

35

40

45

50

55

60

65

8
FIG. 6 is a flowchart of a packet element extraction

process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser
Subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a State processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a State processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in Software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor Such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and Some of the elements that may be
extracted to form a signature according to one aspect of the
invention.
FIG.17A is an example of the header of an Ethertype type

of Ethernet packet of FIG.16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a Signature
according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used
to Store elements of the pattern, parse and extraction data
base used by the parser Subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
Subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include Signal names. In most cases,
the names are Sufficiently descriptive, in other cases how
ever the Signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network
FIG. 1 represents a system embodiment of the present

invention that is referred to herein by the general reference
App. II-144

US 6,954,789 B2
9

numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104-107
and servers 110 and 112. The network is shown Schemati
cally as a cloud with Several network nodes and linkS shown
in the interior of the cloud. A monitor 108 examines the
packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with
each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, Such as connection point 123
between the network 102 and the interface 118 of the client
104, or Some other location, as indicated Schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity-for example an appli
cation program run by the client 104 (CLIENT 1) commu
nicating with another running on the server 110 (SERVER
2)-will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing many packets by the monitor 108
to have enough information needed to recognize particular
application programs. The packets may need to be parsed
then analyzed in the context of various protocols, for
example, the transport through the application Session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in table form below,
Serves as a basic reference for understanding the function
ality of existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR
5 Session RPC, NETBIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1. Physical Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

Different communication protocols employ different lev
els of the ISO model or may use a layer model that is similar
to but which does not exactly conform to the ISO model. A
protocol in a certain layer may not be visible to protocols
employed at other layers. For example, an application (Level
7) may not be able to identify the source computer for a
communication attempt (Levels 2-3).

In Some communication arts, the term "frame' generally
refers to encapsulated data at OSI layer 2, including a

5

15

25

35

40

45

50

55

60

65

10
destination address, control bits for flow control, the data or
payload, and CRC (cyclic redundancy check) data for error
checking. The term "packet' generally refers to encapsu
lated data at OSI layer 3. In the TCP/IP world, the term
"datagram' is also used. In this specification, the term
"packet' is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields
and headers for transmission acroSS a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,” are generally Synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
Same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
Server to Send a type-A packet, but So will another. If,
though, the particular application program always follows a
type-A packet with the Sending of a type-B packet, and the
other application program does not, then in order to recog
nize packets of that application's conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. If Such is
recognized after a type-A packet, then the particular appli
cation program's conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
Simultaneously also in partial completion of identifying
other packet eXchanges that are parts of conversational flows
asSociated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of
packets on the network 102 passing by the monitor 108's
connection point can exceed a million per Second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
State of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.
The recognition of the packet type, and ultimately of the

asSociated application programs according to the packets
that their executions produce, is a multi-step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first "signature' is produced from Selected parts of a
packet that will allow monitor 108 to identify efficiently any
packets that belong to the same flow. In Some cases, that
packet type may be Sufficiently unique to enable the monitor
to identify the application that generated Such a packet in the
conversational flow. The Signature can then be used to
efficiently identify all future packets generated in traffic
related to that application.

App. II-145

US 6,954,789 B2
11

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program. In
Such a case, a Subsequent packet of a Second type-but that
potentially belongs to the same conversational flow-is
recognized by using the Signature. At Such a Second level,
then, only a few of those application programs will have
conversational flows that can produce Such a Second packet
type. At this level in the process of classification, all appli
cation programs that are not in the Set of those that lead to
Such a Sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the Second level Signature. For each packet, therefore,
the monitor parses the packet and generates a Signature to
determine if this signature identified a previously encoun
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the Sequence of
previously encountered packets (the State), and of the pos
Sible future Sequences Such a past Sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated Signature may
then be used to efficiently recognize future packets associ
ated with the same conversational flow. Such an arrange
ment makes it possible for the monitor 108 to cope with
millions of packets per Second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through Some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
Sends a message to Some general purpose processor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being eXchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple
mented with computer hardware and/or Software. The SyS
tem 300 is similar to monitor 108 in FIG.1. A packet 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi
level model, including what Server application produced the
packet.

The packet acquisition device is a common interface that
converts the physical Signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on

15

25

35

40

45

50

55

60

65

12
packets of different types-accomplished by compiler and
optimizer 310, (2) the processing parsing and extraction of
Selected portions-of packets to generate an identifying
Signature-accomplished by parser Subsystem 301, and (3)
the analysis of the packets-accomplished by analyzer 303.
The purpose of compiler and optimizer 310 is to provide

protocol specific information to parser Subsystem 301 and to
analyzer Subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.
A flow is a stream of packets being eXchanged between

any two addresses in the network. For each protocol there
are known to be Several fields, Such as the destination
(recipient), the Source (the Sender), and So forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
Such as checksums, and those parts are not used for identi
fication.

Parser Subsystem 301 examines the packets using pattern
recognition proceSS 304 that parses the packet and deter
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are Supplied from a
parsing-pattern-structures and extraction-operations data
base (parsing/extractions database) 308 filled by the com
piler and optimizer 310.
The protocol description language (PDL) files 336

describes both patterns and States of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor
mation to extract for the purpose of identifying a flow, and
ultimately, applications and Services. The layer Selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.
When compiler and optimizer 310 executes, it generates

two sets of internal data structures. The first is the set of
parsing/extraction operations 308. The pattern Structures
include parsing information and describe what will be
recognized in the headers of packets, the extraction opera
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor
mation describing how to determine a Set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.
The other internal data structure that is built by compiler

310 is the set of state patterns and processes 326. These are
the different States and State transitions that occur in different
conversational flows, and the State operations that need to be
performed (e.g., patterns that need to be examined and new
Signatures that need to be built) during any State of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in Some embodiments the

App. II-146

US 6,954,789 B2
13

layering Selections information is inherent rather than
explicitly described. For example, since a PDL file for a
protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buffer. The pattern
recognition proceSS 304 is carried out by a pattern analysis
and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL-Intel-Xerox (DIX) packet. The PAR
also uses the pattern Structures and extraction operations
database 308 to identify the next protocol and parameters
asSociated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction proceSS 306 implemented by an
extracting and information identifying (EII) engine that
extracts Selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
Sequence and then processed in block 312 to build a unique
flow signature (also called a “key”) for this flow. A flow
Signature depends on the protocols used in the packet. For
Some protocols, the extracted components may include
Source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the Signature typically includes
the client and Server address pairs. The Signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the Signature using a hash
function. The purpose if using Such a hash is conventional
to spread flow-entries identified by the Signature acroSS a
database for efficient Searching. The hash generated is
preferably based on a hashing algorithm and Such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet-a parser record—that includes the signature (i.e.,
Selected portions of the packet), the hash, and the packet
itself to allow for any State processing that requires further
data from the packet. An improved embodiment of the parser
Subsystem might generate a parser record that has Some
predefined Structure and that includes the Signature, the
hash, Some flags related to Some of the fields in the parser
record, and parts of the packet's payload that the parser
Subsystem has determined might be required for further
processing, e.g., for State processing.

Note that alternate embodiments may use Some function
other than concatenation of the Selected portions of the
packet to make the identifying Signature. For example, Some
“digest function' of the concatenated Selected portions may
be used.

The parser record is passed onto lookup process 314
which looks in an internal data Store of records of known
flows that the System has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.

5

15

35

40

45

50

55

60

65

14
The parser record enters a buffer called the unified flow

key buffer (UFKB). The UFKB stores the data on flows in
a data Structure that is similar to the parser record, but that
includes a field that can be modified. In particular, one or the
UFKB record fields Stores the packet Sequence number, and
another is filled with state information in the form of a
program counter for a State processor that implements State
processing 328.
The determination (316) of whether a record with the

Same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.
The flow-entry database 324 stores flow-entries that

include the unique flow-signature, State information, and
extracted information from the packet for updating flows,
and one or more Statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser Sub
system 301 (i.e., the hash in the UFKB record). The hash
Spreads the flows across the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a 16-bit hash gives two flow
entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that
another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise Stated or clear from the context.

If there is no flow-entry found matching the Signature, i.e.,
the Signature is for a new flow, then a protocol and State
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the State Sequence for a flow for this protocols this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of State
patterns and processes. Process 318 is then followed by any
State operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up flow-entry, if more classi
fication by State processing of the flow Signature is neces
Sary. If not, a proceSS 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more Statistical measures Stored in
the flow-entry. In our embodiment, the Statistical measures
are Stored in counters in the flow-entry.

If State processing is required, State process 328 is com
menced. State processor 328 carries out any State operations
specified for the state of the flow and updates the state to the
next State according to a set of State instructions obtained
form the State pattern and processes database 326.

App. II-147

US 6,954,789 B2
15

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol Stack,
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined State transition rules and State opera
tions as Specified in State processor instruction database 326.
A State transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
State processor is in a particular State-for example, in order
to evaluate a quantity needed to apply the State transition
rule. The State processor goes through each rule and each
State proceSS until the test is true, or there are no more tests
to perform.

In general, the Set of State operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a State that causes exiting the
System prior to completing the identification, but possibly
knowing more about what State and State processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of State
operations) at a particular State may build a new signature
for future recognition packets of the next State.

By maintaining the State of the flows and knowing that
new flows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) Single-packet protocol recognition of
flows, and (b) multiple-packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed Sub-flows that occur in Server
announcement type flows. What may seem to prior art
monitors to be Some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
Sub-flow associated with a previously encountered Sub-flow.

Thus, State processor 328 applies the first State operation
to the packet for this particular flow-entry. A process 330
decides if more operations need to be performed for this
State. If So, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed
that is, there are no more operations for this packet in this
state. A process 332 decides if there are further states to be
analyzed for this type of flow according to the State of the
flow and the protocol, in order to fully characterize the flow.
If not, the conversational flow has now been fully charac
terized and a process 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
Starts the State processing by using the last protocol recog
nized by the parser as an offset into a jump table (jump
vector). The jump table finds the State processor instructions
to use for that protocol in the State patterns and processes
database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or Subtract to perform the
test. For example, a common operation carried out by the
State processor is Searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides
whether the flow is at an end State. If not at an end State, the
flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is
determined that there are further States to be processed using
later packets, the flow-entry is updated in process 322.

15

25

35

40

45

50

55

60

65

16
The flow-entry also is updated after classification final

ization So that any further packets belonging to this flow will
be readily identified from their Signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes Storing States. The monitor of FIG.3 also generates
characteristic parts of packets-the Signatures-that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packet is identified
to be from a known flow, the state of the flow is known and
this knowledge enables State transition analysis to be per
formed in real time for each different protocol and applica
tion. In a complex analysis, State transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their State
analysis continued from a previously achieved State. When
enough packets related to an application of interest have
been processed, a final recognition State is ultimately
reached, i.e., a Set of States has been traversed by State
analysis to completely characterize the conversational flow.
The Signature for that final State enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particular set of State transitions
has been traversed for the first time and ends in a final State,
a short-cut recognition pattern-a Signature-can be gener
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
Simple operation, allowing high packet rates to be Success
fully monitored on the network.

In improved embodiments, Several State analyzers are run
in parallel So that a large number of protocols and applica
tions may be checked for. Every known protocol and appli
cation will have at least one unique Set of State transitions,
and can therefore be uniquely identified by watching Such
transitions.
When each new conversational flow Starts, Signatures that

recognize the flow are automatically generated on-the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the States of the Set
of State transitions for any potential application are further
traversed according to the State transition rules for the flow.
The new states for the flow-those associated with a set of
State transitions for one or more potential applications-are
added to the records of previously encountered States for
easy recognition and retrieval when a new packet in the flow
is encountered.

Detailed Operation
FIG. 4 diagrams an initialization system 400 that includes

the compilation process. That is, part of the initialization
generates the pattern Structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off-line or from a central location.
The different protocols that can exist in different layers

may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have Zero or more children. Ethernet packets, for
example, have Several variants, each having a basic format

App. II-148

US 6,954,789 B2
17

that remains Substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet-also called
an Ethernet Type/Version 2 and a DIX (DIGITAL-Intel
Xerox packet)—or an IEEE 803.2 packet. Continuing with
the IEEE 802.3 packet, one of the children nodes may be the
IP protocol, and one of the children of the IP protocol may
be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media acceSS control
address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the Signature.

FIG. 17A now shows the header information for the next
level (level-2) for an Ethertype packet 1700. For an Ether
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the
possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern rec
ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional Structure that provides for rapidly Searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compressed form of
the 3-D structure is preferred.
An alternate embodiment of the data Structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3-D
structure of FIG. 18A, the data structure permits rapid
Searches to be performed by the pattern recognition proceSS
304 by indexing locations in a memory rather than perform
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUTs) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a Slicer command, and
Some flags.

The pattern matching is carried out by finding particular
“child recognition codes' in the header fields, and using
these codes to index one or more of the LUTs. Each LUT
entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level

15

25

35

40

45

50

55

60

65

18
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer
selections 338, which describes the particular layering (sets
of trees of protocols) that the monitor is to be able to handle.
A compiler 403 compiles the descriptions. The set of

packet parse-and-extract operations 406 is generated (404),
and a set of packet State instructions and operations 407 is
generated (405) in the form of instructions for the state
processor that implements State processing process 328.
Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern,
parse, and extraction database 406 into the memory Systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG. 6; and the parsing Subsystem hardware
description and FIG. 10). Data files for each type of appli
cation and protocol to be recognized by the analyzer are also
downloaded from the State-processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11.).

Note that generating the packet parse and extraction
operations builds and links the three dimensional Structure
(one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and Subtrees to see which children
share common parents. When implemented in the form of
the LUTs, this proceSS can generate a single LUT from a
plurality of LUTs. The optimization process further
includes a compaction process that reduces the Space needed
to store the data of the PRD.
AS an example of compaction, consider the 3-D Structure

of FIG. 18A that can be thought of as a set of 2-D structures
each representing a protocol. To enable Saving Space by
using only one array per protocol which may have Several
parents, in one embodiment, the pattern analysis SubproceSS
keeps a “current header' pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a
relative location starting with the start of header for the
particular protocol. Furthermore, each of the two
dimensional arrays is sparse. The next Step of the
optimization, is checking all the 2-D arrays against all the
other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often Sparsely populated in that
they each have only a Small number of valid entries. So, a
process of "folding” is next used to combine two or more
2-D arrays together into one physical 2-D array without
losing the identity of any of the original 2-D arrays (i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met. Multiple arrayS
may be combined into a single array as long as the individual
entries do not conflict with each other. A fold number is then
used to associate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem
301 functions. Starting at 501, the packet 302 is input to the
packet buffer in step 502. Step 503 loads the next (initially
the first) packet component from the packet 302. The packet
components are extracted from each packet 302 one element
at a time. A check is made (504) to determine if the
load-packet-component operation 503 Succeeded, indicating

App. II-149

US 6,954,789 B2
19

that there was more in the packet to process. If not, indi
cating all components have been loaded, the parser Sub
system 301 builds the packet signature (512)-the next stage
(FIG. 6).

If a component is successfully loaded in 503, the node and
processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet
component. The parser Subsystem 301 checks (506) to
determine if the fetch pattern node operation 505 completed
Successfully, indicating there was a pattern node that loaded
in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattern matching process are
applied in 507 to the component extracted in 503. A pattern
match obtained in 507 (as indicated by test 508) means the
parser Subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser Subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns' loop between 508 and 505.
Once the parser subsystem 301 completes all the patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).

Once all the packet components have been the loaded and
processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 moves to build a packet signature which is described in
FIG. 6

FIG. 6 is a flow chart for extracting the information from
which to build the packet signature. The flow starts at 601,
which is the exit point 513 of FIG. 5. At this point parser
Subsystem 301 has a completed packet component and a
pattern node available in a buffer (602). Step 603 loads the
packet component available from the pattern analysis pro
cess of FIG. 5. If the load completed (test 604), indicating
that there was indeed another packet component, the parser
Subsystem 301 fetches in 605 the extraction and process
elements received from the pattern node component in 602.
If the fetch was successful (test 606), indicating that there
are extraction elements to apply, the parser Subsystem 301 in
Step 607 applies that extraction process to the packet com
ponent based on an extraction instruction received from that
pattern node. This removes and Saves an element from the
packet component.

In step 608, the parser Subsystem 301 checks if there is
more to extract from this component, and if not, the parser
Subsystem 301 moves back to 603 to load the next packet
component at hand and repeats the process. If the answer is
yes, then the parser Subsystem 301 moves to the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the same packet component
if there is more to extract, or to a different packet component
if there is no more to extract.

The extraction process thus builds the Signature, extract
ing more and more components according to the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603 fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buffer (610)
and the parser Subsystem 301 proceeds to FIG. 7 to complete
the Signature generation process.

15

25

35

40

45

50

55

60

65

20
Referring now to FIG. 7, the process continues at 701. The

Signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705
hashes the Signature buffer element based on the hash
elements that are found in the pattern node that is in the
element database. In 706 the resulting signature and the hash
are packed. In 707 the parser Subsystem 301 moves on to the
next packet component which is loaded in 703.
The 703 to 707 loop continues until there are no more

patterns of elements left (test 704). Once all the patterns of
elements have been hashed, processes 304,306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the Signature used by the analyzer Subsystem
303.
A parser record is loaded into the analyzer, in particular,

into the UFKB in the form of a UFKB record which is
Similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a Signature, the hash and at least
parts of the payload. In 802 those elements are shown in the
form of a UFKB-entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number” from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache,
all data accesses to records in the flowchart of FIG. 8 are
Stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket
from that bin using the hash. If the cache Successfully
returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry's
Signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found”
indication allows the State processing 328 to begin proceSS
ing this UFKB element. The preferred hardware embodi
ment includes one or more State processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a Set of Statistical operations
is performed by a calculator for every packet analyzed. The
Statistical operations may include one or more of counting
the packets associated with the flow; determining Statistics
related to the size of packets of the flow; compiling Statistics
on differences between packets in each direction, for
example using timestamps, and determining Statistical rela
tionships of timestamps of packets in the same direction.
The Statistical measures are kept in the flow-entries. Other
Statistical measures also may be compiled. These Statistics
may be used singly or in combination by a Statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from the Statistical measures, for example to ascer
tain the network's ability to transfer information for this
application. Such analysis provides for measuring the qual
ity of Service of a conversation, measuring how well an
application is performing in the network, measuring network
resources consumed by an application, and So forth.

App. II-150

US 6,954,789 B2
21

To provide for Such analyses, the lookup/update engine
updates one or more counters that are part of the flow-entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow, the time, and a differential time from the last timestamp
to the present timestamp.

It may be that the bucket of the bin did not lead to a
Signature match (test 808). In Such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, any Statistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In Such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.

The Hardware System
Each of the individual hardware elements through which

the data flows in the system are now described with refer
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodiment of FIG.3, it would be clear to one skilled in the
art that the flow of FIG.3 may alternatively be implemented
in Software running on one or more general-purpose
processors, or only partly implemented in hardware. An
implementation of the invention that can operate in Software
is shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the Software system of FIG. 14 may be suitable for
slower networks. To one skilled in the art it would be clear
that more and more of the System may be implemented in
Software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as subsystem 1000) as implemented in hard
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data
base memory, in which the extraction instructions are Stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004. Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.
A packet enters the parsing System via 1012 into a parser

input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The buffer 1008 and interface control 1022 connect to
a packet acquisition device (not shown). The buffer acqui
Sition device generates a packet Start Signal 1021 and the
interface control 1022 generates a next packet (i.e., ready to

15

25

35

40

45

50

55

60

65

22
receive data) signal 1023 to control the data flow into parser
input buffer memory 1008. Once a packet starts loading into
the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory
described in block 304 of FIG. 3. That is, protocol types and
asSociated headers for each protocol layer that exist in the
packet are determined.
The PRE searches database 1001 and the packet in buffer

1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series
of linked lookup tables. Each lookup table uses eight bits of
addressing. The first lookup table is always at address Zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the first lookup table.

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to
the COP
The PRE 1006 includes of a comparison engine. The

comparison engine has a first Stage that checks the protocol
type field to determine if it is an 802.3 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a Second Stage. The first stage is the only
protocol level that is not programmable. The Second Stage
has two full sixteen bit content addressable memories
(CAMs) defined for future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also
generates a command for the extraction engine (also called
a "slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction
pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig
nature and the proceSS code is used to fetch the first
instruction from the instruction database 1002. Instructions
include an operation code and usually Source and destination
offsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow Signature.
The extractor contains another instruction called HASH.
This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.
Thus these instructions are for extracting Selected element

(s) of the packet in the input buffer memory and transferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.
The extraction engine 1007 and the PRE operate as a

pipeline. That is, extraction engine 1007 performs extraction
operations on data in input buffer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa
tion is being simultaneously parsed by PRE 1006. This
provides high processing Speed Sufficient to accommodate
the high arrival rate Speed of packets.

App. II-151

US 6,954,789 B2
23

Once all the Selected parts of the packet used to form the
Signature are extracted, the hash is loaded into parser output
buffer memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser Sub
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready Signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer Subsystem that performs the functions of the
analyzer Subsystem 303 of FIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the
State processing information generated by the compilation
process 310 into a database memory for the State processing,
called state processor instruction database (SPID) memory
1109.
The analyzer Subsystem 1100 includes a hostbus interface

1122 using an analyzer host interface controller 1118, which
in turn has access to a cache System 1115. The cache System
has bidirectional access to and from the State processor of
the system 1108. State processor 1108 is responsible for
initializing the State processor instruction database memory
1109 from information given over the host bus interface
1122.
With the SPID 1109 loaded, the analyzer subsystem 1100

receives parser records comprising packet Signatures and
payloads that come from the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holds records of packets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable Status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and acceSS
records in the UFKB 1103: the lookup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple
mented by one or more finite state machines (FSM's). There
is bidirectional access between each of the finite State
machines and the unified flow key buffer 1103. The UFKB
record includes a field that Stores the packet Sequence
number, and another that is filled with state information in
the form of a program counter for the state processor 1108
that implements State processing 328. The Status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the State
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the State processor is done with the
current flow and to indicate what the next entry is for the
State processor. There also is provided a flag to indicate the
State processor is transferring processing of the UFKB-entry
to the flow insertion and deletion engine.
A new UFKB record is first processed by the LUE 1107.

A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
1110 after being processed by the state processor 1108 or
only by the LUE. Whether or not a particular engine has
been applied to any unified flow key buffer entry is deter
mined by Status fields Set by the engines upon completion.
In one embodiment, a status flag in the UFKB-entry indi
cates whether an entry is new or found. In other

15

25

35

40

45

50

55

60

65

24
embodiments, the LUE issues a flag to pass the entry to the
State processor for processing, and the required operations
for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed
by all three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

Each of these three engines also has bi-directional access
to a cache Subsystem 1115 that includes a caching engine.
Cache 1115 is designed to have information flowing in and
out of it from five different points within the system: the
three engines, external memory via a unified memory con
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.
The cache subsystem 1115 is an associative cache that

includes a set of content addressable memory cells (CAMs)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the
cached flow-entries. The CAMS are arranged as a Stack
ordered from a top CAM to a bottom CAM. The bottom
CAM's pointerpoints to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, So the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
asSociative cache with a true LRU replacement policy.
The LUE 1107 first processes a UFKB-entry, and basi

cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buckets
from the cache. The cache System attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.
When a flow-entry is found using the hash, the LUE 1107

looks at each bucket and compares it using the Signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow-entries from the cache, a time Stamp in Set in the flow
key of the UFKB record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the Status for
the record is Set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is
ready to Start State processing. The identification and State
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector' for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the State processor to start State processing for
the particular protocol. For example, the jump vector jumps
to the Subroutine for processing the State.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountered flow, then a
calculator component enters one or more Statistical measures
Stored in the flow-entry, including the timestamp. In
addition, a time difference from the last Stored timestamp
may be Stored, and a packet count may be updated. The State
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi

App. II-152

US 6,954,789 B2
25

cation is required, then the Status for the record is Set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
State processor to a Subroutine to State processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being Zero. If the
protocol identifier indicates more processing, then an indi
cation is made that the UFKB-entry is ready to start state
processing and the Status for the record is Set to indicate the
LUE has processed the record.
The state processor 1108 processes information in the

cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the State
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the Subroutine which
analyzes the protocol that was decoded.
The State Processor ALU (SPALU) contains all the

Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register
The Search Engine in turn contains the Target Search

Register Set, the Reference Search Register Set, and a
Compare block which compares two operands by exclusive
or-ing them together.

Thus, after the UFKB sets the program counter, a
Sequence of one or more State operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB-entry is used
to Set the State processor's instruction counter. The State
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test Something in the
unified flow key buffer or the flow-entry if it exists. The state
processor 1108 may have to test bits, do comparisons, add or
Subtract to perform the test.

The first state processor instruction is fetched in 1304
from the state processor instruction database memory 1109.
The State processor performs the one or more fetched
operations (1304). In our implementation, each single State
processor instruction is very primitive (e.g., a move, a
compare, etc.), So that many Such instructions need to be
performed on each unified flow key buffer entry. One aspect
of the State processor is its ability to Search for one or more

15

25

35

40

45

50

55

60

65

26
(up to four) reference Strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the State processor responsive to special
Searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then
in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may
be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.
The next instruction to be performed is now fetched

(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions
to be performed.
At this stage, a check is made in 1309 if the processing on

this particular packet has resulted in a final State. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. If indeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final States may need to put
a State in place that tells the System to remove a flow-for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.
Once the appropriate flow removal instruction as Specified

for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

Note that State processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the state processor is done. Furthermore, If
the flow needs to be inserted or deleted from the database of
flows, control is then passed on to the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
done by the state processor setting another flag in the UFKB
for this UFKB-entry indicating that the state processor is
passing processing of this entry to the flow insertion and
deletion engine.
The flow insertion and deletion engine 1110 is responsible

for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database So that they can be reused.
The process of flow insertion is now described with the

aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFKB-entry that may be
new or that the State processor otherwise has indicated needs
to be created. FIG. 12 shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main
tained in the cache system 1115. If in 1205 the cache system

App. II-153

US 6,954,789 B2
27

1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used' in the cache engine of cache 1115
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow Signature to the packet to Verify that all the elements are
in place to complete the record. In 1211 the System marks the
record bin and bucket as “in process” and as “new” in the
cache System (and hence in the external memory). In 1212,
the initial Statistical measures for the flow-record are Set in
the cache System. This in the preferred embodiment clearS
the Set of counters used to maintain Statistics, and may
perform other procedures for Statistical operations requires
by the analyzer for the first packet Seen for a particular flow.

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packet is Set as “drop, indicating that the System cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion
operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow
key buffer entry by all of the engines required to acceSS and
manage a particular packet and its flow Signature, the unified
flow key buffer entry is marked as “completed.” That
element will then be used by the parser interface for the next
packet and flow Signature coming in from the parsing and
extracting System.

All flow-entries are maintained in the external memory
and some are maintained in the cache 1115. The cache
System 1115 is intelligent enough to access the flow database
and to understand the data Structures that exists on the other
Side of memory interface 1123. The lookup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache System once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache System if required
based on information in the unified flow key buffer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are Several interfaces to components of the System
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing System Such as a micropro
cessor or a multiplexor (MUX) System. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into Some other processing System to manage the
classification System and to extract data gathered by the
System.

The memory interface 1123 is designed to interface to any
of a variety of memory Systems that one may want to use to
store the flow-entries. One can use different types of
memory Systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

15

25

35

40

45

50

55

60

65

28
FIG. 10 also includes some “generic' interfaces. There is

a packet input interface 1012-a general interface that
works in tandem with the signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic Systems that can then feed packet
information into the parser. Another generic interface is the
interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This
enables the parsing System to be managed by an external
System, for example a microprocessor or another kind of
external logic, and enables the external System to program
and otherwise control the parser.
The preferred embodiment of this aspect of the invention

is described in a hardware description language (HDL) Such
as VHDL or Verilog. It is designed and created in an HDL
So that it may be used as a single chip System or, for instance,
integrated into another general-purpose System that is being
designed for purposes related to creating and analyzing
traffic within a network. Verilog or other HDL implemen
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA's). The
boundaries of these FPGA's are as follows. The parsing
Subsystem of FIG. 10 is implemented as two FPGAS; one
FPGA, and includes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGA includes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA. Por
tions of the State processor instruction database memory
1109 are maintained in external SRAM's. The lookup/
update engine 1107 and the flow insertion/deletion engine
1110 are in another FPGA. The Sixth FPGA includes the
cache system 1115, the unified memory control 1119, and the
analyzer host interface and control 1118.

Note that one can implement the System as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC's) such as FPGA's. It is antici
pated that in the future device densities will continue to
increase, So that the complete System may eventually form
a Sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention
FIG. 15 shows how an embodiment of the network

monitor 300 might be used to analyze traffic in a network
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are Supplied to
monitor 300. Monitor 300 comprises the parser Sub-system
301, which determines flow signatures, and analyzer Sub
System 303 that analyzes the flow Signature of each packet.
A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which might be any processor, for example, a general
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMON probe, in which case the
host computer is coupled to a network interface card 1510
that is connected to the network 102.
The preferred embodiment of the invention is supported

by an optional Simple Network Management Protocol
(SNMP) implementation. FIG. 15 describes how one would,

App. II-154

US 6,954,789 B2
29

for example, implement an RMON probe, where a network
interface card is used to send RMON information to the
network. Commercial SNMP implementations also are
available, and using Such an implementation can Simplify
the process of porting the preferred embodiment of the
invention to any platform.

In addition, MIB Compilers are available. An MIB Com
piler is a tool that greatly simplifies the creation and main
tenance of proprietary MIB extensions.

Examples of Packet Elucidation
Monitor 300, and in particular, analyzer 303 is capable of

carrying out State analysis for packet eXchanges that are
commonly referred to as "server announcement' type
eXchanges. Server announcement is a process used to ease
communications between a Server with multiple applications
that can all be Simultaneously accessed from multiple cli
ents. Many applications use a server announcement proceSS
as a means of multiplexing a single port or Socket into many
applications and Services. With this type of eXchange, mes
Sages are Sent on the network, in either a broadcast or
multicast approach, to announce a Server and application,
and all Stations in the network may receive and decode these
messages. The messages enable the Stations to derive the
appropriate connection point for communicating that par
ticular application with the particular Server. Using the
Server announcement method, a particular application com
municates using a Service channel, in the form of a TCP or
UDP socket or port as in the IP protocol Suite, or using a SAP
as in the Novell IPX protocol Suite.
The analyzer 303 is also capable of carrying out “in

Stream analysis” of packet eXchanges. The “in-stream analy
Sis' method is used either as a primary or Secondary recog
nition process. As a primary process, in-stream analysis
assists in extracting detailed information which will be used
to further recognize both the Specific application and appli
cation component. A good example of in-stream analysis is
any Web-based application. For example, the commonly
used Point Cast Web information application can be recog
nized using this process, during the initial connection
between a PointCast Server and client, Specific key tokens
exist in the data eXchange that will result in a Signature being
generated to recognize PointCast.

The in-stream analysis proceSS may also be combined
with the Server announcement process. In many cases
in-Stream analysis will augment other recognition processes.
An example of combining in-stream analysis with Server
announcement can be found in busineSS applications Such as
SAP and BAAN.

"Session tracking” also is known as one of the primary
processes for tracking applications in client/server packet
eXchanges. The process of tracking Sessions requires an
initial connection to a predefined Socket or port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDP transport protocols of the IP protocol.

During the Session tracking, a client makes a request to a
Server using a specific port or Socket number. This initial
request will cause the server to create a TCP or UDP port to
eXchange the remainder of the data between the client and
the server. The server then replies to the request of the client
using this newly created port. The original port used by the
client to connect to the Server will never be used again
during this data eXchange.
One example of session tracking is TFTP (Trivial File

Transfer Protocol), a version of the TCP/IP FTP protocol

15

25

35

40

45

50

55

60

65

30
that has no directory or password capability. During the
client/server exchange process of TFTP, a specific port (port
number 69) is always used to initiate the packet exchange.
Thus, when the client begins the process of communicating,
a request is made to UDP port 69. Once the server receives
this request, a new port number is created on the Server. The
Server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFTP; network
monitor 300 analyzes the initial request from the client and
generates a signature for it. Monitor 300 uses that Signature
to recognize the reply. Monitor 300 also analyzes the reply
from the Server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data eXchange.
Network monitor 300 can also understand the current

State of particular connections in the network. Connection
oriented exchanges often benefit from State tracking to
correctly identify the application. An example is the com
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data eXchange is initiated, a TCP request for Synchroni
Zation message is sent. This message contains a specific
Sequence number that is used to track an acknowledgement
from the Server. Once the Server has acknowledged the
Synchronization request, data may be exchanged between
the client and the Server. When communication is no longer
required, the client Sends a finish or complete message to the
Server, and the Server acknowledges this finish request with
a reply containing the Sequence numbers from the request.
The States of Such a connection-oriented exchange relate to
the various types of connection and maintenance messages.

Server Announcement Example
The individual methods of Server announcement proto

cols vary. However, the basic underlying proceSS remains
Similar. A typical Server announcement message is Sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another aspect of the
invention, is Salvaged and maintained in the database of
flow-entries in the System. Because the announcement is
Sent to one or more Stations, the client involved in a future
packet eXchange with the Server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.
Sun-RPC is the implementation by Sun Microsystems,

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
Services of another on a remote machine. A Sun-RPC
example is now used to explain how monitor 300 can
capture Server announcements.
A remote program or client that wishes to use a server or

procedure must establish a connection, for which the RPC
protocol can be used.

Each server running the Sun-RPC protocol must maintain
a proceSS and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the
Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of param
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport Socket

App. II-155

US 6,954,789 B2
31

through the use of Specific request or a directed announce
ment. According to ICANN, port number 111 is associated
with Sun RPC.
As an example, consider a client (e.g., CLIENT 3 shown

as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 10) on a predefined
UDP or TCP socket. Once the port Mapper process on the
Sun RPC Server receives the request, the Specific mapping is
returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER2 (110 in FIG. 1) on port 111, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port 111 is always associated Sun RPC. This request
Specifies the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the
request. The Server also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server 110 sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the specific port number (e.g., port number port) on
which future transactions will be accepted for the
Specific RPC program identifier (e.g., Program
program) and the protocol (UDP or TCP) for use.

It is desired that from now on every time that port number
port is used, the packet is associated with the application
program program until the number port no longer is to be
asSociated with the program program. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange So that future
packets that use the port number port will be associated by
the network monitor with the application program pro
gram.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program-Say
program-might be associated with a particular port
number, for example number port. One is by a broadcast
announcement of a particular association between an appli
cation service and a port number, called a Sun RPC port
Mapper Announcement. Another, is when Some Server-Say
the same SERVER 2-replies to some client-say CLIENT
1-requesting Some portMapper assignment with a RPC
portMapper Reply. Some other client-say CLIENT
2-might inadvertently See this request, and thus know that
for this particular server, SERVER 2, port number port is
asSociated with the application Service program. It is
desirable for the network monitor 300 to be able to associate
any packets to SERVER 2 using port number port with the
application program program.

FIG.9 represents a dataflow 900 of some operations in the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.
Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server's interface to
the network 116. Further assume that Remote Procedure
Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the program,
version, and protocol to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the program, “version, and pro
tocol (UDP or TCP). Extract the TCP or UDP port
(process 909) which is 111 indicating Sun RPC.

15

25

35

40

45

50

55

60

65

32
Process 908: Decode the Sun RPC packet. Check RPC

type field for ID. If value is portMapper, save paired
Socket (i.e., dest for destination address, Src for Source
address). Decode ports and mapping, save ports with
Socket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flow-entry is created in database 324. The saving of the
request is now complete.

At some later time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
Signature from the packet and recognize it from the previ
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
Signature in the flow-entry database. That Signature now
may be used to identify packets associated with the Server.
The server state creation step 904 can be reached not only

from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide a particular application Service. Embodiments of the
present invention preferably can analyze when an exchange
occurs between a client and a Server, and also can track those
Stations that have received the announcement of a Service in
the network.
The RPC Announcement portMapper announcement 902

is a broadcast. Such causes various clients to execute a
Similar Set of operations, for example, Saving the informa
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the Service
parameterS.
Thus monitor 300 creates and saves all Such states for

later classification of flows that relate to the particular
Service program.
FIG.2 shows how the monitor 300 in the example of Sun

RPC builds a signature and flow states. A plurality of packets
206-209 are exchanged, e.g., in an exemplary Sun Micro
systems Remote Procedure Call protocol. A method embodi
ment of the present invention might generate a pair of flow
signatures, “signature-1' 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup
pose packet 206 corresponds to Such a request Sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A Source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEY1230 in FIG. 2) will also contain
these two fields, so the parser subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG.
2, if an address identifies the client 106 (shown also as 202),
the label used in the drawing is “C”. If such address
identifies the server 110 (shown also as server 204), the label
used in the drawing is “S”. The first two fields 214 and 215
in packet 206 are “S” and C” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “S” is an address numeri
cally less than address “C”. A third field "p" 216 identifies
the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are
used to communicate port numbers that are used. The

App. II-156

US 6,954,789 B2
33

conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a Source-port pattern, and the hash pattern in field 218 is
used to identify the destination-port pattern. The order
indicates the client-Server message direction. A sixth field
denoted “i'” 219 is an element that is being requested by the
client from the server. A seventh field denoted “sa” 220 is
the service requested by the client from server 110. The
following eighth field “QA” 221 (for question mark) indi
cates that the client 106 wants to know what to use to access
application “sa'. A tenth field “QP 223 is used to indicate
that the client wants the Server to indicate what protocol to
use for the particular application.

Packet 206 initiates the Sequence of packet eXchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans
mitted to the server 110 on a well-known service connection
identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from
the server. It is the RPC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224-233. The destination
and Source addresses are carried in fields 224 and 225, e.g.,
indicated “C” and “S”, respectively. Notice the order is
now reversed, since the client-Server message direction is
from the server 110 to the client 106. The protocol “p' is
used as indicated in field 226. The request "i" is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol “p” in field 233.

The flow signature and flow states built up as a result of
this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser Subsystem 301 according
to the pattern and extraction operations database 308. This
Signature 210 includes a destination and a Source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best Spread of Signatures and hashes for the
lookup operations. In this case, therefore, Since we assume
“S”<“C”, the order is address “S” followed by client
address “C”. The next field used to build the signature is a
protocol field 242 extracted from packet 206's field 216, and
thus is the protocol “p'. The next field used for the
Signature is field 243, which contains the destination Source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or Sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination of TCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p' that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups, are
directly determinable ("known”) at the parser level. So in
this case, the Signature KEY-1 points to a known application
denoted “a” (Sun RPC Bind Lookup), and a denoted as
state “st,” is placed in the field 245 of the flow-entry.
When the Sun RPC Bind Lookup reply is acquired, a flow

Signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser Subsystem 301, the
complete flow-entry is obtained, and in this flow-entry
indicates State “st'. The operations for State “st” in the

15

25

35

40

45

50

55

60

65

34
State processor instruction database 326 instructs the State
processor to build and Store a new flow signature, shown as
KEY-2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a Source
addresses 250 and 251, respectively, for server “S” fol
lowed by (the numerically higher address) client “C”. A
protocol field 252 defines the protocol to be used, e.g., “p”
which is obtained from the reply packet. A field 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application “a”. A next-state field 255 defines the next
State that the State processor should proceed to for more
complex recognition jobs, e.g., a state “st". In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
Service requested in the original Bind Lookup Request, and
each will be recognized because the signature KEY-2 will be
built in each case.
The two flow signatures 210 and 212 always order the

destination and source address fields with server “S” fol
lowed by client “C”. Such values are automatically filled in
when the addresses are first created in a particular flow
Signature. Preferably, large collections of flow Signatures are
kept in a lookup table in a least-to-highest order for the best
Spread of flow Signatures and hashes.

Thereafter, the client and Server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and Source address S and C, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p”,
and a field 263 defines the destination port number.
Some network-Server application recognition jobs are SO

Simple that only a single State transition has to occur to be
able to pinpoint the application that produced the packet.
Others require a Sequence of State transitions to occur in
order to match a known and predefined climb from State
to-State.
Thus the flow signature for the recognition of application

“a” is automatically set up by predefining what packet
eXchange Sequences occur for this example when a rela
tively simple Sun Microsystems Remote Procedure Call
bind lookup request instruction executes. More complicated
eXchanges than this may generate more than two flow
Signatures and their corresponding States. Each recognition
may involve Setting up a complex State transition diagram to
be traversed before a “final” resting state such as “st” in
field 255 is reached. All these are used to build the final set
of flow Signatures for recognizing a particular application in
the future.

Embodiments of the present invention automatically gen
erate flow Signatures with the necessary recognition patterns
and State transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen
erating State transitions to Search for. Applications and
protocols, at any level, are recognized through State analysis
of Sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances Such as telephones,
“Internet' radios, pagers, and So forth. The term computer as
used herein encompasses all Such devices and a computer
network as used herein includes networks of Such comput
CS.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be

App. II-157

US 6,954,789 B2
35

understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true Spirit and Scope of the
present invention.
We claim:
1. A method of examining packets passing through a

connection point on a computer network, each packets
conforming to one or more protocols, the method compris
ing:

(a) receiving a packet from a packet acquisition device;
(b) performing one or more parsing/extraction operations

on the packet to create a parser record comprising a
function of Selected portions of the packet;

(c) looking up a flow-entry database comprising none or
more flow-entries for previously encountered conver
sational flows, the looking up using at least Some of the
Selected packet portions and determining if the packet
is of an existing flow;

(d) if the packet is of an existing flow, classifying the
packet as belonging to the found existing flow; and

(e) if the packet is of a new flow, Storing a new flow-entry
for the new flow in the flow-entry database, including
identifying information for future packets to be iden
tified with the new flow-entry,

wherein the parsing/extraction operations depend on one or
more of the protocols to which the packet conforms.

2. A method according to claim 1, wherein each packet
passing through the connection point is examined in real
time.

3. A method according to claim 1, wherein classifying the
packet as belonging to the found existing flow includes
updating the flow-entry of the existing flow.

4. A method according to claim 3, wherein updating
includes Storing one or more Statistical measures Stored in
the flow-entry of the existing flow.

5. A method according to claim 4, wherein the one or
more Statistical measures include measures Selected from the
Set consisting of the total packet count for the flow, the time,
and a differential time from the last entered time to the
present time.

6. A method according to claim 1, wherein the function of
the Selected portions of the packet forms a Signature that
includes the Selected packet portions and that can identify
future packers, wherein the lookup operation uses the Sig
nature and wherein the identifying information Stored in the
new or updated flow-entry is a signature for identifying
future packets.

7. A method according to clalm 1, wherein at least one of
the protocols of the packet uses Source and destination
addresses, and wherein the Selected portions of the packet
include the Source and destination addresses.

8. A method according to claim 7, wherein the function of
the Selected portions for packets of the same flow is con
Sistent independent of the direction of the packets.

9. A method according to claim 8, wherein the source and
destination addresses are placed in an order determined by
the order of numerical values of the addresses in the function
of Selected portions.

10. A method according to claim 9, wherein the numeri
cally lower address is placed before the numerically higher
address in the function of Selected portions.

11. A method according to claim 1, wherein the looking up
of the flow-entry database uses a hash of the Selected packet
portions.

15

25

35

40

45

50

55

60

65

36
12. A method according to claim 1, wherein the parsing/

extraction operations are according to a database of parsing/
extraction operations that includes information describing
how to determine a set of one or more protocol dependent
extraction operations from data in the packet that indicate a
protocol used in the packet.

13. A method according to claim 1, wherein step (d)
includes if the packet is of an existing flow, obtaining the last
encountered State of the flow and performing any State
operations Specified for the State of the flow Starting from the
last encountered State of the flow; and wherein step (e)
includes if the packet is of a new flow, performing any State
operations required for the initial State of the new flow.

14. A method according to claim 13, wherein the State
processing of each received packet of a flow furthers the
identifying of the application program of the flow.

15. A method according to claim 13, wherein the state
operations include updating the flow-entiy, including Storing
identifying information for future packets to be identified
with the flow-entry.

16. A method according to claim 15, wherein the state
processing of each received packet of a flow furthers the
identifying of the application program of the flow.

17. A method according to claim 13, wherein the state
operations include Searching the parser record for the exist
ence of one or more reference Strings.

18. A method according to claim 13, wherein the state
operations are carried out by a programmable State processor
according to a database of protocol dependent State opera
tions.

19. A packet monitor for examining packets passing
through a connection point on a computer network, each
packets conforming to one or more protocols, the monitor
comprising:

(a) a packet acquisition device coupled to the connection
point and configured to receive packets passing through
the connection point;

(b) an input buffer memory coupled to and configured to
accept a packet from the packet acquisition device;

(c) a parser Subsystem coupled to the input buffer memory
and including a slicer, the parsing Subsystem config
ured to extract Selected portions of the accepted packet
and to output a parser record containing the Selected
portions,

(d) a memory for Storing a database comprising none or
more flow-entries for previously encountered conver
sational flows, each flow-entry identified by identifying
information stored in the flow-entry;

(e) a lookup engine coupled to the output of the parser
Subsystem and to the flow-entry memory and config
ured to lookup whether the particular packet whose
parser record is output by the parser Subsystem has a
matching flow-entry, the looking up using at least Some
of the Selected packet portions and determining if the
packet is of an existing flow; and

(f) a flow insertion engine coupled to the flow-entry
memory and to the lookup engine and configured to
create a flow-entry in the flow-entry database, the
flow-entry including identifying information for future
packets to be identified with the new flow-entry, the
lookup engine configured Such that if the packet is of an
existing flow, the monitor classifies the packet as
belonging to the found existing flow; and if the packet
is of a new flow, the flow insertion engine Stores a new
flow-entry for the new flow in the flow-entry database,
including identifying information for future packets to
be identified with the new flow-entry,

App. II-158

US 6,954,789 B2
37

wherein the operation of the parser Subsystem depends on
one or more of the protocols to which the packet conforms.

20. A monitor according to claim 19, wherein each packet
passing through the connection point is accepted by the
packet buffer memory and examined by the monitor in real
time.

21. A monitor according to claim 19, wherein the lookup
engine updates the flow-entry of an existing flow in the case
that the lookup is Successful.

22. A monitor according to claim 19, further including a
mechanism for building a hash from the Selected portions,
wherein the hash is included in the input for a particular
packet to the lookup. engine, and wherein the hash is used
by the lookup engine to Search the flow-entry database.

23. A monitor according to ciaim 19, further including a
memory containing a database of parsing/extraction
operations, the parsing/extraction database memory coupled
to the parser Subsystem, wherein the parsing/extraction
operations are according to one or more parsing/extraction
operations looked up from the parsing/extraction database.

24. A monitor according to claim 23, wherein the database
of parsing/extraction operations includes information
describing how to determine a set of one or more protocol
dependent extraction operations from data in the packet that
indicate a protocol used in the packet.

25. A monitor according to claim 19, further including a
flow-key-buffer (UFKB) coupled to the output of the parser
Subsystem and to the lookup engine and to the flow insertion
engine, wherein the output of the parser monitor is coupled
to the lookup engine via the UFKB, and wherein the flow
insertion engine is coupled to the lookup engine via the
UFKB.

26. A method according to claim 19, further including a
State processor coupled to the lookup engine and to the
flow-entry-database memory, and configured to perform any
State operations Specified for the State of the flow Starting
from the last encountered state of the flow in the case that the
packet is from an existing flow, and to perform any State
operations required for the initial State of the new flow in the
case that the packet is from an existing flow.

27. A method according to claim 19, wherein the set of
possible State operations that the State processor is config
ured to perform includes Searching for one or more patterns
in the packet portions.

28. A monitor according to claim 26, wherein the State
processor is programmable, the monitor further including a
State patterns/operations memory coupled to the State
processor, the State operations memory configured to Store a
database of protocol dependent State patterns/operations.

29. A monitor according to claim 25, further including a
state processor coupled to the UFKB and to the flow-entry
database memory, and configured to perform any State
operations Specified for the State of the flow Starting from the
last encountered State of the flow in the case that the packet
is from an existing flow, and to perform any State operations
required for the initial state of the new flow in the case that
the packet is from an existing flow.

30. A monitor according to claim 26, wherein the state
operations include updating the flow-entry, including iden
tifying information for future packets to be identified with
the flow-entry.

31. A packet monitor according to claim 19, further
comprising:

a compiler processor coupled to the parsing/extraction
operations memory, the compiler processor configured
to run a compilation process that includes:
receiving commands in a high-level protocol descrip

tion language that describe the protocols that may be

15

25

35

40

45

50

55

60

65

38
used in packets encountered by the monitor and any
children protocols thereof, and

translating the protocol description language com
mands into a plurality of parsing/extraction opera
tions that are initialized into the parsing/extraction
operations memory.

32. A packet monitor according to claim 28, further
comprising:

a compiler processor coupled to the parsing/extraction
operations memory, the compiler processor configured
to run a compilation process that includes:
receiving commands in a high-level protocol descrip

tion language that describe a correspondence
between a Set of one or more application programs
and the State transition patterns/operations that occur
as a result of particular conversational flow
Sequences associated with an application programs,
and

translating the protocol description language com
mands into a plurality of State patterns and State
operations that are initialized into the State patterns/
operations memory.

33. A packet monitor according to claim 19, further
comprising:

a cache Subsystem coupled to and between the lookup
engine and the flow-entry database memory providing
for fast access of a set of likely-to-be-accessed flow
entries from the flow-entry database.

34. A packet monitor according to claim 33, wherein the
cache Subsystem is an associative cache Subsystem includ
ing one or more content addressable memory cells (CAMs).

35. A packet monitor according to claim 34, wherein the
cache Subsystem is also a least-recently-used cache memory
Such that a cache miss updates the least recently used cache
entry.

36. A packet monitor according to claim 19, wherein each
flow-entry Stores one or more Statistical measures about the
flow, the monitor further comprising

a calculator for updating at least one of the Statistical
measures in the flow-entry of the accepted packet.

37. A packet monitor according to claim 36, wherein the
one or more Statistical measures include measures Selected
from the Set consisting of the total packet count for the flow,
the time, and a differential time from the last entered time to
the present time.

38. A packet monitor according to claim 36, further
including a Statistical processor configured to determine one
or more network usage metrics related to the flow from one
or more of the Statistical measures in a flow-entry.

39. A monitor according to claim 19, wherein:
flow-entry-database is organized into a plurality of bins

that each contain N-number of flow-entries, and
wherein Said bins are accessed via a hash data value
created by a parser Subsystem based on the Selected
packet portions, wherein N is one or more.

40. A monitor according to claim 39, wherein the hash
data value is used to spread a plurality of flow-entries acroSS
the flow-entry-database and allows fast lookup of a flow
entry and shallower buckets.

41. A monitor according to claim 26, wherein the State
processor analyzes both new and existing flows in order to
classify them by application and proceeds from State-to-State
based on a set of predefined rules.

42. A monitor according to claim 19, wherein the lookup
engine begins processing as Soon as a parser record arrives
from the parser Subsystem.

43. A monitor according to claim 26, wherein the lookup
engine provides for flow State entry checking to see if a flow

App. II-159

US 6,954,789 B2
39

key should be sent to the State processor, and that outputs a
protocol identifier for the flow.

44. A method of examining packets passing through a
connection point on a computer network, the method com
prising:

(a) receiving a packet from a packet acquisition device;
(b) performing one or more parsing/extraction operations

on the packet according to a database of parsing/
extraction operations to create a parser record compris
ing a function of Selected portions of the packet, the
database of parsing/extraction operations including
information on how to determine a set of one or more
protocol dependent extraction operations from data in
the packet that indicate a protocol is used in the packet;

(c) looking up a flow-entry database comprising none or
more flow-entries for previously encountered conver
sational flows, the looking up using at least Some of the
Selected packet portions, and determining if the packet
is of an existing flow;

(d) if the packet is of an existing flow, obtaining the last
encountered State of the flow and performing any State
operations Specified for the State of the flow Starting
from the last encountered state of the flow; and

(e) if the packet is of a new flow, performing any analysis
required for the initial State of the new flow and Storing
a new flow-entry for the new flow in the flow-entry

15

25

40
database, including identifying information for future
packets to be identified with the new flow-entry.

45. A method according to claim 44, wherein one of the
State operations Specified for at least one of the States
includes updating the flow-entry, including identifying
information for future packets to be identified with the
flow-entry.

46. A method according to claim 44, wherein one of the
State operations Specified for at least one of the States
includes Searching the contents of the packet for at least one
reference String.

47. A method according to claim 45, wherein one of the
State operations Specified for at least one of the States
includes creating a new flow-entry for future packets to be
identified with the flow, the new flow-entry including iden
tifying information for future packets to be identified with
the flow-entry.

48. A method according to claim 44, further comprising
forming a Signature from the Selected packet portions,
wherein the lookup operation uses the Signature and wherein
the identifying information Stored in the new or updated
flow-entry is a Signature for identifying future packets.

49. A method according to claim 44, wherein the state
operations are according to a database of protocol dependent
State operations.

App. II-160

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,954,789 B2 Page 1 of 1
DATED : October 11, 2005
INVENTOR(S) : Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 9,
Line 60, change “layer model” to -- layered model --.

Column 33,
Line 60, insert between “and a' and “denoted as” the phrase -- next-state that the State
processor Should proceed to for more complex recognition jobs, --.

Column 35,
Lline 51, change “clalm” to -- claim --.

Column 37,
Line 14, change "ciaim” to -- claim --.

Signed and Sealed this

Seventh Day of March, 2006

WDJ
JON W. DUDAS

Director of the United States Patent and Trademark Office

App. II-161

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,954,789 B2 Page 1 of 1
APPLICATIONNO. : 10/684776
DATED : October 11, 2005
INVENTOR(S) : Russell S. Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 35, line 47, claim 6, change “packers to --packets--.

Column 36, line 18, claim 15, change “entiy to --entry--.

Column 37, line 32, claim 26, change “method to --monitor--.

Column 37, line 40, claim 27, change “method to --monitor--.

Column 37, lines 55 and 56, claim 29, change “for the initial state of the new flow in the case that
the packet is from an existing flow to --for the initial state of the new flow in the case that the packet
is not from an existing flow--.

Signed and Sealed this
First Day of October, 2013

2
2-Y xx

s? *é-...sé - . . 26-e- 2. 13
Teresa Stanek Rea

Deputy Director of the United States Patent and Trademark Office

App. II-162

