
No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,

Petitioner,

v.

ORACLE AMERICA, INC.,

Respondent.

On Petition for a Writ of Certiorari to

the United States Court of Appeals

for the Federal Circuit

 AMICUS CURIAE BRIEF OF DEVELOPERS

ALLIANCE IN SUPPORT OF PETITIONER

BRUCE GUSTAFSON

DEVELOPERS ALLIANCE

1015 7th Street, NW

2nd Floor

Washington, DC 20001

(202) 735-7333

bruce@developersalliance.org

JAMES H. HULME

Counsel of Record

NADIA A. PATEL

ARENT FOX LLP

1717 K Street, NW

Washington, DC 20006

(202) 857-6000

james.hulme@arentfox.com

TABLE OF CONTENTS

Page

INTEREST OF AMICUS CURIAE 1
SUMMARY OF THE ARGUMENT 2
ARGUMENT ... 3
I. Software interfaces are the universally

accepted mechanism allowing
developers to write software that is
interoperable and independent of the
underlying hardware 5

II. Developers rely on intellectual property
law to both protect their independent
work and promote their ability to work
collectively .. 8

III. Control of APIs and software interfaces
will have a fundamental influence on
the future of software innovation 10

IV. Current case law has left it unclear how
and when a developer’s work is
protected intellectual property 12

CONCLUSION .. 16

ii

TABLE OF AUTHORITIES

 Page(s)

Cases

Baker v. Selden,
101 U.S. 99 (1880) ... 3

Statutes

U.S. Const. art 1, § 8, cl. 8 5

17 U.S.C. § 102(b) ... 8

Other Authorities

Brief of Amici Curiae, Oracle America,
Inc. v. Google Inc.,
Nos. 13-1021, 13-1022 (Fed. Cir.
May 30, 2013) .. 2

Brief of Amici Curiae, Oracle America,
Inc. v. Google Inc.,
Nos. 17-1118, 17-1202 (Fed. Cir.
June 1, 2017) ... 2

Charles Duan, Can Copyright Protect a
Language?, Slate (June 3, 2015),
https://slate.com/technology/2015/06/
oracle-v-google-klingon-and-
copyrighting-language.html 13

iii

Developers Alliance & NDP Analytics,

Quantifying Risks to Interoperability
in the Software Industry (2017),
https://www.developersalliance.org/i
nteroperability-report-december-
2017 ... 2, 8

Developers Voice Concerns over Court
Ruling Upending Use of APIs (2019),
https://www.developersalliance.org/s
pring-2019-api-survey 10

Go Java, https://go.java/index.html (last
visited Feb. 20, 2019) .. 13

Jonathan Band, Interfaces on Trial 3.0:
Oracle America v. Google and
Beyond, SSRN (Oct. 19, 2016),
https://ssrn.com/abstract=2876853 14

H.R. Rep. No. 94-1476 (1976) 8

Mishaal Rahman, There are nearly
16,000 Google Play Certified
Android Devices, XDA Developers
(Apr. 17, 2018, 2:30 PM), https://
www.xda-developers.com/number-of-
google-play-certified-android-
devices/ .. 13

iv

Most used programming languages

among developers worldwide, as of
early 2018, Statista,
https://www.statista.com/statistics/7
93628/worldwide-developer-survey-
most-used-languages/ (last visited
Feb. 20, 2019) .. 13

Peter S. Menell, Rise of the API
Copyright Dead?: An Updated
Epitaph for Copyright Protection of
Network and Functional Features of
Computer Software, 31 Harv. J. L. &
Tech. 305 (2018) .. 14

S. Rep. No. 94-473 (1975) ... 8

The Growing $1 Trillion Economic
Impact of Software, Software.org,
(2017),
https://software.org/reports/2017-us-
software-impact/ ... 2

INTEREST OF AMICUS CURIAE

The Developers Alliance is a non-profit
corporation that advocates for software developers.1
Our corporate mission is to “[a]dvocate on behalf of
developers and the companies that depend on them,
support the industry’s continued growth, and promote
innovation.”2

Alliance members include industry leaders in
consumer, enterprise, industrial, and emerging
software, and a global network of more than 75,000
developers.3

Amici have no direct financial interest in the
outcome of this case, but have a strong interest in
seeing that the law continues to support innovation in
the software industry. Due to the importance of the
issues presented to the developer community, the
Developers Alliance has been following this litigation
closely. The Developers Alliance has previously joined

1 No counsel for any party authored this brief in whole or part,
and no person other than amicus curiae or its counsel made a
monetary contribution to the preparation or submission of this
brief. All parties received timely notice of the Developers
Alliance’s intent to file and consented to the filing of this brief.
2 https://www.developersalliance.org/about/about-the-alliance/.
3 A list of Developers Alliance members is available at
https://www.developersalliance.org/member-directory/. Google
is a Developers Alliance member but took no part in the
preparation of this brief.

2

two amicus briefs in this matter before the Federal
Circuit.4

SUMMARY OF THE ARGUMENT

The current case has implications that go far
beyond the two litigants involved. In 2017 there were
an estimated three million software developers in the
United States, and their collective work added an
estimated $565 billion to the country’s gross domestic
product.5,6 As a result of the current litigation,
developers are now confused about whether and

4 See Brief of Amici Curiae Rackspace US, Inc., Application
Developers Alliance, TMSoft, LLC, and Stack Exchange Inc.,
Oracle America, Inc. v. Google Inc., Nos. 13-1021, 13-1022 (Fed.
Cir. May 30, 2013); see also Brief of Amici Curiae Engine
Advocacy, The App Developers Alliance, and Github Inc., Oracle
America, Inc. v. Google Inc., Nos. 17-1118, 17-1202 (Fed. Cir.
June 1, 2017).
5 There are nearly three million professionals that are involved
in software development and programming as part of their jobs.
Over half of those are strictly software developers while the rest
have occupations that require programming as a secondary
component of their work, such as computer scientists, data
analysts, and database administrators. Developers Alliance &
NDP Analytics, Quantifying Risks to Interoperability in the
Software Industry (2017),
https://www.developersalliance.org/interoperability-report-
december-2017.
6 In 2017, Software.org, the BSA Foundation, commissioned The
Economist Intelligence Unit (EIU) to assess the economic impact
of the software industry. The EIU collected and analyzed the
most recent data available from several recognized and
reputable sources. The Growing $1 Trillion Economic Impact of
Software (2017), https://software.org/reports/2017-us-software-
impact/.

3

where established practices constitute copyright
infringement. Specifically, developers now question
their ability to freely create interoperable software
across projects and platforms, as has been common
practice. The inevitable result of this uncertainty will
be reduced innovation, higher industry costs, and
increased litigation.

The record in this case provides ample
background for the Court to address and clarify the
copyright issues arising from software interfaces and
their fair use. The courts of appeals have taken
divergent approaches to the application of copyright
law to computer software, and the Court should
provide much-needed certainty for the software
developer community. For these reasons we ask that
the petition for a writ of certiorari be granted.

ARGUMENT

Technology has progressed since this Court
decided Baker v. Selden, 101 U.S. 99 (1880). While the
nineteenth century saw great strides in the
development of programmable machines, the
“software” and “hardware” of the age were
predominantly paper tapes, punch cards and
electromechanical systems. Since then, the ability to
repurpose complex equipment without completely
reinventing them has become a fundamental driver of
innovation.

When a developer writes original software (or
“code” in vernacular), there is a universal
understanding that they hold protected rights in their

4

work.7 To enable collaborative development and
interoperability, however, developers must be free to
connect their own code to code that other developers
have written. This is commonly done through
software interfaces called Application Programming
Interfaces (APIs). Shared APIs are the established
industry mechanism that promotes innovation while
protecting the creative works of individual
developers. Without shared APIs, every device and
program is an island, and modern software
development simply cannot happen.

Interoperability through software interfaces
increases innovation by allowing independent
developers to build on the work of others.
Interoperability allows for independent innovation in
logically separate sections of a complex computer
program by defining how to pass information from one
program section to another. For instance, by using
software interfaces between the firmware of a mobile
device, its operating system, and the application
software developers have written, consumers can
freely add, delete and update apps without
purchasing a new phone.8 In fact, it is now easy for
users to port their entire application library from one

7 Developers often refer to writing computer software as “writing
code,” analogous to “writing prose” or “writing poetry” for other
authors. “Writing code” and the verb “coding” are equivalent
terms.
8 Traditionally, “hardware” refers to the physical aspects of a
device, while “software” is the broad term for programs that run
on hardware. “Firmware” is software that is semi-permanently
placed in hardware, often forming part of the interface between
the two.

5

device to another. Interoperability also allows
developers to specialize and thus creates efficiencies
in the use of scarce programming skills. Finally,
interoperability helps drive innovation by balancing
the market power of the various participants in a
complex software ecosystem.

It is critical for the developer community to
understand the intellectual property rights of the
various software ecosystem participants. The role of
both patent law and copyright law is to promote
innovation.9 Without clear and consistent rulings
from U.S. courts on the application of these rules to
modern software, developers will be reluctant to
collaborate or to create interoperable systems.

I. Software interfaces are the universally
accepted mechanism allowing developers
to write software that is interoperable
and independent of the underlying
hardware.

Just as specialization of labor revolutionized
the manufacturing sector, the ability to separate
hardware and software into interoperable parts has
revolutionized the technology industry. The key that
has unlocked software innovation is the ability for
software and hardware from many independent

9 See U.S. Const. art 1, § 8, cl. 8 (“Congress shall have Power . . .
To promote the Progress of Science and useful Arts, by securing
for limited Times to Authors and Inventors the exclusive Right
to their Writings and Discoveries”).

6

creators to interoperate with software and hardware
from many other independent creators.

The size and complexity of software projects is
growing steadily. A multi-player online game today
can contain five million lines of code, while a luxury
car might contain 100 million lines.10 Software
development no longer occurs only inside
corporations, but is now distributed both
geographically and across time zones, with many
independent developers contributing their effort and
knowledge to a single project. The distribution of
development effort is now so broad that any
particular developer can expect to work on many
software projects during their careers, often
concurrently.

To support the tremendous demand for new
software, the developer community has adopted a
number of universal practices. First, developers rely
on libraries of common software functions written by
others, rather than recode these functions themselves
for every project. This improves developer efficiency.
It is also standard practice for developers working on
large projects to coordinate the efforts of several
individuals and create interoperable code modules
that can be connected and reconnected to achieve the
larger programming goal. This allows developers to
specialize and to tackle larger tasks as part of a
community. Thirdly, industry has focused on isolating
the underlying device hardware from the software

10 An informative chart with comparable code sizes for various
technologies is available at
https://www.visualcapitalist.com/millions-lines-of-code/.

7

above it by adopting a number of more standardized
platforms that bridge the gap between generic
software and proprietary hardware. This creates
opportunities to develop software programs that run
on many different devices without having to rewrite
new code for each device. In all cases, the key enablers
are software interfaces that connect code blocks and
manage the controlled transfer of formatted
information between layers and blocks of software.

Because the use of software interfaces drives
such universal benefit, it is generally accepted in the
developer community that these structures should be
widely available and easy to implement. The result
has been the emergence of the open-source software
community to share code and publish APIs, and the
rise of software platforms like Java and Android to
enable greater interoperability across a wide range of
devices. It has also led to the emergence of reusable
software tools tailored to the most popular software
languages. A developer who can master these tools
gains efficiency, and can then apply these gains to a
wide range of projects. This in turn has led to
competition amongst the software tool builders to
capture a broad community of developers to increase
the value of their programming platform—a virtuous
cycle. Simply put, interoperability is a deeply
embedded principle in modern software development
today.

The next phase of technology evolution is
already upon us. Fully interoperable devices are being
linked together to form the internet of things (IoT).
Household appliances, mobile phones, computers,
wristwatches, doorbells and a vast array of sensors

8

and devices are already sharing information through
a dynamic and evolving network of interfaces. Even
more than in today’s software industry,
interoperability is a fundamental enabler of IoT. It is
estimated that the global economic productivity
resulting from IoT would drop by $77 billion over the
next eight years if current interoperability practices
were restricted.11

II. Developers rely on intellectual property
law to both protect their independent
work and promote their ability to work
collectively.

There is no doubt that a developer can hold a
copyright in the software they have written.12
Because modern software development is such a
collaborative enterprise, the current level of
innovation rests on the developer community’s shared
understanding of the “rules of the road.” In order for
collaborative development to occur, developers
acknowledge that others must be free to connect their
own code to code that is already written. This is done
through interfaces that rely on a shared knowledge of
the structure in which information must be passed.
Developers have long operated on the understanding
that these software interfaces could be shared while

11 Developers Alliance & NDP Analytics, Quantifying Risks to
Interoperability in the Software Industry (2017),
https://www.developersalliance.org/interoperability-report-
december-2017.
12 The legislative history of 17 U.S.C. § 102(b) makes this clear.
See H.R. Rep. No. 94-1476, at 56–57 (1976); S. Rep. No. 94-473,
at 54 (1975).

9

the enabling code behind them could remain
proprietary.

The advantage of this arrangement is that it
places no penalty on developers for sharing, and it
encourages market competition by creating a
mechanism for developers to easily call on the
comparable APIs of many competing implementing
code authors. More effective implementing code gets
re-used more often by the community, and thus the
community as a whole produces better software. The
reputation and prospects of the best authors rise
accordingly.

The Java programming language owes its
success to developer demands for an efficient way to
create interoperable software. It promised developers
a “write once, run anywhere” programming language
where their investment in learning and mastering the
programming tool would translate into better and
faster code production across many projects and in
many environments. In turn, Java’s creators were
able to market a platform to millions of hardware
designers that would bring a large and established
developer workforce to work on their projects. Java is
now one of the world’s most popular programming
languages and platforms.13 The key to this
remarkable ecosystem was the publication of free and
open APIs which enabled interoperability. Without
open APIs, it is unlikely that Java would have grown

13 Brief of Petitioner at 216a.

10

to be as popular as it is or that developers would
continue to support it.14

III. Control of APIs and software interfaces
will have a fundamental influence on the
future of software innovation.

The interoperability of software systems
hinges on the interfaces between the many
component parts. Who has rights to these interfaces,
and how those rights are allocated, is critical to the
future of software development. This cannot be
overstated.

If access to APIs remains separate and
independent of rights to the implementing code in the
background, then the ability to collaboratively create
interoperable software and hardware will proceed at
its current frenetic pace and the goals of intellectual
property law will be met. If, on the other hand, both
the use and implementation of APIs are subject to
arbitrary control, then these interfaces become a
choke point reducing innovation.

APIs exist at the interface between two
software environments. In most cases, the code on one
side is pre-written and waiting for appropriate
parameters to be passed so that it can execute and
perform its prescribed function. On the other side, the
assumption is that new code is regularly being

14 A recent study of developers’ views on APIs supports this
statement. Developers Voice Concerns over Court Ruling
Upending Use of APIs (2019),
https://www.developersalliance.org/spring-2019-api-survey.

11

written that seeks to pass the appropriate parameters
and off-load the effort of independently writing the
established code being called.

If APIs can be free and open on one side, but
owned and licensed on the other, then the value in the
platform implementing code can shift from the cost to
re-implement, to the cost to replace a developer
community invested in the related tools (once the
community is established). If, by extension, it
becomes common for all languages and platforms to
manufacture this value shift once their developer
communities mature, then developers will limit their
investment in any particular system, knowing its
popularity is finite, and efficiency and innovation will
suffer.

Developers also invest heavily in mastering a
particular programming language. Each
programming language is simply a syntax and
vocabulary for writing software; the underlying
logical structures are universal. But the more places
where a specific language can be used, and the more
portable the resulting code is, the more valuable a
language is to learn and to master. If someone builds
an interpreter and a library of APIs that allows this
common language to be used efficiently and in many
foreign contexts, then the language gains in
popularity and its attractiveness increases. The
interpreter itself has value to third parties as a
shortcut to a bottom-up reimplementation of the
enabling platform code. If the interpreter and APIs
are later restricted, however, developer investment in
the language is lost and innovation is reduced.

12

IV. Current case law has left it unclear how

and when a developer’s work is protected
intellectual property.

Both patent law and copyright exist to promote
creativity. The law does this by carefully balancing
the rights of creators in their works against the rights
of others to build upon existing art. In the case of
patents, strict examination and detailed boundaries
help ensure there is space for future innovation.
Copyright, however, is more fluid, and creators have
had to rely more heavily on exceptions, precedent and
analogy to define individual rights against future
creators.

This case is an ideal one for the Court to bring
established software practice into harmony with the
copyright framework. Software interfaces are a
critical component of a significant and highly
innovative industry. The ability for developers, most
of whom have no legal background, to proceed with
confidence in creating highly collaborative and
interoperable software systems relies on a clear
articulation of how laws apply to their work.

The current case has created confusion
amongst the lower courts and software developers
about the extent of copyright protection for certain
types of software. It has created further confusion as
to when it is appropriate to relax protections to
advance innovation. It has also created a mosaic of
conflicting opinions amongst the lower courts, leaving
developers confused about whether and where
established practices constitute copyright

13

infringement.15 The mosaic of conflicting opinions is
the most detrimental because software development
by its nature is widespread and often virtual, as is the
market for software.

Java and Android are both textbook examples
of interoperable platforms.16 The Java programming
language is one of the most popular programming
languages in which to develop interoperable
software.17 Throughout the long history of this
litigation, Google, Oracle, and amici have addressed
the application of copyright to the various component
parts of the Java and Android platforms.18 They have
also explored the application of fair use, scenes a faire,

15 For example, developers are now questioning whether
programming languages themselves are subject to copyright. See
Charles Duan, Can Copyright Protect a Language?, Slate (June
3, 2015), https://slate.com/technology/2015/06/oracle-v-google-
klingon-and-copyrighting-language.html.
16 A recent blog post on Google’s developer website cites 16,000
Google Play Certified android devices, and Oracle’s website
claims that 15 billion devices run Java. Mishaal Rahman, There
are nearly 16,000 Google Play Certified Android Devices, XDA
Developers (Apr. 17, 2018, 2:30 PM), https://www.xda-
developers.com/number-of-google-play-certified-android-
devices/; Go Java, https://go.java/index.html (last visited Feb. 20,
2019).
17 A recent developer survey found that almost seventy percent
of responding developers use Javascript. Most used
programming languages among developers worldwide, as of
early 2018, Statista,
https://www.statista.com/statistics/793628/worldwide-
developer-survey-most-used-languages/ (last visited Feb. 20,
2019).
18 See Brief of Petitioner at 1 (listing opinions below).

14

the merger doctrine, and creative versus functional
works.19

Further, the long history of this case has
provided a rich analysis of the specifics of the tools
and principles under review, but also of the many
ways that existing case law might be applied.20
Google, Oracle and amici have provided numerous
analogies from libraries to QWERTY keyboards, and
at various stages of litigation the lower courts and
amici have added to this growing list in an attempt to
anchor modern software development in the rich
history of creative works and copyright application.21

Finally, the long path through the lower courts
has brought focus to specific issues they cannot
resolve: the software interfaces so critical to
developers and their work. These interfaces are the
key to interoperability, a characteristic which already
defines modern technology development, and which
will be of paramount importance as the internet of
things grows in the years ahead.

19 Brief of Petitioner at 8–10; see generally Petitioner’s Appendix.
20 Brief of Petitioner at 8–10.
21 The many lower court analogies and holdings are found in
Brief of Petitioner in the extensive Appendix. For further
examples of amicus commentary and review, see Jonathan Band,
Interfaces on Trial 3.0: Oracle America v. Google and Beyond,
SSRN (Oct. 19, 2016), https://ssrn.com/abstract=2876853; see
also Peter S. Menell, Rise of the API Copyright Dead?: An
Updated Epitaph for Copyright Protection of Network and
Functional Features of Computer Software, 31 Harv. J. L. &
Tech. 305 (2018).

15

Developers and the industry they have built
require clarity on the boundaries of their rights if they
are to continue to innovate. If an interface is the
boundary between two co-dependent systems (where
each side must mirror the other, like toy building
blocks or a plug and socket), this Court is uniquely
capable of articulating the rights and obligations for
the participants on each side towards the other.
Alternatively, if an interface is a separate idea, like a
stream of binary digits or a metaphysical sheet of
glass which simply separates the shared landscape
into two viewpoints, then the Court can define rules
specific to interfaces themselves—meta-rules
applicable to all participants. What developers
require is a uniform understanding because the
number of interfaces being implemented across our
industry will grow exponentially in the years ahead.

16

CONCLUSION

To provide the requisite legal clarity and to
resolve the conflicting approaches and conclusions of
the lower courts, the petition for a writ of certiorari
should be granted.

Respectfully submitted,

James H. Hulme
Counsel of Record
Nadia A. Patel
ARENT FOX LLP
1717 K Street, NW
Washington, DC 20006
(202) 857-6000
james.hulme@arentfox.com

Bruce Gustafson
Developers Alliance
1015 7th Street, N.W., 2nd Floor
Washington, DC 20001
bruce@developersalliance.org

Attorneys for Amicus Curiae
Developers Alliance

