

APPENDIX

i

TABLE OF APPENDICES

Appendix A

Opinion of the United States Court of
Appeals for the Federal Circuit
(March 27, 2018).. App-1

Appendix B

Order Denying Renewed Motion for
Judgment as a Matter of Law and
Motion for a New Trial of the United
States District Court for the Northern
District of California
(September 27, 2016) .. App-56

Appendix C

Order Denying Rule 50 Motions of the
United States District Court for the
Northern District of California
(June 8, 2016) .. App-92

Appendix D

Opinion of the United States Court of
Appeals for the Federal Circuit
(May 9, 2014) ... App-121

Appendix E

Order Partially Granting and Partially
Denying Defendant’s Motion for
Summary Judgment on Copyright
Claim of the United States District
Court for Northern District of
California (Sept. 15, 2011) App-193

ii

Appendix F

Order on Motions for Judgment as a
Matter of Law of the United States
District Court for Northern District of
California (May 10, 2012) App-211

Appendix G

Order re Copyrightability of Certain
Replicated Elements of the Java
Application Programming Interface of
the United States District Court for
Northern District of California (May 31,
2012) ... App-212

Appendix H

Findings of Fact and Conclusions of
Law on Equitable Defenses of the
United States District Court for
Northern District of California (May 31,
2012) ... App-273

Appendix I

Final Judgment of the United States
District Court for Northern District of
California (June 20, 2012) App-277

Appendix J

Order Denying Motion for Judgment as
a Matter of Law and New Trial of the
United States District Court for the
Northern District of California (July 13,
2012) ... App-280

iii

Appendix K

Order Denying Motion for Judgment as
a Matter of Law and New Trial of the
United States District Court for the
Northern District of California (Sept. 4,
2012) ... App-281

Appendix L

Order on Petition for Rehearing En
Banc of the United States Court of
Appeals for the Federal Circuit
(August 28, 2018) .. App-283

Appendix M

17 U.S.C. § 101 .. App-285

17 U.S.C. § 102 .. App-298

17 U.S.C. § 107 .. App-299

1a

Appendix A

United States Court of Appeals
for the Federal Circuit

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE LLC,

Defendant-Cross-Appellant.

2017-1118, 2017-1202

Appeals from the United States District Court for the
Northern District of California in No. 3:10-cv-03561-

WHA, Judge William H. Alsup.

Decided: March 27, 2018

* * *

Before: O’MALLEY, PLAGER, and TARANTO, Circuit
Judges.

O’MALLEY, Circuit Judge.

This copyright case returns to us after a second jury
trial, this one focusing on the defense of fair use. Oracle
America, Inc. (“Oracle”) filed suit against Google Inc.

2a

(“Google”)1 in the United States District Court for the
Northern District of California, alleging that Google’s
unauthorized use of 37 packages of Oracle’s Java
application programming interface (“API packages”) in
its Android operating system infringed Oracle’s patents
and copyrights.

At the first trial, the jury found that Google infringed
Oracle’s copyrights in the Java Standard Edition
platform, but deadlocked on the question of whether
Google’s copying was a fair use.2 After the verdict,
however, the district court found that the API packages
were not copyrightable as a matter of law and entered
judgment for Google. Oracle Am., Inc. v. Google Inc., 872
F. Supp. 2d 974 (N.D. Cal. 2012). Oracle appealed that
determination to this court, and we reversed, finding that
declaring code and the structure, sequence, and
organization (“SSO”) of the Java API packages are
entitled to copyright protection. Oracle Am., Inc. v.
Google Inc., 750 F.3d 1339, 1348 (Fed. Cir. 2014). We
remanded with instructions to reinstate the jury’s
infringement verdict and for further proceedings on
Google’s fair use defense and, if appropriate, on damages.
Id. at 1381.

Google subsequently filed a petition for certiorari on
the copyrightability determination. The Supreme Court
called for the views of the Solicitor General, who
expressed agreement with our determination and
recommended denying review. The Supreme Court

1 In September 2017, Google converted from a corporation to a limited
liability company and changed its name to Google LLC, as reflected
in the amended caption.
2 The jury found no patent infringement, and the patent claims are not
at issue on appeal.

3a

denied certiorari in 2015. Google Inc. v. Oracle Am., Inc.,
135 S. Ct. 2887 (2015) (Mem.).

At the second jury trial, Google prevailed on its fair use
defense. After the jury verdict, the district court denied
Oracle’s motion for judgment as a matter of law (“JMOL”)
and entered final judgment in favor of Google. Oracle Am.,
Inc. v. Google Inc., No. C 10-03561, 2016 WL 3181206
(N.D. Cal. June 8, 2016) (“Order Denying JMOL”); Final
Judgment, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-
3561 (N.D. Cal. June 8, 2016), ECF No. 1989.

Oracle filed a renewed motion for JMOL and
separately moved for a new trial. The district court denied
both motions in a single order. Oracle Am., Inc. v. Google
Inc., No. C 10-03561, 2016 WL 5393938 (N.D. Cal. Sept.
27, 2016) (“Order Denying Renewed JMOL/New Trial”).
Consistent with these determinations, no damages verdict
was rendered.

Oracle now appeals from the district court’s final
judgment and its decisions denying Oracle’s motions for
JMOL and motion for a new trial. Google cross-appeals
from the final judgment purportedly to “preserv[e] its
claim that the declarations/SSO are not protected by
copyright law,” but advances no argument for why this
court can or should revisit our prior decision on
copyrightability. Cross-Appellant Br. 83.

Because we conclude that Google’s use of the Java API
packages was not fair as a matter of law, we reverse the
district court’s decisions denying Oracle’s motions for
JMOL and remand for a trial on damages. We also dismiss
Google’s cross-appeal.

4a

I. BACKGROUND

A. The Technology

Oracle’s predecessor, Sun Microsystems, Inc. (“Sun”),
developed the Java platform for computer programming
in the 1990s, and Oracle purchased Sun in 2010. The Java
platform is software used to write and run programs in the
Java programming language. It allows programmers to
write programs that “run on different types of computer
hardware without having to rewrite them for each
different type.” Oracle, 750 F.3d at 1348. With Java,
programmers can “write once, run anywhere.” Id.

The Java 2 Standard Edition (“Java SE”) of the
platform includes, among other things, the Java Virtual
Machine and the Java Application Programming
Interface (“API”). The Java API is a collection of “pre-
written Java source code programs for common and more
advanced computer functions.” Order Denying JMOL,
2016 WL 3181206, at *3. These APIs “allow programmers
to use the prewritten code to build certain functions into
their own programs rather than write their own code to
perform those functions from scratch. They are
shortcuts.” Oracle, 750 F.3d at 1349. The prewritten
programs are organized into packages, classes, and
methods. Specifically, an API package is a collection of
classes and each class contains methods and other
elements. “Each method performs a specific function,
sparing a programmer the need to write Java code from
scratch to perform that function.” Order Denying JMOL,
2016 WL 3181206, at *3.

To include a particular function in a program, the
programmer invokes the Java “declaring code.” As the
district court explained, the declaring code is the line or

5a

lines of source code that “declares or defines (i) the
method name and (ii) the input(s) and their type as
expected by the method and the type of any outputs.” Id.
at *4. After the declaring code, each method includes
“implementing code,” which takes the input(s) and gives
the computer step-by-step instructions to carry out the
declared function.

By 2008, Java SE included 166 API packages divided
into 3,000 classes containing more than 30,000 methods. At
issue in this appeal are 37 API packages from Java SE
Version 1.4 and Version 5.0. We have already concluded
that the declaring code and the SSO of the 37 Java API
packages at issue are entitled to copyright protection.
Oracle, 750 F.3d at 1348.

The Java programming language itself is free and
available for use without permission. At this stage, it is
undisputed that, to write in the Java programming
language, “62 classes (and some of their methods), spread
across three packages within the Java API library, must
be used. Otherwise the language itself will fail.” Order
Denying JMOL, 2016 WL 3181206, at *5. It is also
undisputed that anyone using the Java programming
language can write their own library of prewritten
programs to carry out various functions.

Although Oracle makes the Java platform freely
available to programmers building applications (“apps”),
it devised a licensing scheme to attract programmers
while simultaneously commercializing the platform. In
relevant part, Oracle charges a licensing fee to those who
want to use the APIs in a competing platform or embed
them in an electronic device. To preserve the “write once,
run anywhere” philosophy, Oracle imposes strict
compatibility requirements on licensees. Oracle, 750 F.3d

6a

at 1350. Oracle also made available without charge under
an open source license a version of Java called “Open-
JDK.” Order Denying JMOL, 2016 WL 3181206, at *10.
Oracle maintains, however, that OpenJDK came with an
important catch: any company that improved on the
packages in OpenJDK had to “ ‘give away those changes
for free’ to the Java community.” Appellant Br. 53.

The evidence showed that Oracle licensed Java in 700
million PCs by 2005. Although Oracle never successfully
developed its own smartphone platform using Java, it
licensed Java SE for mobile devices. According to Oracle,
the “mobile device market was particularly lucrative,” and
“Java quickly became the leading platform for developing
and running apps on mobile phones.” Appellant Br. 9.

B. Google’s Android Platform

In 2005, Google acquired Android, Inc. as part of a plan
to develop a software platform for mobile devices. That
same year, Google and Sun began discussing the
possibility of Google taking a license to use and adapt the
Java platform for mobile devices. Oracle, 750 F.3d at 1350.
The parties were unable to reach an agreement, in part
because Google wanted device manufacturers to be able to
use Oracle’s APIs in Android for free with no limits on
modifying the code, which would jeopardize the “write
once, run anywhere” philosophy.

The jury heard evidence that Google wanted to move
quickly to develop a platform that would attract Java
developers to build apps for Android. The Android team
had been working on creating its own APIs, but was
unable to do so successfully. After negotiations between
the parties reached an impasse, Google elected to “[d]o
Java anyway and defend [its] decision, perhaps making

7a

enemies along the way.” Order Denying JMOL, 2016 WL
3181206, at *6. It is undisputed that Google copied
verbatim the declaring code of the 37 Java API
packages— 11,500 lines of Oracle’s copyrighted code. It
also copied the SSO of the Java API packages. Google
then wrote its own implementing code.

Google announced its Android software platform for
mobile devices in 2007, and the first Android phones went
on sale the following year. Google provides the Android
platform free of charge to smartphone manufacturers and
publishes the source code for use without charge under an
open source license. Although Google does not directly
charge its users, Android has generated over $42 billion in
revenue from advertising. Oracle explains that Android
was “devastating” to its licensing strategy and that many
of its customers switched to Android. Appellant Br. 15.
Even customers who stayed with Oracle cited Android as
a reason to demand discounts. The jury heard evidence
that Amazon, which had entered into a license to use Java
for its Kindle tablet device, switched to Android for the
subsequently released Kindle Fire and then used the
existence of Android to leverage a steep discount from
Oracle on the next generation Kindle.

C. Remand Proceedings

In the first appeal, we held that the declaring code and
the SSO of the 37 API packages are entitled to copyright
protection and ordered the district court to reinstate the
jury’s infringement finding. Oracle, 750 F.3d at 1381. We
also considered Oracle’s argument that it was entitled to
judgment as a matter of law on Google’s fair use defense.
Although we found that Oracle’s position was “not without
force,” and that Google was overstating what could be fair
use under the law, we found that the record evidence

8a

regarding the relevant fair use factors was insufficiently
developed for us to resolve the issue on appeal. Oracle, 750
F.3d at 1376. In doing so, we pointed to sharp disputes
between the parties, both legal and factual, including
whether Google’s use was transformative, whether
“functional aspects of the package” and Google’s “desire
to achieve commercial ‘interoperability’” weighed in favor
of the second and third factors, and whether Android
caused market harm to Oracle. Id. at 1376-77. We
concluded that “due respect for the limit of our appellate
function” required remand. Id. at 1376.

During the pendency of the first appeal, Google’s
Android business expanded significantly. Android gained
new users and developers, and Google “released modified
implementations and derivatives of Android for use in
numerous device categories, including wearable devices
with small screens (Android Wear), dashboard interfaces
in cars (Android Auto), television sets (Android TV), and
everyday devices with Internet connectivity.” Oracle Am.,
Inc. v. Google Inc., No. C10-03561, 2016 WL 1743111, at
*1 (N.D. Cal. May 2, 2016) (“Order on Motion in
Limine”).

When the case returned to the district court, Oracle
filed a supplemental complaint adding allegations of
market harm and damages resulting from new versions of
Android released since the original complaint.
Specifically, Oracle alleged that Google had launched new
versions of Android for phones and tablets and had
expanded Android into new device categories. Id. Google
did not oppose the supplemental complaint, and the
district court granted Oracle’s motion to file it. But when
Oracle served expert reports that addressed versions of

9a

Java SE that were not at issue in the first trial, Google
moved to strike those reports. Id.

When the parties were unable to agree on the scope of
the retrial, the district court limited it to: (1) the two
versions of Java SE that Oracle asserted in the first trial;
and (2) released versions of Android used in smartphones
and tablets “which Google . . . agreed would be subject to
the prior jury’s adverse finding of infringement and which
Oracle identified in its supplemental complaint.” Id. The
court explained that Oracle retained the right to sue
Google for infringement with respect to the other versions
and implementations of Android in a separate trial or
proceeding. Order re: Google’s Motion to Strike at 2,
Oracle Am., Inc. v. Google Inc., No. 3:10-cv-3561 (N.D.
Cal. Feb. 5, 2016), ECF No. 1479. The court also granted
Google’s motion in limine to exclude all evidence of the
new Android products.

The district court bifurcated the issue of fair use from
willfulness and monetary remedies, and the trial on fair
use began on May 10, 2016. After roughly one week of
evidence and several days of deliberations, the jury found
that Google’s use of the declaring lines of code and the
SSO of the 37 API packages constituted fair use.

Oracle moved for JMOL, which the district court
denied. At the outset, the court noted that Oracle
stipulated before the jury “that it was fair to use the 62
‘necessary’ classes given that the Java programming
language itself was free and open to use without a license.”
Order Denying JMOL, 2016 WL 3181206, at *5. “That the
62 ‘necessary’ classes reside without any identification as
such within the Java API library (rather than reside
within the programming language),” the court explained,
“supports Google’s contention that the Java API library is

10a

simply an extension of the programming language itself
and helps explain why some view the Java API
declarations as free and open for use as the programming
language itself.” Id. Because Android and Java both
“presupposed the Java programming language in the first
place,” the court noted that a jury reasonably could have
found that it “was better for both to share the same SSO
insofar as they offered the same functionalities, thus
maintaining usage consistency across systems and
avoiding cross-system confusion.” Id. at *6.

The district court then considered each of the four
statutory fair use factors. As to factor one—the purpose
and character of the use—the court concluded that a
reasonable jury could have found that, although Google’s
use was commercial, it was transformative because Google
integrated only selected elements for mobile smartphones
and added its own implementing code. Id. at *7-9. With
respect to factor two—the nature of the copyrighted
work—the district court found that a reasonable jury
could have concluded that, “while the declaring code and
SSO were creative enough to qualify for copyright
protection,” they were not “highly creative,” and that
“functional considerations predominated in their design.”
Id. at *10.

As to factor three—the amount and substantiality of
the portion used—the court concluded that a reasonable
jury could have found that “Google copied only so much as
was reasonably necessary for a transformative use,” and
that the number of lines duplicated was minimal. Id.
Finally, as to factor four—market harm—the court
concluded that the jury “could reasonably have found that
use of the declaring lines of code (including their SSO) in
Android caused no harm to the market for the copyrighted

11a

works, which were for desktop and laptop computers.” Id.
The court determined that, on the record presented, the
jury could have found for either side and that the jury was
“reasonably within the record in finding fair use.” Id. at
*11.

Oracle subsequently renewed its motion for JMOL
and separately moved for a new trial challenging several
of the court’s discretionary decisions at trial. The district
court denied both motions in a single order. With respect
to JMOL, the court simply stated that it denied Oracle’s
renewed motion for the same reasons it denied the original
motion. With respect to the motion for a new trial, the
court rejected Oracle’s argument that the court abused its
discretion by limiting the evidence at trial to Google’s use
of Android in smartphones and tablets.

The court also rejected Oracle’s allegation that Google
engaged in discovery misconduct by withholding evidence
during discovery relating to Google’s App Runtime for
Chrome (“ARC”), which enabled laptops and desktops
running Google’s computer operating system to run
certain Android applications. Order Denying Renewed
JMOL/New Trial, 2016 WL 5393938, at *5. The court
found that Google had produced relevant documents
during discovery and that, in any event, those documents
pertained to issues beyond the scope of the retrial. Id. at
*7-8.

Finally, the district court rejected Oracle’s argument
that certain of the court’s evidentiary rulings were abuses
of discretion. The court explained that it: (1) redacted one
line from an email because it was “too inflammatory and
without foundation;” and (2) excluded other documents
because Oracle had withheld them as privileged until trial.
Id. at *9-12.

12a

On June 8, 2016, the district court entered final
judgment in favor of Google and against Oracle. Oracle
timely appealed from the district court’s judgment against
it, including the court’s underlying decisions denying its
motions for JMOL and for a new trial. Google timely
cross-appealed from all adverse orders and rulings
underlying that final judgment.

This court has exclusive jurisdiction over all appeals in
actions involving patent claims, including where, as here,
an appeal raises only non-patent issues. 28 U.S.C. §
1295(a)(1). Because copyright law is not within this court’s
exclusive jurisdiction, we apply the law of the regional
circuit in which the district court sits; here, the Ninth
Circuit. Atari Games Corp. v. Nintendo of Am., Inc., 975
F.2d 832, 837 (Fed. Cir. 1992).

II. ORACLE’S APPEAL

A. Legal Framework

It is undisputed that Google copied Oracle’s declaring
code and SSO for the 37 API packages verbatim. The
question is whether that copying was fair. “From the
infancy of copyright protection, some opportunity for fair
use of copyrighted materials has been thought necessary
to fulfill copyright’s very purpose, ‘to promote the
Progress of Science and useful Arts.’ ” Campbell v. Acuff-
Rose Music, Inc., 510 U.S. 569, 575 (1994) (quoting U.S.
Const., art. I, § 8, cl. 8). As the Supreme Court noted in
Campbell, “[i]n truth, in literature, in science and in art,
there are, and can be, few, if any, things, which in an
abstract sense, are strictly new and original throughout.
Every book in literature, science and art, borrows, and
must necessarily borrow, and use much which was well

13a

known and used before.” Id. (quoting Emerson v. Davies,
8 F. Cas. 615, 619 (C.C.D. Mass. 1845)).

The fair use defense began as a judge-made doctrine
and was codified in Section 107 of the 1976 Copyright Act.
Id. at 576. It operates as a limited exception to the
copyright holder’s exclusive rights and permits use of
copyrighted work if it is “for purposes such as criticism,
comment, news reporting, teaching . . ., scholarship, or
research.” 17 U.S.C. § 107. The “such as” language
confirms that the listing “was not intended to be
exhaustive,” but nevertheless “give[s] some idea of the
sort of activities the courts might regard as fair use under
the circumstances.” Harper & Row Publishers, Inc. v.
Nation Enters., 471 U.S. 539, 561 (1985) (citation omitted).

“Section 107 requires a case-by-case determination
whether a particular use is fair, and the statute notes four
nonexclusive factors to be considered.” Id. at 549. Those
factors include: (1) “the purpose and character of the use,
including whether such use is of a commercial nature or is
for nonprofit educational purposes;” (2) “the nature of the
copyrighted work;” (3) “the amount and substantiality of
the portion used in relation to the copyrighted work as a
whole;” and (4) “the effect of the use upon the potential
market for or value of the copyrighted work.” 17 U.S.C. §
107. The Supreme Court has cautioned against adopting
bright-line rules and has emphasized that all of the
statutory factors “are to be explored, and the results
weighed together, in light of the purposes of copyright.”
Campbell, 510 U.S. at 578.

The legislative history reveals that Congress intended
§ 107 “ ‘to restate the present judicial doctrine of fair use,
not to change, narrow, or enlarge it in any way’ and
intended that courts continue the common-law tradition of

14a

fair use adjudication.” Id. at 577 (quoting H.R. Rep. No.
94-1476, at 66 (1976), S. Rep. No. 94-473 at 62 (1975), U.S.
Code Cong. & Admin. News 5659, 5679 (1976)).
Accordingly, in balancing the four statutory factors,
courts consider “whether the copyright law’s goal of
‘promot[ing] the Progress of Science and useful Arts,’ U.S.
Const., art. 1, § 8, cl. 8, ‘would be better served by allowing
the use than by preventing it.’ ” Castle Rock Entm’t, Inc.
v. Carol Publ’g Grp., Inc., 150 F.3d 132, 141 (2d Cir. 1998)
(quoting Arica Inst., Inc. v. Palmer, 970 F.2d 1067, 1077
(2d Cir. 1992)).

Despite this guidance, the doctrine of fair use has long
been considered “the most troublesome in the whole law
of copyright.” Monge v. Maya Magazines, Inc., 688 F.3d
1164, 1170 (9th Cir. 2012) (quoting Dellar v. Samuel
Goldwyn, Inc., 104 F.2d 661, 662 (2d Cir. 1939) (per
curiam)). It both permits and requires “courts to avoid
rigid application of the copyright statute when, on
occasion, it would stifle the very creativity which that law
is designed to foster.” Campbell, 510 U.S. at 577 (quoting
Stewart v. Abend, 495 U.S. 207, 236 (1990)).

Because fair use is an affirmative defense to a claim of
infringement, Google bears the burden to prove that the
statutory factors weigh in its favor. Id. at 590. Not all of
the four factors must fatevor Google, however. See Wall
Data Inc. v. L.A. Cty. Sheriff’s Dep’t, 447 F.3d 769, 778
(9th Cir. 2006). Instead, “fair use is appropriate where a
‘reasonable copyright owner’ would have consented to the
use, i.e., where the ‘custom or public policy’ at the time
would have defined the use as reasonable.” Id. (citation
omitted).

On appeal, Oracle argues that each of the four
statutory factors weighs against a finding of fair use.

15a

Specifically, it submits that: (1) the purpose and character
of Google’s use was purely for commercial purposes; (2)
the nature of Oracle’s work is highly creative; (3) Google
copied 11,330 more lines of code than necessary to write in
a Java language-based program; and (4) Oracle’s
customers stopped licensing Java SE and switched to
Android because Google provided free access to it. In the
alternative, Oracle argues that it is entitled to a new trial
because the district court made several errors that
deprived it of a fair opportunity to present its case.
Because, as explained below, we agree with Oracle that
Google’s copying was not fair use as a matter of law, we
need not address Oracle’s alternative arguments for a new
trial.

B. Standards of Review

Before turning to a consideration of the four statutory
factors and any relevant underlying factual
determinations, we first address the standard of review
we are to employ in that consideration. While this section
of most appellate opinions presents easily resolvable
questions, like much else in the fair use context, that is not
completely the case here.

There are several components to this inquiry. First,
which aspects of the fair use determination are legal in
nature and which are factual? Particularly, is the ultimate
question of fair use a legal inquiry which is to be reviewed
de novo? Second, what factual questions are involved in
the fair use determination and under what standard are
those determinations to be reviewed? Finally, though
neither party addresses the question in detail, we consider
what, if any, aspects of the fair use determination are for
the jury to decide.

16a

The Supreme Court has said that fair use is a mixed
question of law and fact. Harper & Row, 471 U.S. at 560
(citing Pac. & S. Co. v. Duncan, 744 F.2d 1490, 1495 n.8
(11th Cir. 1984)). Merely characterizing an issue as a
mixed question of law and fact does not dictate the
applicable standard of review, however. See U.S. Bank
Nat’l Ass’n ex rel. CWCapital Asset Mgmt. LLC, No. 15-
1509, 2018 WL 1143822, at *5 (U.S. Mar. 5, 2018).

The Supreme Court has recently explained how we are
to determine what the standard of review should be in
connection with any mixed question of law and fact. Id.
Specifically, the Court made clear that an appellate court
is to break mixed questions into their component parts
and to review each under the appropriate standard of
review. Id. at *5-7. In U.S. Bank, the Supreme Court
considered the level of review to be applied to a
Bankruptcy Court’s determination of whether a creditor
in a bankruptcy action qualified as a “non-statutory
insider” for purposes of 11 U.S.C. § 1129(a). Id. at *3-4.
The Court found that there were three components to that
inquiry: (1) determining the legal standard governing the
question posed and what types of historical facts are
relevant to that standard; (2) finding what the historical
facts in the case at hand are; and (3) assessing whether the
historical facts found satisfy the legal test governing the
question to be answered. Id. at *4-5. As the Court
explained, the first of these three is a purely legal question
to be reviewed de novo on appeal and the second involves
factual questions which “are reviewable only for clear
error.” Id. at *4 (citing Fed. R. Civ. P. 52(a)(6) (clear error
standard)). The third is what the Court characterized as
the “mixed question.” Id. at *5.

17a

Importantly, the Court noted that “[m]ixed questions
are not all alike.” Id. The Court then held that “the
standard of review for a mixed question all depends—on
whether answering it entails primarily legal or factual
work.” Id. Where applying the law to the historical facts
“involves developing auxiliary legal principles of use in
other cases—appellate courts should typically review a
decision de novo.” Id. (citing Salve Regina College v.
Russell, 499 U.S. 225, 231-33 (1991)). But where the mixed
question requires immersion in case-specific factual issues
that are so narrow as to “utterly resist generalization,” the
mixed question review is to be deferential. Id. (quoting
Pierce v. Underwood, 487 U.S. 552, 561-62 (1988)).
Ultimately, the Court found that review of the mixed
question at issue in that bankruptcy context should be
deferential because de novo review of the question would
do little to “clarify legal principles or provide guidance to
other courts resolving other disputes.” Id. at *7.

While this may be the first time the Supreme Court
has so clearly explained how appellate courts are to
analyze mixed questions of law and fact, it is not the first
time the Supreme Court has told us how to analyze the
particular mixed question of law and fact at issue here. In
other words, while the Supreme Court has not previously
broken the fair use inquiry into its three analytical
components as expressly as it did the question in U.S.
Bank, it has made clear that both the first and third of
those components are subject to de novo review.

In Harper & Row, the Court explained that, “[w]here
the district court has found facts sufficient to evaluate
each of the statutory factors, an appellate court ‘need not
remand for further factfinding but may conclude as a
matter of law that the challenged use does not qualify as a

18a

fair use of the copyrighted
work.’ ” 471 U.S. at 560 (quoting Pac. & S. Co., 744 F.2d at
1495) (internal alterations omitted)). The Ninth Circuit
has resolved the question in the same way. Where fair use
is resolved on summary judgment, the Ninth Circuit
reviews the district court’s ultimate determination de
novo. SOFA Entm’t, Inc. v. Dodger Prods., Inc., 709 F.3d
1273, 1277 (9th Cir. 2013) (“Whether Dodger’s use of the
clip constitutes fair use is a mixed question of law and fact
that we review de novo.”). That court has explained that,
“as fair use is a mixed question of fact and law, so long as
the record is ‘sufficient to evaluate each of the statutory
factors,’ we may reweigh on appeal the inferences to be
drawn from that record.’ ” Mattel Inc. v. Walking
Mountain Prods., 353 F.3d 792, 800 (9th Cir. 2003)
(quoting L.A. News Serv. v. CBS Broad., Inc., 305 F.3d
924, 942 (9th Cir. 2002)).

This treatment of the ultimate question posed when a
fair use defense is raised makes sense. The fair use
question entails, in the words of U.S. Bank, a primarily
legal exercise. It requires a court to assess the inferences
to be drawn from the historical facts found in light of the
legal standards outlined in the statute and relevant case
law and to determine what conclusion those inferences
dictate. Because, as noted below, the historical facts in a
fair use inquiry are generally few, generally similar from
case to case, and rarely debated, resolution of what any set
of facts means to the fair use determination definitely does
not “resist generalization.” See U.S. Bank, 2018 WL
1143822, at *5. Instead, the exercise of assessing whether
a use is fair in one case will help guide resolution of that
question in all future cases.

19a

For these reasons, we conclude that whether the court
applied the correct legal standard to the fair use inquiry is
a question we review de novo, whether the findings
relating to any relevant historical facts were correct are
questions which we review with deference, and whether
the use at issue is ultimately a fair one is something we
also review de novo.

We have outlined the legal standard governing fair use
above. We consider below whether the court properly
applied those standards in the course of its fair use
analysis and whether it reached the correct legal
conclusion with respect to fair use. Before doing so, we
briefly discuss the historical facts relevant to the fair use
inquiry and consider the jury’s role in determining those
facts.

The Supreme Court has described “historical facts” as
“a recital of external events.” Thompson v. Keohane, 516
U.S. 99, 110 (1995); see also U.S. Bank, 2018 WL 1143822,
at *4 (describing the historical facts at issue there as facts
relating to “the attributes of a particular relationship or
the circumstances and terms of a prior transaction”). In
the fair use context, historical facts include the “origin,
history, content, and defendant’s use” of the copyrighted
work. Fitzgerald v. CBS Broad., Inc., 491 F. Supp. 2d 177,
184 (D. Mass. 2007); see also Lotus Dev. Corp. v. Borland
Int’l, Inc., 788 F. Supp. 78, 95 (D. Mass 1992) (defining
historical facts to include “who did what, where, and
when”). When asked at oral argument to identify
historical facts relevant to the fair use inquiry, counsel for
Oracle agreed that they are the “who, what, where, when,
how, [and] how much.” Oral Arg. at 3:28-54, available at
http://oralarguments.cafc.uscourts.gov/default.aspx?fl=2
0 17-1118.mp3. Google did not dispute this

20a

characterization. This is, in part, because, in most fair use
cases, defendants concede that they have used the
copyrighted work, and “there is rarely dispute over the
history, content, or origin of the copyrighted work.” See
Ned Snow, Judges Playing Jury: Constitutional
Conflicts in Deciding Fair Use on Summary Judgment,
44 U.C. Davis L. Rev. 483, 493 (2010).

While some courts once treated the entire question of
fair use as factual, and, thus, a question to be sent to the
jury, that is not the modern view.3 Since Harper & Row,
the Ninth Circuit has described fair use as an “equitable
defense.” Fisher v. Dees, 794 F.2d 432, 435 (9th Cir. 1986)
(“The fair-use doctrine was initially developed by courts
as an equitable defense to copyright infringement.”).
Indeed, the Supreme Court referred to fair use as “an
equitable rule of reason” in Harper & Row. 471 U.S. at
560. Congress did the same when it codified the doctrine
of fair use in 1976. See H.R. Rep. No. 94-1476, 94th Cong.,
2d Sess. 65-66 (1976), U.S. Code Cong. & Admin. News
1976, 5659, 5679-80 (“[S]ince the doctrine [of fair use] is an
equitable rule of reason, no generally applicable definition
is possible, and each case raising the question must be
decided on its own facts”). If fair use is equitable in
nature, it would seem to be a question for the judge, not
the jury, to decide, even when there are factual disputes
regarding its application. See Granite State Ins. Co. v.

3 In DC Comics, Inc. v. Reel Fantasy, Inc., 696 F.2d 24, 28 (2d Cir.
1982), the Second Circuit found that “[t]he four factors listed in
Section 107 raise essentially factual issues and, as the district court
correctly noted, are normally questions for the jury.” So too, Justice
Joseph Story described fair use as a “question of fact to come to a
jury” in 1845. Emerson v. Davies, 8 F. Cas. 615, 623–24 (C.C.D. Mass.
1845).

21a

Smart Modular Techs., Inc., 76 F.3d 1023, 1027 (9th Cir.
1996) (“A litigant is not entitled to have a jury resolve a
disputed affirmative defense if the defense is equitable in
nature.”). In that instance, it would be the judge’s factual
determinations that would receive a deferential review—
being assessed for clear error on the record before the
court.

That said, the Supreme Court has never clarified
whether and to what extent the jury is to play a role in the
fair use analysis. Harper & Row involved an appeal from
a bench trial where the district court concluded that the
use of the copyrighted material was not a fair use. Harper
& Row Publishers, Inc. v. Nation Enters., 723 F.2d 195,
199 (2d Cir. 1983). The Court, thus, had no reason to
discuss a jury determination of fair use and has not since
taken an opportunity to do so.

Perhaps because of this silence, even after Harper &
Row, several courts—including the Ninth Circuit—have
continued to accept the fact that the question of fair use
may go to a jury, albeit without analysis of why it may.
Compaq Comput. Corp. v. Ergonome Inc., 387 F.3d 403,
411 (5th Cir. 2004) (“The evidence presented at trial and
the reasonable inferences therefrom, when viewed
through the lens of the statutory fair use factors, support
the jury’s fair use finding.”); Jartech, Inc. v. Clancy, 666
F.2d 403, 407-08 (9th Cir. 1982) (concluding that
substantial evidence supported the jury’s verdict on fair
use); Fiset v. Sayles, No. 90-16548, 1992 WL 110263, at *4
(9th Cir. May 22, 1992) (finding that a reasonable jury
could have concluded that “the evidence supporting fair
use was not substantial”); see also BUC Int’l Corp. v. Int’l
Yacht Council, 489 F.3d 1129, 1137 (11th Cir. 2007) (noting
that the fair use defense went to the jury); N.Y. Univ. v.

22a

Planet Earth Found., 163 F. App’x 13, 14 (2d Cir. 2005)
(“As to the copyright infringement claim, the evidence
also supports the jury’s finding of fair use, under the four-
factored analysis prescribed by statute.”).

The Ninth Circuit has clarified, however, that the jury
role in this context is limited to determining disputed
“historical facts,” not the inferences or conclusions to be
drawn from those facts. See Fisher, 794 F.2d at 436. In
Fisher, for example, the court explained that “[n]o
material historical facts are at issue in this case. The
parties dispute only the ultimate conclusions to be drawn
from the admitted facts. Because, under Harper & Row,
these judgments are legal in nature, we can make them
without usurping the function of the jury.” Id.; see also
Seltzer v. Green Day, Inc., 725 F.3d 1170, 1175 (9th Cir.
2013) (“As in Fisher, ‘[n]o material historical facts are at
issue in this case. The parties dispute only the ultimate
conclusion to be drawn from the admitted facts.’ ” (citing
Fisher, 794 F.2d at 436)); Hustler Magazine, Inc. v. Moral
Majority, Inc., 606 F. Supp. 1526, 1532 (C.D. Cal. 1985)
(noting that “fair use normally is a question of fact for the
jury,” but concluding that “the issue of fair use, at least in
the context of this case, presents primarily a question of
law”). Accordingly, while inferences from the four-factor
analysis and the ultimate question of fair use are “legal in
nature,” in the Ninth Circuit, disputed historical facts
represent questions for the jury. Fisher, 794 F.2d at 436.
Where there are no disputed material historical facts, fair
use can be decided by the court alone. Id.

Despite this case law, all aspects of Google’s fair use
defense went to the jury with neither party arguing that it
should not. Thus, the jury was asked not just what the
historical facts were, but what the implications of those

23a

facts were for the fair use defense. During the first appeal,
Google argued to this court that there were disputed
issues of material historical fact relevant to its fair use
defense. As discussed below, the parties stipulated—or at
least ceased to dispute—some of those facts, and
presented the remaining disputed historical facts to the
jury on remand. The jury returned a verdict in favor of
Google on its fair use defense. Because the verdict form—
though captioned as a “special verdict”—did not ask the
jury to articulate its fact findings in any detail, we must
assume that the jury resolved all factual issues relating to
the historical facts in favor of the verdict.4 Despite the
posture of the fair use finding, we must break that finding
into its constituent parts. We must then review the
subsidiary and controverted findings of historical fact for
substantial evidence. See Seltzer, 725 F.3d at 1175; see
also Brewer v. Hustler Magazine, Inc., 749 F.2d 527, 528
(9th Cir. 1984) (“We may disturb a jury verdict only if the
evidence was insufficient as a matter of law.”).

All jury findings relating to fair use other than its
implied findings of historical fact must, under governing

4 As counsel for Oracle noted at oral argument, this is similar to the
standard we apply in obviousness cases. Oral Argument at 9:34–10:24.
Because obviousness is a mixed question of law and fact, we “first
presume that the jury resolved the underlying factual disputes in
favor of the verdict [] and leave those presumed findings undisturbed
if they are supported by substantial evidence. Then we examine the
[ultimate] legal conclusion [of obviousness] de novo to see whether it
is correct in light of the presumed jury fact findings.” Kinetic
Concepts, Inc. v. Smith & Nephew, Inc., 688 F.3d 1342, 1356–57 (Fed.
Cir. 2012) (quoting Jurgens v. McKasy, 927 F.2d 1552, 1557
(Fed. Cir. 1991)). Likewise, Google cited our decision in Kinetic
Concepts for the proposition that we must “presume that the jury
made all findings in support of the verdict that are supported by
substantial evidence.” Cross–Appellant Br. 35.

24a

Supreme Court and Ninth Circuit case law, be viewed as
advisory only. Accordingly, while we might assess the
jury’s role in the assessment of fair use differently if not
bound by Ninth Circuit law, we proceed on the assumption
both that: (1) it was not error to send the question to the
jury, because the Ninth Circuit has at least implicitly
endorsed doing so; and (2) we must assess all inferences
to be drawn from the historical facts found by the jury and
the ultimate question of fair use de novo, because the
Ninth Circuit has explicitly said we must do so.

The parties have identified the following historical
facts relating to Google’s use of the copyrighted work:

• the history and origin of the copyrighted work,
including what declaring code is;

• how much of the copyrighted work was copied;

• whether there were other ways to write the API
packages;

• whether the copied material was used for the same
purpose as in the original work;

• whether the use was commercial in nature;

• whether Google acted in bad faith in copying the
work;

• whether there are functional aspects to the
copyrighted work that make it less deserving of
protection; and

• whether there was harm to the actual or potential
markets for the copyrighted work.

The parties now agree on the resolution of the first
four factual questions: (1) what the declaring code is and
what it does in Java SE and Android, and that the code at

25a

issue was a work created by Oracle; (2) how many lines of
code were copied; (3) that there were other ways for
Google to write API packages; and (4) that Google used
the API packages in Android for the same purpose they
were created for in Java. The parties dispute, however, the
remaining historical facts they identified. We address
those disputes in the context of our assessment of the
statutory factors to which the respective historical fact is
relevant.

C. Applying the Fair Use Factors

Factor 1: The Purpose and Character of the Use

The first factor in the fair use inquiry involves “the
purpose and character of the use, including whether such
use is of a commercial nature or is for nonprofit
educational purposes.” 17 U.S.C. § 107(1). This factor has
two primary components: (1) whether the use is
commercial in nature, rather than for educational or
public interest purposes; and (2) “whether the new work
is transformative or simply supplants the original.” Wall
Data, 447 F.3d at 778 (citing Campbell, 510 U.S. at 579).
As explained below, the first is a question of fact and the
second is a question of law. As Oracle points out,
moreover, courts sometimes also consider whether the
historical facts support the conclusion that the infringer
acted in bad faith. See Harper & Row, 471 U.S. at 562. We
address each component in turn.

a. Commercial Use

Analysis of the first factor requires inquiry into the
commercial nature of the use. Use of the copyrighted work
that is commercial “tends to weigh against a finding of fair
use.” Harper & Row, 471 U.S. at 562. Courts have
recognized, however, that, “[s]ince many, if not most,

26a

secondary users seek at least some measure of commercial
gain from their use, unduly emphasizing the commercial
motivation of a copier will lead to an overly restrictive view
of fair use.” Am. Geophysical Union v. Texaco, Inc., 60
F.3d 913, 921 (2d Cir. 1994); see also Infinity Broad. Corp.
v. Kirkwood, 150 F.3d 104, 109 (2d Cir. 1998)
(“[N]otwithstanding its mention in the text of the statute,
commerciality has only limited usefulness to a fair use
inquiry; most secondary uses of copyrighted material,
including nearly all of the uses listed in the statutory
preamble, are commercial.”). Accordingly, although the
statute requires us to consider the “commercial nature” of
the work, “the degree to which the new user exploits the
copyright for commercial gain—as opposed to incidental
use as part of a commercial enterprise—affects the weight
we afford commercial nature as a factor.” Elvis Presley
Enters., Inc. v. Passport Video, 349 F.3d 622, 627 (9th Cir.
2003). “[I]t is undisputed that Google’s use of the declaring
code and SSO from 37 Java API packages served
commercial purposes.” Order Denying JMOL, 2016 WL
3181206, at *7. Although the jury was instructed that
commercial use weighed against fair use, the district court
explained that the jury “could reasonably have found that
Google’s decision to make Android available open source
and free for all to use had non-commercial purposes as
well (such as the general interest in sharing software
innovation).” Id.

On appeal, Oracle argues that Android is “hugely
profitable” and that “Google reaps billions from exploiting
Java in Android.” Appellant Br. 29. As such, Oracle

27a

maintains that no reasonable jury could have found
Android anything but “overwhelmingly commercial.” Id.5

Google responds that: (1) because it gives Android
away for free under an open source license the jury could
have concluded that Android has non-commercial
purposes; and (2) the jury could have reasonably found
that Google’s revenue flows from the advertisements on
its search engine which preexisted Android. Neither
argument has merit. First, the fact that Android is free of
charge does not make Google’s use of the Java API
packages noncommercial. Giving customers “for free
something they would ordinarily have to buy” can
constitute commercial use. A&M Records, Inc. v. Napster,
Inc., 239 F.3d 1004, 1015 (9th Cir. 2001) (finding that
“repeated and exploitative copying of copyrighted works,
even if the copies are not offered for sale, may constitute
a commercial use”). That Google might also have non-
commercial motives is irrelevant as a matter of law. As the
Supreme Court made clear when The Nation magazine
published excerpts from Harper & Row’s book, partly for
the purpose of providing the public newsworthy

5 Oracle also argues that Google conceded that its use was “entirely
commercial” during oral argument to this court in the first appeal.
Order Denying JMOL, 2016 WL 3181206, at *7 (“Q: But for purpose
and character, though, you don’t dispute that it was entirely a
commercial purpose. A: No.”). The district court treated this colloquy
as a judicial admission that Google’s use was “commercial.” Id. (noting
that the word “entirely” was “part of the give and take” of oral
argument). The court therefore instructed the jury that Google’s use
was commercial, but that it was up to the jury to determine the extent
of the commerciality. Id. at *8. Oracle does not challenge the district
court’s jury instructions on appeal. In any event, as the district court
noted, “even a wholly commercial use may still constitute fair use.” Id.
at *7 (citing Campbell, 510 U.S. at 585).

28a

information, the question “is not whether the sole motive
of the use is monetary gain but whether the user stands to
profit from exploitation of the copyrighted material
without paying the customary price.” Harper & Row, 471
U.S. at 562. Second, although Google maintains that its
revenue flows from advertisements, not from Android,
commerciality does not depend on how Google earns its
money. Indeed, “[d]irect economic benefit is not required
to demonstrate a commercial use.” A&M Records, 239
F.3d at 1015. We find, therefore, that, to the extent we
must assume the jury found Google’s use of the API
packages to be anything other than overwhelmingly
commercial, that conclusion finds no substantial
evidentiary support in the record. Accordingly, Google’s
commercial use of the API packages weighs against a
finding of fair use.

b. Transformative Use

Although the Copyright Act does not use the word
“transformative,” the Supreme Court has stated that the
“central purpose” of the first fair use factor is to
determine “whether and to what extent the new work is
transformative.” Campbell, 510 U.S. at 579.
Transformative works “lie at the heart of the fair use
doctrine’s guarantee of breathing space within the
confines of copyright, and the more transformative the
new work, the less will be the significance of other factors,
like commercialism, that may weigh against a finding of
fair use.” Id. (internal citation omitted).

A use is “transformative” if it “adds something new,
with a further purpose or different character, altering the
first with new expression, meaning or message.” Id. The
critical question is “whether the new work merely
supersede[s] the objects of the original creation . . . or

29a

instead adds something new.” Id. (citations and internal
quotation marks omitted). This inquiry “may be guided by
the examples given in the preamble to § 107, looking to
whether the use is for criticism, or comment, or news
reporting, and the like.” Id. at 578-79. “The Supreme
Court has recognized that parodic works, like other works
that comment and criticize, are by their nature often
sufficiently transformative to fit clearly under the fair use
exception.” Mattel Inc. v. Walking Mountain Prods., 353
F.3d 792, 800 (9th Cir. 2003) (citing Campbell, 510 U.S. at
579).

“Although transformation is a key factor in fair use,
whether a work is transformative is a often highly
contentious topic.” Seltzer, 725 F.3d at 1176. Indeed, a
“leading treatise on this topic has lamented the frequent
misuse of the transformation test, complaining that it has
become a conclusory label which is ‘all things to all people.’
” Id. (quoting Melville B. Nimmer & David Nimmer, 4
Nimmer on Copyright § 13.05[A][1][b], 13168-70 (2011)).

To be transformative, a secondary work must either
alter the original with new expression, meaning, or
message or serve a new purpose distinct from that of the
original work. Campbell, 510 U.S. at 579; Elvis Presley
Enters., 349 F.3d at 629. Where the use “is for the same
intrinsic purpose as [the copyright holder’s] . . . such use
seriously weakens a claimed fair use.” Worldwide Church
of God v. Phila. Church of God, Inc., 227 F.3d 1110, 1117
(9th Cir. 2000) (quoting Weissmann v. Freeman, 868 F.2d
1313, 1324 (2d Cir. 1989)).

Although “transformative use is not absolutely
necessary for a finding of fair use, the goal of copyright, to
promote science and the arts, is generally furthered by the
creation of transformative works.” Campbell, 510 U.S. at

30a

579 (citation and footnote omitted). As such, “the more
transformative the new work, the less will be the
significance of other factors, like commercialism, that may
weigh against a finding of fair use.” Id. Importantly, in the
Ninth Circuit, whether a work is transformative is a
question of law. See Mattel, 353 F.3d at 801 (explaining
that parody—a well-established species of transformative
use—“is a question of law, not a matter of public majority
opinion”); see also Fox News Network, LLC v. TVEyes,
Inc., No. 15-3885, 2018 WL 1057178, at *3-4 (2d Cir. Feb.
27, 2018) (reassessing whether the use in question was
transformative and deciding it was as a matter of law).

In denying JMOL, the district court explained that “of
course, the copied declarations serve the same function in
both works, for by definition, declaring code in the Java
programming language serves the [same] specific
definitional purposes.” Order Denying JMOL, 2016 WL
3181206, at *8.6 The court concluded, however, that the
jury could reasonably have found that Google’s selection
of some, but not all, of the Java API packages—“with new

6 According to the district court, if this fact were sufficient to defeat
fair use, “it would be impossible ever to duplicate declaring code as
fair use and presumably the Federal Circuit would have disallowed
this factor on the first appeal rather than remanding for a jury trial.”
Id. But in our prior decision, we remanded in part because Google
represented to this court that there were disputes of fact regarding
how Android was used and whether the APIs Google copied served
the same function in Android and Java. Oracle, 750 F.3d at 1376.
Without the benefit of briefs exploring the record on these issues, and
Google’s later agreement with respect to these facts, we concluded
that we could not say that there were no material facts in dispute. Id.
As explained previously, however, those facts are no longer in dispute.
The only question that remains regarding transformative use is
whether, on the now undisputed facts, Google’s use of the APIs was,
in fact, transformative.

31a

implementing code adapted to the constrained operating
environment of mobile smartphone devices,” together
with new “methods, classes, and packages written by
Google for the mobile smartphone platform”—constituted
“a fresh context giving new expression, meaning, or
message to the duplicated code.” Id. at *9.

On appeal, Oracle argues that Google’s use was not
transformative because it did not alter the APIs with “new
expression, meaning, or message.” Appellant Br. 29
(quoting Campbell, 510 U.S. at 579). Because Google
concedes that it uses the API packages for the same
purpose, Oracle maintains that it was unreasonable for
either the jury or the court to find that Google sufficiently
transformed the APIs to overcome its highly commercial
use.

Google responds that a reasonable jury could have
concluded that Google used a small portion of the Java
API packages to create a new work in a new context—
“Android, a platform for smartphones, not desktops and
servers.” Cross-Appellant Br. 37. Google argues that,
although the declarations and SSO may perform the same
functions in Android and Java, the jury could reasonably
find that they have different purposes because the “point
of Android was to create a groundbreaking platform for
smartphones.” Id. at 39.

Google’s arguments are without merit. As explained
below, Google’s use of the API packages is not
transformative as a matter of law because: (1) it does not
fit within the uses listed in the preamble to § 107; (2) the
purpose of the API packages in Android is the same as the
purpose of the packages in the Java platform; (3) Google
made no alteration to the expressive content or message

32a

of the copyrighted material; and (4) smartphones were not
a new context.

First, though not dispositive, we turn to the examples
given in the preamble to § 107, “looking to whether the use
is for criticism, or comment, or news reporting, and the
like.” Campbell, 510 U.S. at 578-79. Google’s use of the
Java API packages does not fit within the statutory
categories, and Google does not suggest otherwise.
Instead, Google cites Sony Computer Entertainment,
Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000), for
the proposition that the “Ninth Circuit has held other
types of uses—specifically including uses of computer
code—to be fair.” Cross-Appellant Br. 41. In Sony, the
court found that the defendant’s reverse engineering and
intermediate copying of Sony’s copyrighted software
system “was a fair use for the purpose of gaining access to
the unprotected elements of Sony’s software.” 203 F.3d at
602. The court explained that Sony’s software program
contained unprotected functional elements and that the
defendant could only access those elements through
reverse engineering. Id. at 603. The defendant used that
information to create a software program that let
consumers play games designed for Sony’s PlayStation
console on their computers. The court found that the
defendant’s use was only “modestly transformative”
where: (1) the defendant created “a wholly new product”
with “entirely new . . . code,” and (2) the intermediate
copying was performed to “produce a product that would
be compatible.” Id. at 606- 07. As Oracle points out, even
the “modest” level of transformation at issue in Sony is
more transformative than what Google did here: copy code
verbatim to attract programmers to Google’s “new and
incompatible platform.” Appellant Response Br. 21.

33a

It is undisputed that the API packages “serve the
same function in both works.” Order Denying JMOL,
2016 WL 3181206, at *8. And, as Oracle explains, the
historical facts relevant to transformative use are also
undisputed: what declaring code is, what it does in Java
and in Android, how the audience of computer developers
perceives it, how much Google took and added, what the
added code does, and why Google used the declaring code
and SSO. Indeed, Google conceded that “including the
declarations (and their associated SSO) was for the benefit
of developers, who—familiar with the Java programming
language—had certain expectations regarding the
language’s APIs.” Google’s Opp. to Oracle’s Rule 50(a)
Motion for JMOL at 20, Oracle Am., Inc. v. Google Inc.,
No. 3:10-cv-3561 (N.D. Cal. May 21, 2016), ECF No. 1935.
The fact that Google created exact copies of the declaring
code and SSO and used those copies for the same purpose
as the original material “seriously weakens [the] claimed
fair use.” See Wall Data, 447 F.3d at 778 (finding that,
where the “Sheriff’s Department created exact copies of
RUMBA’s software . . . [and] put those copies to the
identical purpose as the original software,” the use was not
transformative); see also Campbell, 510 U.S. at 580 (noting
that where the alleged infringer merely seeks “to avoid
the drudgery in working up something fresh,” any “claim
to fairness . . . diminishes accordingly”).

Google argues that Android is transformative because
Google selectively used the declarations and SSO of only
37 of the 166 Java SE API packages and wrote its own
implementing code. But taking only select passages of a
copyrighted work is, by itself, not transformative. See L.A.
News Serv. v. CBS Broad., Inc., 305 F.3d 924, 938-39 (9th
Cir. 2002) (“Merely plucking the most visually arresting

34a

excerpt from LANS’s nine minutes of footage cannot be
said to have added anything new.”). While, as discussed
below, the volume of work copied is relevant to the fair use
inquiry generally, thought must be given to the quality
and importance of the copied material, not just to its
relative quantity vis-à-vis the overall work. See Campbell,
510 U.S. at 586-87. To hold otherwise would mean that
verbatim copying could qualify as fair use as long as the
plagiarist stops short of taking the entire work. That
approach is inconsistent with settled law and is
particularly troubling where, as here, the portion copied is
qualitatively significant. See Harper & Row, 471 U.S. at
569 (finding that verbatim copying of 300 words from a
manuscript of more than 200,000 words was not a fair use);
see also Folsom v. Marsh, 9 F. Cas. 342, 345 (C.C.D. Mass
1841) (Story, J.) (“There must be real, substantial
condensation of the materials, and intellectual labor and
judgment bestowed thereon; and not merely the facile use
of the scissors; or extracts of the essential parts,
constituting the chief value of the original work.”).

That Google wrote its own implementing code is
irrelevant to the question of whether use of the APIs was
transformative. As we noted in the prior appeal, “no
plagiarist can excuse the wrong by showing how much of
his work he did not pirate.” Oracle, 750 F.3d at 1375
(quoting Harper & Row, 471 U.S. at 565). The relevant
question is whether Google altered “the expressive
content or message of the original work” that it copied—
not whether it rewrote the portions it did not copy. See
Seltzer, 725 F.3d at 1177 (explaining that a work is not
transformative where the user “makes no alteration to the
expressive content or message of the original work”). That
said, even where the allegedly infringing work “makes few

35a

physical changes to the original or fails to comment on the
original,” it will “typically [be] viewed as transformative
as long as new expressive content or message is
apparent.” Id. Here, however, there is no suggestion that
the new implementing code somehow changed the
expression or message of the declaring code. While
Google’s use could have been transformative if it had
copied the APIs for some other purpose—such as teaching
how to design an API—merely copying the material and
moving it from one platform to another without alteration
is not transformative.

Google’s primary argument on appeal is that Android
is transformative because Google incorporated the
declarations and SSO of the 37 API packages into a new
context—smartphones. But the record showed that Java
SE APIs were in smartphones before Android entered the
market. Specifically, Oracle presented evidence that Java
SE was in SavaJe mobile phones and that Oracle licensed
Java SE to other smartphone manufacturers, including
Danger and Nokia. Because the Java SE was already
being used in smartphones, Google did not “transform”
the copyrighted material into a new context and no
reasonable jury could conclude otherwise.7

In any event, moving material to a new context is not
transformative in and of itself—even if it is a “sharply
different context.” TCA Television Corp. v. McCollum,
839 F.3d 168, 181-83 (2d Cir. 2016) (finding that use “at

7 Because we conclude that smartphones were not a new context, we
need not address the argument, made by Oracle and certain amici,
that the district court’s order excluding evidence of Google’s use of
Android in multiple other circumstances—including laptops—tainted
the jury’s and the court’s ability to fairly assess the character of the
use.

36a

some length, almost verbatim,” of the copyrighted comedy
routine “Who’s on First?” in a dramatic play was not
transformative where the play neither “imbued the
Routine with any new expression, meaning, or message,”
nor added “any new dramatic purpose”). As previously
explained, a use becomes transformative only if it serves a
different purpose or alters the “expression, meaning, or
message” of the original work. Kelly, 336 F.3d at 818. As
such, “[c]ourts have been reluctant to find fair use when
an original work is merely retransmitted in a different
medium.” A&M Records, 239 F.3d at 1015. Accordingly,
although a change of format may be “useful,” it “is not
technically a transformation.” Infinity Broad., 150 F.3d at
108 n.2 (finding that retransmitting copyrighted radio
transmissions over telephone lines was not transformative
because there was no new expression, meaning, or
message).

The Ninth Circuit has stated that “[a] use is considered
transformative only where a defendant changes a
plaintiff’s copyrighted work or uses the plaintiff’s
copyrighted work in a different context such that the
plaintiff’s work is transformed into a new creation.”
Perfect 10, Inc. v. Amazon.com, Inc., 508 F.3d 1146, 1165
(9th Cir. 2007) (quoting Wall Data, 447 F.3d at 778). In
Perfect 10, for example, the court found Google’s use of
thumbnail versions of copyrighted images “highly
transformative” because, “[a]lthough an image may have
been created originally to serve an entertainment,
aesthetic, or informative function, a search engine
transforms the image into a pointer directing a user to a
source of information.” Id. Although the court discussed
the change in context (moving the copyrighted images into
the electronic reference tool), it emphasized that Google

37a

used the images “in a new context to serve a different
purpose.” Id. In reaching this conclusion, the court
reiterated that “even making an exact copy of a work may
be transformative so long as the copy serves a different
function than the original work.” Id. (citing Kelly, 336 F.3d
at 818-19). It is clear, therefore, that the change in context
alone was not dispositive in Perfect 10; rather, the change
in context facilitated the change in purpose, which made
the use transformative.

To some extent, any use of copyrighted work takes
place in a slightly different context than the original. And
of course, there is no bright line identifying when a use
becomes transformative. But where, as here, the copying
is verbatim, for an identical function and purpose, and
there are no changes to the expressive content or
message, a mere change in format (e.g., from desktop and
laptop computers to smartphones and tablets) is
insufficient as a matter of law to qualify as a
transformative use.8

c. Bad faith

In evaluating the “purpose and character” factor, the
Ninth Circuit applies “the general rule that a party
claiming fair use must act in a manner generally
compatible with principles of good faith and fair dealing.”
Perfect 10, 508 F.3d at 1164 n.8 (citing Harper & Row, 471
U.S. at 562-63). In part, this is based on the fact that, in
Harper & Row, the Supreme Court expressly stated that
“[f]air use presupposes ‘good faith’ and ‘fair dealing.’ ” 471

8 As some amici note, to hold otherwise could encroach upon the
copyright holder’s right to “prepare derivative works based upon the
copyrighted work.” 17 U.S.C. § 106(2); see Br. of Amicus Curiae N.Y.
Intell. Prop. L. Ass’n at 17–20.

38a

U.S. at 562 (citation omitted). It is also in part true
because, as the Ninth Circuit has said, one who acts in bad
faith should be barred from invoking the equitable defense
of fair use. Fisher, 794 F.2d at 436 (calling the principle of
considering the alleged infringer’s “bad conduct” as a “bar
[to] his use of the equitable defense of fair use” a sound
one).9

Consistent with this authority, and at Oracle’s request,
the district court instructed the jury that it could consider
whether Google acted in bad faith (or not) as part of its
assessment of the first fair use factor. Order Denying
JMOL, 2016 WL 3181206, at *6. And, because Oracle was
permitted to introduce evidence that Google acted in bad

9 As the district court recognized, there is some debate about whether
good or bad faith should remain relevant to the factor one inquiry.
Order Denying JMOL, 2016 WL 3181206, at *2 (“[T]here is a
respectable view that good or bad faith should no longer be a
consideration after the Supreme Court’s decision in Campbell.”); see
also Hon. Pierre N. Leval, Toward a Fair Use Standard, 103 Harv.
L. Rev. 1105, 1128 (1990) (“Whether the secondary use is within the
protection of the [fair use] doctrine depends on factors pertinent to
the objectives of the copyright law and not on the morality or motives
of either the secondary user or the copyright-owning plaintiff.”). In
Campbell, the Supreme Court expressed skepticism about “the
weight one might place on the alleged infringer’s state of mind.”
Campbell, 510 U.S. at 585 n.18. But the Ninth Circuit has not
repudiated its view that “ ‘the propriety of the defendant’s conduct’ is
relevant to the character of the use at least to the extent that it may
knowingly have exploited a purloined work for free that could have
been obtained for a fee.” L.A. News Serv. v. KCAL–TV Channel 9, 108
F.3d 1119, 1122 (9th Cir. 1997) (quoting Harper & Row, 471 U.S. at
562). For that reason, and because we conclude in any event that the
jury must have found that Google did not act in bad faith, we address
that question and the parties’ arguments relating thereto.

39a

faith, the court permitted Google to try to prove its good
faith. Id.

At trial, Oracle introduced evidence suggesting that
“Google felt it needed to copy the Java API as an
accelerant to bring Android to the market quicker” and
knew that it needed a license to use Java. Id. For its part,
Google presented evidence that it believed that the
declaring code and SSO were “free to use and re-
implement, both as a matter of developer practice and
because the availability of independent implementations
of the Java API enhanced the popularity of the Java
programming language, which Sun promoted as free for
all to use.” Id. at *7. Given this conflicting evidence, the
district court found that the jury could reasonably have
concluded that “Google’s use of parts of the Java API as
an accelerant was undertaken based on a good faith belief
that at least the declaring code and SSO were free to use
(which it did use), while a license was necessary for the
implementing code (which it did not use).” Id.

On appeal, Oracle argues that there was ample
evidence that Google intentionally copied Oracle’s
copyrighted work and knew that it needed a license to use
Java. Google responds that the jury heard sufficient
evidence of Google’s good faith based on industry custom
and was entitled to credit that evidence.

But, while bad faith may weigh against fair use, a
copyist’s good faith cannot weigh in favor of fair use.
Indeed, the Ninth Circuit has expressly recognized that
“the innocent intent of the defendant constitutes no
defense to liability.” Monge, 688 F.3d at 1170 (quoting 4
Melville B. Nimmer & David Nimmer, Nimmer on
Copyright § 13.08[B][1] (Matthew Bender rev. ed. 2011)).
If it were clear, accordingly, that the jury found fair use

40a

solely or even largely because it approved of Google’s
motives even if they were in bad faith, we would find such
a conclusion improper. Because evidence of Google’s good
faith was relevant to rebut evidence of its bad faith,
however, and there is no objection to the instructions to
the jury on this or any other point, we must assume that
the jury simply did not find the evidence of Google’s bad
faith persuasive.10 We note, moreover, that merely “being
denied permission to use a work does not weigh against a
finding of fair use.” Campbell, 510 U.S. at 585 n.18 (“If the
use is otherwise fair, then no permission need be sought
or granted.”). Ultimately, we find that, even assuming the
jury was unpersuaded that Google acted in bad faith, the
highly commercial and non-transformative nature of the
use strongly support the conclusion that the first factor
weighs against a finding of fair use.

Factor 2: Nature of the Copyrighted Work

The second factor—the nature of the copyrighted
work—“calls for recognition that some works are closer to
the core of intended copyright protection than others, with
the consequence that fair use is more difficult to establish
when the former works are copied.” Campbell, 510 U.S. at
586. This factor “turns on whether the work is
informational or creative.” Worldwide Church of God, 227
F.3d at 1118; see also Harper & Row, 471 U.S. at 563 (“The
law generally recognizes a greater need to disseminate

10 The jury was instructed that, “[i]n evaluating the extent to which
Google acted in good faith or not, you may take into account, together
with all other circumstances, the extent to which Google relied upon
or contravened any recognized practices in the industry concerning
reimplementation of API libraries.” Order Denying JMOL, 2016 WL
3181206, at *3 n.2. Oracle has not challenged this instruction on
appeal.

41a

factual works than works of fiction or fantasy.”). Creative
expression “falls within the core of the copyright’s
protective purposes.” Campbell, 510 U.S. at 586. Although
“software products are not purely creative works,” it is
well established that copyright law protects computer
software. Wall Data, 447 F.3d at 780 (citing Sega Enters.
Ltd. v. Accolade, Inc., 977 F.2d 1510, 1519 (9th Cir. 1992)
(“[T]he 1980 amendments to the Copyright Act
unambiguously extended copyright protection to
computer programs.”)).

Here, the district court found that the jury could have
concluded that the process of designing APIs was “highly
creative” and “thus at the core of copyright’s protection”
or it could “reasonably have gone the other way and
concluded that the declaring code was not highly
creative.” Order Denying JMOL, 2016 WL 3181206, at
*10. While the jury heard testimony from Google’s own
expert that API design is “an art, not a science,” other
witnesses emphasized the functional role of the declaring
code and the SSO and minimized the creative aspects. Id.
Accordingly, the district court concluded that the “jury
could reasonably have found that, while the declaring code
and SSO were creative enough to qualify for copyright
protection, functional considerations predominated in
their design.” Id.

On appeal, Oracle emphasizes that designing the APIs
was a highly creative process and that the organization of
the packages was not mandated by function. Indeed, this
court has already held that the declaring code and the SSO
of the 37 API packages at issue were sufficiently creative
and original to qualify for copyright protection. Oracle,
750 F.3d at 1356. According to Oracle, the district court

42a

erred in assuming that, because the APIs have a
“functional role,” they cannot be creative.

As Google points out, however, all we found in the first
appeal was that the declarations and SSO were
sufficiently creative to provide the “minimal degree of
creativity,” Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499
U.S. 340, 345 (1991), that is required for copyrightability.
We also recognized that a reasonable jury could find that
“the functional aspects of the packages” are “relevant to
Google’s fair use defense.” Oracle, 750 F.3d at 1369, 1376-
77. On remand, Oracle stipulated that some of the
declarations were necessary to use the Java language and
presented no evidence explaining how the jury could
distinguish the functionality and creativity of those
declarations from the others. Google maintains that it
presented evidence that the declarations and SSO were
functional and the jury was entitled to credit that
evidence.

Although it is clear that the 37 API packages at issue
involved some level of creativity—and no reasonable juror
could disagree with that conclusion—reasonable jurors
could have concluded that functional considerations were
both substantial and important. Based on that assumed
factual finding, we conclude that factor two favors a
finding of fair use.

The Ninth Circuit has recognized, however, that this
second factor “typically has not been terribly significant
in the overall fair use balancing.” Dr. Seuss Enters., L.P.
v. Penguin Books USA, Inc., 109 F.3d 1394, 1402 (9th Cir.
1997) (finding that the “creativity, imagination and
originality embodied in The Cat in the Hat and its central
character tilts the scale against fair use”); Mattel, 353
F.3d at 803 (similar). Other circuits agree. Fox News

43a

Network, 2018 WL 1057178, at *5 (“This factor ‘has rarely
played a significant role in the determination of a fair use
dispute,’ and it plays no significant role here.” (quoting
Authors Guild v. Google, Inc., 804 F.3d 202, 220 (2d Cir.
2015))). We note, moreover, that allowing this one factor
to dictate a conclusion of fair use in all cases involving
copying of software could effectively negate Congress’s
express declaration—continuing unchanged for some
forty years—that software is copyrightable. Accordingly,
though the jury’s assumed view of the nature of the
copyrighted work weighs in favor of finding fair use, it has
less significance to the overall analysis.

Factor 3: Amount and Substantiality of the Portion Used

The third factor focuses on the “amount and
substantiality of the portion used in . . . the context of the
copyrighted work, not the infringing work.” Oracle, 750
F.3d at 1375. Indeed, the statutory language makes clear
that “a taking may not be excused merely because it is
insubstantial with respect to the infringing work.”
Harper & Row, 471 U.S. at 565. “[T]he fact that a
substantial portion of the infringing work was copied
verbatim [from the original work] is evidence of the
qualitative value of the copied material, both to the
originator and to the plagiarist who seeks to profit from
marketing someone else’s copyrighted expression.” Id.
Thus, while “wholesale copying does not preclude fair use
per se, copying an entire work militates against a finding
of fair use.” Worldwide Church of God, 227 F.3d at 1118
(citation and quotation marks omitted). But, there is no
relevance to the opposite—i.e., adding substantial content
to the copyrighted work is not evidence that what was
copied was insubstantial or unimportant.

44a

The inquiry under this third factor “is a flexible one,
rather than a simple determination of the percentage of
the copyrighted work used.” Monge, 688 F.3d at 1179. The
Ninth Circuit has explained that this third factor looks to
the quantitative amount and qualitative value of the
original work used in relation to the justification for its
use. Seltzer, 725 F.3d at 1178. The percentage of work
copied is not dispositive where the portion copied was
qualitatively significant. Harper & Row, 471 U.S. at 566
(“In view of the expressive value of the excerpts and their
key role in the infringing work, we cannot agree with the
Second Circuit that the ‘magazine took a meager, indeed
an infinitesimal amount of Ford’s original
 language.’ ”(citation omitted)). Google is correct that the
Ninth Circuit has said that, “this factor will not weigh
against an alleged infringer, even when he copies the
whole work, if he takes no more than is necessary for his
intended use.” Id. (citing Kelly v. Arriba Soft Corp., 336
F.3d 811, 820-21 (9th Cir. 2003)). But the Ninth Circuit has
only said that is true where the intended use was a
transformative one, because the “extent of permissible
copying varies with the purpose and character of the use.”
Id. (quoting Campbell, 510 U.S. at 586-87). Here, we have
found that Google’s use was not transformative and
Google has conceded both that it could have written its
own APIs and that the purpose of its copying was to make
Android attractive to programmers. “Necessary” in the
context of the cases upon which Google relies does not
simply mean easier.

In assessing factor three, the district court explained
that the “jury could reasonably have found that Google
duplicated the bare minimum of the 37 API packages, just
enough to preserve inter-system consistency in usage,

45a

namely the declarations and their SSO only, and did not
copy any of the implementing code,” such that Google
“copied only so much as was reasonably necessary.” Order
Denying JMOL, 2016 WL 3181206, at *10. In reaching
this conclusion, the court noted that the jury could have
found that the number of lines of code Google duplicated
was a “tiny fraction of one percent of the copyrighted
works (and even less of Android, for that matter).” Id. We
disagree that such a conclusion would have been
reasonable or sufficient on this record.

On remand, the parties stipulated that only 170 lines
of code were necessary to write in the Java language. It is
undisputed, however, that Google copied 11,500 lines of
code—11,330 more lines than necessary to write in Java.
That Google copied more than necessary weighs against
fair use. See Monge, 688 F.3d at 1179 (finding that, where
the copyist “used far more than was necessary” of the
original work, “this factor weighs against fair use”). And,
although Google emphasizes that it used a small
percentage of Java (11,500 lines of declarations out of
roughly 2.86 million lines of code in the Java SE libraries),
it copied the SSO for the 37 API packages in its entirety.

The district court emphasized Google’s desire to
“preserve inter-system consistency” to “avoid confusion
among Java programmers as between the Java system
and the Android system.” Order Denying JMOL, 2016
WL 3181206, at *10-11. As we noted in the prior appeal,
however, Google did not seek to foster any “inter-system
consistency” between its platform and Oracle’s Java
platform. Oracle, 750 F.3d at 1371. And Google does not

46a

rely on any interoperability arguments in this appeal.11
Google sought “to capitalize on the fact that software
developers were already trained and experienced in using
the Java API packages at issue.” Id. But there is no
inherent right to copy in order to capitalize on the
popularity of the copyrighted work or to meet the
expectations of intended customers. Taking those aspects
of the copyrighted material that were familiar to software
developers to create a similar work designed to be popular
with those same developers is not fair use. See Dr. Seuss
Enters., 109 F.3d at 1401 (copying the most famous and
well recognized aspects of a work “to get attention” or “to
avoid the drudgery in working up something fresh” is not
a fair use (quoting Campbell, 510 U.S. at 580)).

Even assuming the jury accepted Google’s argument
that it copied only a small portion of Java, no reasonable
jury could conclude that what was copied was qualitatively
insignificant, particularly when the material copied was
important to the creation of the Android platform. Google
conceded as much when it explained to the jury the
importance of the APIs to the developers it wished to
attract. See Tr. of Proceedings held on 5/16/16 at 106:8-14,
Oracle Am., Inc. Google Inc., No. 3:10-cv-3561 (N.D. Cal.
May 20, 2016), ECF No. 1930; Id. at 134:6-11. Indeed,
Google’s own expert conceded that “it was a sound

11 In the prior appeal, we noted that “Google’s competitive desire to
achieve commercial ‘interoperability’ . . . may be relevant to a fair use
analysis.” Oracle, 750 F.3d at 1376–77. But, although several amici in
this appeal discuss interoperability concerns, Google has abandoned
the arguments it once made about interoperability. This change in
course is not surprising given the unrebutted evidence that Google
specifically designed Android to be incompatible with the Java
platform and not allow for interoperability with Java programs. Id. at
1371.

47a

business practice for Google to leverage the existing
community of developers, minimizing the amount of new
material and maximizing existing knowledge,” even
though Google also conceded that it could have written the
APIs differently to achieve the same functions. Id. at
144:5-10. For these reasons, we find that the third factor
is, at best, neutral in the fair use inquiry, and arguably
weighs against such a finding.

Factor 4: Effect Upon the Potential Market

The fourth and final factor focuses on “the effect of the
use upon the potential market for or value of the
copyrighted work.” 17 U.S.C. § 107(4). This factor reflects
the idea that fair use “is limited to copying by others which
does not materially impair the marketability of the work
which is copied.” Harper & Row, 471 U.S. at 566-67. It
requires that courts “consider not only the extent of
market harm caused by the particular actions of the
alleged infringer, but also whether unrestricted and
widespread conduct of the sort engaged in by the
defendant . . . would result in a substantially adverse
impact on the potential market for the original.”
Campbell, 510 U.S. at 590 (citation and quotation marks
omitted).

The Supreme Court once said that factor four is
“undoubtedly the single most important element of fair
use.” Harper & Row, 471 U.S. at 566. In its subsequent
opinion in Campbell, however, the Court emphasized that
none of the four factors can be viewed in isolation and that
“[a]ll are to be explored, and the results weighed together,
in light of the purposes of copyright.” 510 U.S. at 578; see
also Infinity Broad., 150 F.3d at 110 (“Historically, the
fourth factor has been seen as central to fair use analysis,
although the Supreme Court appears to have backed away

48a

from this position.” (internal citation omitted)). The Court
has also explained that “[m]arket harm is a matter of
degree, and the importance of this factor will vary, not
only with the amount of harm, but also with the relative
strength of the showing on the other factors.” Campbell,
510 U.S. at 590 n.21.

The Ninth Circuit recently indicated that likely
market harm can be presumed where a use is “commercial
and not transformative.” Disney Enters., Inc. v.
VidAngel, Inc., 869 F.3d 848, 861 (9th Cir. 2017) (citing
Leadsinger, 512 F.3d at 531, for the proposition that,
where a use “was commercial and not transformative, it
was not error to presume likely market harm”). That
presumption allegedly traces back to Sony Corp. of
America v. University City Studios, Inc., 464 U.S. 417,
451 (1984), where the Supreme Court stated that, “[i]f the
intended use is for commercial gain, that likelihood [of
future harm] may be presumed. But if it is for a
noncommercial purpose, the likelihood must be
demonstrated.” The Supreme Court has since clarified
that market impact, “no less than the other three [factors],
may be addressed only through a ‘sensitive balancing of
interests’ ” and that earlier interpretations of Sony to the
contrary were incorrect. Campbell, 510 U.S. at 590 n.21
(quoting Sony, 464 U.S. at 455 n.40);12 see also Monge, 688
F.3d at 1181 (cautioning against overemphasis on a
presumption of market harm after Campbell). On this
point, we must apply clear Supreme Court precedent

12 The Court noted, however, that “what Sony said simply makes
common sense: when a commercial use amounts to mere duplication
of the entirety of an original, it clearly ‘supersede[s] the objects,’ of
the original and serves as a market replacement for it, making it likely
that cognizable market harm to the original will occur.” Id. at 591.

49a

rather than the more recent Ninth Circuit’s statements to
the contrary.

In evaluating the fourth factor, courts consider not
only harm to the actual or potential market for the
copyrighted work, but also harm to the “market for
potential derivative uses,” including “those that creators
of original works would in general develop or license
others to develop.” Campbell, 510 U.S. at 592; see also
A&M Records, 239 F.3d at 1017 (“[L]ack of harm to an
established market cannot deprive the copyright holder of
the right to develop alternative markets for the works.”).
A court can therefore consider the challenged use’s
“impact on potential licensing revenues for traditional,
reasonable, or likely to be developed markets.” Swatch
Grp. Mgmt. Servs. Ltd. v. Bloomberg L.P., 756 F.3d 73, 91
(2d Cir. 2014) (citation omitted); see also Seltzer, 725 F.3d
at 1179 (“This factor also considers any impact on
‘traditional, reasonable, or likely to be developed
markets.’ ” (citation omitted)).

Also relevant to the inquiry is the fact that a copyright
holder has the exclusive right to determine “when,
‘whether and in what form to release’ ” the copyrighted
work into new markets, whether on its own or via a
licensing agreement. Monge, 688 F.3d at 1182 (quoting
Harper & Row, 471 U.S. at 553). Indeed, the Ninth Circuit
has recognized that “[e]ven an author who had disavowed
any intention to publish his work during his lifetime” was
entitled to copyright protection because: (1) “the relevant
consideration was the ‘potential market’ ” and (2) “he has
the right to change his mind.” Worldwide Church, 227
F.3d at 1119 (citing Salinger v. Random House, Inc., 811
F.2d 90, 99 (2d Cir. 1987)); see also Micro Star v. Formgen
Inc., 154 F.3d 1107, 1113 (9th Cir. 1998) (noting that only

50a

the copyright holder “has the right to enter that market;
whether it chooses to do so is entirely its business”).

Here, the district court concluded that the jury “could
reasonably have found that use of the declaring lines of
code (including their SSO) in Android caused no harm to
the market for the copyrighted works, which were for
desktop and laptop computers.” Order Denying JMOL,
2016 WL 3181206, at *10. In reaching this conclusion, the
district court noted that, before Android was released,
Sun made all of the Java API packages available for free
and open source under the name OpenJDK, subject only
to the terms of a general public license. Id. According to
the district court, the jury could have concluded that
“Android’s impact on the market for the copyrighted
works paralleled what Sun already expected via its Open-
JDK.” Id.

On appeal, Oracle argues that the evidence of actual
and potential harm stemming from Google’s copying was
“overwhelming,” and that the district court erred as a
matter of law in concluding otherwise. Appellant Br. 52.
We agree.

First, with respect to actual market harm, the evidence
showed that Java SE had been used for years in mobile
devices, including early smartphones, prior to Android’s
release. Specifically, the jury heard testimony that Java
SE was already in smartphones, including Blackberry,
SavaJe, Danger, and Nokia. That Android competed
directly with Java SE in the market for mobile devices is
sufficient to undercut Google’s market harm arguments.
With respect to tablets, the evidence showed that Oracle
licensed Java SE for the Amazon Kindle. After Android’s
release, however, Amazon was faced with two competing

51a

options—Java SE and Android—and selected Android.13
The jury also heard evidence that Amazon later used the
fact that Android was free to negotiate a steep discount to
use Java SE in its newer e-reader. In other words, the
record contained substantial evidence that Android was
used as a substitute for Java SE and had a direct market
impact. Given this evidence of actual market harm, no
reasonable jury could have concluded that there was no
market harm to Oracle from Google’s copying.

Even if there were a dispute about whether Oracle was
licensing Java SE in smartphones at the time Android
launched, moreover, “fair use focuses on potential, not
just actual, market harm.” Monge, 688 F.3d at 1181.
Accordingly, although the district court focused
exclusively on the market it found that Oracle had already
entered—desktops and laptops—it should have
considered how Google’s copying affected potential
markets Oracle might enter or derivative works it might
create or license others to create. See Campbell, 510 U.S.
at 590. Licensing Java SE for smartphones with increased
processing capabilities was one such potential new
market. And the fact that Oracle and Google engaged in
lengthy licensing negotiations demonstrates that Oracle
was attempting to license its work for mobile devices,
including smartphones.14 Smartphones were, therefore, a

13 Google submits that the jury could have discounted this evidence
because the Java SE APIs were available for free through OpenJDK.
But Amazon moved from Java to Android—not to OpenJDK. And the
evidence of record makes clear that device manufacturers did not view
OpenJDK as a commercially viable alternative to using Java SE
because any improvement to the packages in OpenJDK had to be
given away for free to the Java community.
14 Of course, the fact that those negotiations were not successful does
not factor into the analysis. Campbell, 510 U.S. at 585 n.18, (“If the

52a

“traditional, reasonable, or likely to be developed
market.” See Swatch Grp., 756 F.3d at 91; see also Seltzer,
725 F.3d at 1179.

Google argues that a reasonable jury could have
concluded that Java SE and Android did not compete in
the same market because Oracle: (1) was not a device
maker; and (2) had not yet built its own smartphone
platform. Neither argument has merit. That Oracle never
built a smartphone device is irrelevant because potential
markets include licensing others to develop derivative
works. See Campbell, 510 U.S. at 592. The fact that Oracle
had not yet developed a smartphone platform is likewise
irrelevant as a matter of law because, as Oracle submits, a
market is a potential market even where the copyright
owner has no immediate plans to enter it or is unsuccessful
in doing so. See Worldwide Church, 227 F.3d at 1119;
Micro Star, 154 F.3d at 1113. Even assuming a reasonable
jury could have found no current market harm, the
undisputed evidence showed, at an minimum, that Oracle
intended to license Java SE in smartphones; there was no
evidence in the record to support any contrary conclusion.
Because the law recognizes and protects a copyright
owner’s right to enter a “potential market,” this fact alone
is sufficient to establish market impact.

Given the record evidence of actual and potential
harm, we conclude that “unrestricted and widespread
conduct of the sort engaged in by” Google would result in
“a substantially adverse impact on the potential market
for the original” and its derivatives. See Campbell, 510

use is otherwise fair, then no permission need be sought or granted.
Thus, being denied permission to use a work does not weigh against a
finding of fair use.”). Such evidence was only relevant to show Oracle’s
interest in the potential market for smartphones.

53a

U.S. at 590 (citation and quotation marks omitted).
Accordingly, the fourth factor weighs heavily in favor of
Oracle.

Balancing the Four Factors

Having undertaken a case-specific analysis of all four
factors, we must weigh the factors together “in light of the
purposes of copyright.” Campbell, 510 U.S. at 578. We
conclude that allowing Google to commercially exploit
Oracle’s work will not advance the purposes of copyright
in this case. Although Google could have furthered
copyright’s goals of promoting creative expression and
innovation by developing its own APIs, or by licensing
Oracle’s APIs for use in developing a new platform, it
chose to copy Oracle’s creative efforts instead. There is
nothing fair about taking a copyrighted work verbatim
and using it for the same purpose and function as the
original in a competing platform.

Even if we ignore the record evidence and assume that
Oracle was not already licensing Java SE in the
smartphone context, smartphones were undoubtedly a
potential market. Android’s release effectively replaced
Java SE as the supplier of Oracle’s copyrighted works and
prevented Oracle from participating in developing
markets. This superseding use is inherently unfair.

On this record, factors one and four weigh heavily
against a finding of fair use, while factor two weighs in
favor of such a finding and factor three is, at best, neutral.
Weighing these factors together, we conclude that
Google’s use of the declaring code and SSO of the 37 API
packages was not fair as a matter of law.

We do not conclude that a fair use defense could never
be sustained in an action involving the copying of

54a

computer code. Indeed, the Ninth Circuit has made it
clear that some such uses can be fair. See Sony, 203 F.3d
at 608; Sega, 977 F.2d at 1527-28. We hold that, given the
facts relating to the copying at issue here—which differ
materially from those at issue in Sony and Sega—Google’s
copying and use of this particular code was not fair as a
matter of law.

III. GOOGLE’S CROSS-APPEAL

Google cross-appeals from the district court’s final
judgment solely to “preserv[e] its claim that the
declarations/SSO are not protected by copyright law.”
Cross-Appellant Br. 83. Specifically, Google maintains
that the declaring code and SSO are: (1) an unprotected
“method of operation” under 17 U.S.C. § 102(b), because
they allow programmers to operate the pre-written
programs of the Java language; and (2) subject to the
merger doctrine. We resolved these issues against Google
in the first appeal, finding that the declaring code and the
SSO of the 37 API packages at issue are entitled to
copyright protection. Oracle, 750 F.3d at 1354.

Google did not petition this court for rehearing and
instead filed a petition for a writ of certiorari asking the
Supreme Court to determine whether our copyrightability
determination was in error. Oracle responded to the
petition, and the Supreme Court invited the Solicitor
General to express the views of the United States. The
government agreed that Oracle’s computer code is
copyrightable, and the Supreme Court denied Google’s
petition in June 2015. Google, Inc. v. Oracle Am., Inc., 135
S. Ct. 2887 (2015).

Google neither asks the panel for relief on the
copyrightability issue nor offers any arguments on that

55a

issue. We remain convinced that our earlier
copyrightability decision was consistent with Congress’s
repeated directives on the subject. Accordingly, we
provide no relief to Google on its cross-appeal, finding a
ruling on it unnecessary.

IV. CONCLUSION

For the foregoing reasons, we conclude that Google’s
use of the 37 Java API packages was not fair as a matter
of law. We therefore reverse the district court’s decisions
denying Oracle’s motions for JMOL and remand for a trial
on damages. The district court may determine the
appropriate vehicle for consideration of infringement
allegations regarding additional uses of Android. We
dismiss Google’s cross-appeal.

REVERSED AND REMANDED;

CROSS-APPEAL DISMISSED

COSTS

No costs.

56a

Appendix B

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER DENYING RENEWED MOTION FOR
JUDGMENT AS A MATTER OF LAW AND

MOTION FOR A NEW TRIAL

INTRODUCTION

In this copyright infringement action, the jury found
the accused infringement constituted fair use. The
copyright owner now renews its motion for judgment as a
matter of law and separately moves for a new trial. For
the reasons stated below, both motions are DENIED.

STATEMENT

The history of this case appears earlier (Dkt. No.
1988). In brief, Oracle America, Inc., formerly Sun
Microsystems, Inc., has sued Google Inc. for copyright
infringement with respect to Google’s “reimplementation”
of certain API packages in copyrighted Java 2 Standard
Edition Versions 1.4 and 5. Following remand from the
Federal Circuit, this action proceeded to a second jury
trial on fair use, infringement otherwise having been
established in the first trial as to certain uses. A pretrial

57a

order divided the second trial into phases. Phase one
addressed defendant Google’s fair use defense. Had the
jury found for Oracle during phase one, the same jury
would have determined willfulness and monetary
remedies in phase two. A third phase, before the judge
only, would have determined whether Oracle deserved
equitable remedies, including whether Google had
equitable defenses.

In phase one, the ten-person jury returned a
unanimous verdict finding that Google had carried its
burden on the defense of fair use. A comprehensive order
denied both sides’ motions for judgment as a matter of
law, so judgment was entered in Google’s favor (Dkt. No.
1988).

Oracle now repeats its motion for judgment, adding a
further motion for a new trial under Rule 59. This order
follows full briefing, oral argument, and supplemental
declarations addressing discovery issues raised in support
of a new trial request.

ANALYSIS

1. RENEWED MOTION FOR JUDGMENT AS A MATTER

OF LAW.

Oracle’s new Rule 50 motion is denied for the same
reasons as its old one (Dkt. No. 1988).1

2. MOTION FOR A NEW TRIAL.

1 Oracle’s argument that it is entitled to a new trial because the verdict
was against the weight of the evidence, which incorporates by
reference its brief on the motion for judgment as a matter of law, fails
for the same reason.

58a

Pursuant to Rule 59(a)(1)(A), a court may grant a new
trial “for any reason for which a new trial has heretofore
been granted in an action at law.” Rule 61 provides that
“no error in admitting or excluding evidence” constitutes
a ground for granting a new trial “unless justice so
requires.” A district court has broad discretion in deciding
whether to admit or exclude evidence. Ruvalcaba v. City
of Los Angeles, 64 F.3d 1323, 1328 (9th Cir. 1995). A
district court also has broad discretion in deciding
whether to bifurcate a trial. See Danjaq LLC v. Sony
Corp., 263 F.3d 942, 961–62 (9th Cir. 2001). To warrant a
new trial on these grounds, the movant must show that the
Court’s rulings constituted an abuse of discretion plus
caused it substantial prejudice.

Oracle’s motion for a new trial challenges several
discretionary decisions made at trial. Oracle’s primary
argument, however, is that Google perpetrated discovery-
concealment misconduct. The charged misconduct, Oracle
says, rates as a “game changer.” For important context,
however, this order first addresses Oracle’s related
contention that the Court abused its discretion in limiting
the trial to Android as used in smartphones and tablets,
postponing all other uses to later trials.

A. New Device Categories and Scope of Trial.

The original trial in 2010 covered Android versions
called 1.0, 1.1, Cupcake, Donut, Eclair, and Froyo, as used
in smartphones and tablets. The original jury found those
version infringed but deadlocked over fair use. On
remand, the issue arose whether to retry that same case
taking the infringement verdict as a given and postponing
later developments to a future trial versus whether to
expand the retrial to include post-2010 developments, a
question that came into focus as follows.

59a

After the remand, Oracle sought leave to file a
supplemental complaint. Oracle’s eventual motion for
leave to file a supplemental complaint drew no opposition,
and the motion was granted. The supplemental complaint
identified six further versions of Android released since
the original complaint. It further alleged that Google had
implemented Android in various new device categories,
including automobiles, wristwatches, televisions, and
household appliances (Dkt. No. 1292).

Disagreement surfaced when the parties served their
new expert reports. Oracle’s expert reports evaluated
Google’s alleged use of new API packages from Java 2
Standard Edition Versions 6 and 7. But those versions had
never been asserted in any operative pleading, including
even the supplemental complaint. Only versions 1.4 and 5
had been asserted. Only versions 1.4 and 5 had been
presented to the original jury and found to have been
infringed. Google moved to strike the overreaching
passages of Oracle’s expert reports. This led to a hearing
that featured the peril of the retrial spinning out of control
via a piling on of everexpanding “updating” issues. The
Court expressed concern over the ever-mounting prolixity
of this case and the need for a cutoff of new device
implementations to be tried (without prejudice to trying
the rest later). The Court observed (Dkt. No. 1470 at 9–
10):

There’s a much cleaner way to deal with this. We
can roll back the clock to the moment that that
[earlier] trial took place, and try it on that set of
facts and the circumstances then. And then all
these new products by [Oracle] and these new
products by Google would not be in play. And

60a

what that means is, over there on the Google
side, that you’re going to have to face another
lawsuit downstream . . .

In other words, the practical approach remained
retrying the very trial revived by the Federal Circuit,
complicated as it already was, preserving the
infringement verdict, and saving for a later day all of the
subsequent developments.

Nevertheless, the retrial expanded in two important
ways. First, in light of Google’s stipulation that the earlier
jury’s finding of infringement should apply to all later
versions of Android up through Lollipop, a pretrial order
eventually held that our retrial would cover those
versions. A later stipulation included Marshmallow as
well, adding a total of seven new major releases of Android
to the original six. The second expansion was to include
the post-2010 time period covered by these versions.

These expansions, by themselves, led to a vast inflation
of Oracle’s claimed recovery. At the first trial, Oracle’s
claim for monetary remedies clocked in at much less than
a billion dollars, but now they rose to nine billion. The vast
inflation flowed from the longer time period of sales of
smartphones and tablets as well as the longer list of
implicated versions of Android. The vast inflation resulted
even though the uses on trial for the fair use defense
remained, as before, smartphones and tablets.

The trial was not, however, expanded to include
certain other more recent uses like Android TV, Android
Auto, Android Wear, or Brillo. They presented a messier
problem and were excluded from the scope of the
upcoming trial (without prejudice to a later trial to cover
them). Notably, the parties couldn’t agree on whether the

61a

original verdict of infringement would have covered those
uses (since they arose after the original verdict, and no
evidence on them was presented at the original trial). Had
those uses been included in the retrial, Oracle would have
had the burden, Google urged, to prove that those uses
infringed, rather than relying, as Oracle wished to do,
solely on the original verdict of infringement and imposing
on Google the burden to prove fair use. Oracle offered to
move for summary judgment to establish that the original
finding of infringement should be extended to these new
implementations, but by the time of that offer, there
wasn’t sufficient time for the Court to pursue that
alternative while sorting out the superabundancy of
pretrial issues.

To repeat, all agree that under the pretrial orders,
Oracle remained (and remains) free to pursue its claims
for infringement arising from Google’s implementations of
Android in devices other than smartphones and tablets in
a separate proceeding and trial.

The scope-of-trial issue surfaced in a second way.
Oracle sought to introduce evidence of the excluded device
categories at trial as part of its evidence of market harm
under the fourth fair use factor. An order in limine,
however, held that the only uses set for trial were
smartphones and tablets (again without prejudice to a
separate future trial as to other uses) (Dkt. No. 1781).

In its new trial motion, Oracle now argues that it was
error to limit the device uses in play to smartphones and
tablets. We should have had one mega-trial on all uses, it
urges. This, however, ignores the fact that Oracle’s earlier
win on infringement in 2010 — the same win it wished to
take as a given without relitigation — concerned only
smartphones and tablets. And, it ignores the obvious —

62a

one use might be a fair use but another use might not, and
the four statutory factors are to be applied on a use-by-use
basis. Significantly, the language of Section 107(4) of Title
17 of the United States Code directs us to consider “the
effect of the use upon the potential market for or value of
the copyrighted work.” Oracle cites no authority
whatsoever for the proposition that all uses must stand or
fall together under the fair use test of Section 107.

True, the fourth fair use factor must consider
“whether unrestricted and widespread conduct of the sort
engaged in by the defendant would result in a
substantially adverse impact on the potential market for
the original.” Campbell v. Acuff-Rose Music, Inc., 510
U.S. 569, 590 (1994). The concern with widespread use,
however, is not whether uses distinct from the accused
uses — each of which must be subject to distinct
transformativeness analyses — might harm the market
for the copyrighted works. Rather, the concern is whether
a use of the same sort, if multiplied via use by others,
would cause market harm, even though the actual use by
the infringer caused only minimal harm. That is not our
case. Again, our trial concerned two very important uses
— smartphones and tablets — uses that implicated many
billions of dollars. All other uses remained open for
litigation in further trials.

Oracle relies on decisions from our court of appeals
holding that supplementation of a complaint “is favored.”
E.g., Planned Parenthood of Southern Arizona v. Neely,
130 F.3d 400, 402 (9th Cir. 1997). It argues that postponing
its claims relating to devices other than smartphones and
tablets contravened the purpose of “promot[ing] as
complete an adjudication of the dispute between the
parties as is possible.” LaSalvia v. United Dairymen, 804

63a

F.2d 1113, 1119 (9th Cir. 1986). Oracle provides a five-page
description of the various markets such as automobiles,
healthcare devices, “Internet of Things,” appliances, and
machine-to-machine communication — all involving vastly
different technology and functionality from smartphones
and tablets — in which Oracle has allegedly suffered harm
due to Google’s Android-related offerings.

Allowing complaints to be supplemented is favored,
but a district judge still has a separate responsibility to
manage complex cases, including to decide which issues
should be tried in which trial. Good reasons rooted in case
and trial management favored the eventual scope of our
trial.

Oracle itself, it must be said, successfully excluded at
least one post-2010 development that would have helped
Google. Specifically, a pretrial ruling obtained by Oracle
excluded evidence tendered by Google with respect to
Android Nougat. Significantly, this evidence would have
shown that (back in 2008) all of the accused APIs could
simply have been taken from OpenJDK, Sun’s own open-
source version of Java, apparently in full compliance with
the open-source license. Put differently, Sun itself had
given away Java (including all of the lines of code in suit)
in 2008 via its open-source OpenJDK. In 2015, Google used
OpenJDK to reimplement the Java APIs for the latest
release of Android, which it called Nougat. Google wished
to use this evidence under the fourth fair use factor to
show that its infringement did no more market harm than
Sun itself had already invited via its own OpenJDK
release. Despite its importance, the Court excluded this
development because it had not been presented by Google
in time for effective rebuttal by Oracle. This exclusion was
a major win for Oracle in the weeks leading up to trial.

64a

Oracle also argues that the first trial was not expressly
limited to smartphones and tablets, so it was
inappropriate to impose that limitation for the retrial. This
isn’t correct. In 2012, at our first trial, Oracle presented
no evidence of any uses beyond smartphones and tablets.
The other alleged uses lay in the future and were not
considered by our first jury. Google simply had not yet
implemented any aspect of Android on any of the new
devices at that time.

After considerable deliberation, the Court exercised
its discretion to limit the scope of our trial to address the
issue of whether the uses of the copyrighted materials
considered at the first trial — smartphones and tablets —
including all thirteen versions of Android enabling those
uses were fair or not, saving for a future trial new and
different uses. In this way, Oracle was allowed to take
unquestioned advantage of the infringement verdict in the
first trial while also taking full advantage of the
subsequent revenue derived from those very device
implementations — smartphones and tablets. That
limitation also protected our second jury from needing to
absorb ever greater complexity in technology and the
business models of new and different uses. Oracle remains
free to pursue those new and later uses in a future lawsuit,
but it is not entitled to a new trial as to smartphones and
tablets.2

B. The Charge of Discovery Misconduct and
ARC++.

2 After the verdict, the Court invited counsel to propose scheduling for
exactly such a trial on the alleged new and different uses, but both
sides preferred to enter a final judgment and proceed to appeals with
the understanding that the alleged new and different uses were still
open for future lawsuits (Dkt. Nos. 2049–50).

65a

With the benefit of the foregoing history of the
smartphones and tablets limitation, we turn to Oracle’s
charge of discovery misconduct. This charge is not
anchored in any claimed error by the judge but is
anchored in claimed misconduct by Google and its counsel.

At both trials, Google argued that Android’s use of
the copyrighted lines of code qualified as “transformative”
(under the first fair use factor) because Java had been
designed for desktops and laptops whereas Android
transformed the code at issue to work in the then newly-
emerging world of smartphones and tablets. Thus, Google
drew a significant distinction between desktops and
laptops (Java) and smartphones and tablets (Android).
Oracle now Google of withholding evidence in discovery
that allegedly would have shown that Google was, by the
close of our retrial, expecting soon to implement Android
on desktops and laptops too. This argument will now be
set out in detail.

Throughout the supplemental discovery period
following the remand, Oracle sought discovery into all
Google products that incorporated the copyrighted lines
at issue. In response, Google identified its App Runtime
for Chrome (“ARC”), which enabled laptops and desktops
running Google’s computer operating system, Chrome
OS, to run certain Android applications. Chrome OS was
and remains a different operating system from Android
(Lin Dep. at 14–19, 107–09). ARC operated on top of
Chrome OS and offered all of the Android APIs
reimplemented from the Java code at issue. A related
project, ARC Welder, enabled Android app developers to
repackage the code in their apps for use on Chrome OS
devices via ARC.

66a

One of Oracle’s own technical experts, Robert
Zeidman, addressed ARC in detail in his opening report
(Zeidman Rep. ¶¶ 126–43). Oracle’s damages expert,
James Malackowski, opined in his opening report that
Google’s release of ARC and ARC Welder and the
availability of some Android functionality on Chrome OS
devices “means Google is now using Android to occupy the
original, traditional market of the Java Platform”
(Malackowski Rep. ¶ 172). Oracle, however, never sought
to introduce any of the evidence on which these comments
were based (or to introduce the expert testimony). Oracle
does not accuse anyone of misconduct as to ARC, but ARC
supplies relevant background.

Now we come to the crux of the matter. In 2015,
Google began a new project, which it internally called
“ARC++.” Among the goals of ARC++ was to “[p]rovide
Chrome OS users with Play Android apps on Chrome OS
without developer action” (Anderson Decl., Exh. 7 at
*785). That is, Google intended for ARC++ to make the
“entire Android app ecosystem” available on Chrome OS
devices, so that Android apps would “appear alongside
Chrome apps” in the Chrome OS program menu (id., Exh.
8 at *404, Exh. 10 at *396). With ARC++, Google planned
to run “Android in an isolated container inside Chrome
OS,” and “[i]nside the container should be effectively
another Linux environment, similar to on an actual
device” (id., Exh. 9 at *417). That is, ARC++ would run
an isolated instance of Android (with all of Android’s
public APIs, including those reimplemented from Java) in
order to allow users to run all Android apps on Chrome
OS devices. Google planned to include its “Play Store” —
Google’s app wherein users could purchase and download

67a

other Android apps — as part of ARC++ to facilitate
access to those apps.

In 2015, Google produced to Oracle at least nine
documents relating to ARC++ setting forth the
information in the preceding paragraph (along with more
extensive technical details) and tracking the development
of the project (Anderson Decl. ¶¶ 16–20, Exhs. 6–14). This
is a key fact in resolving the accusation at hand. Our trial
began on May 9, 2016. Our last day of evidence was May
19, which happened also to be the second day of Google’s
annual developer conference. On that day, Google
announced via a blog post that it would make all Android
apps available for use on Chrome OS devices via the Play
Store (id., Exh. 15). Although the announcement did not
refer to this new feature as ARC++ (no name was given),
it reflected the same goals and technical details as the
ARC++ project. The announcement stated the feature
would first roll out on the experimental developer channel,
though over time it would become generally available. The
same day at the developer conference, Google
demonstrated the use of the Play Store with several
Android apps on Chrome OS devices. The presenters
acknowledged the technical limitations of the earlier ARC,
stating that Google was “building a whole new platform to
run Android apps on Chromebooks,” i.e., on laptops and
desktops (Bush Decl., Exh. J at 3:30). One presenter
explained that the new feature ran Android “directly on
top of the Linux kernel [of Chrome OS].” Users could “run
all of Android Marshmallow within Chrome OS. This
includes the Google Play Store” (id. at 7:10).

In short, the announcement indicated that the full
functionality of Android would soon be working on

68a

desktops and laptops, not just on smartphones and
tablets.

Oracle now contends that Google’s failure to
supplement several responses to interrogatories, requests
for admission, and requests for production of documents,
as well as the deposition testimony of two witnesses to
reflect developments in the ARC++ project constituted
discovery misconduct warranting a new trial.

“The test to be applied when discovery misconduct is
alleged in a Rule 59 motion must be borrowed from cases
interpreting Rule 60(b)(3)” Jones v. Aero/Chem Corp.,
921 F.2d 875 (9th Cir. 1990). Rule 60(b)(3) provides for
relief from judgment for “fraud (whether previously called
intrinsic or extrinsic), misrepresentation, or misconduct
by an opposing party” To establish misconduct under
Rule 60(b)(3), a moving party must:

(1) prove by clear and convincing evidence that
the verdict was obtained through fraud,
misrepresentation, or other misconduct.

(2) establish that the conduct complained of
prevented the losing party from fully and fairly
presenting his case or defense. Although when
the case involves the withholding of information
called for by discovery, the party need not
establish that the result in the case would be
altered.

Ibid. (quoting Bunch v. United States, 680 1271, 1283 (9th
Cir. 1982)). A movant need not show that there would have
been a different outcome without the alleged misconduct
but need only demonstrate “‘substantial interference’ by
showing ‘the material’s likely worth as trial evidence or by
elucidating its value as a tool for obtaining meaningful

69a

discovery.’” Ibid. (quoting Anderson v. Cryovac, Inc., 862
F.2d 910 (1st Cir. 1988)).

Our court of appeals has recognized a “presumption
of substantial interference if [the moving party] can
demonstrate the misconduct was sufficiently knowing,
deliberate or intentional.” Ibid. Although Jones did not
expressly lay out the framework for applying that
presumption, it stated that Anderson, a decision from the
First Circuit, “summarized the applicable standards and
burdens of proof.” Ibid. Anderson, 862 F.2d at 925, held
that the presumption of substantial interference “may be
refuted by clear and convincing evidence demonstrating
that the withheld material was in fact inconsequential.”

The oral argument on Oracle’s motion for a new trial,
which lasted two hours, focused almost exclusively on
Oracle’s “game changer” allegation of discovery
misconduct. Following the hearing, counsel for both sides
were ordered to file sworn declarations detailing Oracle’s
discovery requests on this point and Google’s responses.
After reviewing the parties’ submissions, the Court called
for sworn replies.

Throughout the briefing and argument on this
motion, Oracle left the distinct impression — more
accurately distinct misimpression — that Google had
stonewalled and had completely concealed the ARC++
project. This was an unfair argument.

In fact, Google timely produced at least nine
documents discussing the goals and technical details of
ARC++ and did so back in 2015, at least five months
before trial. Counsel for Oracle now acknowledges their
legal team never reviewed those documents until the
supplemental briefing on this motion (Hurst Reply Decl. ¶

70a

12). The Court is disappointed that Oracle fostered this
impression that no discovery had been timely provided on
the ARC++ project eventually announced on May 19.3

Rule 26(e) requires a party to supplement discovery
responses in a timely manner only “if the additional or
corrective information has not otherwise been made
known to the other parties during the discovery process
or in writing” (or if otherwise ordered by the Court). This
creates a “‘duty to supplement,’ not a right.” Luke v. Fam.
Care and Urgent Med. Clinics, 323 Fed. Appx. 496, 500
(9th Cir. 2009). Nevertheless, Google had no duty to
supplement responses with new information that had
already been disclosed in the ARC++ documents already
produced.

Oracle should have known that items produced in
response to its own document requests potentially
contained information that supplemented Google’s earlier

3 Oracle contends that Google should have produced source code for
the ARC++ project in response to a request for source code that “can
be used to facilitate use of Android” on devices other than
smartphones and tablets or that it should have identified ARC++ in
an interrogatory seeking identification of “any software based on or
derived from” Android that incorporated the 37 reimplemented Java
API packages, among other similar requests. Google objected to
vague language in those requests, and it was not clear to Google
whether ARC++, which was in its early stages of development, would
have been responsive to requests for information about “products,”
“software,” or versions that were “developed or released,” all of which
are directed to completed projects. Indeed, the parties met and
conferred about discovery responses and discussed Google’s
objections to Oracle’s vague references to efforts to “port Android to
desktop,” but Oracle did not follow up on Google’s objections
(Anderson Decl. ¶¶ 30–39).

71a

written discovery responses. Oracle’s failure to review the
ARC++ documents is its own fault.

It’s important, most of all, to step back and remember
the scope of our trial. Significantly, any evidence relating
to implementations of Android on devices other than
smartphones and tablets fell outside the scope of our trial,
which was limited to uses on smartphones and tablets.
Within the scope of our trial, therefore, Google fairly
argued that Android was transformative because it took
the declaring code in question, which had been designed
for desktops and laptops, and reimplemented it for use in
a new context, smartphones and tablets. It may well be
true that the use of the copyrighted APIs in ARC++ (or
any other later use) will not qualify as a fair use, but that
will not and does not mean that Google’s argument on
transformative use as to the original uses on trial
(smartphones and tablets) was improper. That Oracle
failed to detect the ARC++ documents in its possession
had no consequence within the defined scope of our trial.

Google committed a “fraud on the court,” Oracle
contends, by eliciting testimony that Android had not
caused any harm to the market for the copyrighted works
because it was not used on laptops and desktops. As
stated, however, this remained a fair argument so long as
the trial was focused, as it was, on the original uses —
smartphones and tablets — and it remained a fair
argument for the time period on trial (the blog
announcement came later). The testimony and argument
in question fell within the defined scope of our trial. Had
Oracle brought up ARC or ARC++, the witnesses would
plainly have clarified that their testimony related to the
accused uses on trial.

72a

Oracle further notes that the order denying its
motion for judgment as a matter of law held that the jury
could reasonably have found that “Android caused no
harm to the market for the copyrighted works, which were
for desktop and laptop computers” (Dkt. No. 1988 at 17).
Again, “Android” in that context plainly referred to the
accused original implementations of Android within the
defined scope of our trial.

Google’s launch of the full Android system on Chrome
OS also remains, even now, in preliminary stages,
available only to developers and on a limited set of devices.
Oracle already had evidence of ARC++, but didn’t realize
it. Thus, to the extent Google’s recent announcement had
any value at our trial (or in discovery), Oracle already had
evidence of the same project (and its predecessor), and it
passed on any opportunity to introduce that evidence.

Nor would evidence of ARC++ have caused any
interference relating to the Court’s rulings limiting the
scope of the trial. Indeed, in the briefing and argument on
the scope of trial, Oracle never once mentioned ARC,
ARC++, or any other use on laptop and desktop
computers (neither did Google) (Dkt. Nos. 1559, 1612-3,
1643, 1682). This was so even though Oracle Expert
Malackowski had already opined that the release of ARC
“means Google is now using Android to occupy the
original, traditional market of the Java Platform”
(Malackowski Rep. ¶ 172). Instead, at oral argument,
Attorney Lisa Simpson for Oracle identified “Android
Auto” (not ARC or ARC++) as the most important
implementation (to Oracle) that Oracle wished to add
(Dkt. No. 1682, Tr. at 123). Oracle contends that the
technical differences between ARC and ARC++ meant
the latter presented a more compelling narrative both in

73a

pretrial motion practice and at trial, but both projects
made the same 37 reimplemented Java API packages
available for use on Chrome OS; any differences between
ARC and ARC++ remained peripheral to Oracle’s
interest in the projects.

Oracle’s purported “game changer” would not have
changed anything at all, because the scope of the “game”
was smartphones and tablets, postponing new and later
uses to a later contest. ARC++ was not yet on trial. Thus,
any failure to produce such evidence could not have
substantially interfered with Oracle’s preparation for our
trial. On the contrary, it clearly and convincingly would
have been inconsequential.4 Oracle insists on taking
depositions and document discovery into Google’s failure
to supplement all discovery responses to reflect the
imminent release of a developer version of ARC++ and
to present its findings at an evidentiary hearing. Oracle
cites Jones v. Aero/Chem Corp., 921 F.2d 875 (9th Cir.
1990), for the proposition that failure to hold an
evidentiary hearing on this issue would be reversible
error. This type of fishing expedition will not be allowed,
and Jones in no way requires such a course.

In Jones, two days after a jury found there had been
no defect in the defendants’ product, a third-party
defendant produced a letter it received from one of the
primary defendants nearly a decade earlier indicating that
the primary defendant had known of the claimed defect
and had explored remedial measures. The plaintiff moved

4 Out of caution, this order makes clear that the test under Rule 59 is
“substantial interference,” not “game changer.” The phrase “game
changer” is Oracle’s phrase, even if it expresses a less favorable test
than here applicable. This order applies the correct test, “substantial
interference.”

74a

for a new trial, claiming, inter alia, that the defendants
had engaged in prejudicial discovery misconduct by
withholding the correspondence. “At the hearing on the
motion [for a new trial], the district court indicated it
might later hold a hearing to determine whether [the]
failure to produce the documents involved misconduct.”
Id. at 877.

Our court of appeals held that the district court
improperly decided the motion based on= whether the
withheld evidence would have resulted in a “different
outcome,” rather than whether it caused “substantial
interference,” as required by decisions interpreting Rule
60(b)(3). The failure to hold a separate “hearing” — the
court of appeals never referenced an “evidentiary
hearing,” contrary to Oracle — on the issue was a
background circumstance. The actual error was in the
standard applied, not the procedure for applying that
standard. Notably, the court of appeals did not even
require the district court to hold a subsequent hearing, but
rather directed it to hold “appropriate proceedings to
determine” whether discovery misconduct had occurred
according to the proper standard.

In our case, the Court did hold “appropriate
proceedings” and did hold a hearing at which the proper
standard — Rule 60(b)(3) — was considered, and it
further required sworn statements from counsel for both
sides and then invited and considered sworn replies, all
detailing the discovery conduct at issue. After reviewing
many pages and exhibits, the Court finds that no
misconduct has been shown (or would likely be shown even
with the benefit of a fishing expedition). Nor could any
omission of evidence relating to ARC++ have interfered
with Oracle’s case at all, much less substantially. Contrary

75a

to Oracle, ARC++ documents were in fact timely
produced. They laid out the basic goals and technical
details of the very product referenced on May 19. Since
Oracle had that information, there was no need to
supplement the written discovery to the extent evidence
of ARC++ was responsive at all. Moreover, any further
disclosure of ARC++ would have been of no consequence
in Oracle’s preparation for our trial or its presentation at
trial, which later became limited in scope to smartphones
and tablets. This ground for a new trial is rejected.

C. Steffano Mazzocchi.

Oracle next contends that a new trial is warranted
due to the exclusion of minor evidence and testimony from
Stefano Mazzocchi, a member of the board of directors of
the Apache Software Foundation in 2008. Back then,
Mazzocchi volunteered as a mentor overseeing the Apache
Harmony Project and as a member of its Project
Management Committee, which sought to create and offer
an open-source reimplementation of the Java API. Google
eventually used portions of the Harmony project in its
reimplementation of 37 Java API packages in Android.
Later on, Mazzocchi went to work for Google, but at the
relevant time, he worked for neither side.

At our trial, Google presented evidence first (having
the burden of proof), but it did notcall Mazzocchi as a
witness. Nevertheless, Google otherwise introduced
evidence of Harmony to support its position that
reimplementation of APIs without licenses flowered in the
industry.

Oracle never properly designated Mazzocchi as a trial
witness under Rule 26(a). Oracle wished to lay before the
jury an email that Mazzocchi had sent in April 2008 during

76a

the development of Apache Harmony. (In fact, the exhibit
was an email from the vice president of legal affairs at
Apache and incorporated and responded to an email from
Mazzocchi.) Despite Oracle’s Rule 26 violation, the Court
acquiesced in allowing Oracle to present almost
everything it wished to present, including Mazzocchi and
the email, save and except for two minor items.

Mazzocchi’s email went to a mailing list of members
of Apache (TX 5046). It expressed concern that Apache
could not distribute Harmony without a license from Sun,
even with new implementing code, because “the copyright
on the API is real and hard to ignore.” Mazzocchi added,
“[s]o, we are, in fact, infringing on the spec lead copyright
if we distribute something that has not passed the TCK
and *we know that*.” Our jury heard Mazzocchi’s
testimony regarding this email, and the entire email itself,
including the quotations above, went into evidence,
subject to one redaction.

That redaction is now the basis for Oracle’s first
assignment of error. Its second is that Oracle was
precluded from eliciting testimony that Mazzocchi worked
for Google at the time of the trial, though he had worked
elsewhere when he sent the email.

(i) Redaction.

The Court held that Mazzocchi could testify and that
his emails would be admitted, over Google’s objection,
subject to redaction of the following sentence in the email
(TX 5046):

This makes us *already* doing illegal things (in
fact, Android using Harmony is illegal as well).

77a

An exchange regarding that redaction occurred
(outside the presence of the jury) as follows (Tr. at 1588):

THE COURT: However, the one sentence that I
think is too inflammatory and without foundation
and should come out is the one sentence that says
“This makes us *already* doing illegal things (in
fact, Android using Harmony code is illegal as
well).” That should not be used. But the two
paragraphs that I think you’re more interested
in, they can be used. So that one sentence about
“This makes us *already* doing illegal things (in
fact, Android using Harmony code is illegal as
well)” that should be deleted or at least redacted.

MS. HURST (for Oracle): We’ll redact that, Your
Honor.

Although, as just shown, Oracle’s counsel readily
accepted that redaction and the email, as redacted, went
before the jury, Oracle later — only after Mazzocchi had
finished his testimony and had been excused — requested
that the Court remove the redaction (Dkt. No. 1925). This
was denied, a denial that forms a basis for the new trial
motion.

Oracle now argues that sufficient foundation existed
because Mazzocchi had “corresponded with the Apache
Foundation’s VP of Legal Affairs regarding legal issues
related to use of copyrighted Java APIs in the Harmony
Project” (Pl.’s Mtn. at 16) (citing Tr. at 1712–13).

The so-called “correspondence” with the lawyer, it
turns out, went into evidence as the thread leading up to
the “Mazzocchi email” (TX 5046; Tr. at 1715). So, whatever
foundation existed for the redacted sentence made its way
to the jury anyway. (Perhaps this hearsay from the lawyer

78a

shouldn’t have been admissible at all, but no objection on
that ground was made.)

Significantly, nowhere in any passage written by any
lawyer did anything come close to what Mazzocchi said in
the redacted sentence. So, the thread itself supplied
inadequate foundation. Even if Mazzocchi had consulted a
lawyer beyond the thread itself (and no such consultation
was ever intimated), Mazzocchi himself was not a lawyer,
so merely repeating what some lawyer might have told
him would have been hearsay (within hearsay).

Indeed, Mazzocchi’s testimony before the jury
demonstrated that his legal conclusion was utterly without
qualification (Tr. at 1727–28):

[MR. KWUN (for Google)]. So thinking back to
April of 2008, what, if anything, did you know
about fair use in copyright law?

A. I don’t recall knowing anything about that.

Q. Did you know what the legal standard is for
fair use?

A. I don’t — didn’t and still don’t.

Q. After the email exchange with Mr. Ruby, did
you resign as a member from the Apache
Software Foundation?

A. No.

Q. And what, if anything, do you conclude from
the fact that you did not resign your membership
after that email?

A. I really cared about my involvement in
Apache. I mean, this was all volunteer work, and
I really wanted the foundation to do the right

79a

thing for protection of the membership and also
for protection of the users.

I would have left slamming the door if I thought
that what the foundation was doing was causing
harm or doing any illegal things.

So since I wrote these email [sic], I must have
changed my mind, something must have changed
my mind whether that was the case.

And I didn’t leave.

Notwithstanding Mazzocchi’s lack of training in the
law, the Court allowed Oracle to make hay with “the
copyright on the API is real and hard to ignore” and that
releasing Harmony’s reimplementation of the Java API
code without passing the compatibility test would have
constituted “infringing on the spec lead.”5

It is worth stressing that the email made no mention
of “fair use.” It had nothing to do with the fair use issue
our jury had to decide. Mazzocchi admitted that he knew
nothing about fair use. The Court had already told the jury
that Android infringed the copyright subject only to the
fair use defense, so a good case existed for excluding the
entire email. Nevertheless, virtually all of it came in.

Nor did Mazzocchi’s testimony, elicited by Google,
that he “would have left slamming the door [at Apache] if
[he] thought that what the foundation was doing was

5 The Court similarly restricted Google from eliciting legal conclusions
from former Sun CEO, Jonathan Schwartz, about whether Sun had
any legal claim against Google. After his testimony veered too close to
that conclusion, the Court issued a corrective instruction and allowed
Oracle to question Schwartz about a document that Oracle had
improperly clawed back as privileged (Tr. at 508–10, 526). (Schwartz
could not recall the document, so it was not admitted into evidence.)

80a

causing harm or doing any illegal things” open the door to
using the redaction. Mazzocchi’s testimony already
responded to his understanding that Apache was
infringing on Oracle’s copyright, and by noting that
something “changed [his] mind,” he acknowledged that his
email reflected initial concern about the legality of
Apache’s work anyway. Admission of the redaction would
have been cumulative.

(ii) Mazzocchi’s Employment.

Oracle also contends that it should have been
permitted to cross-examine Mazzocchi based on his
alleged bias as a current employee of Google. When the
Court initially allowed Oracle, despite its inadequate Rule
26 disclosure and over Google’s strenuous objection, to call
Mazzocchi as a witness, the Court did so to allow
presentation of his views when he worked for Apache in
2008 and ruled as follows (Tr. at 1589):

And don’t bring up that he works at Google now
unless bias becomes a problem. If it appears he’s
been coached to say things that may not be true,
possibly then I would allow you to bring up that
he works for Google and that Google — he has
met with the lawyers and so forth. But for the
time being, you should steer clear of that. And
you may treat him as an adverse witness.

During direct examination before the jury, and
without seeking leave to address the issue, counsel for
Oracle asked Mazzocchi (after he denied recollection of
the email containing the “illegal things statement”)
whether he had met with Google’s trial lawyers, which he
confirmed he had (Tr. at 1724). The Court allowed the
questions over Google’s objection.

81a

On cross-examination by Google, as stated,
Mazzocchi testified that following the email addressing
the issue of Oracle’s copyright in the Java APIs with
regard to Harmony “something must have changed my
mind whether that was the case” (Tr. at 1727). When
Google passed the witness back for redirect, Oracle
requested a sidebar to be allowed to elicit the fact that
Mazzocchi became employed at Google the following year,
in order to suggest it was his later employment with
Google that had “changed his mind” about the legal status
of the Apache Harmony project.

At the sidebar, the Court reviewed Mazzocchi’s
testimony and concluded that he testified that he would
have left Apache sooner than 2009 if he had believed it had
been doing something illegal, while he didn’t begin his
employment with Google until 2010. Contrary to Oracle,
Mazzocchi’s testimony suggested that something changed
his mind before he began working at Google.

Even so, Oracle was able to offer evidence of
Mazzocchi’s purported bias by eliciting testimony that
Mazzocchi spoke with Google’s counsel before testifying
(Tr. at 1724). Thus, the probative value of evidence of
Mazzocchi’s then-current employment was minimal,
particularly in light of the substantial risk that the jury
would mistakenly ascribe Mazzocchi’s state of mind while
at Apache to Google. (Indeed, Oracle sought to ascribe
Mazzocchi’s shift in his state of mind to Google, although
it predated his employment with Google.)

In the larger picture, the jury heard evidence, pro and
con, from both Sun (Oracle) and Google personnel
concerning the extent to which reimplementation of APIs
occurred in the industry. In view of this sea of evidence,
the Mazzocchi email was cumulative. Nevertheless,

82a

virtually all of the email came into evidence, including his
statement that reimplementing the Java API in particular
constituted infringement of the copyright.

Thus, Oracle’s contention that it is entitled to a new
trial on the basis of the excluded evidence relating to
Mazzocchi is rejected.

D. European Commission Response.

Oracle next contends that the Court improperly
excluded a document containing responses to questions
posed by the European Commission in connection with its
2009 review of Oracle’s acquisition of Sun. The question
called for an explanation of “the conflict between Sun and
Google with regard to Google’s Android” (TX 5295 at 39).
Oracle sought to admit its response, which read, “Sun
believes that the Dalvic [sic] virtual machine plus class
libraries, which together constitute Android runtime
environment, are an unauthorized derivative work of Java
SE” (ibid.). Oracle wished to lay this response before the
jury to meet testimony by Sun’s former CEO, Jonathan
Schwartz, that Sun had welcomed Google’s then-recent
announcement of Android as part of the Java community,
and that industry reimplementations of the Java API had
promoted rather than hindered Sun’s business plan.

To avoid the self-serving hearsay problem, Oracle
attempted to lay foundation for the response through the
testimony of its CEO, Safra Catz, who oversaw the
acquisition and testified that Sun (not Oracle) had
supplied the answer. Out of the presence of the jury, the
Court stated it would consider allowing Oracle to admit
the response if it had originated with Sun rather than
Oracle (Tr. at 1314).

83a

The next morning, out of the presence of the jury,
Oracle proffered several drafts of the response to the
European Commission. These drafts purportedly traced
earlier versions of the response. They originated from
Sun’s in-house intellectual property counsel. Google
protested that these drafts had long been withheld from
Google as privileged until the previous night, so that it had
had no opportunity to vet Oracle’s representations about
the drafts. Counsel for Oracle responded that Oracle
would waive the privilege. This after-the-deadline waiver,
Google replied, failed to cure the prejudice. Temporizing,
the Court warned Oracle that its disclosure of privileged
documents would constitute an extraordinary waiver (Tr.
at 1328).

Nevertheless, still out of the presence of the jury and
using the privileged documents, counsel for Oracle traced
the internal development of the response to the European
Commission.

One draft stated, colorfully, “[a] recidivist bank
robber should not complain, at least to the authorities,
that the bank’s new owner might increase security
measures around the bank” (Tr. at 1330). A subsequent
email from Sun’s in-house counsel noted that Oracle’s
corporate counsel had removed the colorful language and
stated “Re Android, we liked our recidivist bank robber
analogy” (Tr. at 1331). In light of its document tracing,
Oracle proposed that Catz be permitted to testify that the
response to the European Commission originated with
Sun (how she would have known that on her own was
never explained).

The Court rejected that proposal, a rejection that
now serves as a ground for the Rule 59 motion.

84a

It is true that Google presented evidence at trial that
Sun had embraced a custom of reimplementation of APIs
and that Sun’s CEO had welcomed Android to the Java
community. It is further true that Google argued to the
jury that this welcoming attitude reversed only after
Oracle took over Sun and brought this suit. Oracle was
free to present counterevidence (and did) but the
extraordinary after-the-deadline waiver of privilege was
too timewise prejudicial to Google, should not have been
allowed, and was not.6

Oracle’s gamesmanship deprived Google of a fair
opportunity to vet the privileged documents and to verify
the supposed chain of authorship. Anyway, the timing of
the emails (at a time when Sun’s employees had cause to
curry favor with their new boss) suggested that any
response “from Sun” was really “from Oracle.” This
ground for a new trial is rejected.

E. Self-Serving In-House Presentations

Oracle was barred from placing in evidence certain
self-serving in-house materials, offered supposedly to
show how Android had hurt Oracle’s markets for Java.
Specifically, as part of its evidence on market harm under
the fourth fair use factor, Oracle sought to admit Trial
Exhibits 5961, 6431, and 6470, which were in-house slide
show presentations at Oracle. They were used “as
[Oracle’s] way of planning for [the] next year. They’re also
used to educate [Oracle’s executives] about what is going
on in the business” (Tr. at 1356). The presentations

6 Counsel for Oracle contended they could offer an email from 2008 in
which someone internal to Sun stated Google’s conduct constituted
copyright infringement, but no such document was ever shown to the
Court or offered into evidence.

85a

included slides that discussed the purported impact of
Android on Oracle’s revenue.

Oracle invoked Rule 803(6) of the Federal Rules of
Evidence, which provides an exception to the rule
excluding hearsay evidence for records of a regularly
conducted activity, as follows:

A record of an act, event, condition, opinion, or
diagnosis if:

(A) the record was made at or near the time by
— or from information transmitted by —
someone with knowledge;

(B) the record was kept in the course of a
regularly conducted activity of a business,
organization, occupation, or calling, whether or
not for profit;

(C) making the record was a regular practice of
that activity;

(D) all these conditions are shown by the
testimony of the custodian or another qualified
witness, or by a certification that complies with
Rule 902(11) or (12) or with a statute permitting
certification; and

(E) the opponent does not show that the source
of information or the method or circumstances of
preparation indicate a lack of trustworthiness.

The Oracle-made documents contained slides with
“highlights” and “lowlights” of certain fiscal years,
identified “priorities and key messages,” summarized
revenue data, forecasts, and budgets, identified market
challenges, and mapped out product strategies (Bush
Decl., Exhs. 26, 27, 29). As to Trial Exhibit 5961, Oracle

86a

offered the testimony of its CEO, Safra Catz, to lay the
foundation that the presentation had been prepared as
part of Oracle’s annual budget review (Tr. at 1357). When
Oracle moved to admit that exhibit into evidence, Google
objected, and the Court sustained the objection because it
remained simply a slide show of internal self-serving
propositions (even worse, created pending this lawsuit).
The Court stated, “if it was just a financial statement, I
would allow it, but there are too many slide shows in that
document to qualify it as a business record” (Tr. at 1357).
Counsel for Oracle sought to admit just page 21 of the
exhibit, but that page, titled “FY11 Priorities and Key
Messages — Java” suffered from the same self-serving
problems. Indeed, that page addressed “integration-
specific concerns” regarding the integration of Sun into
Oracle — hardly a regularly-conducted activity.7

Oracle sought to admit similar presentations, Trial
Exhibits 6431 and 6470, through the testimony of its
former vice president of worldwide original electronic
manufacturer sales, Neal Civjan, but those presentations
were excluded on similar grounds.

Rule 803(6) is not an open window through which any
self-serving in-house internal hearsay sails into evidence
at the author’s behest:

The element of unusual reliability of business
records is said variously to be supplied by

7 In its brief, Oracle describes this page as “a spreadsheet of revenue
and expenses for the first two quarters of fiscal year 2011 for Java
embedded and forecasts for the third quarter” (Pl.’s Mtn. at 23). Page
21 does not meet that description. It is possible, it now appears, that
counsel for Oracle intended to direct Catz and the Court to page 23,
but that error by Oracle then would not now be a reason to grant a
new trial.

87a

systematic checking, by regularity and
continuity which produce habits of precision, by
actual experience of business in relying upon
them, or by a duty to make an accurate record as
part of a continuing job or occupation.

N.L.R.B. v. First Termite Control Co., Inc., 646 F.2d 424,
427 (9th Cir. 1981), opinion amended on reh’g sub nom.
Natl. Lab. Rel. Bd. v. First Termite Control Co. Inc. (9th
Cir. Aug. 5, 1981); see also Advisory Committee Notes,
1972 Proposed Rules, Note to Paragraph (6).

The Oracle presentations sought to be admitted were
not the kinds of records that could be assured of their
reliability due to systematic checking or habits of
precision. On the contrary, the documents contained
narrative, analysis, and commentary — i.e., self-serving
argument. The only “regularity” of the self-serving
presentations was that they arose as part of an annual
budget review, but the statements themselves had not
derived from such a systematic habit of precision. They
otherwise lacked the indicia of trustworthiness sought by
Rule 803(6). They were properly excluded as hearsay.

F. Bifurcation.

A pretrial order bifurcated the issues of fair use from
willfulness and monetary remedies (Dkt. No. 1321 at 13).
This prejudiced Oracle, it asserts, because “important
market harm testimony never made it to the jury because
it was relegated to the damages phase” and because
“bifurcation provided a structural incentive for the jury to
return a defense verdict” (Pl.’s Mtn. at 20).

Oracle’s argument that bifurcation precluded it from
presenting its market harm evidence is simply untrue.
Nothing about the bifurcation precluded Oracle in phase

88a

one from presenting evidence of Oracle’s lost revenue
attributable to Android. Indeed, Oracle presented
extensive evidence in phase one directed at the issue of
market harm to the copyrighted works, the fourth fair use
factor.

Although there was some overlap in the evidence
relevant to market harm and Oracle’s actual damages (and
Oracle remained free to present it in phase one and did),
the most complex evidence on Oracle’s remedies — the
disgorgement of Google’s profits — had virtually no
relevance to the market harm/fair use inquiry. Section
107(4) on fair use focuses on the “effect of the use upon the
potential market for or value of the copyrighted work”
(i.e., harm to Oracle). Section 504(b) on remedies allows a
copyright owner to recover “the actual damages suffered
. . . as a result of the infringement” (again, harm to Oracle)
as well as “any profits of the infringer that are
attributable to the infringement” (Google’s profits from
infringement) — to the extent the awards are not
duplicative. Put differently, phase one focused on market
harm to the copyrighted work whereas phase two focused
on Oracle’s damages from that market harm and possible
disgorgement of Google’s profits attributable to the
infringement. Oracle’s claim for disgorgement of Google’s
profits totaled more than ten times Oracle’s claimed
actual damages and thus would have dominated Oracle’s
case in phase two.8

8 Google contended that the issue of disgorgement should not be
presented to a jury. An order held that the jury would rule on
disgorgement, but the Court would resolve Google’s argument after
the verdict, possibly treating the jury’s verdict as advisory, if not
conclusive (Dkt. No. 1769).

89a

The disgorgement issue presented extraordinary
complexity — complexity unrelated to market harm to the
copyrighted works. For one, Google never directly sold
Android. Instead, Google offered it free to all comers as
open source. Google benefited indirectly. It used Android
as a platform for its other services, which earned revenue
from advertisements and sales of apps and media. But
these other services (like its popular search engine) had
already been operating and earning revenue well before
Android. Oracle conceded this but contended that Android
had multiplied that revenue. Thus, to isolate profits
attributable to use of Oracle’s code, the jury would have
been required to apportion, first of all, the revenue
between the pre-existing technology already in place
versus Android.

Next the jury would have had to further apportion
between the accused lines of code versus the unaccused
lines of code within Android. The infringing part of
Android constituted only a small fraction of one percent of
Android. Oracle conceded this but contended that this
sliver held the key to the success of Android. These
apportionment difficulties were just two examples of
many posed by the disgorgement claim for our jury.

Thus, phase two was poised to present bone-crushing
analytics on how to apportion any Android profits
attributable to the infringement versus profits
attributable to non-infringement. To meet this challenge,
the parties presented dueling economic models yielding
massively different answers. Again, unlike Oracle’s lost
profits segment, the apportionment/disgorgement
problems had virtually no relevance to market harm and
fair use.

90a

In the Court’s judgment and discretion, our trial was
best managed by postponing that mind-bender to phase
two, so that the jury could give its undivided attention in
phase one to the critical issue of fair use. Dividing the trial
further served the important purpose of saving the
resources of the Court and the jury (and the parties) in the
event that the jury decided against Oracle on fair use.

To repeat, Oracle was free to present its lost profits
and other market harm evidence in phase one — and it did
so at length. (In phase two, all previously admitted
evidence would still have been deemed in evidence.)

Turning to Oracle’s structural incentive argument,
the Court instructed the jury not to allow any desire to
conclude the trial sooner to influence its decision. We must
presume the jurors followed the instruction, and there is
nothing to indicate otherwise. Richardson v. Marsh, 481
U.S. 200, 206 (1987). Oracle’s structural incentive
argument, such as it is, would undermine every
bifurcation of damages from liability. Yet the law plainly
allows bifurcation.9

It deserves to be said, in favor of our jury, that the ten
who served were as punctual, attentive, and diligent in
note-taking as any jury this district judge has seen in
seventeen years of service. They had all cleared their

9 The Court instructed the jury as follows (Dkt. No. 1950 ¶ 46):

Once you render a verdict on the fair use question, we may
proceed to the shorter and final phase of the trial on
damages issues, depending on your answer to the fair use
question. This would still be within the June 10 end date
stated earlier. Please do not allow any desire to complete
trial sooner to influence your thinking. Once you render
your verdict on the fair use issue, it will be final and may
not be re-visited or modified during the second phase.

91a

calendars. We were on target to meet or beat the time
estimate given to the jury. Those with hardships had
already been excused during jury selection. It is
impossible to even suspect that bifurcation somehow
steered the jury to rule as it did. The Court remains
completely convinced that the verdict rested, after three
days of deliberation, solely on the jury’s sincere
assessment of the evidence and the instructions of law.

CONCLUSION

For the reasons stated above, Oracle’s motion for a
new trial and its motion for judgment as a matter of law
are DENIED.

IT IS SO ORDERED.

Dated: September 27, 2016.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

92a

Appendix C

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER DENYING RULE 50 MOTIONS

In this copyright case, the Federal Circuit remanded
for a second jury trial on the issue of fair use, rejecting the
argument of Oracle America, Inc., that the first trial
record entitled it to judgment as a matter of law and that
a remand on that issue would be “pointless” (Br. at 68).
Now, after an adverse verdict in the second trial, Oracle
again asserts that it is entitled to judgment as a matter of
law on fair use. For the same reasons as before, Oracle is
wrong in saying that no reasonable jury could find against
it.

Under the law as stated in the final charge and on our
trial record, our jury could reasonably have found for
either side on the fair use issue. Our trial presented a
series of credibility calls for our jury. Both sides are wrong
in saying that all reasonable balancings of the statutory
factors favor their side only. To the extent either side now
quarrels with the law as stated in the final charge (Dkt.
No. 1950), the time for those arguments was at or before
the charging conference or eventually on appeal. For now,

93a

at the district court, the jury instructions control. Based
on those instructions, the Rule 50 motions must be
DENIED. Since an appeal is promised, however, it may
be of assistance to leave a few important observations.

1. The fair use instructions followed largely the review
of fair use law as set forth in the Federal Circuit’s opinion
except for modifications urged by counsel and to account
for how the case was actually tried. The final jury charge
culminated an exhaustive and iterative process of
proposals by the judge followed by critiques by counsel.
Months before trial, the Court informed both sides that it
expected to use the Federal Circuit’s opinion canvassing
fair use law as the starting point and requested briefing
from the parties addressing what modifications should be
made (Dkt. Nos. 1518, 1519 at 51). After reviewing those
comments, the Court circulated a first proposed charge on
fair use and requested critiques (Dkt. No. 1615). Counsel
submitted their critiques a week later with replies the
following week. In light of the critiques, a second draft
made substantial revisions (Dkt. Nos. 1688, 1716), asking
counsel to meet and confer to reach an agreed-on
instruction in light of that proposal and to submit briefs
and responses regarding the areas of disagreement. After
reviewing the further briefs and responses, the Court next
circulated “penultimate instructions on fair use,” a third
draft, and invited a third round of comment (Dkt. No.
1790). Those critiques also led to modifications and a final
notice of the pre-instruction on fair use to be read to the
jury before the start of the evidence (Dkt. No. 1828).
Counsel (and the jury) were advised that the final
instructions at the end of the evidence would possibly be
adjusted to reflect the way the case was tried (and, in fact,
some minor modifications did occur). During the trial, the

94a

judge sought briefs on several issues in play as the
evidence came in. Based thereon, a notice of the proposed
final charge circulated the night before the close of
evidence (Dkt. No. 1923). At the charging conference,
counsel raised both new points and old ones (although they
were permitted to rest on prior critiques). Final
modifications followed. The jury was charged accordingly
(Dkt. No. 1950) evidence (Dkt. No. 1828). Counsel (and the
jury) were advised that the final instructions at the end of
the evidence would possibly be adjusted to reflect the way
the case was tried (and, in fact, some minor modifications
did occur). During the trial, the judge sought briefs on
several issues in play as the evidence came in. Based
thereon, a notice of the proposed final charge circulated
the night before the close of evidence (Dkt. No. 1923). At
the charging conference, counsel raised both new points
and old ones (although they were permitted to rest on
prior critiques). Final modifications followed. The jury
was charged accordingly (Dkt. No. 1950).

2. On fair use, Oracle’s most emphatic argument
remains the “propriety of the defendant’s conduct,”
meaning the subjective awareness by Google Inc. of the
copyrights and, construing its internal e-mails in a light
most unfavorable to Google, its “bad faith.” This, however,
underscores an important point for the appeal. Although
the Federal Circuit opinion omitted any reference to the
“propriety of the defendant’s conduct” (good faith versus
bad faith) as a consideration under any part of the four-
factor test for fair use, Oracle insisted on remand that the
jury be told that it could consider bad faith by our accused
infringer as a subfactor under Factor One. This Court
acquiesced in Oracle’s view and did so despite an omission
— conceivably a studied omission — of any such

95a

consideration in the Federal Circuit opinion and despite
the fact that there is a respectable view that good or bad
faith should no longer be a consideration after the
Supreme Court’s decision in Campbell v. Acuff-Rose
Music, Inc., 510 U.S. 569, 585 n.18 (1994). See 2 Paul
Goldstein, Goldstein on Copyright § 12.2.2, at 12:44.5–
12:45 (3d ed. 2016). Put differently, either a use is
objectively fair or it is not and subjective worry over the
issue arguably should not penalize the user.1

Still, Oracle is correct that the Supreme Court in
Harper & Row Publishers, Inc. v. Nation Enterprises,
471 U.S. 539, 562 (1985), called out the propriety of the
defendant’s conduct as a consideration in that case.
Footnote 18 in Campbell later questioned whether or not
propriety should persist as a consideration but did not rule
it out. At the district court level, we must treat Harper &
Row as still the law and leave it to the appellate courts to
revise (although our instructions included a modification
based on Campbell). This is no small point in this case, for

1 On appeal, Oracle argued as follows (Br. 72):

Finally, “[f]air use presupposes good faith and fair
dealing.” Harper & Row, 471 U.S. at 562 (internal
quotation marks omitted). Google considered, negotiated,
and ultimately rejected the opportunity to license the
packages, deciding to “[d]o Java anyway and defend our
decision, perhaps making enemies along the way.” A1166.
That Google knew it needed a license, and then sought but
did not obtain one, weighs heavily in showing “the
character of the use” was not fair. Los Angeles News Serv.
v. KCAL-TV Channel 9, 108 F.3d 1119, 1122 (9th Cir.
1997). Google “knowingly . . . exploited a purloined work
for free that could have [otherwise] been obtained.” Id.

Despite this argument, the Federal Circuit did not include this
consideration in its discussion of factors on fair use, remaining silent
on the issue.

96a

no Oracle jury argument received more airtime than its
argument that Google “knew” it needed a license and
chose in bad faith to “make enemies” instead.

This leads to a reciprocal key point. Given that Oracle
was allowed to try to prove Google acted in bad faith,
Google was allowed to try to prove good faith. Its
witnesses testified that they had understood that “re-
implementing” an API library was a legitimate,
recognized practice so long as all that was duplicated was
the “declaring code” and so long as the duplicator supplied
its own “implementing code,” that is, the methods were
“re-implemented.” In this way, Java programmers using
the Android API could call on functionalities with the
same Java command statements needed to call the same
functionalities in the Java API, thereby avoiding
splintering of the ways that identical functionalities
became invoked by Java programmers.

Google asked to go a step further and asked for an
instruction on “custom,” citing Wall Data Inc. v. Los
Angeles County Sheriff’s Dept., 447 F.3d 769, 778 (9th Cir.
2006), which stated “fair use is appropriate where a
‘reasonable copyright owner’ would have consented to the
use, i.e., where the ‘custom or public policy’ at the time
would have defined the use as reasonable” (quoting
Subcomm. on Patents, Trademarks & Copyrights of the
Sen. Comm. on the Judiciary, 86th Cong., 2d Sess., Study
No. 14, Fair Use of Copyrighted Works 15 (Latman)
(Comm. Print 1960)). Oracle objected on the ground that
custom was omitted from the Federal Circuit opinion. It
was omitted from that opinion — true. But neither was
there any mention in that opinion of the propriety of the
accused infringer’s conduct. So, that omission by itself
wasn’t a good reason to ignore a pertinent statement by

97a

the Ninth Circuit, the law applicable in this copyright case
arising in the Ninth Circuit. Oracle also argued that
“custom” had to be vastly more entrenched than the
“practice” evidence Google wished to present.

Whether or not the evidence would have warranted a
Wall Data instruction on custom, the fact remained that
once Oracle endeavored to prove bad faith, it opened the
door for Google to prove good faith, so Google explained
its mental state and explained that it believed it had
followed a recognized practice in freely re-implementing
API libraries by duplicating only declaring code. Oracle
vigorously tried to impeach this testimony. Whether or
not the practice rose to the level of an entrenched custom
under Wall Data fell by the wayside. Paragraph 27 of the
instructions allowed the jury to consider, in evaluating
good faith or not, together with all other circumstances,
the extent to which Google’s conduct followed or
contravened any recognized practice in the industry. The
instructions were not adjusted to insert a further
reference to custom or Wall Data in a second place
(presumably in the concluding paragraph on the fair use).2

2Paragraph 27 stated:

Also relevant to the first statutory factor is the propriety
of the accused infringer’s conduct because fair use
presupposes good faith and fair dealing. Where, for
example, the intended purpose is to supplant the copyright
holder’s commercially valuable right of first publication,
good faith is absent. In evaluating the question of the
propriety of Google’s conduct, meaning good faith or not,
you may only consider evidence up to the commencement
of this lawsuit on August 12, 2010, and may not consider
events thereafter. Your decision as to fair use, however,
will govern as to all versions of Android at issue in this
case, regardless of their date of issue. Again, in evaluating
good faith or not, you should limit your consideration to

98a

Mentioning it twice would have elevated practice and
custom to a higher profile than deserved over and above
the other fair use factors. Google’s point was adequately
subsumed under the discussion of propriety of the accused
infringer’s conduct.

3. Deserving notice before turning to Oracle’s main
challenges is a tediously undramatic yet highly practical
point. Our jury could reasonably have concluded as
follows. Sun developed the Java programming language
and made it free for all to use without a license. Sun
further accumulated the copyrighted Java API library of
pre-written code, including its implementing code, to
carry out common and more advanced functions and made
it available for all to use with a license, although the

events before August 12, 2010, and disregard any evidence
you have heard after that date. This evidence cut-off date
applies only to the issue of good faith or not. In evaluating
the extent to which Google acted in good faith or not, you
may take into account, together with all other
circumstances, the extent to which Google relied upon or
contravened any recognized practices in the industry
concerning re-implementation of API libraries. You have
heard evidence concerning the possibility of Google
seeking a license from Oracle. Under the law, if the
accused use is otherwise fair, then no permission or license
need be sought or granted. Thus, seeking or being denied
permission to use a work does not weigh against a finding
of fair use. Similarly, you have heard evidence about
various licenses from the Apache Foundation, the Apache
Harmony Project involving Java, and the General Public
License. These are relevant in some ways, but Google
concedes it had no license from Sun or Oracle, and it is
important to remember that Google makes no claim that
its use was pursuant to a license from Sun or Oracle,
directly or indirectly. Instead, Google claims that its use
was a fair use and therefore required no license at all.

99a

question for our jury was the extent to which, if at all, the
declaring code and its structure, sequence, and
organization (“SSO”) could be carried over into the
Android platform without a license under the statutory
right of fair use.

The Java API library contains, as stated, pre-written
Java source code programs for common and more
advanced computer functions. They are organized into
“packages,” “classes,” and “methods.” A “package” is a
collection of “classes,” and in turn, each “class” is a
collection of “methods” (and other elements). Each
method performs a specific function, sparing a
programmer the need to write Java code from scratch to
perform that function. Put the other way, various methods
are grouped under various classes with the classes
grouped under various packages, as in “java.lang.Math”
with “java.lang” being the package and “java.lang.Math”
being the class. The particular taxonomy adopted for the
Java API reflects its unique file system, that is, its SSO.

Significantly, under the rules of the language itself,
each method must begin with a “declaration,” usually
referred to herein as “declaring code.” This declares or
defines (i) the method name and (ii) the input(s) and their
type as expected by the method and the type of any
outputs. After the declaration, each method next includes
“implementing code,” i.e., the pre-written program, which
takes the input(s) and, using step-by-step code, carries out
the function. The implementing code is set off by special
punctuation.

A simple example of a pre-written method is one that
finds a square root. At the place in a developer’s own
program that needs a square root (of say 81), he or she
inserts a line (or a “statement”) in the specified format

100a

invoking a method pre-written to find square roots. When
the computer runs the program and reaches this line, the
computer calls upon the pre-written method in its file in
the Java API library, provides the method with the input
(81), steps through the “implementing code” to the end of
the method, and finally “returns” the square root (9) to the
program in progress.

The two definitional purposes of “declaring code” are
critical. The first declares the precise name of the method
(so that the right file will be accessed). The second
specifies the input(s) and their type (so that the
implementing code will receive the input(s) in the way
expected) as well as the type of the output. In our simple
square root example, there is only one input, but it must
be in parentheses after “sqrt,” which is the name of the
method. In the Java API library, that particular input is a
special kind of floating decimal point number (rather than
a whole integer) known as a “double.” That part of the
method declaration would look like this:

public static double sqrt(double x)

wherein sqrt is the method name, the input is a floating
decimal number in the form of a “double” (like 81.0 or
11.56), and the method will return a “double” (like 9.0 or
3.4). (For present purposes, we may ignore the words
“public” and “static.”)

In writing his or her own Java program, a programmer
may only invoke a method with a statement using the
precise form defined by the declaring code for the method,
both as to name of method and the input format
specification. To repeat, the precise name finds the precise
file containing the pre-written code for that method. The
precise inputs must match the format expected by the

101a

method. In our programmer’s own program, the
statement calling upon the method might look like the
second line just below:

x = 81.0

y = Math.sqrt(x)

wherein the right side of the statement is dictated by the
declaring code and the left side y is a variable choice made
by the programmer (so that y would be set to the square
root, here 9.0).3

Regardless of the approach taken by the implementing
code to solving the problem addressed by the method (e.g.,
getting the square root), the input(s) to the method, to
repeat, must be of the type as specified in the method
declaration, so that the implementing code will receive the
inputs in the type expected. Similarly, the method will
return an output in the type specified in the method
declaration.

Many thousands of pre-written methods have been
written for Java, so many that thick books (see, e.g., TX
980) are needed to explain them, organized by packages,
classes, and methods. For each method, the book sets
forth the precise declaring code but does not (and need
not) set forth any implementing code. In other words, the
book duplicates all of the method declarations (organized
by packages and classes) together with plain English
explanations. A Java user can study the book and learn the
exact method name and inputs needed to invoke a method
for use in his or her own program. The overall set of
declarations is called the Java Application Program

3 “Math.sqrt” corresponds to “Class.method.” The package need not
be specified in our example.

102a

Interface or Java API. Again, all that the Java
programmer need master are the declarations. The
implementing code remains a “black box” to the
programmer.

In this important sense, the declarations are
“interfaces,” meaning precise doorways to command
access to the pre-written methods and their
implementation code performing the actual work of the
methods. Java users (and Android users for that matter)
must invoke the methods using command statements
conforming to the specifications declared by the
declarations.

Oracle has portrayed the Java programming language
as distinct from the Java API library, insisting that only
the language itself was free for all to use. Turns out,
however, that in order to write at all in the Java
programming language, 62 classes (and some of their
methods), spread across three packages within the Java
API library, must be used. Otherwise, the language itself
will fail. The 62 “necessary” classes are mixed with
“unnecessary” ones in the Java API library and it takes
experts to comb them out. As a result, Oracle has now
stipulated before the jury that it was fair to use the 62
“necessary” classes given that the Java programming
language itself was free and open to use without a license
(Tr. 1442–43; TX 9223).4

4 Java 2 SE Version 5.0 (one of the copyright works), included 166 API
packages. Those packages included over three thousand classes and
interfaces, which, in turn, included a total of more than ten thousand
methods. Android used the declaring code and SSO of 37 of those API
packages including more than six hundred classes (and other
elements) which, in turn, included more than six thousand methods.
As stated, the implementing code was not copied.

103a

That the 62 “necessary” classes reside without any
identification as such within the Java API library (rather
than reside within the programming language) supports
Google’s contention that the Java API library is simply an
extension of the programming language itself and helps
explain why some view the Java API declarations as free
and open for use as the programming language itself. At
least to the extent of the 62 “necessary” classes, Oracle
agrees.5

All this said, our fair use issue, as presented to our
jury, came down to whether someone using the Java
programming language to build their own library of Java
packages was free to duplicate, not just the “necessary”
functions in the Java API library but also to duplicate any
other functions in it and, in doing so, use the same
interfaces, i.e., declaring code, to specify the methods —
so long as they supplied their own implementing code.

Oracle’s argument in the negative amounts to saying:
Yes, all were free to use the Java programming language.
Yes, all were free to use the 62 necessary classes from the
Java API. Yes, all were free to duplicate the same
functionality of any and all methods in the Java API
library so long as they “re-implemented” (since copyright
does not protect functionality or ideas, only expression).
But, Oracle would say, anyone doing so should have
scrambled the functionalities among a different taxonomy

5 Trial Exhibit 980, The Java Application Programming Interface,
Volume 1, is a book that covers four packages and refers to them as
the “core packages.” According to the back cover of the book, these
four packages “are the foundation of the Java language. These
libraries include java.lang, java.io, java.util, and java.net. These are
the general purpose libraries fundamental to every Java program.”

104a

of packages and classes (except as to the 62 “necessary”
classes). That is, they should have used a different SSO.

Here, the undramatic yet practical point comes into
sharp focus. If, as it was entitled to do, Google had simply
reorganized the same functionality of the 37 re-
implemented Java packages into a different SSO (taking
care, however, not to disturb the 62 necessary classes and
their three respective packages), then Java programmers,
in order to use the Java system as well as the reorganized
Android system, would have had to master and keep
straight two different SSO’s as they switched between the
two systems for different projects. Our jury could
reasonably have found that this incompatibility would
have fomented confusion and error to the detriment of
both Java-based systems and to the detriment of Java
programmers at large. By analogy, all typewriters use the
same QWERTY keyboard — imagine the confusion and
universal disservice if every typewriter maker had to
scramble the keyboard. Since both systems presupposed
the Java programming language in the first place, it was
better for both to share the same SSO insofar as they
offered the same functionalities, thus maintaining usage
consistency across systems and avoiding cross-system
confusion, just as all typewriter keyboards should use the
QWERTY layout — or so our jury could reasonably have
found.

The same could have been reasonably found for the
second purpose of the declaring code — specifying the
inputs, outputs, and their type. To the extent a
specification could be written in more than one way to
carry out a given function, it was nevertheless better for
all using the Java language to master a single specification
rather than having to master, for the same function,

105a

different specifications, one for each system, with the
attendant risk of error in switching between systems — or
so our jury could reasonably have found.

In terms of the four statutory factors, this
consideration bears significantly upon the nature and
character of the use (the First Factor), the functional
character of the declaring code (the Second Factor), and
the limited extent of copying (the Third Factor), that is,
Google copied only so much declaring code as was
necessary to maintain inter-system consistency among
Java users. Google supplied its own code for the rest.
Overall, avoiding cross-system babel promoted the
progress of science and useful arts — or so our jury could
reasonably have found.6

This order will now turn to specific arguments raised
by Oracle, the losing party, in its challenge to the verdict.

4. With respect to Factor One, Oracle presses hard its
view that Google copied in bad faith disregard of
Sun/Oracle’s property rights. As stated, there remains an
ongoing debate regarding whether the “propriety of the
use” is a cognizable consideration in any fair use inquiry.
Nevertheless, our jury was instructed, as requested by
Oracle, to consider whether Google acted in good faith or
not as part of its consideration of the first statutory factor.
Although mental state is a classic question reserved to the
jury, and in our trial mental state was much contested,

6 This point of inter-system consistency, by the way, differs from the
interoperability point criticized by the Federal Circuit. 750 F.3d at
1371. The immediate point of cross-system consistency focuses on
avoiding confusion in usage between the two systems, both of which
are Java-based, not on one program written for one system being
operable on the other, the point addressed by the Federal Circuit.

106a

Oracle now insists that our jury could not reasonably have
concluded that Google acted in good faith.

Oracle cites numerous examples of internal documents
and trial testimony that suggested that Google felt it
needed to copy the Java API as an accelerant to bring
Android to the market quicker. It points to the breakdown
in negotiations between Google and Sun seeking to form a
full partnership leaving Google with Java class libraries
that were “half-ass at best. [It] need[ed] another half of an
ass” (TX 215). In light of that breakdown, Google elected
to “[d]o Java anyway and defend [its] decision, perhaps
making enemies along the way” (TX 7 at 2). Oracle further
notes that even after Sun’s CEO at the time publicly
praised Android, Andy Rubin (head of Google’s Android
team) instructed representatives at a trade show, “don’t
demonstrate [Android] to any [S]un employees or
lawyers” (TX 29). Finally, Oracle points to internal
communications indicating that Google believed it needed
a license to use Java (TX 10; see also TX 409 (discussing
the possibility of buying Sun to “solve all these lawsuits
we’re facing”)).

On the other hand, Google presented evidence that
many at Google (and Sun) understood that at least the
declaring code and their SSO were free to use and re-
implement, both as a matter of developer practice and
because the availability of independent implementations
of the Java API enhanced the popularity of the Java
programming language, which Sun promoted as free for
all to use (Schmidt Testimony, Tr. 361; Page Testimony,
Tr. 1846; Rubin Testimony, Tr. 639; Rubin Testimony, Tr.
1088–89).

Sun’s own CEO at the time, Jonathan Schwartz,
testified on Google’s behalf at trial and supported Google’s

107a

view that a practice of duplicating declarations existed and
that the competition was on implementations. Oracle’s
harsh cross-examination focused on character
assassination and showing that Schwartz resented Oracle
for its treatment of Schwartz after the buyout. That
Oracle resorted to such impeachment underscores how
fact-bound the issue was, another classic role of a jury to
resolve.

In light of the foregoing, our jury could reasonably
have concluded that Google’s use of parts of the Java API
as an accelerant was undertaken based on a good faith
belief that at least the declaring code and SSO were free
to use (which it did use), while a license was necessary for
the implementing code (which it did not use). Our jury
could reasonably have concluded that Google’s concern
about making an enemy of Sun reflected concern about the
parties’ business relationship in light of the failed
negotiations that would have brought Sun in as a major
partner in Android, rather than concerns about litigation.
Mental state was and remains a classic province of the
jury.

5. With respect to the Factor One and commercialism,
it is undisputed that Google’s use of the declaring code and
SSO from 37 Java API packages served commercial
purposes and our jury was so instructed, including an
instruction that a commercial use weighed against fair
use. Nevertheless, our jury could reasonably have found
that Google’s decision to make Android available open
source and free for all to use had non-commercial
purposes as well (such as the general interest in sharing
software innovation). Indeed, Sun itself acknowledged
(before Android launched) that making OpenJDK
available as open source, as Sun did, could undermine its

108a

own commercial efforts with Java SE licensing (TX 971 at
14). Thus, even though Google’s use was commercial,
which weighed against fair use, the jury could reasonably
have found the open-source character of Android
tempered Google’s overall commercial goals.

Of course, even a wholly commercial use may still
constitute a fair use. Campbell, 510 U.S. at 585. Thus, in
the alternative, our jury could reasonably have found that
Google’s use of the declaring code and SSO from 37 Java
API packages constituted a fair use despite even a heavily
commercial character of that use.

It is true that in the first appeal, the following
exchange occurred at oral argument between Circuit
Judge Kathleen O’Malley and counsel for Google:

Judge O’Malley: But for purpose and
character, though, you don’t dispute that it was
entirely a commercial purpose.

Van Nest: No.

Oral Arg., Oracle Am., Inc. v. Google Inc., Nos. 2013-1021,
2013-1022 (Fed. Circ.) 1:02:54–1:03:00.

On remand, Oracle sought to convert this colloquy to a
judicial admission that Google’s use was “entirely
commercial.” It is for the district court, in its discretion, to
determine the extent, if any, of a judicial admission.
American Title Ins. Co. v. Lacelaw Corp., 861 F.2d 224,
226 (9th Cir. 1988). As set forth in the final pretrial order
(Dkt. No. 1760), the undersigned examined the colloquy
(and all other statements of record on the point) and
determined that the “commercial” part would be treated
as a judicial admission, but the “entirely” part would not
be. The word “entirely” was part of the give and take of an

109a

oral argument. In light of all statements by counsel and in
light of the free and open availability of Android, the word
“entirely” would have been too conclusive, inaccurate, and
unfair. The district court exercised its discretion to limit
the admission to “commercial” and let the jury decide for
itself how commercial, according to the evidence.

Accordingly, our jury was instructed that Google’s use
was commercial, but that it was up to the jury to
determine the extent of the commerciality, as follows
(Dkt. No. 1981 ¶ 21) (emphasis added):

In evaluating the first statutory factor, the extent of
the commercial nature of the accused use must be
considered. In this case, all agree that Google’s accused
use was commercial in nature but disagree over the
extent. Commercial use weighs against a finding of fair
use, but even a commercial use may be found (or not
found, as the case may be) to be sufficiently
transformative that the first statutory factor, on balance,
still cuts in favor of fair use. To put it differently, the more
transformative an accused work, the more other factors,
such as commercialism, will recede in importance. By
contrast, the less transformative the accused work, the
more other factors like commercialism will dominate.

Our jury could reasonably have agreed with Oracle
that the evidence showed the use was entirely commercial
(yet still ruled for Google), but it could also have
reasonably found that the use, while commercial, served
non-commercial purposes as well, i.e., as part of a free and
open software platform, namely Android.7

7 Although Google gives Android away for free, Oracle argues that the
“Android Ecosystem” has generated over forty billion dollars in
revenue and thus Android has had a massive commercial benefit to

110a

6. With respect to the Factor One and
“transformativeness,” a use is transformative if it “adds
something new, with a further purpose or different
character, altering the first with new expression, meaning,
or message.” Campbell v. Acuff-Rose Music, Inc., 510 U.S.
569, 579 (1994). Oracle argues that no jury could
reasonably find that Google’s use of the declaring code and
SSO from 37 Java API packages in Android imbued the
copyrighted works with new expression, meaning, or
message. Specifically, Oracle argues that the copied code
served the same function in Android as it did in Java,
inasmuch as the code served as an interface for accessing
methods in both systems (see Astrachan Testimony, Tr.
1265; Bloch Testimony, Tr. 997).

It should go without saying (but it must be said
anyway) that, of course, the words copied will always be
the same (or virtually so) in a copyright case — otherwise
there can be no copyright problem in the first place. And,
of course, the copied declarations serve the same function
in both works, for by definition, declaring code in the Java
programming language serves the specific definitional
purposes explained above. If this were enough to defeat
fair use, it would be impossible ever to duplicate declaring
code as fair use and presumably the Federal Circuit would
have disallowed this factor on the first appeal rather than
remanding for a jury trial.

Google. There is no doubt that Android has contributed to a large
expansion of smartphones but the revenue benefit to Google flows
from the ad revenue generated by its search engine which pre existed
Android. In other words, our jury could reasonably have found that
without Android the void would have been filled by other mobile
platforms, yet those platforms would still have led to more Google
search requests and ad revenue.

111a

With respect to transformativeness, our jury could
reasonably have found that (i) Google’s selection of 37 out
of 166 Java API packages (ii) re-implemented with new
implementing code adapted to the constrained operating
environment of mobile smartphone devices with small
batteries, and (iii) combined with brand new methods,
classes, and packages written by Google for the mobile
smartphone platform — all constituted a fresh context
giving new expression, meaning, or message to the
duplicated code.8 (The copyrighted works were designed
and used for desktop and laptop computers.)

In Campbell, the accused work (a rap parody song)
used the same bass riff and an identical first line of Roy
Orbison’s “Oh, Pretty Woman.” The parody also included
exact copies of certain phrases in subsequent lines and
maintained the same structure and rhyme scheme
throughout. The copied elements served the same
function in the accused work as in the original.
Nevertheless, the Supreme Court acknowledged that the
transformative purpose of parody had a “need to mimic an
original to make its point,” and thus, warranted copying
some exact elements. Id. at 580–81. The question of the
extent of the copying permissible to serve that function
was the subject of the inquiry of the third statutory fair
use factor. So too here.

8 As stated, the Android core libraries included over one hundred new
API packages that had never been part of the Java API. Those
packages enabled functionality specifically intended for use in a
mobile smartphone environment, and like the 37 Java API packages
at issue here, they were written in the Java programming language
(Rubin Testimony, Tr. 670). Some additional functionality in Android,
however, was performed by a separate set of libraries written in C or
C++ for performance purposes (Douglas Schmidt Testimony, Tr.
1602).

112a

Android did not merely incorporate the copyrighted
work “as part of a broader work,” without any change to
the purpose, message, or meaning of the underlying work
(see Dkt. No. 1780). Android did not merely adopt the Java
platform wholesale as part of a broader software platform
without any changes. Instead, it integrated selected
elements, namely declarations from 37 packages to
interface with all new implementing code optimized for
mobile smartphones and added entirely new Java
packages written by Google itself. This enabled a purpose
distinct from the desktop purpose of the copyrighted
works — or so our jury could reasonably have found.

In light of the foregoing, our jury could reasonably
have concluded that Google’s use of the declaring code and
SSO of 37 API packages from the desktop platform work
in a full-stack, open-source mobile operating system for
smartphones was transformative.9

7. With respect to Factor Two, the “nature of the
copyrighted work,” the final charge to the jury stated
“[t]his factor recognizes that traditional literary works are
closer than informational works, such as instruction

9 The instructions on “transformativeness” deleted a point from the
Federal Circuit opinion that might have favored Google, which had
requested an instruction defining “transformative” as the
incorporation of copyrighted material “as part of a broader work,”
relying on a parenthetical snippet in the Federal Circuit opinion. This
Court denied Google’s request and explained why (Dkt. 1780). In
brief, the parenthetical snippet was taken from our court of appeal’s
decision in Monge v. Maya Magazines, 688 F.3d 1164, 1176 (9th Cir.
2012). But as our court of appeals there explained, the incorporation
of a copyrighted material into a larger work, such as the arrangement
of a work in a photo montage, could be transformative and fair use,
not that it must be. Please see the order at Docket Number 1780 for
the reasoning.

113a

manuals, to the core of intended copyright protection.
Creative writing and expression lie at the very heart of
copyright protection, so fair use is generally more difficult
to establish for copying of traditional literary works than
for copying of informational works” (Dkt. No. 1981 ¶ 28);
see also Campbell, 510 U.S. at 586.10

The Java programming language itself requires the
package-class-method hierarchy, an idea on which Oracle
does not claim any copyright. Oracle instead argues that
because there were countless ways to name and organize
the packages in Java and because Google could have used
a completely new taxonomy in Android (except as to the
62 “necessary” classes), our jury should have concluded
that the process of designing APIs must have been “highly
creative” and thus at the core of copyright’s protection. Of
course, such a conclusion would have been within the
evidence, but our jury could reasonably have gone the
other way and concluded that the declaring code was not
highly creative.

Oracle highlights Google’s own witness, Joshua Bloch,
who designed many of the Java APIs while working at Sun
and who later worked at Google on the Android team.
Bloch testified that one of the challenges he faced in
designing API was “the complexity of figuring out how
best to express what it is that the programmer wants
done” (Tr. 1007). Oracle focuses on Bloch’s use of the word
“express” to demonstrate the expressive nature of API

10 “[I]f a work is largely functional, it receives only weak protection.
‘This result is neither unfair nor unfortunate. It is the means by which
copyright advances the progress of science and art.’” Sega
Enterprises, Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir. 1992)
(quoting Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S.
340, 350 (1991)).

114a

design but it ignores the fact that he addressed the
challenge of expressing a particular function. Similarly,
Oracle notes that Bloch described API design as “an art
not a science” and cites his eloquence regarding “design
principles” (Tr. 971).

In citing this, Oracle resorts to the time-honored tactic
of emphasizing a concession by one of the other side’s
witness. But other witnesses (e.g., Dr. Owen Astrachan,
among others) emphasized the functional role of the
declaring lines of code and their SSO and minimized the
“creative” aspect. Our jury could reasonably have found
that, while the declaring code and SSO were creative
enough to qualify for copyright protection, functional
considerations predominated in their design, and thus
Factor Two was not a strong factor in favor of Oracle after
all.

8. With respect to Factor Three, our jury could
reasonably have found that Google duplicated the bare
minimum of the 37 API packages, just enough to preserve
inter-system consistency in usage, namely the
declarations and their SSO only, and did not copy any of
the implementing code, thus finding that Google copied
only so much as was reasonably necessary for a
transformative use. The number of lines of code
duplicated constituted a tiny fraction of one percent of the
copyrighted works (and even less of Android, for that
matter).

9. With respect to Factor Four, our jury could
reasonably have found that use of the declaring lines of
code (including their SSO) in Android caused no harm to
the market for the copyrighted works, which were for
desktop and laptop computers. As to Java ME, our jury
could reasonably have found that Java ME eventually

115a

declined in revenue just as predicted by Sun before
Android was even released, meaning that Android had no
further negative impact on Java ME beyond the tailspin
already predicted within Sun.

Also, before Android was released, Sun made all of the
Java API available as free and open source under the
name OpenJDK, subject only to the lax terms of the
General Public License Version 2 with Classpath
Exception. This invited anyone to subset the API. Anyone
could have duplicated, for commercial purposes, the very
same 37 packages as wound up in Android with the very
same SSO and done so without any fee, subject only to
lenient “give-back” conditions of the GPLv2+CE.
Although Google didn’t acquire the 37 packages via
OpenJDK, our jury could reasonably have found that
Android’s impact on the market for the copyrighted works
paralleled what Sun already expected via its OpenJDK.

10. Stepping back, it seems hard to reconcile Oracle’s
current position with the one it took just as the trial was
getting underway, namely, that fair use is an equitable
rule of reason and each case requires its own balancing of
factors. In its critique of the first proposed jury
instructions on fair use (Dkt. No. 1663 at 1), Oracle argued
that the Court’s draft characterization of the policy of fair
use contravened the legislative history, and Oracle cited
the following language from a Senate report on the 1976
Copyright Act (which language was repeated in the House
Report):

Although the courts have considered and ruled upon
the fair use doctrine over and over again, no real definition
of the concept has ever emerged. Indeed, since the
doctrine is an equitable rule of reason, no generally

116a

applicable definition is possible, and each case raising the
question must be decided on its own facts.

S.Rep. No. 94-473 at 62 (1975). The Court adopted
Oracle’s proposed instruction in the next draft as well as
in the final charge to the jury, stating: “Since the doctrine
of fair use is an equitable rule of reason, no generally
accepted definition is possible, and each case raising the
question must be decided on its own facts” (Dkt. No. 1981
¶ 21).

Now, Oracle argues instead that this case must be
decided as a matter of law, and not “on its own facts.”
Oracle argues that Google’s copying fails to resemble any
of the statutory examples of fair use listed in the precatory
language of Section 107, again contradicting its earlier
position that “no generally applicable definition is
possible.”

In applying an “equitable rule of reason,” our jury
could reasonably have given weight to the fact that cross-
system confusion would have resulted had Google
scrambled the SSO and specifications. Java programmers
and science and the useful arts were better served by a
common set of command-type statements, just as all
typists are better served by a common QWERTY
keyboard.

11. In summary, on Factor One, our jury could
reasonably have found that while the use was commercial,
the commercial use was outweighed by a transformative
use, namely use of the declaring code as one component in
a full stack platform for highly advanced smartphones, a
different context in which (i) 37 of the 166 API packages
were selected, (ii) all of the implementing code was re-
implemented for a mobile low-power platform, and (iii)

117a

many new packages original with Android were added.
Despite Google’s internal e-mails, our jury could
reasonably have found that most of them pertained to
earlier negotiations for a joint venture to use the entire
Java system, including the implementing code, and that,
after those discussions failed, Google acted in good faith
by duplicating only the declarations to 37 packages to
maintain inter-system consistency in usage and by
supplying its own implementing code. On Factor Two, our
jury could reasonably have found that the code copied was
not highly creative, was mainly functional, and was less
deserving of protection. On Factor Three, our jury could
reasonably have found that Google duplicated only the
declaring code, a tiny fraction of the copyrighted works,
duplicated to avoid confusion among Java programmers
as between the Java system and the Android system. On
Factor Four, our jury could have found that Android
caused no harm to the desktop market for the copyrighted
works or to any mobile derivative, as borne out by Sun’s
own records. Of course, Oracle had arguments going the
other way, but the jury was reasonably within the record
in finding fair use.

This order cannot cover all the myriad ways that the
jury could reasonably have balanced the statutory factors
and found in favor of fair use. The possibilities above
represent but one take on the evidence. Witness
credibility was much challenged. Plainly, many more
variations and balancings could have reasonably led to the
same verdict.

12. A final word about a separate issue that arose
during trial. In their joint final pretrial submission, both
sides agreed that no reference would be made before the
jury to the prior proceedings in this case (Dkt. No. 1709 at

118a

8). As this trial developed, however, Oracle left the
impression before the jury that all the way up to the
present, Google had uniformly acted in bad faith. Problem
was, during a substantial part of this period (2012–2014),
Google had been entitled to rely on the judgment of the
district court that the material asserted was not
copyrightable. Kamar Int’l, Inc. v. Russ Berrie & Co., 752
F.2d 1326, 1330 (column two) (9th Cir. 1984) stated
(emphasis added):

We affirm the district court’s holding that the
sales by Russ Berrie of its stuffed animals
immediately following the first judgment do
not count as infringements after notice.
Kamar’s supposed citation to the contrary . . .
is wholly inapposite. In its first judgment, the
district court held Russ Berrie’s animals
noninfringing. Kamar did not obtain any stay
pending appeal. Russ was entitled to rely on the
judgment at that time.

In response, Oracle contended that Judge Alex
Kozinski’s opinion for our court of appeals in Micro Star
v. Formgen, Inc., 154 F.3d 1107 (9th Cir. 1998), had been
so at odds with the decision by this Court holding that the
declaring code and their structure, sequence and
organization were not copyrightable that Google could not
reasonably have believed that this Court’s holding on
uncopyrightability was correct (Trial Tr. at 1591). The
short answer was that Micro Star provided no holding or
dictum whatsoever on copyrightability — none.
Copyrightability was not there raised. (It was a fair use
case.) Indeed, in our earlier trial whencopyrightability
was debated, no one, including Oracle, ever cited Micro
Star on copyrightability. Nor was it raised on appeal.

119a

To resolve this problem of the 2012-2014 interregnum
period as best as could be done with minimal strain on the
parties’ stipulation, the Court gave the following
instruction:

In evaluating the question of the propriety of Google’s
conduct, meaning good faith or not, you may only consider
evidence up to the commencement of this lawsuit on
August 12, 2010, and may not consider events thereafter.
Your decision as to fair use, however, will govern as to all
versions of Android at issue in this case, regardless of
their date of issue. Again, in evaluating good faith or not,
you should limit your consideration to events before
August 12, 2010, and disregard any evidence you have
heard after that date. This evidence cut-off date applies
only to the issue of good faith or not.

No mention was made to the jury about the earlier
judgment rejecting copyrightability. The problem was
largely solved by the date cut-off, which allowed Oracle to
use all of Google’s “bad” e-mails. To mitigate the problem
of speculation regarding prior testimony read in at the
second trial, the following instruction was given:

You may have heard from a witness that there was a
prior trial in this case. It is true that there was a prior trial.
We have heard evidence in this trial of a prior proceeding,
which is the earlier trial that occurred in this case. Do not
speculate about what happened in the prior trial. No
determination on fair use was made one way or the other
in that trial. It is up to you, the jury, to determine fair use
based on the evidence you have heard in this trial and my
instructions of the law.

Unfortunately, this might not have eliminated all of the
prejudice to Google from the suggestion made before the

120a

jury by Oracle, but it went most of the way and was the
best the Court could do in light of the stipulation made by
the parties at the outset.

* * *

All Rule 50 motions are DENIED. Judgment will be
entered in accordance with the jury’s verdict. IT IS SO
ORDERED.

Dated: June 8, 2016.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

121a

Appendix D

United States Court of Appeals
for the Federal Circuit

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE INC.,

Defendant-Cross-Appellant.

2013-1021, -1022

Appeals from the United States District Court for the
Northern District of California in No. 10-CV-3561, Judge

William H. Alsup.

Decided: May 9, 2014

* * *

Before O’MALLEY, PLAGER, and TARANTO, Circuit
Judges

O’MALLEY, Circuit Judge.

This copyright dispute involves 37 packages of
computer source code. The parties have often referred to
these groups of computer programs, individually or
collectively, as “application programming interfaces,” or

122a

API packages, but it is their content, not their name, that
matters. The predecessor of Oracle America, Inc.
(“Oracle”) wrote these and other API packages in the Java
programming language, and Oracle licenses them on
various terms for others to use. Many software developers
use the Java language, as well as Oracle’s API packages,
to write applications (commonly referred to as “apps”) for
desktop and laptop computers, tablets, smartphones, and
other devices.

Oracle filed suit against Google Inc. (“Google”) in the
United States District Court for the Northern District of
California, alleging that Google’s Android mobile
operating system infringed Oracle’s patents and
copyrights. The jury found no patent infringement, and
the patent claims are not at issue in this appeal. As to the
copyright claims, the parties agreed that the jury would
decide infringement, fair use, and whether any copying
was de minimis, while the district judge would decide
copyrightability and Google’s equitable defenses. The jury
found that Google infringed Oracle’s copyrights in the 37
Java packages and a specific computer routine called
“rangeCheck,” but returned a noninfringement verdict as
to eight decompiled security files. The jury deadlocked on
Google’s fair use defense.

After the jury verdict, the district court denied
Oracle’s motion for judgment as a matter of law (“JMOL”)
regarding fair use as well as Google’s motion for JMOL
with respect to the rangeCheck files. Order on Motions for
Judgment as a Matter of Law, Oracle Am., Inc. v. Google
Inc., No. 3:10-cv-3561 (N.D. Cal. May 10, 2012), ECF No.
1119. Oracle also moved for JMOL of infringement with
respect to the eight decompiled security files. In granting
that motion, the court found that: (1) Google admitted to

123a

copying the eight files; and (2) no reasonable jury could
find that the copying was de minimis. Oracle Am., Inc. v.
Google Inc., No. C 10-3561, 2012 U.S. Dist. LEXIS 66417
(N.D. Cal. May 11, 2012) (“Order Granting JMOL on
Decompiled Files”).

Shortly thereafter, the district court issued its decision
on copyrightability, finding that the replicated elements of
the 37 API packages—including the declaring code and
the structure, sequence, and organization—were not
subject to copyright protection. Oracle Am., Inc. v. Google
Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012)
(“Copyrightability Decision”). Accordingly, the district
court entered final judgment in favor of Google on Oracle’s
copyright infringement claims, except with respect to the
rangeCheck code and the eight decompiled files. Final
Judgment, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-
3561 (N.D. Cal. June 20, 2012), ECF No. 1211. Oracle
appeals from the portion of the final judgment entered
against it, and Google cross-appeals from the portion of
that same judgment entered in favor of Oracle as to the
rangeCheck code and eight decompiled files.

Because we conclude that the declaring code and the
structure, sequence, and organization of the API packages
are entitled to copyright protection, we reverse the
district court’s copyrightability determination with
instructions to reinstate the jury’s infringement finding as
to the 37 Java packages. Because the jury deadlocked on
fair use, we remand for further consideration of Google’s
fair use defense in light of this decision. With respect to
Google’s cross-appeal, we affirm the district court’s
decisions: (1) granting Oracle’s motion for JMOL as to the
eight decompiled Java files that Google copied into
Android; and (2) denying Google’s motion for JMOL with

124a

respect to the rangeCheck function. Accordingly, we
affirm-in-part, reverse-in-part, and remand for further
proceedings.

BACKGROUND

A. The Technology

Sun Microsystems, Inc. (“Sun”) developed the Java
“platform” for computer programming and released it in
1996.1 The aim was to relieve programmers from the
burden of writing different versions of their computer
programs for different operating systems or devices. “The
Java platform, through the use of a virtual machine,
enable[d] software developers to write programs that
[we]re able to run on different types of computer
hardware without having to rewrite them for each
different type.” Copyrightability Decision, 872 F. Supp.
2d at 977. With Java, a software programmer could “write
once, run anywhere.”

The Java virtual machine (“JVM”) plays a central role
in the overall Java platform. The Java programming
language itself—which includes words, symbols, and other
units, together with syntax rules for using them to create
instructions—is the language in which a Java programmer
writes source code, the version of a program that is “in a
human-readable language.” Id. For the instructions to be
executed, they must be converted (or compiled) into
binary machine code (object code) consisting of 0s and 1s
understandable by the particular computing device. In the
Java system, “source code is first converted into
‘bytecode,’ an intermediate form, before it is then
converted into binary machine code by the Java virtual

1 Oracle acquired Sun in 2010.

125a

machine” that has been designed for that device. Id. The
Java platform includes the “Java development kit (JDK),
javac compiler, tools and utilities, runtime programs, class
libraries (API packages), and the Java virtual machine.”
Id. at 977 n.2.

Sun wrote a number of ready-to-use Java programs to
perform common computer functions and organized those
programs into groups it called “packages.” These
packages, which are the application programming
interfaces at issue in this appeal, allow programmers to
use the prewritten code to build certain functions into
their own programs, rather than write their own code to
perform those functions from scratch. They are shortcuts.
Sun called the code for a specific operation (function) a
“method.” It defined “classes” so that each class consists
of specified methods plus variables and other elements on
which the methods operate. To organize the classes for
users, then, it grouped classes (along with certain related
“interfaces”) into “packages.” See id. at 982 (describing
organization: “[e]ach package [i]s broken into classes and
those in turn [are] broken into methods”). The parties
have not disputed the district court’s analogy: Oracle’s
collection of API packages is like a library, each package
is like a bookshelf in the library, each class is like a book
on the shelf, and each method is like a how-to chapter in a
book. Id. at 977.

The original Java Standard Edition Platform (“Java
SE”) included “eight packages of pre-written programs.”
Id. at 982. The district court found, and Oracle concedes
to some extent, that three of those packages—java.lang,
java.io, and java.util—were “core” packages, meaning that
programmers using the Java language had to use them “in
order to make any worthwhile use of the language.” Id. By

126a

2008, the Java platform had more than 6,000 methods
making up more than 600 classes grouped into 166 API
packages. There are 37 Java API packages at issue in this
appeal, three of which are the core packages identified by
the district court.2 These packages contain thousands of
individual elements, including classes, subclasses,
methods, and interfaces.

Every package consists of two types of source code—
what the parties call (1) declaring code; and
(2) implementing code. Declaring code is the expression
that identifies the prewritten function and is sometimes
referred to as the “declaration” or “header.” As the
district court explained, the “main point is that this header
line of code introduces the method body and specifies very
precisely the inputs, name and other functionality.” Id. at
979–80. The expressions used by the programmer from
the declaring code command the computer to execute the
associated implementing code, which gives the computer
the step-by-step instructions for carrying out the declared
function.

To use the district court’s example, one of the Java API
packages at issue is “java.lang.” Within that package is a
class called “math,” and within “math” there are several

2 The 37 API packages involved in this appeal are: java.awt.font,
java.beans, java.io, java.lang, ja va.lang.annotation, java.lang.ref,
java.lang.reflect, java. net, java.nio, java.nio.channels,
java.nio.channels.spi, java.nio.charset, java.nio.charset.spi,
java.security, java. security.acl, java.security.cert,
java.security.interfaces, java.security.spec, java.sql, java.text,
java.util, java. util.jar, java.util.logging, java.util.prefs, java.
util.regex, java.util.zip, javax.crypto, javax.crypto.interfaces,
javax.crypto.spec, javax.net, javax.net.ssl, javax.security.auth, javax.
security.auth.callback, javax.security.auth.login,
javax.security.auth.x500, javax.security.cert, and javax. sql.

127a

methods, including one that is designed to find the larger
of two numbers: “max.” The declaration for the “max”
method, as defined for integers, is: “public static int
max(int x, int y),” where the word “public” means that the
method is generally accessible, “static” means that no
specific instance of the class is needed to call the method,
the first “int” indicates that the method returns an
integer, and “int x” and “int y” are the two numbers
(inputs) being compared. Copyrightability Decision, 872
F. Supp. 2d at 980–82. A programmer calls the “max”
method by typing the name of the method stated in the
declaring code and providing unique inputs for the
variables “x” and “y.” The expressions used command the
computer to execute the implementing code that carries
out the operation of returning the larger number.

Although Oracle owns the copyright on Java SE and
the API packages, it offers three different licenses to
those who want to make use of them. The first is the
General Public License, which is free of charge and
provides that the licensee can use the packages—both the
declaring and implementing code—but must “contribute
back” its innovations to the public. This arrangement is
referred to as an “open source” license. The second option
is the Specification License, which provides that the
licensee can use the declaring code and organization of
Oracle’s API packages but must write its own
implementing code. The third option is the Commercial
License, which is for businesses that “want to use and
customize the full Java code in their commercial products
and keep their code secret.” Appellant Br. 14. Oracle
offers the Commercial License in exchange for royalties.
To maintain Java’s “write once, run anywhere” motto, the
Specification and Commercial Licenses require that the

128a

licensees’ programs pass certain tests to ensure
compatibility with the Java platform.

The testimony at trial also revealed that Sun was
licensing a derivative version of the Java platform for use
on mobile devices: the Java Micro Edition (“Java ME”).
Oracle licensed Java ME for use on feature phones and
smartphones. Sun/Oracle has never successfully
developed its own smartphone platform using Java.

B. Google’s Accused Product: Android

The accused product is Android, a software platform
that was designed for mobile devices and competes with
Java in that market. Google acquired Android, Inc. in 2005
as part of a plan to develop a smartphone platform. Later
that same year, Google and Sun began discussing the
possibility of Google “taking a license to use and to adapt
the entire Java platform for mobile devices.”
Copyrightability Decision, 872 F. Supp. 2d at 978. They
also discussed a “possible co-development partnership
deal with Sun under which Java technology would become
an open-source part of the Android platform, adapted for
mobile devices.” Id. The parties negotiated for months but
were unable to reach an agreement. The point of
contention between the parties was Google’s refusal to
make the implementation of its programs compatible with
the Java virtual machine or interoperable with other Java
programs. Because Sun/Oracle found that position to be
anathema to the “write once, run anywhere” philosophy,
it did not grant Google a license to use the Java API
packages.

When the parties’ negotiations reached an impasse,
Google decided to use the Java programming language to
design its own virtual machine—the Dalvik virtual

129a

machine (“Dalvik VM”)—and “to write its own
implementations for the functions in the Java API that
were key to mobile devices.” Id. Google developed the
Android platform, which grew to include 168 API
packages—37 of which correspond to the Java API
packages at issue in this appeal.

With respect to the 37 packages at issue, “Google
believed Java application programmers would want to find
the same 37 sets of functionalities in the new Android
system callable by the same names as used in Java.” Id.
To achieve this result, Google copied the declaring source
code from the 37 Java API packages verbatim, inserting
that code into parts of its Android software. In doing so,
Google copied the elaborately organized taxonomy of all
the names of methods, classes, interfaces, and packages—
the “overall system of organized names—covering 37
packages, with over six hundred classes, with over six
thousand methods.” Copyrightability Decision, 872 F.
Supp. 2d at 999. The parties and district court referred to
this taxonomy of expressions as the “structure, sequence,
and organization” or “SSO” of the 37 packages. It is
undisputed, however, that Google wrote its own
implementing code, except with respect to: (1) the
rangeCheck function, which consisted of nine lines of code;
and (2) eight decompiled security files.

As to rangeCheck, the court found that the Sun
engineer who wrote it later worked for Google and
contributed two files he created containing the
rangeCheck function—“Timsort.java” and
“ComparableTimsort”—to the Android platform. In doing
so, the nine-line rangeCheck function was copied directly
into Android. As to the eight decompiled files, the district
court found that they were copied and used as test files

130a

but “never found their way into Android or any handset.”
Id. at 983.

Google released the Android platform in 2007, and the
first Android phones went on sale the following year.
Although it is undisputed that certain Android software
contains copies of the 37 API packages’ declaring code at
issue, neither the district court nor the parties specify in
which programs those copies appear. Oracle indicated at
oral argument, however, that all Android phones contain
copies of the accused portions of the Android software.
Oral Argument at 1:35, available at http://www.cafc.
uscourts.gov/oral-argument-recordings/2013-1021/all.
Android smartphones “rapidly grew in popularity and now
comprise a large share of the United States market.”
Copyrightability Decision, 872 F. Supp. 2d at 978. Google
provides the Android platform free of charge to
smartphone manufacturers and receives revenue when
customers use particular functions on the Android phone.
Although Android uses the Java programming language,
it is undisputed that Android is not generally Java
compatible. As Oracle explains, “Google ultimately
designed Android to be incompatible with the Java
platform, so that apps written for one will not work on the
other.” Appellant Br. 29.

C. Trial and Post-Trial Rulings

Beginning on April 16, 2012, the district court and the
jury—on parallel tracks—viewed documents and heard
testimony from twenty-four witnesses on copyrightability,
infringement, fair use, and Google’s other defenses.
Because the parties agreed the district court would decide
copyrightability, the court instructed the jury to assume
that the structure, sequence, and organization of the 37
API packages was copyrightable. And, the court informed

131a

the jury that Google conceded that it copied the declaring
code used in the 37 packages verbatim. The court also
instructed the jury that Google conceded copying the
rangeCheck function and the eight decompiled security
files, but that Google maintained that its use of those lines
of code was de minimis. See Final Charge to the Jury
(Phase One), Oracle Am., Inc. v. Google Inc., 3:10-cv-3561
(N.D. Cal. Apr. 30, 2012), ECF No. 1018 at 14 (“With
respect to the infringement issues concerning the
rangeCheck and other similar files, Google agrees that the
accused lines of code and comments came from the
copyrighted material but contends that the amounts
involved were so negligible as to be de minimis and thus
should be excused.”).

On May 7, 2012, the jury returned a verdict finding
that Google infringed Oracle’s copyright in the 37 Java
API packages and in the nine lines of rangeCheck code,
but returned a noninfringement verdict as to eight
decompiled security files. The jury hung on Google’s fair
use defense.

The parties filed a number of post-trial motions, most
of which were ultimately denied. In relevant part, the
district court denied Oracle’s motion for JMOL regarding
fair use and Google’s motion for JMOL as to the
rangeCheck files. Order on Motions for Judgment as a
Matter of Law, Oracle Am., Inc. v. Google Inc., No. 3:10-
cv-3561 (N.D. Cal. May 10, 2012), ECF No. 1119. The
district court granted Oracle’s motion for JMOL of
infringement as to the eight decompiled files, however. In
its order, the court explained that: (1) Google copied the
files in their entirety; (2) the trial testimony revealed that
the use of those files was “significant”; and (3) no
reasonable jury could find the copying de minimis. Order

132a

Granting JMOL on Decompiled Files, 2012 U.S. Dist.
LEXIS 66417, at *6.

On May 31, 2012, the district court issued the primary
decision at issue in this appeal, finding that the replicated
elements of the Java API packages—including the
declarations and their structure, sequence, and
organization—were not copyrightable. As to the declaring
code, the court concluded that “there is only one way to
write” it, and thus the “merger doctrine bars anyone from
claiming exclusive copyright ownership of that
expression.” Copyrightability Decision, 872 F. Supp. 2d
at 998. The court further found that the declaring code was
not protectable because “names and short phrases cannot
be copyrighted.” Id. As such, the court determined that
“there can be no copyright violation in using the identical
declarations.” Id.

As to the overall structure, sequence, and organization
of the Java API packages, the court recognized that
“nothing in the rules of the Java language . . . required
that Google replicate the same groupings even if Google
was free to replicate the same functionality.” Id. at 999.
Therefore, the court determined that “Oracle’s best
argument . . . is that while no single name is copyrightable,
Java’s overall system of organized names—covering 37
packages, with over six hundred classes, with over six
thousand methods—is a ‘taxonomy’ and, therefore,
copyrightable.” Id.

Although it acknowledged that the overall structure of
Oracle’s API packages is creative, original, and
“resembles a taxonomy,” the district court found that it “is
nevertheless a command structure, a system or method of
operation—a long hierarchy of over six thousand
commands to carry out pre-assigned functions”—that is

133a

not entitled to copyright protection under Section 102(b)
of the Copyright Act. Id. at 999–1000. In reaching this
conclusion, the court emphasized that, “[o]f the 166 Java
packages, 129 were not violated in any way.” Id. at 1001.
And, of the 37 Java API packages at issue, “97 percent of
the Android lines were new from Google and the
remaining three percent were freely replicable under the
merger and names doctrines.” Id. On these grounds, the
court dismissed Oracle’s copyright claims, concluding that
“the particular elements replicated by Google were free
for all to use under the Copyright Act.” Id.

On June 20, 2012, the district court entered final
judgment in favor of Google and against Oracle on its
claim for copyright infringement, except with respect to
the rangeCheck function and the eight decompiled files.
As to rangeCheck and the decompiled files, the court
entered judgment for Oracle and against Google in the
amount of zero dollars, per the parties’ stipulation. Final
Judgment, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-
3561 (N.D. Cal. June 20, 2012), ECF No. 1211. Oracle
timely appealed from the portion of the district court’s
final judgment entered against it and Google timely
crossappealed with respect to rangeCheck and the eight
decompiled files. Because this action included patent
claims, we have jurisdiction pursuant to 28 U.S.C.
§ 1295(a)(1).

DISCUSSION

I. ORACLE’S APPEAL

It is undisputed that the Java programming language
is open and free for anyone to use. Except to the limited
extent noted below regarding three of the API packages,
it is also undisputed that Google could have written its own

134a

API packages using the Java language. Google chose not
to do that. Instead, it is undisputed that Google copied
7,000 lines of declaring code and generally replicated the
overall structure, sequence, and organization of Oracle’s
37 Java API packages. The central question before us is
whether these elements of the Java platform are entitled
to copyright protection. The district court concluded that
they are not, and Oracle challenges that determination on
appeal. Oracle also argues that the district court should
have dismissed Google’s fair use defense as a matter of
law.

According to Google, however, the district court
correctly determined that: (1) there was only one way to
write the Java method declarations and remain
“interoperable” with Java; and (2) the organization and
structure of the 37 Java API packages is a “command
structure” excluded from copyright protection under
Section 102(b). Google also argues that, if we reverse the
district court’s copyrightability determination, we should
direct the district court to retry its fair use defense.

“When the questions on appeal involve law and
precedent on subjects not exclusively assigned to the
Federal Circuit, the court applies the law which would be
applied by the regional circuit.” Atari Games Corp. v.
Nintendo of Am., Inc., 897 F.2d 1572, 1575 (Fed. Cir.
1990). Copyright issues are not exclusively assigned to the
Federal Circuit. See 28 U.S.C. § 1295. The parties agree
that Ninth Circuit law applies and that, in the Ninth
Circuit, whether particular expression is protected by

135a

copyright law is “subject to de novo review.” Ets-Hokin v.
Skyy Spirits, Inc., 225 F.3d 1068, 1073 (9th Cir. 2000).3

We are mindful that the application of copyright law in
the computer context is often a difficult task. See Lotus
Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (1st Cir.
1995) (Boudin, J., concurring) (“Applying copyright law to
computer programs is like assembling a jigsaw puzzle
whose pieces do not quite fit.”). On this record, however,
we find that the district court failed to distinguish between
the threshold question of what is copyrightable—which

3 The Supreme Court has not addressed whether copyrightability is a
pure question of law or a mixed question of law and fact, or whether,
if it is a mixed question of law and fact, the factual components of that
inquiry are for the court, rather than the jury. Relatedly, it has not
decided the standard of review that applies on appeal. Ten years ago,
before finding it unnecessary to decide whether copyrightability is a
pure question of law or a mixed question of law and fact, the Seventh
Circuit noted that it had “found only a handful of appellate cases
addressing the issue, and they are split.” Gaiman v. McFarlane, 360
F.3d 644, 648 (7th Cir. 2004). And, panels of the Ninth Circuit have
defined the respective roles of the jury and the court differently where
questions of originality were at issue. Compare North Coast Indus. v.
Jason Maxwell, Inc., 972 F.2d 1031, 1035 (9th Cir. 1992), with Ets-
Hokin, 225 F.3d at 1073. More recently, several district courts within
the Ninth Circuit have treated copyrightability as a question for only
the court, regardless of whether it is a pure question of law. See Stern
v. Does, No. 09-1986, 2011 U.S. Dist. LEXIS 37735, *7 (C.D. Cal. Feb.
10, 2011); Jonathan Browning, Inc. v. Venetian Casino Resort LLC,
No. C 07-3983, 2009 U.S. Dist. LEXIS 57525, at *2 (N.D. Cal. June 19,
2009); see also Pivot Point Int’l, Inc. v. Charlene Prods., Inc., 932 F.
Supp. 220, 225 (N.D. Ill. 1996) (Easterbrook, J.) (citing to Markman
v. Westview Instruments, Inc., 517 U.S. 370 (1996), and concluding
that whether works are copyrightable is a question which the “jury
has nothing to do with”). We need not address any of these questions,
because the parties here agreed that the district court would decide
copyrightability, and both largely agree that we may undertake a
review of that determination de novo.

136a

presents a low bar—and the scope of conduct that
constitutes infringing activity. The court also erred by
importing fair use principles, including interoperability
concerns, into its copyrightability analysis.

For the reasons that follow, we conclude that the
declaring code and the structure, sequence, and
organization of the 37 Java API packages are entitled to
copyright protection. Because there is an insufficient
record as to the relevant fair use factors, we remand for
further proceedings on Google’s fair use defense.

A. Copyrightability

The Copyright Act provides protection to “original
works of authorship fixed in any tangible medium of
expression,” including “literary works.” 17 U.S.C.
§ 102(a). It is undisputed that computer programs—
defined in the Copyright Act as “a set of statements or
instructions to be used directly or indirectly in a computer
in order to bring about a certain result,” 17 U.S.C. § 101—
can be subject to copyright protection as “literary works.”
See Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d
832, 838 (Fed. Cir. 1992) (“As literary works, copyright
protection extends to computer programs.”). Indeed, the
legislative history explains that “literary works” includes
“computer programs to the extent that they incorporate
authorship in the programmer’s expression of original
ideas, as distinguished from the ideas themselves.” H.R.
Rep. No. 1476, 94th Cong., 2d Sess. 54, reprinted in 1976
U.S.C.C.A.N. 5659, 5667.

By statute, a work must be “original” to qualify for
copyright protection. 17 U.S.C. § 102(a). This “originality
requirement is not particularly stringent,” however. Feist
Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 358

137a

(1991). “Original, as the term is used in copyright, means
only that the work was independently created by the
author (as opposed to copied from other works), and that
it possesses at least some minimal degree of creativity.”
Id. at 345.

Copyright protection extends only to the expression of
an idea—not to the underlying idea itself. Mazer v. Stein,
347 U.S. 201, 217 (1954) (“Unlike a patent, a copyright
gives no exclusive right to the art disclosed; protection is
given only to the expression of the idea—not the idea
itself.”). This distinction—commonly referred to as the
“idea/expression dichotomy”—is codified in Section 102(b)
of the Copyright Act, which provides:

In no case does copyright protection for an
original work of authorship extend to any idea,
procedure, process, system, method of
operation, concept, principle, or discovery,
regardless of the form in which it is described,
explained, illustrated, or embodied in such work.

17 U.S.C. § 102(b); see Golan v. Holder, 132 S. Ct. 873, 890
(2012) (“The idea/expression dichotomy is codified at 17
U.S.C. § 102(b).”).

The idea/expression dichotomy traces back to the
Supreme Court’s decision in Baker v. Selden, 101 U.S. 99,
101 (1879). In Baker, the plaintiff Selden wrote and
obtained copyrights on a series of books setting out a new
system of bookkeeping. Id. at 100. The books included an
introductory essay explaining the system and blank forms
with ruled lines and headings designed for use with that
system. Id. Baker published account books employing a
system with similar forms, and Selden filed suit alleging
copyright infringement. According to Selden, the “ruled

138a

lines and headings, given to illustrate the system, are a
part of the book” and “no one can make or use similar
ruled lines and headings, or ruled lines and headings made
and arranged on substantially the same system, without
violating the copyright.” Id. at 101.

The Supreme Court framed the issue on appeal in
Baker as “whether the exclusive property in a system of
book-keeping can be claimed, under the law of copyright,
by means of a book in which that system is explained.” Id.
In reversing the circuit court’s decision, the Court
concluded that the “copyright of a book on book-keeping
cannot secure the exclusive right to make, sell, and use
account-books prepared upon the plan set forth in such
book.” Id. at 104. Likewise, the “copyright of a work on
mathematical science cannot give to the author an
exclusive right to the methods of operation which he
propounds.” Id. at 103. The Court found that, although the
copyright protects the way Selden “explained and
described a peculiar system of book-keeping,” it does not
prevent others from using the system described therein.
Id. at 104. The Court further indicated that, if it is
necessary to use the forms Selden included in his books to
make use of the accounting system, that use would not
amount to copyright infringement. See id. (noting that the
public has the right to use the account-books and that, “in
using the art, the ruled lines and headings of accounts
must necessarily be used as incident to it”).

Courts routinely cite Baker as the source of several
principles incorporated into Section 102(b) that relate to
this appeal, including that: (1) copyright protection
extends only to expression, not to ideas, systems, or
processes; and (2) “those elements of a computer program
that are necessarily incidental to its function are . . .

139a

unprotectable.” See Computer Assocs. Int’l v. Altai, 982
F.2d 693, 704–05 (2d Cir. 1992) (“Altai”) (discussing
Baker, 101 U.S. at 103–04).

It is well established that copyright protection can
extend to both literal and non-literal elements of a
computer program. See Altai, 982 F.2d at 702. The literal
elements of a computer program are the source code and
object code. See Johnson Controls, Inc. v. Phoenix
Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir. 1989).
Courts have defined source code as “the spelled-out
program commands that humans can read.” Lexmark
Int’l, Inc. v. Static Control Components, Inc., 387 F.3d
522, 533 (6th Cir. 2004). Object code refers to “the binary
language comprised of zeros and ones through which the
computer directly receives its instructions.” Altai, 982
F.2d at 698. Both source and object code “are consistently
held protected by a copyright on the program.” Johnson
Controls, 886 F.2d at 1175; see also Altai, 982 F.2d at 702
(“It is now well settled that the literal elements of
computer programs, i.e., their source and object codes, are
the subject of copyright protection.”). Google nowhere
disputes that premise. See, e.g., Oral Argument at 57:38.

The non-literal components of a computer program
include, among other things, the program’s sequence,
structure, and organization, as well as the program’s user
interface. Johnson Controls, 886 F.2d at 1175. As
discussed below, whether the non-literal elements of a
program “are protected depends on whether, on the
particular facts of each case, the component in question
qualifies as an expression of an idea, or an idea itself.” Id.

In this case, Oracle claims copyright protection with
respect to both: (1) literal elements of its API packages—
the 7,000 lines of declaring source code; and (2) non-literal

140a

elements—the structure, sequence, and organization of
each of the 37 Java API packages.

The distinction between literal and non-literal aspects
of a computer program is separate from the distinction
between literal and non-literal copying. See Altai, 982
F.2d at 701–02. “Literal” copying is verbatim copying of
original expression. “Non-literal” copying is “paraphrased
or loosely paraphrased rather than word for word.” Lotus
Dev. Corp. v. Borland Int’l, 49 F.3d 807, 814 (1st Cir.
1995). Here, Google concedes that it copied the declaring
code verbatim. Oracle explains that the lines of declaring
code “embody the structure of each [API] package, just as
the chapter titles and topic sentences represent the
structure of a novel.” Appellant Br. 45. As Oracle explains,
when Google copied the declaring code in these packages
“it also copied the ‘sequence and organization’ of the
packages (i.e., the three-dimensional structure with all the
chutes and ladders)” employed by Sun/Oracle in the
packages. Appellant Br. 27. Oracle also argues that the
nonliteral elements of the API packages—the structure,
sequence, and organization that led naturally to the
implementing code Google created—are entitled to
protection. Oracle does not assert “literal” copying of the
entire SSO, but, rather, that Google literally copied the
declaring code and then paraphrased the remainder of the
SSO by writing its own implementing code. It therefore
asserts non-literal copying with respect to the entirety of
the SSO.

At this stage, it is undisputed that the declaring code
and the structure and organization of the Java API
packages are original. The testimony at trial revealed that
designing the Java API packages was a creative process
and that the Sun/Oracle developers had a vast range of

141a

options for the structure and organization. In its
copyrightability decision, the district court specifically
found that the API packages are both creative and
original, and Google concedes on appeal that the
originality requirements are met. See Copyrightability
Decision, 872 F. Supp. 2d at 976 (“The overall name tree,
of course, has creative elements”); Id. at 999 (“Yes, it
is creative. Yes, it is original.”); Appellee Br. 5 (“Google
does not dispute” the district court’s finding that “the Java
API clears the low originality threshold.”). The court
found, however, that neither the declaring code nor the
SSO was entitled to copyright protection under the
Copyright Act.

Although the parties agree that Oracle’s API packages
meet the originality requirement under Section 102(a),
they disagree as to the proper interpretation and
application of Section 102(b). For its part, Google suggests
that there is a two-step copyrightability analysis, wherein
Section 102(a) grants copyright protection to original
works, while Section 102(b) takes it away if the work has a
functional component. To the contrary, however,
Congress emphasized that Section 102(b) “in no way
enlarges or contracts the scope of copyright protection”
and that its “purpose is to restate . . . that the basic
dichotomy between expression and idea remains
unchanged.” Feist, 499 U.S. at 356 (quoting H.R. Rep. No.
1476, 94th Cong., 2d Sess. 54, reprinted in 1976
U.S.C.C.A.N. 5659, 5670). “Section 102(b) does not
extinguish the protection accorded a particular expression
of an idea merely because that expression is embodied in
a method of operation.” Mitel, Inc. v. Iqtel, Inc., 124 F.3d
1366, 1372 (10th Cir. 1997). Section 102(a) and 102(b) are
to be considered collectively so that certain expressions

142a

are subject to greater scrutiny. Id. In assessing
copyrightability, the district court is required to ferret out
apparent expressive aspects of a work and then separate
protectable expression from “unprotectable ideas, facts,
processes, and methods of operation.” See Atari, 975 F.2d
at 839.

Of course, as with many things, in defining this task,
the devil is in the details. Circuit courts have struggled
with, and disagree over, the tests to be employed when
attempting to draw the line between what is protectable
expression and what is not. Compare Whelan Assocs., Inc.
v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir.
1986) (everything not necessary to the purpose or function
of a work is expression), with Lotus, 49 F.3d at 815
(methods of operation are means by which a user operates
something and any words used to effectuate that
operation are unprotected expression). When assessing
whether the non-literal elements of a computer program
constitute protectable expression, the Ninth Circuit has
endorsed an “abstraction-filtration-comparison” test
formulated by the Second Circuit and expressly adopted
by several other circuits. Sega Enters. Ltd. v. Accolade,
Inc., 977 F.2d 1510, 1525 (9th Cir. 1992) (“In our view, in
light of the essentially utilitarian nature of computer
programs, the Second Circuit’s approach is an appropriate
one.”). This test rejects the notion that anything that
performs a function is necessarily uncopyrightable. See
Mitel, 124 F.3d at 1372 (rejecting the Lotus court’s
formulation, and concluding that, “although an element of
a work may be characterized as a method of operation,
that element may nevertheless contain expression that is
eligible for copyright protection.”). And it also rejects as
flawed the Whelan assumption that, once any separable

143a

idea can be identified in a computer program everything
else must be protectable expression, on grounds that more
than one idea may be embodied in any particular program.
Altai, 982 F.2d at 705–06.

Thus, this test eschews bright line approaches and
requires a more nuanced assessment of the particular
program at issue in order to determine what expression is
protectable and infringed. As the Second Circuit explains,
this test has three steps. In the abstraction step, the court
“first break[s] down the allegedly infringed program into
its constituent structural parts.” Id. at 706. In the
filtration step, the court “sift[s] out all non-protectable
material,” including ideas and “expression that is
necessarily incidental to those ideas.” Id. In the final step,
the court compares the remaining creative expression
with the allegedly infringing program.4

In the second step, the court is first to assess whether
the expression is original to the programmer or author.
Atari, 975 F.2d at 839. The court must then determine
whether the particular inclusion of any level of abstraction
is dictated by considerations of efficiency, required by
factors already external to the program itself, or taken
from the public domain—all of which would render the
expression unprotectable. Id. These conclusions are to be
informed by traditional copyright principles of originality,

4 Importantly, this full analysis only applies where a copyright owner
alleges infringement of the non-literal aspects of its work. Where
“admitted literal copying of a discrete, easily-conceptualized portion
of a work” is at issue—as with Oracle’s declaring code—a court “need
not perform a complete abstraction-filtration-comparison analysis”
and may focus the protectability analysis on the filtration stage, with
attendant reference to standard copyright principles. Mitel, 124 F.3d
at 1372–73.

144a

merger, and scenes a faire. See Mitel, 124 F.3d at 1372
(“Although this core of expression is eligible for copyright
protection, it is subject to the rigors of filtration analysis
which excludes from protection expression that is in the
public domain, otherwise unoriginal, or subject to the
doctrines of merger and scenes a faire.”).

In all circuits, it is clear that the first step is part of the
copyrightability analysis and that the third is an
infringement question. It is at the second step of this
analysis where the circuits are in less accord. Some treat
all aspects of this second step as part of the
copyrightability analysis, while others divide questions of
originality from the other inquiries, treating the former as
a question of copyrightability and the latter as part of the
infringement inquiry. Compare Lexmark, 387 F.3d at
537–38 (finding that the district court erred in assessing
principles of merger and scenes a faire in the infringement
analysis, rather than as a component of copyrightability),
with Kregos, 937 F.2d at 705 (noting that the Second
Circuit has considered the merger doctrine “in
determining whether actionable infringement has
occurred, rather than whether a copyright is valid”); see
also Lexmark, 387 F.3d at 557 (Feikens, J., dissenting-in-
part) (noting the circuit split and concluding that, where a
court is assessing merger of an expression with a method
of operation, “I would find the merger doctrine can
operate only as a defense to infringement in that context,
and as such has no bearing on the question of
copyrightability.”). We need not assess the wisdom of
these respective views because there is no doubt on which
side of this circuit split the Ninth Circuit falls.

In the Ninth Circuit, while questions regarding
originality are considered questions of copyrightability,

145a

concepts of merger and scenes a faire are affirmative
defenses to claims of infringement. Ets-Hokin, 225 F.3d
at 1082; Satava v. Lowry, 323 F.3d 805, 810 n.3 (9th Cir.
2003) (“The Ninth Circuit treats scenes a faire as a
defense to infringement rather than as a barrier to
copyrightability.”). The Ninth Circuit has acknowledged
that “there is some disagreement among courts as to
whether these two doctrines figure into the issue of
copyrightability or are more properly defenses to
infringement.” Ets-Hokin, 225 F.3d at 1082 (citations
omitted). It, nonetheless, has made clear that, in that
circuit, these concepts are to be treated as defenses to
infringement. Id. (citing Kregos, 937 F.2d at 705 (holding
that the merger doctrine relates to infringement, not
copyrightability); Reed-Union Corp. v. Turtle Wax, Inc.,
77 F.3d 909, 914 (7th Cir. 1996) (explaining why the
doctrine of scenes a faire is separate from the validity of a
copyright)).

With these principles in mind, we turn to the trial
court’s analysis and judgment and to Oracle’s objections
thereto. While the trial court mentioned the abstraction-
filtration-comparison test when describing the
development of relevant law, it did not purport to actually
apply that test. Instead, it moved directly to application of
familiar principles of copyright law when assessing the
copyrightability of the declaring code and interpreted
Section 102(b) to preclude copyrightability for any
functional element “essential for interoperability”
“regardless of its form.” Copyrightability Decision, 872 F.
Supp. 2d at 997.

Oracle asserts that all of the trial court’s conclusions
regarding copyrightability are erroneous. Oracle argues
that its Java API packages are entitled to protection

146a

under the Copyright Act because they are expressive and
could have been written and organized in any number of
ways to achieve the same functions. Specifically, Oracle
argues that the district court erred when it: (1) concluded
that each line of declaring code is uncopyrightable because
the idea and expression have merged; (2) found the
declaring code uncopyrightable because it employs short
phrases; (3) found all aspects of the SSO devoid of
protection as a “method of operation” under 17 U.S.C.
§ 102(b); and (4) invoked Google’s “interoperability”
concerns in the copyrightability analysis. For the reasons
explained below, we agree with Oracle on each point.

1. Declaring Source Code

First, Oracle argues that the district court erred in
concluding that each line of declaring source code is
completely unprotected under the merger and short
phrases doctrines. Google responds that Oracle waived its
right to assert copyrightability based on the 7,000 lines of
declaring code by failing “to object to instructions and a
verdict form that effectively eliminated that theory from
the case.” Appellee Br. 67. Even if not waived, moreover,
Google argues that, because there is only one way to write
the names and declarations, the merger doctrine bars
copyright protection.

We find that Oracle did not waive arguments based on
Google’s literal copying of the declaring code. Prior to
trial, both parties informed the court that Oracle’s
copyright infringement claims included the declarations of
the API elements in the Android class library source code.
See Oracle’s Statement of Issues Regarding Copyright,
Oracle Am., Inc. v. Google Inc., No. 3:10-cv-3561 (N.D.
Cal. Apr. 12, 2012), ECF No. 899-1, at 3 (Oracle accuses
the “declarations of the API elements in the Android class

147a

library source code and object code that implements the
37 API packages” of copyright infringement.); see also
Google’s Proposed Statement of Issues Regarding
Copyright, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-
3561 (N.D. Cal. Apr. 12, 2012), ECF No. 901, at 2 (Oracle
accuses the “declarations of the API elements in Android
class library source code and object code that implements
the 37 API packages.”).

While Google is correct that the jury instructions and
verdict form focused on the structure and organization of
the packages, we agree with Oracle that there was no need
for the jury to address copying of the declaring code
because Google conceded that it copied it verbatim.
Indeed, the district court specifically instructed the jury
that “Google agrees that it uses the same names and
declarations” in Android. Final Charge to the Jury at 10.

That the district court addressed the declaring code in
its post-jury verdict copyrightability decision further
confirms that the verbatim copying of declaring code
remained in the case. The court explained that the
“identical lines” that Google copied into Android “are
those lines that specify the names, parameters and
functionality of the methods and classes, lines called
‘declarations’ or ‘headers.’” Copyrightability Decision,
872 F. Supp. 2d at 979. The court specifically found that
the declaring code was not entitled to copyright protection
under the merger and short phrases doctrines. We
address each in turn.

a. Merger

The merger doctrine functions as an exception to the
idea/expression dichotomy. It provides that, when there
are a limited number of ways to express an idea, the idea

148a

is said to “merge” with its expression, and the expression
becomes unprotected. Altai, 982 F.2d at 707–08. As noted,
the Ninth Circuit treats this concept as an affirmative
defense to infringement. Ets-Hokin, 225 F.3d at 1082.
Accordingly, it appears that the district court’s merger
analysis is irrelevant to the question of whether Oracle’s
API packages are copyrightable in the first instance.
Regardless of when the analysis occurs, we conclude that
merger does not apply on the record before us.

Under the merger doctrine, a court will not protect a
copyrighted work from infringement if the idea contained
therein can be expressed in only one way. Satava v.
Lowry, 323 F.3d 805, 812 n.5 (9th Cir. 2003). For computer
programs, “this means that when specific [parts of the
code], even though previously copyrighted, are the only
and essential means of accomplishing a given task, their
later use by another will not amount to infringement.”
Altai, 982 F.2d at 708 (citation omitted). We have
recognized, however, applying Ninth Circuit law, that the
“unique arrangement of computer program expression . . .
does not merge with the process so long as alternate
expressions are available.” Atari, 975 F.2d at 840.

In Atari, for example, Nintendo designed a program—
the 10NES—to prevent its video game system from
accepting unauthorized game cartridges. 975 F.2d at 836.
Nintendo “chose arbitrary programming instructions and
arranged them in a unique sequence to create a purely
arbitrary data stream” which “serves as the key to unlock
the NES.” Id. at 840. Because Nintendo produced expert
testimony “showing a multitude of different ways to
generate a data stream which unlocks the NES console,”
we concluded that Nintendo’s specific choice of code did
not merge with the process. Id.

149a

Here, the district court found that, “no matter how
creative or imaginative a Java method specification may
be, the entire world is entitled to use the same method
specification (inputs, outputs, parameters) so long as the
line-by-line implementations are different.”
Copyrightability Decision, 872 F. Supp. 2d at 998. In its
analysis, the court identified the method declaration as the
idea and found that the implementation is the expression.
Id. (“The method specification is the idea. The method
implementation is the expression. No one may monopolize
the idea.”) (emphases in original). The court explained
that, under the rules of Java, a programmer must use the
identical “declaration or method header lines” to “declare
a method specifying the same functionality.” Id. at 976.
Because the district court found that there was only one
way to write the declaring code for each of the Java
packages, it concluded that “the merger doctrine bars
anyone from claiming exclusive copyright ownership” of
it. Id. at 998. Accordingly, the court held there could be
“no copyright violation in using the identical declarations.”
Id.

Google agrees with the district court that the
implementing code is the expression entitled to
protection—not the declaring code. Indeed, at oral
argument, counsel for Google explained that, “it is not our
position that none of Java is copyrightable. Obviously,
Google spent two and a half years . . . to write from scratch
all of the implementing code.” Oral Argument at 33:16.5

5 It is undisputed that Microsoft and Apple developed mobile
operating systems from scratch, using their own array of software
packages. When asked whether Google could also copy all of Microsoft
or Apple’s declaring code—codes that obviously differ from those at
issue here—counsel for Google responded: “Yes, but only the
structure, sequence, and organization. Only the command structure—

150a

Because it is undisputed that Google wrote its own
implementing code, the copyrightability of the precise
language of that code is not at issue on appeal. Instead,
our focus is on the declaring code and structure of the API
packages.

On appeal, Oracle argues that the district court:
(1) misapplied the merger doctrine; and (2) failed to focus
its analysis on the options available to the original author.
We agree with Oracle on both points. First, we agree that
merger cannot bar copyright protection for any lines of
declaring source code unless Sun/Oracle had only one way,
or a limited number of ways, to write them. See Satava,
323 F.3d at 812 n.5 (“Under the merger doctrine, courts
will not protect a copyrighted work from infringement if
the idea underlying the copyrighted work can be
expressed in only one way, lest there be a monopoly on the
underlying idea.”). The evidence showed that Oracle had
“unlimited options as to the selection and arrangement of
the 7000 lines Google copied.” Appellant Br. 50. Using the
district court’s “java.lang.Math.max” example, Oracle
explains that the developers could have called it any
number of things, including “Math.maximum” or
“Arith.larger.” This was not a situation where Oracle was
selecting among preordained names and phrases to create
its packages.6 As the district court recognized, moreover,

what you need to access the functions. You’d have to rewrite all the
millions of lines of code in Apple or in Microsoft which is what Google
did in Android.” Oral Argument at 36:00.
6 In their brief as amici curiae in support of reversal, Scott McNealy
and Brian Sutphin—both former executives at Sun who were involved
in the development of the Java platform—provide a detailed example
of the creative choices involved in designing a Java package. Looking
at the “java.text” package, they explain that it “contains 25 classes, 2
interfaces, and hundreds of methods to handle text, dates, numbers,

151a

“the Android method and class names could have been
different from the names of their counterparts in Java and
still have worked.” Copyrightability Decision, 872 F.
Supp. 2d at 976. Because “alternative expressions [we]re
available,” there is no merger. See Atari, 975 F.2d at 840.

We further find that the district court erred in focusing
its merger analysis on the options available to Google at
the time of copying. It is well-established that
copyrightability and the scope of protectable activity are
to be evaluated at the time of creation, not at the time of
infringement. See Apple Computer, Inc. v. Formula Int’l,
Inc., 725 F.2d 521, 524 (9th Cir. 1984) (quoting National
Commission on New Technological Uses of Copyrighted
Works, Final Report at 21 (1979) (“CONTU Report”)
(recognizing that the Copyright Act was designed “to
protect all works of authorship from the moment of their
fixation in any tangible medium of expression”)). The
focus is, therefore, on the options that were available to
Sun/Oracle at the time it created the API packages. Of
course, once Sun/Oracle created “java.lang.Math.max,”
programmers who want to use that particular package
have to call it by that name. But, as the court
acknowledged, nothing prevented Google from writing its

and messages in a manner independent of natural human languages
. . . .” Br. of McNealy and Sutphin 14–15. Java’s creators had to
determine whether to include a java.text package in the first place,
how long the package would be, what elements to include, how to
organize that package, and how it would relate to other packages. Id.
at 16. This description of Sun’s creative process is consistent with the
evidence presented at trial. See Appellant Br. 12–13 (citing testimony
that it took years to write some of the Java packages and that
Sun/Oracle developers had to “wrestle with what functions to include
in the package, which to put in other packages, and which to omit
entirely”).

152a

own declaring code, along with its own implementing code,
to achieve the same result. In such circumstances, the
chosen expression simply does not merge with the idea
being expressed.7

It seems possible that the merger doctrine, when
properly analyzed, would exclude the three packages
identified by the district court as core packages from the
scope of actionable infringing conduct. This would be so if
the Java authors, at the time these packages were created,
had only a limited number of ways to express the methods
and classes therein if they wanted to write in the Java
language. In that instance, the idea may well be merged
with the expression in these three packages.8 Google did

7 The district court did not find merger with respect to the structure,
sequence, and organization of Oracle’s Java API packages. Nor could
it, given the court’s recognition that there were myriad ways in which
the API packages could have been organized. Indeed, the court found
that the SSO is original and that “nothing in the rules of the Java
language . . . required that Google replicate the same groupings.”
Copyrightability Decision, 872 F. Supp. 2d at 999. As discussed
below, however, the court nonetheless found that the SSO is an
uncopyrightable “method of operation.”
8 At oral argument, counsel for Oracle was asked whether we should
view the three core packages “differently vis-à-vis the concept of a
method of operation than the other packages.” See Oral Argument at
7:43. He responded: “I think not your Honor. I would view them
differently with respect to fair use It’s not that they are more
basic. It’s that there are just several methods, that is, routines, within
just those three packages that are necessary to ‘speak the Java
language.’ Nothing in the other thirty-four packages is necessary in
order to speak in Java, so to speak.” Id. Counsel conceded, however,
that this issue “might go to merger. It might go to the question
whether someone—since we conceded that it’s okay to use the
language—if it’s alright to use the language that there are certain
things that the original developers had to say in order to use that

153a

not present its merger argument in this way below and
does not do so here, however. Indeed, Google does not try
to differentiate among the packages for purposes of its
copyrightability analysis and does not appeal the
infringement verdict as to the packages. For these
reasons, we reject the trial court’s merger analysis.

b. Short Phrases

The district court also found that Oracle’s declaring
code consists of uncopyrightable short phrases.
Specifically, the court concluded that, “while the Android
method and class names could have been different from
the names of their counterparts in Java and still have
worked, copyright protection never extends to names or
short phrases as a matter of law.” Copyrightability
Decision, 872 F. Supp. 2d at 976.

The district court is correct that “[w]ords and short
phrases such as names, titles, and slogans” are not subject
to copyright protection. 37 C.F.R. § 202.1(a). The court
failed to recognize, however, that the relevant question for
copyrightability purposes is not whether the work at issue
contains short phrases—as literary works often do—but,
rather, whether those phrases are creative. See Soc’y of
Holy Transfiguration Monastery, Inc. v. Gregory, 689
F.3d 29, 52 (1st Cir. 2012) (noting that “not all short
phrases will automatically be deemed uncopyrightable”);
see also 1 Melville B. Nimmer & David Nimmer, Nimmer
on Copyright § 2.01[B] (2013) (“[E]ven a short phrase may
command copyright protection if it exhibits sufficient
creativity.”). And, by dissecting the individual lines of
declaring code at issue into short phrases, the district

language, arguably, although I still think it’s really a fair use
analysis.” Id.

154a

court further failed to recognize that an original
combination of elements can be copyrightable. See Softel,
Inc. v. Dragon Med. & Scientific Commc’ns, 118 F.3d 955,
964 (2d Cir. 1997) (noting that, in Feist, “the Court made
quite clear that a compilation of nonprotectible elements
can enjoy copyright protection even though its constituent
elements do not”).

By analogy, the opening of Charles Dickens’ A Tale of
Two Cities is nothing but a string of short phrases. Yet no
one could contend that this portion of Dickens’ work is
unworthy of copyright protection because it can be broken
into those shorter constituent components. The question
is not whether a short phrase or series of short phrases
can be extracted from the work, but whether the manner
in which they are used or strung together exhibits
creativity.

Although the district court apparently focused on
individual lines of code, Oracle is not seeking copyright
protection for a specific short phrase or word. Instead, the
portion of declaring code at issue is 7,000 lines, and
Google’s own “Java guru” conceded that there can be
“creativity and artistry even in a single method
declaration.” Joint Appendix (“J.A.”) 20,970. Because
Oracle “exercised creativity in the selection and
arrangement” of the method declarations when it created
the API packages and wrote the relevant declaring code,
they contain protectable expression that is entitled to
copyright protection. See Atari, 975 F.2d at 840; see also
17 U.S.C. §§ 101, 103 (recognizing copyright protection for
“compilations” which are defined as work that is “selected,
coordinated, or arranged in such a way that the resulting
work as a whole constitutes an original work of
authorship”). Accordingly, we conclude that the district

155a

court erred in applying the short phrases doctrine to find
the declaring code not copyrightable.

c. Scenes a Faire

The scenes a faire doctrine, which is related to the
merger doctrine, operates to bar certain otherwise
creative expression from copyright protection. Apple
Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1444 (9th
Cir. 1994). It provides that “expressive elements of a work
of authorship are not entitled to protection against
infringement if they are standard, stock, or common to a
topic, or if they necessarily follow from a common theme
or setting.” Mitel, 124 F.3d at 1374. Under this doctrine,
“when certain commonplace expressions are
indispensable and naturally associated with the treatment
of a given idea, those expressions are treated like ideas
and therefore [are] not protected by copyright.” Swirsky
v. Carey, 376 F.3d 841, 850 (9th Cir. 2004). In the computer
context, “the scene a faire doctrine denies protection to
program elements that are dictated by external factors
such as ‘the mechanical specifications of the computer on
which a particular program is intended to run’ or ‘widely
accepted programming practices within the computer
industry.’” Softel, 118 F.3d at 963 (citation omitted).

The trial court rejected Google’s reliance on the scenes
a faire doctrine. It did so in a footnote, finding that Google
had failed to present evidence to support the claim that
either the grouping of methods within the classes or the
code chosen for them “would be so expected and
customary as to be permissible under the scenes a faire
doctrine.” Copyrightability Decision, 872 F. Supp. 2d at
999 n.9. Specifically, the trial court found that “it is
impossible to say on this record that all of the classes and
their contents are typical of such classes and, on this

156a

record, this order rejects Google’s global argument based
on scenes a faire.” Id.

On appeal, Google refers to scenes a faire concepts
briefly, as do some amici, apparently contending that,
because programmers have become accustomed to and
comfortable using the groupings in the Java API
packages, those groupings are so commonplace as to be
indispensable to the expression of an acceptable
programming platform. As such, the argument goes, they
are so associated with the “idea” of what the packages are
accomplishing that they should be treated as ideas rather
than expression. See Br. of Amici Curiae Rackspace US,
Inc., et al. at 19–22.

Google cannot rely on the scenes a faire doctrine as an
alternative ground upon which we might affirm the
copyrightability judgment of the district court. This is so
for several reasons. First, as noted, like merger, in the
Ninth Circuit, the scenes a faire doctrine is a component
of the infringement analysis. “[S]imilarity of expression,
whether literal or non-literal, which necessarily results
from the fact that the common idea is only capable of
expression in more or less stereotyped form, will preclude
a finding of actionable similarity.” 4 Nimmer on Copyright
§ 13.03[B][3]. Thus, the expression is not excluded from
copyright protection; it is just that certain copying is
forgiven as a necessary incident of any expression of the
underlying idea. See Satava, 323 F.3d at 810 n.3 (“The
Ninth Circuit treats scenes a faire as a defense to
infringement rather than as a barrier to
copyrightability.”).

Second, Google has not objected to the trial court’s
conclusion that Google failed to make a sufficient factual
record to support its contention that the groupings and

157a

code chosen for the 37 Java API packages were driven by
external factors or premised on features that were either
commonplace or essential to the idea being expressed.
Google provides no record citations indicating that such a
showing was made and does not contend that the trial
court erred when it expressly found it was not. Indeed,
Google does not even make this argument with respect to
the core packages.

Finally, Google’s reliance on the doctrine below and
the amici reference to it here are premised on a
fundamental misunderstanding of the doctrine. Like
merger, the focus of the scenes a faire doctrine is on the
circumstances presented to the creator, not the copier. See
Mitel, 124 F.3d at 1375 (finding error to the extent the
trial court discussed “whether external factors such as
market forces and efficiency considerations justified
Iqtel’s copying of the command codes”). The court’s
analytical focus must be upon the external factors that
dictated Sun’s selection of classes, methods, and code—
not upon what Google encountered at the time it chose to
copy those groupings and that code. See id. “[T]he scenes
a faire doctrine identifies and excludes from protection
against infringement expression whose creation ‘flowed
naturally from considerations external to the author’s
creativity.’” Id. (quoting Nimmer § 13.03[F][3], at 13-131
(1997)). It is this showing the trial court found Google
failed to make, and Google cites to nothing in the record
which indicates otherwise.

For these reasons, the trial court was correct to
conclude that the scenes a faire doctrine does not affect
the copyrightability of either the declaring code in, or the
SSO of, the Java API packages at issue.

158a

2. The Structure, Sequence,
and Organization of the API Packages

The district court found that the SSO of the Java API
packages is creative and original, but nevertheless held
that it is a “system or method of operation . . . and,
therefore, cannot be copyrighted” under 17 U.S.C.
§ 102(b). Copyrightability Decision, 872 F. Supp. 2d at
976–77. In reaching this conclusion, the district court
seems to have relied upon language contained in a First
Circuit decision: Lotus Development Corp. v. Borland
International, Inc., 49 F.3d 807 (1st Cir. 1995), aff’d
without opinion by equally divided court, 516 U.S. 233
(1996)9

In Lotus, it was undisputed that the defendant copied
the menu command hierarchy and interface from Lotus 1-
2-3, a computer spreadsheet program “that enables users
to perform accounting functions electronically on a
computer.” 49 F.3d at 809. The menu command hierarchy
referred to a series of commands—such as “Copy,”
“Print,” and “Quit”—which were arranged into more than
50 menus and submenus. Id. Although the defendant did
not copy any Lotus source code, it copied the menu
command hierarchy into its rival program. The question
before the court was “whether a computer menu command
hierarchy is copyrightable subject matter.” Id.

Although it accepted the district court’s finding that
Lotus developers made some expressive choices in

9 The Supreme Court granted certiorari in Lotus, but, shortly after
oral argument, the Court announced that it was equally divided and
that Justice Stevens took no part in the consideration or decision of
the case. The Court therefore left the First Circuit’s decision
undisturbed. See Lotus, 516 U.S. at 233–34.

159a

selecting and arranging the command terms, the First
Circuit found that the command hierarchy was not
copyrightable because, among other things, it was a
“method of operation” under Section 102(b). In reaching
this conclusion, the court defined a “method of operation”
as “the means by which a person operates something,
whether it be a car, a food processor, or a computer.” Id.
at 815.10 Because the Lotus menu command hierarchy
provided “the means by which users control and operate
Lotus 1-2-3,” it was deemed unprotectable. Id. For
example, if users wanted to copy material, they would use
the “Copy” command and the command terms would tell
the computer what to do. According to the Lotus court, the
“fact that Lotus developers could have designed the Lotus
menu command hierarchy differently is immaterial to the
question of whether it is a ‘method of operation.’” Id. at
816. (noting that “our initial inquiry is not whether the
Lotus menu command hierarchy incorporates any
expression”). The court further indicated that, “[i]f
specific words are essential to operating something, then
they are part of a ‘method of operation’ and, as such, are
unprotectable.” Id.

On appeal, Oracle argues that the district court’s
reliance on Lotus is misplaced because it is distinguishable
on its facts and is inconsistent with Ninth Circuit law. We
agree. First, while the defendant in Lotus did not copy any
of the underlying code, Google concedes that it copied
portions of Oracle’s declaring source code verbatim.
Second, the Lotus court found that the commands at issue
there (copy, print, etc.) were not creative, but it is
undisputed here that the declaring code and the structure

10 The Lotus majority cited no authority for this definition of “method
of operation.”

160a

and organization of the API packages are both creative
and original. Finally, while the court in Lotus found the
commands at issue were “essential to operating” the
system, it is undisputed that—other than perhaps as to
the three core packages—Google did not need to copy the
structure, sequence, and organization of the Java API
packages to write programs in the Java language.

More importantly, however, the Ninth Circuit has not
adopted the court’s “method of operation” reasoning in
Lotus, and we conclude that it is inconsistent with binding
precedent.11 Specifically, we find that Lotus is inconsistent
with Ninth Circuit case law recognizing that the structure,
sequence, and organization of a computer program is
eligible for copyright protection where it qualifies as an
expression of an idea, rather than the idea itself. See
Johnson Controls, 886 F.2d at 1175–76. And while the
court in Lotus held “that expression that is part of a
‘method of operation’ cannot be copyrighted,” 49 F.3d at
818, this court—applying Ninth Circuit law—reached the
exact opposite conclusion, finding that copyright protects
“the expression of [a] process or method,” Atari, 975 F.2d
at 839.

We find, moreover, that the hard and fast rule set
down in Lotus and employed by the district court here—
i.e., that elements which perform a function can never be
copyrightable—is at odds with the Ninth Circuit’s

11 As Oracle points out, the Ninth Circuit has cited Lotus only one
time, on a procedural issue. See Danjaq LLC v. Sony Corp., 263 F.3d
942, 954 (9th Cir. 2001) (citing Lotus for the proposition that delay
“has been held permissible, among other reasons, when it is
necessitated by the exhaustion of remedies through the
administrative process . . . when it is used to evaluate and prepare a
complicated claim”).

161a

endorsement of the abstraction-filtration-comparison
analysis discussed earlier. As the Tenth Circuit concluded
in expressly rejecting the Lotus “method of operation”
analysis, in favor of the Second Circuit’s abstraction-
filtration-comparison test, “although an element of a work
may be characterized as a method of operation, that
element may nevertheless contain expression that is
eligible for copyright protection.” Mitel, 124 F.3d at 1372.
Specifically, the court found that Section 102(b) “does not
extinguish the protection accorded a particular expression
of an idea merely because that expression is embodied in
a method of operation at a higher level of abstraction.” Id.

Other courts agree that components of a program that
can be characterized as a “method of operation” may
nevertheless be copyrightable. For example, the Third
Circuit rejected a defendant’s argument that operating
system programs are “per se” uncopyrightable because an
operating system is a “method of operation” for a
computer. Apple Computer, Inc. v. Franklin Computer
Corp., 714 F.2d 1240, 1250–52 (3d Cir. 1983). The court
distinguished between the “method which instructs the
computer to perform its operating functions” and “the
instructions themselves,” and found that the instructions
were copyrightable. Id. at 1250–51. In its analysis, the
court noted: “[t]hat the words of a program are used
ultimately in the implementation of a process should in no
way affect their copyrightability.” Id. at 1252 (quoting
CONTU Report at 21). The court focused “on whether the
idea is capable of various modes of expression” and
indicated that, “[i]f other programs can be written or
created which perform the same function as [i]n Apple’s
operating system program, then that program is an
expression of the idea and hence copyrightable.” Id. at

162a

1253. Notably, no other circuit has adopted the First
Circuit’s “method of operation” analysis.

Courts have likewise found that classifying a work as a
“system” does not preclude copyright for the particular
expression of that system. See Toro Co. v. R & R Prods.
Co., 787 F.2d 1208, 1212 (8th Cir. 1986) (rejecting the
district court’s decision that “appellant’s parts numbering
system is not copyrightable because it is a ‘system’” and
indicating that Section 102(b) does not preclude protection
for the “particular expression” of that system); see also
Am. Dental Ass’n v. Delta Dental Plans Ass’n, 126 F.3d
977, 980 (7th Cir. 1997) (“A dictionary cannot be called a
‘system’ just because new novels are written using words,
all of which appear in the dictionary. Nor is word-
processing software a ‘system’ just because it has a
command structure for producing paragraphs.”).

Here, the district court recognized that the SSO
“resembles a taxonomy,” but found that “it is nevertheless
a command structure, a system or method of operation—
a long hierarchy of over six thousand commands to carry
out pre-assigned functions.” Copyrightability Decision,
872 F. Supp. 2d at 999–1000.12 In other words, the court
concluded that, although the SSO is expressive, it is not
copyrightable because it is also functional. The problem
with the district court’s approach is that computer
programs are by definition functional—they are all
designed to accomplish some task. Indeed, the statutory
definition of “computer program” acknowledges that they
function “to bring about a certain result.” See 17 U.S.C.

12 This analogy by the district court is meaningful because taxonomies,
in varying forms, have generally been deemed copyrightable. See, e.g.,
Practice Mgmt. Info. Corp. v. Am. Med. Ass’n, 121 F.3d 516, 517–20
(9th Cir. 1997); Am. Dental, 126 F.3d at 978–81.

163a

§ 101 (defining a “computer program” as “a set of
statements or instructions to be used directly or indirectly
in a computer in order to bring about a certain result”). If
we were to accept the district court’s suggestion that a
computer program is uncopyrightable simply because it
“carr[ies] out pre-assigned functions,” no computer
program is protectable. That result contradicts
Congress’s express intent to provide copyright protection
to computer programs, as well as binding Ninth Circuit
case law finding computer programs copyrightable,
despite their utilitarian or functional purpose. Though the
trial court did add the caveat that it “does not hold that the
structure, sequence and organization of all computer
programs may be stolen,” Copyrightability Decision, 872
F. Supp. 2d at 1002, it is hard to see how its method of
operation analysis could lead to any other conclusion.

While it does not appear that the Ninth Circuit has
addressed the precise issue, we conclude that a set of
commands to instruct a computer to carry out desired
operations may contain expression that is eligible for
copyright protection. See Mitel, 124 F.3d at 1372. We
agree with Oracle that, under Ninth Circuit law, an
original work—even one that serves a function—is
entitled to copyright protection as long as the author had
multiple ways to express the underlying idea. Section
102(b) does not, as Google seems to suggest, automatically
deny copyright protection to elements of a computer
program that are functional. Instead, as noted, Section
102(b) codifies the idea/expression dichotomy and the
legislative history confirms that, among other things,
Section 102(b) was “intended to make clear that the
expression adopted by the programmer is the
copyrightable element in a computer program.” H.R. Rep.

164a

No. 1476, 94th Cong., 2d Sess. 54, reprinted in 1976
U.S.C.C.A.N. 5659, 5670. Therefore, even if an element
directs a computer to perform operations, the court must
nevertheless determine whether it contains any separable
expression entitled to protection.

On appeal, Oracle does not—and concedes that it
cannot—claim copyright in the idea of organizing
functions of a computer program or in the “package-class-
method” organizational structure in the abstract. Instead,
Oracle claims copyright protection only in its particular
way of naming and organizing each of the 37 Java API
packages.13 Oracle recognizes, for example, that it “cannot
copyright the idea of programs that open an internet
connection,” but “it can copyright the precise strings of
code used to do so, at least so long as ‘other language is
available’ to achieve the same function.” Appellant Reply
Br. 13–14 (citation omitted). Thus, Oracle concedes that
Google and others could employ the Java language—much
like anyone could employ the English language to write a
paragraph without violating the copyrights of other
English language writers. And, that Google may employ
the “package-class-method” structure much like authors
can employ the same rules of grammar chosen by other
authors without fear of infringement. What Oracle
contends is that, beyond that point, Google, like any
author, is not permitted to employ the precise phrasing or
precise structure chosen by Oracle to flesh out the

13 At oral argument, counsel for Oracle explained that it “would never
claim that anyone who uses a package-class-method manner of
classifying violates our copyright. We don’t own every conceivable
way of organizing, we own only our specific expression—our specific
way of naming each of these 362 methods, putting them into 36
classes, and 20 subclasses.” Oral Argument at 16:44.

165a

substance of its packages—the details and arrangement
of the prose.

As the district court acknowledged, Google could have
structured Android differently and could have chosen
different ways to express and implement the functionality
that it copied.14 Specifically, the court found that “the very
same functionality could have been offered in Android
without duplicating the exact command structure used in
Java.” Copyrightability Decision, 872 F. Supp. 2d at 976.
The court further explained that Google could have
offered the same functions in Android by “rearranging the
various methods under different groupings among the
various classes and packages.” Id. The evidence showed,
moreover, that Google designed many of its own API
packages from scratch, and, thus, could have designed its
own corresponding 37 API packages if it wanted to do so.

Given the court’s findings that the SSO is original and
creative, and that the declaring code could have been

14 Amici McNealy and Sutphin explain that “a quick examination of
other programming environments shows that creators of other
development platforms provide the same functions with wholly
different creative choices.” Br. of McNealy and Sutphin 17. For
example, in Java, a developer setting the time zone would call the
“setTime-Zone” method within the “DateFormat” class of the java.
text package. Id. Apple’s iOS platform, on the other hand, “devotes an
entire class to set the time zone in an application—the ‘NSTimeZone’
class” which is in the “Foundation framework.” Id. at 17–18 (noting
that a “framework is Apple’s terminology for a structure conceptually
similar to Java’s ‘package’”). Microsoft provides similar functionality
with “an entirely different structure, naming scheme, and selection.”
Id. at 18 (“In its Windows Phone development platform, Microsoft
stores its time zone programs in the ‘TimeZoneInfo’ class in its
‘Systems’ namespace (Microsoft’s version of a ‘package’ or
‘framework’).”). Again, this is consistent with the evidence presented
at trial.

166a

written and organized in any number of ways and still
have achieved the same functions, we conclude that
Section 102(b) does not bar the packages from copyright
protection just because they also perform functions.

3. Google’s Interoperability Arguments
are Irrelevant to Copyrightability

Oracle also argues that the district court erred in
invoking interoperability in its copyrightability analysis.
Specifically, Oracle argues that Google’s interoperability
arguments are only relevant, if at all, to fair use—not to
the question of whether the API packages are
copyrightable. We agree.

In characterizing the SSO of the Java API packages as
a “method of operation,” the district court explained that
“[d]uplication of the command structure is necessary for
interoperability.” Copyrightability Decision, 872 F. Supp.
2d at 977. The court found that, “[i]n order for at least
some of [the pre-Android Java] code to run on Android,
Google was required to provide the same java.
package.Class.method() command system using the same
names with the same ‘taxonomy’ and with the same
functional specifications.” Id. at 1000 (emphasis omitted).
And, the court concluded that “Google replicated what was
necessary to achieve a degree of interoperability—but no
more, taking care, as said before, to provide its own
implementations.” Id. In reaching this conclusion, the
court relied primarily on two Ninth Circuit decisions: Sega
Enterprises v. Accolade, Inc., 977 F.2d 1510 (9th Cir.
1992), and Sony Computer Entertainment, Inc. v.
Connectix, Corp., 203 F.3d 596 (9th Cir. 2000).

Both Sega and Sony are fair use cases in which
copyrightability was addressed only tangentially. In Sega,

167a

for example, Sega manufactured a video game console and
game cartridges that contained hidden functional
program elements necessary to achieve compatibility with
the console. Defendant Accolade: (1) reverse-engineered
Sega’s video game programs to discover the requirements
for compatibility; and (2) created its own games for the
Sega console. Sega, 977 F.2d at 1514–15. As part of the
reverse-engineering process, Accolade made intermediate
copies of object code from Sega’s console. Id. Although the
court recognized that the intermediate copying of
computer code may infringe Sega’s copyright, it concluded
that “disassembly of copyrighted object code is, as a
matter of law, a fair use of the copyrighted work if such
disassembly provides the only means of access to those
elements of the code that are not protected by copyright
and the copier has a legitimate reason for seeking such
access.” Id. at 1518. The court agreed with Accolade that
its copying was necessary to examine the unprotected
functional aspects of the program. Id. at 1520. And,
because Accolade had a legitimate interest in making its
cartridges compatible with Sega’s console, the court found
that Accolade’s intermediate copying was fair use.

Likewise, in Sony, the Ninth Circuit found that the
defendant’s reverse engineering and intermediate
copying of Sony’s copyrighted software program “was a
fair use for the purpose of gaining access to the
unprotected elements of Sony’s software.” Sony, 203 F.3d
at 602. The court explained that Sony’s software program
contained unprotected functional elements and that the
defendant could only access those elements through
reverse engineering. Id. at 603. The defendant used that
information to create a software program that let
consumers play games designed for Sony’s PlayStation

168a

console on their computers. Notably, the defendant’s
software program did not contain any of Sony’s
copyrighted material. Id. at 598.

The district court characterized Sony and Sega as
“close analogies” to this case. Copyrightability Decision,
872 F. Supp. 2d at 1000. According to the court, both
decisions “held that interface procedures that were
necessary to duplicate in order to achieve interoperability
were functional aspects not copyrightable under Section
102(b).” Id. The district court’s reliance on Sega and Sony
in the copyrightability context is misplaced, however.

As noted, both cases were focused on fair use, not
copyrightability. In Sega, for example, the only question
was whether Accolade’s intermediate copying was fair
use. The court never addressed the question of whether
Sega’s software code, which had functional elements, also
contained separable creative expression entitled to
protection. Likewise, although the court in Sony
determined that Sony’s computer program had functional
elements, it never addressed whether it also had
expressive elements. Sega and Sony are also factually
distinguishable because the defendants in those cases
made intermediate copies to understand the functional
aspects of the copyrighted works and then created new
products. See Sony, 203 F.3d at 606–07; Sega, 977 F.2d at
1522–23. This is not a case where Google reverse-
engineered Oracle’s Java packages to gain access to
unprotected functional elements contained therein. As the
former Register of Copyrights of the United States
pointed out in his brief amicus curiae, “[h]ad Google
reverse engineered the programming packages to figure
out the ideas and functionality of the original, and then
created its own structure and its own literal code, Oracle

169a

would have no remedy under copyright whatsoever.” Br.
for Amicus Curiae Ralph Oman 29. Instead, Google chose
to copy both the declaring code and the overall SSO of the
37 Java API packages at issue.

We disagree with Google’s suggestion that Sony and
Sega created an “interoperability exception” to
copyrightability. See Appellee Br. 39 (citing Sony and
Sega for the proposition that “compatibility elements are
not copyrightable under section 102(b)” (emphasis
omitted)). Although both cases recognized that the
software programs at issue there contained unprotected
functional elements, a determination that some elements
are unprotected is not the same as saying that the entire
work loses copyright protection. To accept Google’s
reading would contradict Ninth Circuit case law
recognizing that both the literal and non-literal
components of a software program are eligible for
copyright protection. See Johnson Controls, 886 F.2d at
1175. And it would ignore the fact that the Ninth Circuit
endorsed the abstraction-filtration-comparison inquiry in
Sega itself.

As previously discussed, a court must examine the
software program to determine whether it contains
creative expression that can be separated from the
underlying function. See Sega, 977 F.2d at 1524–25. In
doing so, the court filters out the elements of the program
that are “ideas” as well as elements that are “dictated by
considerations of efficiency, so as to be necessarily
incidental to that idea; required by factors external to the
program itself.” Altai, 982 F.2d at 707.

To determine “whether certain aspects of an allegedly
infringed software are not protected by copyright law, the
focus is on external factors that influenced the choice of

170a

the creator of the infringed product.” Dun & Bradstreet
Software Servs., Inc. v. Grace Consulting, Inc., 307 F.3d
197, 215 (3d Cir. 2002) (citing Altai, 982 F.2d at 714; Mitel,
124 F.3d at 1375). The Second Circuit, for example, has
noted that programmers are often constrained in their
design choices by “extrinsic considerations” including “the
mechanical specifications of the computer on which a
particular program is intended to run” and “compatibility
requirements of other programs with which a program is
designed to operate in conjunction.” Altai, 982 F.2d at
709–10 (citing 3 Melville B. Nimmer & David Nimmer,
Nimmer on Copyright § 13.01 at 13-66-71 (1991)). The
Ninth Circuit has likewise recognized that: (1) computer
programs “contain many logical, structural, and visual
display elements that are dictated by . . . external factors
such as compatibility requirements and industry
demands”; and (2) “[i]n some circumstances, even the
exact set of commands used by the programmer is deemed
functional rather than creative for purposes of copyright.”
Sega, 977 F.2d at 1524 (internal citation omitted).

Because copyrightability is focused on the choices
available to the plaintiff at the time the computer program
was created, the relevant compatibility inquiry asks
whether the plaintiff’s choices were dictated by a need to
ensure that its program worked with existing third-party
programs. Dun & Bradstreet, 307 F.3d at 215; see also
Atari, 975 F.2d at 840 (“External factors did not dictate
the design of the 10NES program.”). Whether a defendant
later seeks to make its program interoperable with the
plaintiff’s program has no bearing on whether the
software the plaintiff created had any design limitations
dictated by external factors. See Dun & Bradstreet, 307
F.3d at 215 (finding an expert’s testimony on

171a

interoperability “wholly misplaced” because he “looked at
externalities from the eyes of the plagiarist, not the eyes
of the program’s creator”). Stated differently, the focus is
on the compatibility needs and programming choices of
the party claiming copyright protection—not the choices
the defendant made to achieve compatibility with the
plaintiff’s program. Consistent with this approach, courts
have recognized that, once the plaintiff creates a
copyrightable work, a defendant’s desire “to achieve total
compatibility . . . is a commercial and competitive
objective which does not enter into the . . . issue of whether
particular ideas and expressions have merged.” Apple
Computer, 714 F.2d at 1253.

Given this precedent, we conclude that the district
court erred in focusing its interoperability analysis on
Google’s desires for its Android software. See
Copyrightability Decision, 872 F. Supp. 2d at 1000
(“Google replicated what was necessary to achieve a
degree of interoperability” with Java.). Whether Google’s
software is “interoperable” in some sense with any aspect
of the Java platform (although as Google concedes,
certainly not with the JVM) has no bearing on the
threshold question of whether Oracle’s software is
copyrightable. It is the interoperability and other needs of
Oracle—not those of Google—that apply in the
copyrightability context, and there is no evidence that
when Oracle created the Java API packages at issue it did
so to meet compatibility requirements of other pre-
existing programs.

Google maintains on appeal that its use of the “Java
class and method names and declarations was ‘the only
and essential means’ of achieving a degree of
interoperability with existing programs written in the

172a

[Java language].” Appellee Br. 49. Indeed, given the
record evidence that Google designed Android so that it
would not be compatible with the Java platform, or the
JVM specifically, we find Google’s interoperability
argument confusing. While Google repeatedly cites to the
district court’s finding that Google had to copy the
packages so that an app written in Java could run on
Android, it cites to no evidence in the record that any such
app exists and points to no Java apps that either pre-dated
or post-dated Android that could run on the Android
platform.15 The compatibility Google sought to foster was
not with Oracle’s Java platform or with the JVM central
to that platform. Instead, Google wanted to capitalize on
the fact that software developers were already trained and
experienced in using the Java API packages at issue. The
district court agreed, finding that, as to the 37 Java API
packages, “Google believed Java application
programmers would want to find the same 37 sets of
functionalities in the new Android system callable by the
same names as used in Java.” Copyrightability Decision,
872 F. Supp. 2d at 978. Google’s interest was in
accelerating its development process by “leverag[ing]
Java for its existing base of developers.” J.A. 2033, 2092.
Although this competitive objective might be relevant to
the fair use inquiry, we conclude that it is irrelevant to the

15 During oral argument, Google’s counsel stated that “a program
written in the Java language can run on Android if it’s only using
packages within the 37. So if I’m a developer and I have written a
program, I’ve written it in Java, I can stick an Android header on it
and it will run in Android because it is using the identical names of the
classes, methods, and packages.” Oral Argument at 31:31. Counsel did
not identify any programs that use only the 37 API packages at issue,
however, and did not attest that any such program would be useful.
Nor did Google cite to any record evidence to support this claim.

173a

copyrightability of Oracle’s declaring code and
organization of the API packages.

Finally, to the extent Google suggests that it was
entitled to copy the Java API packages because they had
become the effective industry standard, we are
unpersuaded. Google cites no authority for its suggestion
that copyrighted works lose protection when they become
popular, and we have found none.16 In fact, the Ninth
Circuit has rejected the argument that a work that later
becomes the industry standard is uncopyrightable. See
Practice Mgmt. Info. Corp. v. Am. Med. Ass’n, 121 F.3d
516, 520 n.8 (9th Cir. 1997) (noting that the district court
found plaintiff’s medical coding system entitled to
copyright protection, and that, although the system had
become the industry standard, plaintiff’s copyright did not
prevent competitors “from developing comparative or
better coding systems and lobbying the federal
government and private actors to adopt them. It simply
prevents wholesale copying of an existing system.”).

16 Google argues that, in the same way a formerly distinctive
trademark can become generic over time, a program element can lose
copyright protection when it becomes an industry standard. But “it is
to be expected that phrases and other fragments of expression in a
highly successful copyrighted work will become part of the language.
That does not mean they lose all protection in the manner of a trade
name that has become generic.” Warner Bros., Inc. v. Am.
Broadcasting Cos., 720 F.2d 231, 242 (2d Cir. 1983) (“No matter how
well known a copyrighted phrase becomes, its author is entitled to
guard against its appropriation to promote the sale of commercial
products.”). Notably, even when a patented method or system
becomes an acknowledged industry standard with acquiescence of the
patent owner, any permissible use generally requires payment of a
reasonable royalty, which Google refused to do here. See generally In
re Innovatio IP Ventures, LLC, No. 11-C-9308, 2013 U.S. Dist.
LEXIS 144061 (N.D. Ill. Sept. 27, 2013).

174a

Google was free to develop its own API packages and to
“lobby” programmers to adopt them. Instead, it chose to
copy Oracle’s declaring code and the SSO to capitalize on
the preexisting community of programmers who were
accustomed to using the Java API packages. That desire
has nothing to do with copyrightability. For these reasons,
we find that Google’s industry standard argument has no
bearing on the copyrightability of Oracle’s work.

B. Fair Use

As noted, the jury hung on Google’s fair use defense,
and the district court declined to order a new trial given
its conclusion that the code and structure Google copied
were not entitled to copyright protection. On appeal,
Oracle argues that: (1) a remand to decide fair use “is
pointless”; and (2) this court should find, as a matter of
law, that “Google’s commercial use of Oracle’s work in a
market where Oracle already competed was not fair use.”
Appellant Br. 68.

Fair use is an affirmative defense to copyright
infringement and is codified in Section 107 of the
Copyright Act. Golan, 132 S. Ct. at 890 (“[T]he fair use
defense, is codified at 17 U.S.C. §107.”). Section 107
permits use of copyrighted work if it is “for purposes such
as criticism, comment, news reporting, teaching (including
multiple copies for classroom use), scholarship, or
research.” 17 U.S.C. § 107. The fair use doctrine has been
referred to as “‘the most troublesome in the whole law of
copyright.’” Monge v. Maya Magazines, Inc., 688 F.3d
1164, 1170 (9th Cir. 2012) (quoting Dellar v. Samuel
Goldwyn, Inc., 104 F.2d 661, 662 (2d Cir. 1939) (per
curiam)). It both permits and requires “courts to avoid
rigid application of the copyright statute when, on
occasion, it would stifle the very creativity which that law

175a

is designed to foster.” Campbell v. Acuff-Rose Music, Inc.,
510 U.S. 569, 577 (1994) (quoting Stewart v. Abend, 495
U.S. 207, 236 (1990)).

“Section 107 requires a case-by-case determination
whether a particular use is fair, and the statute notes four
nonexclusive factors to be considered.” Harper & Row
Publishers, Inc. v. Nation Enters., 471 U.S. 539, 549
(1985). Those factors are: (1) “the purpose and character
of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes;” (2) “the
nature of the copyrighted work;” (3) “the amount and
substantiality of the portion used in relation to the
copyrighted work as a whole;” and (4) “the effect of the
use upon the potential market for or value of the
copyrighted work.” 17 U.S.C. § 107. The Supreme Court
has explained that all of the statutory factors “are to be
explored, and the results weighed together, in light of the
purpose[] of copyright,” which is “[t]o promote the
Progress of Science and useful Arts.” Campbell, 510 U.S.
at 578, 575 (internal citations omitted).

“Fair use is a mixed question of law and fact.” Harper
& Row, 471 U.S. at 560. Thus, while subsidiary and
controverted findings of fact must be reviewed for clear
error under Rule 52 of the Federal Rules of Civil
Procedure, the Ninth Circuit reviews the ultimate
application of those facts de novo. See Seltzer v. Green
Day, Inc., 725 F.3d 1170, 1175 (9th Cir. 2013) (citing SOFA
Entm’t, Inc. v. Dodger Prods., Inc., 709 F.3d 1273, 1277
(9th Cir. 2013)). Where there are no material facts at issue
and “the parties dispute only the ultimate conclusions to
be drawn from those facts, we may draw those conclusions
without usurping the function of the jury.” Id. (citing
Fisher v. Dees, 794 F.2d 432, 436 (9th Cir. 1986)). Indeed,

176a

the Supreme Court has specifically recognized that,
“[w]here the district court has found facts sufficient to
evaluate each of the statutory factors, an appellate court
‘need not remand for further factfinding . . . [but] may
conclude as a matter of law that [the challenged use]
[does] not qualify as a fair use of the copyrighted work.’”
Harper & Row, 471 U.S. at 560 (citation omitted).

Of course, the corollary to this point is true as well—
where there are material facts in dispute and those facts
have not yet been resolved by the trier of fact, appellate
courts may not make findings of fact in the first instance.
See Shawmut Bank, N.A. v. Kress Assocs., 33 F.3d 1477,
1504 (9th Cir. 1994) (“[W]e must avoid finding facts in the
first instance.”); see also Golden Bridge Tech., Inc. v.
Nokia, Inc., 527 F.3d 1318, 1323 (Fed. Cir. 2008)
(“Appellate courts review district court judgments; we do
not find facts.”). Here, it is undisputed that neither the
jury nor the district court made findings of fact to which
we can refer in assessing the question of whether Google’s
use of the API packages at issue was a “fair use” within
the meaning of Section 107. Oracle urges resolution of the
fair use question by arguing that the trial court should
have decided the question as a matter of law based on the
undisputed facts developed at trial, and that we can do so
as well. Google, on the other hand, argues that many
critical facts regarding fair use are in dispute. It asserts
that the fact that the jury could not reach a resolution on
the fair use defense indicates that at least some
presumably reasonable jurors found its use to be fair.
And, Google asserts that, even if it is true that the district
court erred in discussing concepts of “interoperability”
when considering copyrightability, those concepts are still

177a

relevant to its fair use defense. We turn first to a more
detailed examination of fair use.

The first factor in the fair use inquiry involves “the
purpose and character of the use, including whether such
use is of a commercial nature or is for nonprofit
educational purposes.” 17 U.S.C. § 107(1). This factor
involves two sub-issues: (1) “whether and to what extent
the new work is transformative,” Campbell, 510 U.S. at
579 (citation and internal quotation marks omitted); and
(2) whether the use serves a commercial purpose.

A use is “transformative” if it “adds something new,
with a further purpose or different character, altering the
first with new expression, meaning or message.” Id. The
critical question is “whether the new work merely
supersede[s] the objects of the original creation . . . or
instead adds something new.” Id. (citations and internal
quotation marks omitted). This inquiry “may be guided by
the examples given in the preamble to § 107, looking to
whether the use is for criticism, or comment, or news
reporting, and the like.” Id. at 578–79. “The Supreme
Court has recognized that parodic works, like other works
that comment and criticize, are by their nature often
sufficiently transformative to fit clearly under the fair use
exception.” Mattel Inc. v. Walking Mountain Prods., 353
F.3d 792, 800 (9th Cir. 2003) (citing Campbell, 510 U.S. at
579).

Courts have described new works as “transformative”
when “the works use copy-righted material for purposes
distinct from the purpose of the original material.” Elvis
Presley Enters., Inc. v. Passport Video, 349 F.3d 622, 629
(9th Cir. 2003) (“Here, Passport’s use of many of the
television clips is transformative because they are cited as
historical reference points in the life of a remarkable

178a

entertainer.”), overruled on other grounds by Flexible
Lifeline Sys., Inc. v. Precision Lift, Inc., 654 F.3d 989, 995
(9th Cir. 2011) (per curiam); see also Bouchat v. Baltimore
Ravens Ltd. P’ship, 619 F.3d 301, 309–10 (4th Cir. 2010)
(quoting A.V. ex rel. Vanderhyge v. iParadigms, LLC, 562
F.3d 630, 638 (4th Cir. 2009) (“[A] transformative use is
one that ‘employ[s] the quoted matter in a different
manner or for a different purpose from the original.’”)). “A
use is considered transformative only where a defendant
changes a plaintiff’s copyrighted work or uses the
plaintiff’s copyrighted work in a different context such
that the plaintiff’s work is transformed into a new
creation.” Perfect 10, Inc. v. Amazon.com, Inc., 508 F.3d
1146, 1165 (9th Cir. 2007) (quoting Wall Data Inc. v. L.A.
County Sheriff’s Dep’t, 447 F.3d 769, 778 (9th Cir. 2006),
and finding that Google’s use of thumbnail images in its
search engine was “highly transformative”).

A work is not transformative where the user “makes
no alteration to the expressive content or message of the
original work.” Seltzer, 725 F.3d at 1177; see also Wall
Data, 447 F.3d at 778 (“The Sheriff’s Department created
exact copies of RUMBA’s software. It then put those
copies to the identical purpose as the original software.
Such a use cannot be considered transformative.”);
Monge, 688 F.3d at 1176 (finding that a magazine’s
publication of photographs of a secret celebrity wedding
“sprinkled with written commentary” was “at best
minimally transformative” where the magazine “did not
transform the photos into a new work . . . or incorporate
the photos as part of a broader work”); Elvis Presley
Enters., 349 F.3d at 629 (finding that use of copyrighted
clips of Elvis’s television appearances was not
transformative where “some of the clips [we]re played

179a

without much interruption, if any . . . [and] instead
serve[d] the same intrinsic entertainment value that is
protected by Plaintiffs’ copyrights.”). Where the use “is
for the same intrinsic purpose as [the copyright holder’s]
. . . such use seriously weakens a claimed fair use.”
Worldwide Church of God v. Phila. Church of God, Inc.,
227 F.3d 1110, 1117 (9th Cir. 2000) (quoting Weissmann v.
Freeman, 868 F.2d 1313, 1324 (2d Cir. 1989)).

Analysis of the first factor also requires inquiry into
the commercial nature of the use. Use of the copyrighted
work that is commercial “tends to weigh against a finding
of fair use.” Harper & Row, 471 U.S. at 562 (“The crux of
the profit/nonprofit distinction is not whether the sole
motive of the use is monetary gain but whether the user
stands to profit from exploitation of the copyrighted
material without paying the customary price.”). “[T]he
more transformative the new work, the less will be the
significance of other factors, like commercialism, that may
weigh against a finding of fair use.” Campbell, 510 U.S. at
579.

The second factor—the nature of the copyrighted
work—“calls for recognition that some works are closer to
the core of intended copyright protection than others, with
the consequence that fair use is more difficult to establish
when the former works are copied.” Id. at 586. This factor
“turns on whether the work is informational or creative.”
Worldwide Church of God, 227 F.3d at 1118; see also
Harper & Row, 471 U.S. at 563 (“The law generally
recognizes a greater need to disseminate factual works
than works of fiction or fantasy.”). Creative expression
“falls within the core of the copyright’s protective
purposes.” Campbell, 510 U.S. at 586. Because computer
programs have both functional and expressive

180a

components, however, where the functional components
are themselves unprotected (because, e.g., they are
dictated by considerations of efficiency or other external
factors), those elements should be afforded “a lower
degree of protection than more traditional literary
works.” Sega, 977 F.2d at 1526. Thus, where the nature of
the work is such that purely functional elements exist in
the work and it is necessary to copy the expressive
elements in order to perform those functions,
consideration of this second factor arguably supports a
finding that the use is fair.

The third factor asks the court to examine “the amount
and substantiality of the portion used in relation to the
copyrighted work as a whole.” 17 U.S.C. § 107(3). Analysis
of this factor is viewed in the context of the copyrighted
work, not the infringing work. Indeed, the statutory
language makes clear that “a taking may not be excused
merely because it is insubstantial with respect to the
infringing work.” Harper & Row, 471 U.S. at 565. “As
Judge Learned Hand cogently remarked, ‘no plagiarist
can excuse the wrong by showing how much of his work he
did not pirate.’” Id. (quoting Sheldon v. Metro-Goldwyn
Pictures Corp., 81 F.2d 49, 56 (2d Cir. 1936)). In contrast,
“the fact that a substantial portion of the infringing work
was copied verbatim is evidence of the qualitative value of
the copied material, both to the originator and to the
plagiarist who seeks to profit from marketing someone
else’s copyrighted expression.” Id. The Ninth Circuit has
recognized that, while “wholesale copying does not
preclude fair use per se, copying an entire work militates
against a finding of fair use.” Worldwide Church of God,
227 F.3d at 1118 (internal citation and quotation omitted).
“If the secondary user only copies as much as is necessary

181a

for his or her intended use, then this factor will not weigh
against him or her.” Kelly v. Arriba Soft Corp., 336 F.3d
811, 820–21 (9th Cir. 2003). Under this factor, “attention
turns to the persuasiveness of a parodist’s justification for
the particular copying done, and the enquiry will harken
back to the first of the statutory factors . . . [because] the
extent of permissible copying varies with the purpose and
character of the use.” Campbell, 510 U.S. at 586–87.

The fourth and final factor focuses on “the effect of the
use upon the potential market for or value of the
copyrighted work.” Harper & Row, 471 U.S. at 566. This
factor reflects the idea that fair use “is limited to copying
by others which does not materially impair the
marketability of the work which is copied.” Id. at 566–67.
The Supreme Court has said that this factor is
“undoubtedly the single most important element of fair
use.” Id. at 566. It requires that courts “consider not only
the extent of market harm caused by the particular actions
of the alleged infringer, but also whether unrestricted and
widespread conduct of the sort engaged in by the
defendant . . . would result in a substantially adverse
impact on the potential market for the original.”
Campbell, 510 U.S. at 590 (citation and quotation marks
omitted). “Market harm is a matter of degree, and the
importance of this factor will vary, not only with the
amount of harm, but also with the relative strength of the
showing on the other factors.” Id. at 590 n.21.

Oracle asserts that all of these factors support its
position that Google’s use was not “fair use”—Google
knowingly and illicitly copied a creative work to further its
own commercial purposes, did so verbatim, and did so to
the detriment of Oracle’s market position. These
undisputable facts, according to Oracle, should end the

182a

fair use inquiry. Oracle’s position is not without force. On
many of these points, Google does not debate Oracle’s
characterization of its conduct, nor could it on the record
evidence.

Google contends, however, that, although it admittedly
copied portions of the API packages and did so for what
were purely commercial purposes, a reasonable juror still
could find that: (1) Google’s use was transformative;
(2) the Java API packages are entitled only to weak
protection; (3) Google’s use was necessary to work within
a language that had become an industry standard; and
(4) the market impact on Oracle was not substantial.

On balance, we find that due respect for the limit of our
appellate function requires that we remand the fair use
question for a new trial. First, although it is undisputed
that Google’s use of the API packages is commercial, the
parties disagree on whether its use is “transformative.”
Google argues that it is, because it wrote its own
implementing code, created its own virtual machine, and
incorporated the packages into a smartphone platform.
For its part, Oracle maintains that Google’s use is not
transformative because: (1) “[t]he same code in Android
. . . enables programmers to invoke the same pre-
programmed functions in exactly the same way;” and
(2) Google’s use of the declaring code and packages does
not serve a different function from Java. Appellant Reply
Br. 47. While Google overstates what activities can be
deemed transformative under a correct application of the
law, we cannot say that there are no material facts in
dispute on the question of whether Google’s use is
“transformative,” even under a correct reading of the law.
As such, we are unable to resolve this issue on appeal.

183a

Next, while we have concluded that it was error for the
trial court to focus unduly on the functional aspects of the
packages, and on Google’s competitive desire to achieve
commercial “interoperability” when deciding whether
Oracle’s API packages are entitled to copyright
protection, we expressly noted that these factors may be
relevant to a fair use analysis. While the trial court erred
in concluding that these factors were sufficient to
overcome Oracle’s threshold claim of copyrightability,
reasonable jurors might find that they are relevant to
Google’s fair use defense under the second and third
factors of the inquiry. See Sega, 977 F.2d at 1524–25
(discussing the Second Circuit’s approach to “break[ing]
down a computer program into its component subroutines
and sub-subroutines and then identif[ying] the idea or
core functional element of each” in the context of the
second fair use factor: the nature of the copyrighted
work). We find this particularly true with respect to those
core packages which it seems may be necessary for
anyone to copy if they are to write programs in the Java
language. And, it may be that others of the packages were
similarly essential components of any Java language-
based program. So far, that type of filtration analysis has
not occurred.

Finally, as to market impact, the district court found
that “Sun and Oracle never successfully developed its own
smartphone platform using Java technology.”
Copyrightability Decision, 872 F. Supp. 2d at 978. But
Oracle argues that, when Google copied the API packages,
Oracle was licensing in the mobile and smartphone
markets, and that Android’s release substantially harmed
those commercial opportunities as well as the potential
market for a Java smartphone device. Because there are

184a

material facts in dispute on this factor as well, remand is
necessary.

Ultimately, we conclude that this is not a case in which
the record contains sufficient factual findings upon which
we could base a de novo assessment of Google’s
affirmative defense of fair use. Accordingly, we remand
this question to the district court for further proceedings.
On remand, the district court should revisit and revise its
jury instructions on fair use consistent with this opinion so
as to provide the jury with a clear and appropriate picture
of the fair use defense.17

II. GOOGLE’S CROSS-APPEAL

Google cross-appeals from the portion of the district
court’s final judgment entered in favor of Oracle on its

17 Google argues that, if we allow it to retry its fair use defense on
remand, it is entitled to a retrial on infringement as well. We disagree.
The question of whether Google’s copying constituted infringement of
a copyrighted work is “distinct and separable” from the question of
whether Google can establish a fair use defense to its copying. See
Gasoline Prods. Co. v. Champlin Refining Co., 283 U.S. 494, 500
(1931) (“Where the practice permits a partial new trial, it may not
properly be resorted to unless it clearly appears that the issue to be
retried is so distinct and separable from the others that a trial of it
alone may be had without injustice.”). Indeed, we have emphasized
more than once in this opinion the extent to which the questions are
separable, and the confusion and error caused when they are blurred.
The issues are not “interwoven” and it would not create “confusion
and uncertainty” to reinstate the infringement verdict and submit fair
use to a different jury. Id. We note, moreover, that, because Google
only mentions this point in passing, with no development of an
argument in support of it, under our case law, it has not been properly
raised. See SmithKline Beecham Corp. v. Apotex Corp., 439 F.3d
1312, 1320 (Fed. Cir. 2006) (when a party provides no developed
argument on a point, we treat that argument as waived) (collecting
cases).

185a

claim for copyright infringement as to the nine lines of
rangeCheck code and the eight decompiled files. Final
Judgment, Oracle Am., Inc. v. Google Inc., No. 3:10-cv-
3561 (N.D. Cal. June 20, 2012), ECF No. 1211. Specifically,
Google appeals from the district court’s decisions:
(1) granting Oracle’s motion for JMOL of infringement as
to the eight decompiled Java files that Google copied into
Android; and (2) denying Google’s motion for JMOL with
respect to rangeCheck.

When reviewing a district court’s grant or denial of a
motion for JMOL, we apply the procedural law of the
relevant regional circuit, here the Ninth Circuit. Trading
Techs. Int’l, Inc. v. eSpeed, Inc., 595 F.3d 1340, 1357 (Fed.
Cir. 2010). The Ninth Circuit reviews a district court’s
JMOL decision de novo, applying the same standard as
the district court. Mangum v. Action Collection Serv.,
Inc., 575 F.3d 935, 938 (9th Cir. 2009). To grant judgment
as a matter of law, the court must find that “the evidence
presented at trial permits only one reasonable conclusion”
and that “no reasonable juror could find in the non-moving
party’s favor.” Id. at 938–39 (citation and internal
quotation marks omitted).

Oracle explains that the eight decompiled files at issue
“contain security functions governing access to network
files” while rangeCheck “facilitates an important sorting
function, frequently called upon during the operation of
Java and Android.” Oracle Response to Cross-Appeal 60–
61. At trial, Google conceded that it copied the eight
decompiled Java code files and the nine lines of code
referred to as rangeCheck into Android. Its only defense
was that the copying was de minimis. Accordingly, the
district court instructed the jury that, “[w]ith respect to
the infringement issues concerning the rangeCheck and

186a

other similar files, Google agrees that the accused lines of
code and comments came from the copyrighted materials
but contends that the amounts involved were so negligible
as to be de minimis and thus should be excluded.” Final
Charge to the Jury (Phase One), Oracle Am., Inc. v.
Google, Inc., No. 3:10-cv-3561 (N.D. Cal. Apr. 30, 2012),
ECF No. 1018, at 14.

Although the jury found that Google infringed Oracle’s
copyright in the nine lines of code comprising rangeCheck,
it returned a noninfringement verdict as to eight
decompiled security files. But because the trial testimony
was that Google’s use of the decompiled files was
significant—and there was no testimony to the contrary—
the district court concluded that “[n]o reasonable jury
could find that this copying was de minimis.” Order
Granting JMOL on Decompiled Files, 2012 U.S. Dist.
LEXIS 66417, at *6. As such, the court granted Oracle’s
motion for JMOL of infringement as to the decompiled
security files.

On appeal, Google maintains that its copying of
rangeCheck and the decompiled security files was de
minimis and thus did not infringe any of Oracle’s
copyrights. According to Google, the district court should
have denied Oracle’s motion for JMOL “because
substantial evidence supported the jury’s verdict that
Google’s use of eight decompiled test files was de
minimis.” Cross-Appellant Br. 76. Google further argues
that the court should have granted its motion for JMOL
as to rangeCheck because the “trial evidence revealed that
the nine lines of rangeCheck code were both
quantitatively and qualitatively insignificant in relation to
the [Java] platform.” Id. at 78.

187a

In response, Oracle argues that the Ninth Circuit does
not recognize a de minimis defense to copyright
infringement and that, even if it does, we should affirm the
judgments of infringement on grounds that Google’s
copying was significant. Because we agree with Oracle on
its second point, we need not address the first, except to
note that there is some conflicting Ninth Circuit precedent
on the question of whether there is a free-standing de
minimis defense to copyright infringement or whether the
substantiality of the alleged copying is best addressed as
part of a fair use defense. Compare Norse v. Henry Holt
& Co., 991 F.2d 563, 566 (9th Cir. 1993) (indicating that
“even a small taking may sometimes be actionable” and
the “question of whether a copying is substantial enough
to be actionable may be best resolved through the fair use
doctrine”), with Newton v. Diamond, 388 F.3d 1189, 1192–
93 (9th Cir. 2003) (“For an unauthorized use of a
copyrighted work to be actionable, the use must be
significant enough to constitute infringement. This means
that even where the fact of copying is conceded, no legal
consequences will follow from that fact unless the copying
is substantial.”) (internal citation omitted)).18

Even assuming that the Ninth Circuit recognizes a
stand-alone de minimis defense to copyright infringement,
however, we conclude that: (1) the jury reasonably found

18 At least one recent district court decision has recognized
uncertainty in Ninth Circuit law on this point. See Brocade Commc’ns
Sys. v. A10 Networks, Inc., No. 10-cv-3428, 2013 U.S. Dist. LEXIS
8113, at *33 (N.D. Cal. Jan. 10, 2013) (“The Ninth Circuit has been
unclear about whether the de minimis use doctrine serves as an
affirmative defense under the Copyright Act’s fair use exceptions or
whether the doctrine merely highlights plaintiffs’ obligation to show
that ‘the use must be significant enough to constitute infringement.’”)
(citing Newton, 388 F.2d at 1193; Norse, 991 F.2d at 566).

188a

that Google’s copying of the rangeCheck files was more
than de minimis; and (2) the district court correctly
concluded that the defense failed as a matter of law with
respect to the decompiled security files.

First, the unrebutted testimony at trial revealed that
rangeCheck and the decompiled security files were
significant to both Oracle and Google. Oracle’s expert, Dr.
John Mitchell, testified that Android devices call the
rangeCheck function 2,600 times just in powering on the
device. Although Google argues that the eight decompiled
files were insignificant because they were used only to test
the Android platform, Dr. Mitchell testified that “using
the copied files even as test files would have been
significant use” and the district court specifically found
that “[t]here was no testimony to the contrary.” Order
Granting JMOL on Decompiled Files, 2012 U.S. Dist.
LEXIS 66417, at *6. Given this testimony, a reasonable
jury could not have found Google’s copying de minimis.

Google emphasizes that the nine lines of rangeCheck
code “represented an infinitesimal percentage of the 2.8
million lines of code in the 166 Java packages—let alone
the millions of lines of code in the entire [Java] platform.”
Google Cross-Appeal Br. 78–79. To the extent Google is
arguing that a certain minimum number of lines of code
must be copied before a court can find infringement, that
argument is without merit. See Baxter v. MCA, Inc., 812
F.2d 421, 425 (9th Cir. 1987) (“[N]o bright line rule exists
as to what quantum of similarity is permitted.”). And,
given the trial testimony that both rangeCheck and the
decompiled security files are qualitatively significant and
Google copied them in their entirety, Google cannot show
that the district court erred in denying its motion for
JMOL.

189a

We have considered Google’s remaining arguments
and find them unpersuasive. Accordingly, we affirm both
of the JMOL decisions at issue in Google’s cross-appeal.

III. GOOGLE’S POLICY-BASED ARGUMENTS

Many of Google’s arguments, and those of some amici,
appear premised on the belief that copyright is not the
correct legal ground upon which to protect intellectual
property rights to software programs; they opine that
patent protection for such programs, with its insistence on
non-obviousness, and shorter terms of protection, might
be more applicable, and sufficient. Indeed, the district
court’s method of operation analysis seemed to say as
much. Copyrightability Decision, 872 F. Supp. 2d at 984
(stating that this case raises the question of “whether the
copyright holder is more appropriately asserting an
exclusive right to a functional system, process, or method
of operation that belongs in the realm of patents, not
copyrights”). Google argues that “[a]fter Sega, developers
could no longer hope to protect [software] interfaces by
copyright . . . Sega signaled that the only reliable means
for protecting the functional requirements for achieving
interoperability was by patenting them.” Appellee Br. 40
(quoting Pamela Samuelson, Are Patents on Interfaces
Impeding Interoperability? 93 Minn. L. Rev. 1943, 1959
(2009)). And, Google relies heavily on articles written by
Professor Pamela Samuelson, who has argued that “it
would be best for a commission of computer program
experts to draft a new form of intellectual property law for
machine-readable programs.” Pamela Samuelson,
CONTU Revisited: The Case Against Copyright
Protection for Computer Programs in Machine-Readable
Form, 1984 Duke L.J. 663, 764 (1984). Professor
Samuelson has more recently argued that “Altai and Sega

190a

contributed to the eventual shift away from claims of
copyright in program interfaces and toward reliance on
patent protection. Patent protection also became more
plausible and attractive as the courts became more
receptive to software patents.” Samuelson, 93 Minn. L.
Rev. at 1959.

Although Google, and the authority on which it relies,
seem to suggest that software is or should be entitled to
protection only under patent law—not copyright law—
several commentators have recently argued the exact
opposite. See Technology Quarterly, Stalking Trolls,
ECONOMIST, Mar. 8, 2014, http://www.economist.com/
news/technology-quarterly/21598321-intellectual-
property-after-being-blamed-stymying-innovation-
america-vague (“[M]any innovators have argued that the
electronics and software industries would flourish if
companies trying to bring new technology (software
innovations included) to market did not have to worry
about being sued for infringing thousands of absurd
patents at every turn. A perfectly adequate means of
protecting and rewarding software developers for their
ingenuity has existed for over 300 years. It is called
copyright.”); Timothy B. Lee, Will the Supreme Court
save us from software patents?, WASH. POST, Feb. 26,
2014, 1:13 PM, http://www.washingtonpost.com/blogs/the-
switch/wp/2014/02/26/will-the-supreme-court-save-us-
from-softwarepatents/ (“If you write a book or a song, you
can get copyright protection for it. If you invent a new pill
or a better mousetrap, you can get a patent on it. But for
the last two decades, software has had the distinction of
being potentially eligible for both copyright and patent
protection. Critics say that’s a mistake. They argue that
the complex and expensive patent system is a terrible fit

191a

for the fast-moving software industry. And they argue
that patent protection is unnecessary because software
innovators already have copyright protection available.”).

Importantly for our purposes, the Supreme Court has
made clear that “[n]either the Copyright Statute nor any
other says that because a thing is patentable it may not be
copyrighted.” Mazer v. Stein, 347 U.S. 201, 217 (1954).
Indeed, the thrust of the CONTU Report is that copyright
is “the most suitable mode of legal protection for computer
software.” Peter S. Menell, An Analysis of the Scope of
Copyright Protection for Application Programs, 41 Stan.
L. Rev. 1045, 1072 (1989); see also CONTU Report at 1
(recommending that copyright law be amended “to make
it explicit that computer programs, to the extent that they
embody an author’s original creation, are proper subject
matter of copyright”). Until either the Supreme Court or
Congress tells us otherwise, we are bound to respect the
Ninth Circuit’s decision to afford software programs
protection under the copyright laws. We thus decline any
invitation to declare that protection of software programs
should be the domain of patent law, and only patent law.

CONCLUSION

For the foregoing reasons, we conclude that the
declaring code and the structure, sequence, and
organization of the 37 Java API packages at issue are
entitled to copyright protection. We therefore reverse the
district court’s copyrightability determination with
instructions to reinstate the jury’s infringement verdict.
Because the jury hung on fair use, we remand Google’s
fair use defense for further proceedings consistent with
this decision.

192a

With respect to Google’s cross-appeal, we affirm the
district court’s decisions: (1) granting Oracle’s motion for
JMOL as to the eight decompiled Java files that Google
copied into Android; and (2) denying Google’s motion for
JMOL with respect to the rangeCheck function.
Accordingly, we affirm-in-part, reverse-in-part, and
remand for further proceedings.

AFFIRMED-IN-PART, REVERSED-IN-PART, AND
REMANDED

193a

Appendix E

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER PARTIALLY GRANTING AND
PARTIALLY DENYING DEFENDANT’S MOTION

FOR SUMMARY JUDGMENT ON COPYRIGHT
CLAIM

INTRODUCTION

In this patent and copyright infringement action
involving features of Java and Android, defendant moves
for summary judgment on the copyright infringement
claim. With one exception described below, the motion is
DENIED.

STATEMENT

Oracle America Inc. accuses Google Inc. of infringing
some of Oracle’s Java-related copyrights in portions of
Google’s Android software platform. Specifically, Oracle
accuses twelve code files and 37 specifications for
application programming interface packages. The Java
technology and the basics of object-oriented programming
were explained in the claim construction order (Dkt. No.

194a

137). An overview of application programming interfaces
and their role in Java and Android is provided here.

1. APPLICATION PROGRAMMING INTERFACES (APIS).

Conceptually, an API is what allows software
programs to communicate with one another. It is a set of
definitions governing how the services of a particular
program can be called upon, including what types of input
the program must be given and what kind of output will be
returned. APIs make it possible for programs (and
programmers) to use the services of a given program
without knowing how the service is performed. APIs also
insulate programs from one another, making it possible to
change the way a given program performs a service
without disrupting other programs that use the service.

APIs typically are composed of “methods,” also known
as “functions,” which are software programs that perform
particular services. For example, a programmer might
write a software program method A, which calculates the
area of a room when given the shape and dimensions of the
room. A second programmer then could write a program
method called B, which calculates the square footage of an
entire house when given the shape and dimensions of each
room. Rather than reinventing a new way to calculate
area, the second programmer could simply write an
instruction in B, “for each room, ask program A to
calculate the area; then add all of the return values,”
using, of course, real programming language. As long as
the second programmer knows what A is named, what
type of “arguments” A must be given as inputs, and what
return A outputs, the second programmer can write a
program that will call on the services of A. The second
programmer does not need to know how A actually works,
or is “implemented.” There may in fact be multiple ways

195a

to implement A — for example, different ways to divide an
oddly shaped room into geometric components — and the
first programmer may refine his implementation of
program A without disrupting program B.

A method must be defined before it can be used. A
method can be “declared” (i.e., defined) in a programming
language such as Java by stating its name and describing
its argument(s) and return(s) according to syntax
conventions. Once a method has been declared, it can
documented and implemented. Documentation is not
code; it is a reference item that provides programmers
with information about the method, its requirements, and
its use. An implementation is code that actually tells the
computer how to carry out the method. Often, as in the
example above, multiple implementations are possible for
a given method.

In object-oriented programming, methods are
grouped into “classes.” A class file typically contains
several methods and related data. Classes, in turn, are
grouped into “packages” known as API packages.
Whereas a class generally corresponds to a single file, a
package is more like a folder or directory providing an
organizational structure for the class files. A given API
package could contain many sub-packages, each with its
own classes and sub-classes, which in turn contain their
own methods. These elements generally are named and
grouped in ways that help human programmers find,
understand, and use them. A well developed set of API
packages, sometimes called a “class library,” is a powerful
tool for software developers; as such, it can help attract
developers to a particular platform.

The specification for a class library — much like the
specification for an automobile — is an item of detailed

196a

documentation that explains the organization and function
of all packages, classes, methods, and data fields in the
library. The class library specification for a given software
platform, sometimes called the “API Specification” is an
important reference item for programmers. In order to
make effective use of the APIs, a programmer must be
able to find the portion of the specification describing the
particular package, class, and method needed for a given
programming task.

2. JAVA AND ANDROID.

As explained in previous orders, Java and Android are
both complex software platforms with many components.
For example, the Java platform includes the Java
programming language, Java class libraries, the Java
virtual machine, and other elements. The Java
programming language has been made freely available for
use by anyone without charge. Both sides agree on this.
Other aspects of the Java platform, however, such as the
virtual machine and class libraries, allegedly are protected
by patents and copyrights.

The Android platform uses the Java programming
language; thus, software developers already familiar with
the Java language do not have to learn a new language in
order to write programs for Android. In contrast to Java,
the Android platform uses the Dalvik virtual machine
instead of the Java virtual machine, provides Android
class libraries, and has other non-Java components. The
Java platform has been used primarily on desktop
computers, but it also has been used on cell phones and
other mobile computing devices. Android, on the other
hand, was designed specifically for mobile devices. Java
and Android compete in the market for mobile computing
software.

197a

According to Oracle, Android is an unauthorized and
incompatible Java implementation. The Java platform and
the Android platform each includes class libraries with
more than one hundred API packages. Android allegedly
supports some, but not all, of the APIs defined for the Java
platform. Thus, some programs written for the Java
platform will not run properly on the Android platform,
even though both use the Java language. Similarly, the
Android platform allegedly includes additional APIs that
are not part of the Java platform. Thus, some programs
written for the Android platform will not run properly on
the Java platform, even though they are written in the
Java language. This so-called fragmentation undermines
the “write once, run anywhere” concept underlying the
Java system and supposedly damages Oracle by
decreasing Java’s appeal to software developers.

3. TERMINOLOGY

The term API is slippery. It has been used by the
parties and in the industry as shorthand to refer to many
related concepts, ranging from individual methods to code
implementations to entire class libraries and
specifications. In this order, the term API will be used
only to refer to the abstract concept of an application
programming interface. API documentation (e.g., the
specification for a class library or for an API package
within the library) and API implementations (e.g., the
source code relating to a particular method within a class
file) will be referenced as such. Having clarified this
linguistic point, this order proceeds to consider the
specific items accused of copyright infringement in this

198a

action: twelve files of code, and 37 API package
specifications.1

ANALYSIS

Summary judgment is proper when “there is no
genuine dispute as to any material fact and the movant is
entitled to judgment as a matter of law.” FRCP 56(a).
Where the party moving for summary judgment would
bear the burden of proof at trial, that party bears the
initial burden of producing evidence that would entitle it
to a directed verdict if uncontroverted at trial. See C.A.R.
Transp. Brokerage Co. v. Darden Rests., Inc., 213 F.3d
474, 480 (9th Cir. 2000). Where the party moving for
summary judgment would not bear the burden of proof at
trial, that party bears the initial burden of either
producing evidence that negates an essential element of
the non-moving party’s claims, or showing that the non-
moving party does not have enough evidence of an
essential element to carry its ultimate burden of
persuasion at trial. If the moving party satisfies its initial
burden of production, then the non-moving party must
produce admissible evidence to show there exists a
genuine issue of material fact. See Nissan Fire & Marine
Ins. Co. v. Fritz Cos., 210 F.3d 1099, 1102–03 (9th Cir.
2000).

Copyright protection subsists in “original works of
authorship fixed in any tangible medium of expression.”

1 At the hearing, counsel for Oracle suggested that Google’s code
implementations of the 37 API package specifications are
unauthorized derivative works. This theory was disclosed by Oracle
during discovery (Dkt. No. 263-3 at 11), but it was dismissed
summarily in Google’s summary judgment brief (Br. 9). Because the
briefing does not address this theory, it will not be addressed herein.

199a

17 U.S.C. 102. In order to succeed on a copyright
infringement claim, a plaintiff must show that it owns the
copyright and that the defendant copied protected
elements of the work. Only expressive elements that are
“original,” i.e., independently created, are protected.
Copying can be proven by showing that the alleged
infringer had access to the copyrighted work and that the
protected portions of the works are substantially similar.
Jada Toys, Inc. v. Mattel, Inc., 518 F.3d 628, 636–37 (9th
Cir. 2008). Google advances a number of arguments why
Oracle supposedly cannot prove all or part of its copyright
infringement claim. Google is entitled to summary
judgment on only one issue.

1. THE CODE FILES

Regarding the twelve code files at issue, Google argues
that its alleged copying was de minimis (Br. 22–24). In the
copyright infringement context, “a taking is considered de
minimis only if it is so meager and fragmentary that the
average audience would not recognize the appropriation.”
Fisher v. Dees, 794 F.2d 432, 434 n.2 (9th Cir. 1986). The
extent of the copying “is measured by considering the
qualitative and quantitative significance of the copied
portion in relation to the plaintiff’s work as a whole.”
Newton v. Diamond, 388 F.3d 1189, 1195 (9th Cir. 2004).

Here, the parties dispute what constitutes the
plaintiff’s work as a whole. Google argues that its alleged
copying should be compared to the entire Java platform,
which Oracle registered as a single work (Br. 22–23; Kwun
Exh. B). Oracle, on the other hand, argues that each of the
twelve code files at issue is a separate work for purposes
of this analysis (Opp. 23–24). Google has not shown that
the Java platform is the proper basis for comparison.
Google cites two provisions of the copyright regulations,

200a

but neither one supports Google’s position (Reply Br. 12–
13).

First, Google misapplies 37 C.F.R. 202.3(b)(4)(i)(A).
That provision states: “For the purpose of registration on
a single application and upon payment of a single
registration fee, the following shall be considered a single
work: (A) In the case of published works: all copyrightable
elements that are otherwise recognizable as self-
contained works, that are included in a single unit of
publication, and in which the copyright claimant is the
same.” The plain meaning of this provision is that when a
single published unit contains multiple elements “that are
otherwise recognizable as self-contained works,” the unit
is considered a single work for the limited purpose of
registration, while its elements may be recognized as
separate works for other purposes. Courts considering
Section 202.3(b)(4)(i)(A) generally agree with this
interpretation. See, e.g., Tattoo Art, Inc. v. TAT Int’l.,
LLC, --- F. Supp. 2d. ---, No. 2:10cv323, 2011 WL 2585376,
at *15–16 (E.D. Va. June 29, 2011) (interpreting Section
202.3(b)(4)(i)(A) to codify the principle that “the
copyrights in multiple works may be registered on a single
form, and thus considered one work for the purposes of
registration while still qualifying as separate ‘works’ for
purposes of awarding statutory damages”). Google relies
on Section 202.3(b)(4)(i)(A) to show that the code files
comprising the Java platform should be treated
collectively as a single work for purposes of an
infringement analysis. This interpretation is contrary to
the plain language of the regulation and is not supported
by any cited authority.

Second, Google cites to 37 C.F.R. 202.3(b)(3), which
concerns continuation sheets. Continuation sheets are

201a

used “only in submissions for which a paper application is
used and where additional space is needed by the
applicant to provide all relevant information.” 37 C.F.R
202.3(b)(3). The regulation requires use of a separate
continuation sheet “to list contents titles, i.e., titles of
independent works in which copyright is being claimed
and which appear within a larger work.” Ibid. It does not,
however, state that a failure to list individual titles
precludes an applicant from later asserting those titles as
separate works in infringement litigation. Nor does it
address works registered by means other than a paper
application. Google does not provide enough factual
context to show that Section 202.3(b)(3) applies to the
works at issue, and Google does not explain how it might
bear upon the dispute at hand, even if it does apply.

Google cites no other authority. This order finds that,
at least on the present record, Google has not shown that
the Java platform as a whole is the work to which Google’s
alleged copying should be compared. Because all of
Google’s de minimis arguments compare the accused
material in the code files to the entire Java platform as a
whole, this order need not consider the de minimis
question further.

2. THE API PACKAGE SPECIFICATIONS.

Regarding the 37 API package specifications at issue,
which are reference items and not code, Google argues
that the only similarities between the accused works and
the asserted works are elements that are not subject to
copyright protection. Google, however, does not specify
which elements it views as similar. Google instead
presents an array of theories why various categories of
specification elements do not merit copyright protection.
With one exception, this broad categorical approach fails.

202a

Google’s other arguments regarding the API package
specifications — that the disputed works are not virtually
identical or substantially similar, and that Google’s alleged
copying was fair use — also fail to earn summary
judgment for Google.

A. Names.

“Words and short phrases such as names, titles, and
slogans” are “not subject to copyright.” 37 C.F.R. 202.1(a);
Planesi v. Peters, No. 04-16936, slip op. at *1 (9th Cir. Aug.
15, 2005). Google argues that “the names of the Java
language API files, packages, classes, and methods are
not protectable as a matter of law” (Br. 17). This order
agrees. Because names and other short phrases are not
subject to copyright, the names of the various items
appearing in the disputed API package specifications are
not protected. See Sega Enters. Ltd. v. Accolade, Inc., 977
F.2d 1510, 1524 n.7 (9th Cir. 1992) (“Sega’s security code
is of such de minimis length that it is probably unprotected
under the words and short phrases doctrine.”).

Oracle argues that it is entitled to a “presumption that
the names in the Java API specifications are original”
(Opp. 14). Not so. The decision Oracle cites for this
proposition shows only that a certificate of registration
may entitle its holder to a presumption of copyright
validity as to the registered work. Swirsky v. Carey, 376
F.3d 841, 851 (9th Cir. 2004) (citing 17 U.S.C. 410(c)).
Oracle cites no authority requiring a presumption of
originality as to specific elements of a registered work.

Oracle also argues that its selection and arrangement
of component names within the specifications is entitled to
copyright protection (Opp. 15). This argument is non-
responsive. Copyright protection for the selection and

203a

arrangement of elements within a work is a separate
question from whether the elements themselves are
protected by copyright. In finding that the names of the
various items appearing in the disputed API package
specifications are not protected by copyright, this order
does not foreclose the possibility that the selection or
arrangement of those names is subject to copyright
protection. See Lamps Plus, Inc. v. Seattle Lighting
Fixture Co., 345 F.3d 1140, 1147 (9th Cir. 2003) (“[A]
combination of unprotectable elements is eligible for
copyright protection only if those elements are numerous
enough and their selection and arrangement original
enough that their combination constitutes an original
work of authorship.”) (emphasis added).

Having found that the names of the various items
appearing in the disputed API package specifications are
not protected by copyright on account of the words and
short phrases doctrine, this order need not consider
Google’s alternative theory that the names are
unprotected because they are the result of customary
programming practices.

B. Scenes a Faire and the Merger Doctrine.

“Under the scenes a faire doctrine, when certain
commonplace expressions are indispensable and naturally
associated with the treatment of a given idea, those
expressions are treated like ideas and therefore not
protected by copyright.” Swirsky v. Carey, 376 F.3d at
850. “Under the merger doctrine, courts will not protect a
copyrighted work from infringement if the idea
underlying the copyrighted work can be expressed in only
one way, lest there be a monopoly on the underlying idea.”
Satava v. Lowry, 323 F.3d 805, 812 n.5 (9th Cir. 2003).

204a

Google argues that “[t]he API declarations are
unprotectable scenes a faire or unprotectable under the
merger doctrine” (Br. 14). Google, however, does not
specify what it means by “API declarations.” Google
applies this argument to all of “[t]he allegedly copied
elements of the Java language API packages,” providing
only a few examples: “the names of packages and methods
and definitions” (id. at 14–16). To the extent Google
directs this argument to names, it is moot in light of the
above ruling. To the extent Google directs this argument
to other elements of the API package specifications, it is
not adequately supported.

Google’s lack of specificity is fatal. If Google believes,
for example, that a particular method declaration is a
scene a faire or is the only possible way to express a given
function, then Google should provide evidence and
argument supporting its views as to that method
declaration. Instead, Google argues — relying mostly on
non-binding authority2 — that entire categories of
elements in API specifications do not merit copyright
protection. This approach ignores the possibility that
some method declarations (for example) may be subject to
the merger doctrine or may be scenes a faire, whereas
other method declarations may be creative contributions
subject to copyright protection. Google has not justified
the sweeping ruling it requests. Google has not even
identified which categories of specification elements it
deems unprotectable under these doctrines. This order
declines to hold that API package specifications, or any

2 The only binding authority Google cites is the Sega decision. The
cited discussion addresses computer program code, not
documentation. Google has not justified applying the Sega rationale
to documentation such as the API package specifications at issue here.

205a

particular category of elements they contain, are
unprotectable under the scenes a faire or merger
doctrines.

C. Methods of Operation.

“In no case does copyright protection for an original
work of authorship extend to any idea, procedure, process,
system, method of operation, concept, principle, or
discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.” 17
U.S.C. 102(b) (emphasis added). Google argues that “APIs
for a programming language” are unprotected methods of
operation (Br. 13). Google, however, does not use the term
API consistently in the relevant portions of its briefs, so it
is unclear precisely what Google is attempting to
characterize as a method of operation. Google states that
all “elements common to Oracle’s Java language APIs and
the Android APIs are unprotectable methods of
operation,” but Google does not specify which elements it
views as common (id. at 12). Context suggests two possible
interpretations for Google’s use of the term APIs. Both of
Google’s apparent arguments are unavailing.

First, Google appears to direct its methods-of-
operation argument to APIs themselves as the term is
used in this order — that is, to the abstract concept of an
interface between programs. In its reply brief, Google
distinguishes APIs both from their implementation in
libraries of code (“the APIs are not the libraries
themselves”) and from their documentation in reference
materials (“The APIs do not ‘tell’ how to use the libraries,
they are the means by which one uses the libraries; the
documentation for the APIs ‘tells’ how to use the
libraries.”) (Reply Br. 2–3). Google’s argument that APIs
are unprotectable methods of operation attacks a straw

206a

man. It is not the APIs but rather the specifications for 37
API packages that are accused. Even if Google can show
that APIs are methods of operation not subject to
copyright protection, that would not defeat Oracle’s
infringement claim concerning the accused specifications.

Google may be trying to head off a possible argument
by Oracle that the APIs described in the specifications are
nonliteral elements of the specifications subject to
copyright protection. It is unclear whether Oracle is
advancing such an argument. Oracle’s opposition brief
seems to use the term API to refer to API packages and
API package specifications. If this interpretation is
correct, then the parties’ arguments concerning whether
“APIs” are methods of operation simply swipe past each
other, with each party using the term in a different way.
Because the issue is not properly teed up for summary
judgment, this order does not decide whether APIs are
methods of operation.

Second, Google also states that “API specifications
are methods of operation” (Br. 14). This conclusion does
not follow from Google’s argument that APIs — meaning
conceptual interfaces between programs — are methods
of operation. No other supporting argument is provided.
API specifications are written documentation. Even if
Google could show that APIs are methods of operation,
that would not mean that a written work that describes or
embodies APIs is automatically exempt from copyright
protection. This order finds that the API package
specifications at issue are not “methods of operation”
under 17 U.S.C. 102(b).

207a

D. Degree of Similarity.

The copying element of copyright infringement
generally can be proven by showing that the alleged
infringer had access to the copyrighted work and that the
protected portions of the works are substantially similar.
Jada Toys, 518 F.3d at 636–37. “When the range of
protectable and unauthorized expression is narrow,”
however, “the appropriate standard for illicit copying is
virtual identity” rather than substantial similarity. Apple
Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1439 (9th
Cir. 1994).

Google argues that “[g]iven the substantial
unprotected elements in the documentation (such as the
API method declarations), the ‘virtual identity’ standard
applies here” (Br. 24). This order agrees with Google that
the names of the various items appearing in the disputed
API package specifications are not protected by
copyright. Google, however, has not shown that any other
elements of the specifications are exempt from copyright
protection. Because Google has not proven that a
substantial portion of the specifications is unprotected,
Google’s justification for applying the virtual identity
standard fails. This order therefore need not consider
Google’s arguments that the disputed Java and Android
API package specifications are not virtually identical. In
particular, Google analyzes the selection and arrangement
of elements within the specifications under only the virtual
identity standard (Br. 24–25).

As a fallback position, Google argues that even under
the substantial similarity standard, the disputed Java and
Android API package specifications are not sufficiently
similar to show copying. Google analogizes the
specifications to dictionary definitions whose similarities

208a

are driven by external constraints, and Google cites an
expert opinion that the Java and Android platforms are
not substantially similar (Br. 24; Astrachan Exh. 1 at 77).
Predictably, Oracle presents an opposing expert opinion
that the API package specifications at issue are
substantially similar (Mitchell Exh. 1 at 45). This
conflicting expert testimony highlights a factual issue that
precludes summary judgment; a reasonable trier of fact
might agree with either expert’s analysis of the degree of
similarity between the asserted and accused
specifications.

Google argues that Oracle’s expert testimony is not
sufficient to defeat summary judgment. Google criticizes
the expert for offering a “summary ‘conclusion’” based on
a “single illustrative example,” which Google interprets
differently (Reply Br. 11). In his report, however, the
expert provides multiple examples and explains that he
conducted a detailed comparison of each of the API
package specification pairs at issue (Mitchell Exh. 1 at 60–
63). His opinion that the Android specifications are
substantially similar to their Java counterparts is not a
mere “[c]onclusory statement[] without factual support.”
See Surrell v. Cal. Water Serv. Co., 518 F.3d 1097, 1103
(9th Cir. 2008). If Google disputes the basis for the opinion
by Oracle’s expert or his analysis of the specifications,
then Google should raise its critiques during
crossexamination at trial. Google has not earned summary
judgment of no copying under either of the possible
standards for comparison — virtual identity or substantial
similarity.

E. Fair Use.

The following factors are considered in determining
whether the use made of a work is a fair use: (1) the

209a

purpose and character of the use, including whether such
use is of a commercial nature or is for nonprofit
educational purposes; (2) the nature of the copyrighted
work; (3) the amount and substantiality of the portion
used in relation to the copyrighted work as a whole; and
(4) the effect of the use upon the potential market for or
value of the copyrighted work. 17 U.S.C. 107. Google
argues that its alleged use of elements from the Java API
package specifications in its Android API specifications
was fair (Br. 19–22). Evaluation of the fair use factors,
however, depends upon disputed questions of material
fact. As such, no finding of fair use can be made on the
summary judgment record.

For example, with respect to factor four, Google
argues that “Android has contributed positively to the
market for the copyrighted works by increasing the
number of Java language developers” (Br. 21). Google
cites positive reactions by Sun executives at the time when
Android was first released in 2007. These statements do
not prove anything about Android’s actual impact on the
Java market since that time. Moreover, Oracle presents
sworn testimony that Android fragmented the Java
platform and locked Java out of the smartphone market
(Swoopes Exh. 6 at 111–12). Oracle and Google both
employ complex business models for their respective
products. The question of damages is one of the most
complicated and hotly contested issues in this action. On
the present record, a reasonable fact finder could disagree
with Google’s rosy depiction of Android’s impact on the
Java market.

Because fact issues preclude a summary judgment
finding of fair use, this order does not reach the parties’
arguments on all of the fair use factors.

210a

* * *

This order finds that the names of the various items
appearing in the disputed API package specifications are
not protected by copyright. This order makes no finding
as to whether any other elements of the API package
specifications (or their selection or arrangement) are
protected or infringed.

3. INDIRECT INFRINGEMENT.

Google argues that Oracle’s indirect copyright
infringement theories fail because Oracle cannot establish
any underlying direct copyright infringement (Br. 25).
Because Google is not entitled to summary judgment on
direct infringement, Google also is not entitled to
summary judgment on indirect infringement.

CONCLUSION

For the foregoing reasons, defendant’s motion for
summary judgment on the copyright infringement claim
is GRANTED IN PART AND DENIED IN PART. This order
finds that the names of the various items appearing in the
disputed API package specifications are not protected by
copyright. To that extent, the motion is GRANTED. All of
defendant’s other summary judgment theories regarding
the copyright claim are DENIED. Plaintiff’s evidentiary
objections to the Bornstein declaration and the Astrachan
declaration are MOOT.

IT IS SO ORDERED.

Dated: September 15, 2011.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

211a

Appendix F

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER ON MOTIONS FOR JUDGMENT
AS A MATTER OF LAW

For the reasons stated at the May 9 hearing, Oracle’s
motion for judgment as a matter of law regarding fair use,
API documentation, and comment-copied files is DENIED;
Google’s motion for judgment as a matter of law regarding
rangeCheck is DENIED.

IT IS SO ORDERED.

Dated: May 10, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

212a

Appendix G

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER RE COPYRIGHTABILITY OF CERTAIN
REPLICATED ELEMENTS OF THE JAVA

APPLICATION PROGRAMMING INTERFACE

INTRODUCTION

This action was the first of the so-called “smartphone
war” cases tried to a jury. This order includes the findings
of fact and conclusions of law on a central question tried
simultaneously to the judge, namely the extent to which,
if at all, certain replicated elements of the structure,
sequence and organization of the Java application
programming interface are protected by copyright.

PROCEDURAL HISTORY

In 2007, Google Inc., announced its Android software
platform for mobile devices. In 2010, Oracle Corporation
acquired Sun Microsystems, Inc., and thus acquired Sun’s
interest in the popular programming language known as
Java, a language used in Android. Sun was renamed
Oracle America, Inc. Shortly thereafter, Oracle America
(hereinafter simply “Oracle”) sued defendant Google and

213a

accused its Android platform as infringing Oracle’s Java-
related copyrights and patents. Both Java and Android
are complex platforms. Both include “virtual machines,”
development and testing kits, and application
programming interfaces, also known as APIs. Oracle’s
copyright claim involves 37 packages in the Java API.
Copyrightability of the elements replicated is the only
issue addressed by this order.

Due to complexity, the Court decided that the jury
(and the judge) would best understand the issues if the
trial was conducted in phases. The first phase covered
copyrightability and copyright infringement as well as
equitable defenses. The second phase covered patent
infringement. The third phase would have dealt with
damages but was obviated by stipulation and verdicts.

For the first phase, it was agreed that the judge would
decide issues of copyrightability and Google’s equitable
defenses and that the jury would decide infringement, fair
use, and whether any copying was de minimis.
Significantly, all agreed that Google had not literally
copied the software but had instead come up with its own
implementations of the 37 API packages. Oracle’s central
claim, rather, was that Google had replicated the
structure, sequence and organization of the overall code
for the 37 API packages.

For their task of determining infringement and fair
use, the jury was told it should take for granted that the
structure, sequence and organization of the 37 API
packages as a whole was copyrightable. This, however,
was not a final definitive legal ruling. One reason for this
instruction was so that if the judge ultimately ruled, after
hearing the phase one evidence, that the structure,
sequence and organization in question was not protectable

214a

but was later reversed in this regard, the court of appeals
might simply reinstate the jury verdict. In this way, the
court of appeals would have a wider range of alternatives
without having to worry about an expensive retrial.
Counsel were so informed but not the jury.

Each side was given seventeen hours of “air time” for
phase one evidence (not counting openings, closings or
motion practice). In phase one, as stated, the parties
presented evidence on copyrightability, infringement, fair
use, and the equitable defenses. As to the compilable code
for the 37 Java API packages, the jury found that Google
infringed but deadlocked on the follow-on question of
whether the use was protected by fair use. As to the
documentation for the 37 Java API packages, the jury
found no infringement. As to certain small snippets of
code, the jury found only one was infringing, namely, the
nine lines of code called “rangeCheck.” In phase two, the
jury found no patent infringement across the board.
(Those patents, it should be noted, had nothing to do with
the subject addressed by this order.) The entire jury
portion of the trial lasted six weeks.1

This order addresses and resolves the core premise of
the main copyright claims, namely, whether the elements
replicated by Google from the Java system were
protectable by copyright in the first place. No law is
directly on point. This order relies on general principles of

1 After the jury verdict, the Court granted Oracle’s Rule 50 motion for
judgment as a matter of law of infringement of eight decompiled
computer files, which were literally copied. Google admitted to
copying eight computer files by decompiling the bytecode from eight
Java files into source code and then copying the source code. These
files were not proven to have ever been part of Android.

215a

copyright law announced by Congress, the Supreme
Court and the Ninth Circuit.

* * *

Counsel on both sides have supplied excellent briefing
and the Court wishes to recognize their extraordinary
effort and to thank counsel, including those behind the
scenes burning midnight oil in law libraries, for their
assistance.

SUMMARY OF RULING

So long as the specific code used to implement a
method is different, anyone is free under the Copyright
Act to write his or her own code to carry out exactly the
same function or specification of any methods used in the
Java API. It does not matter that the declaration or
method header lines are identical. Under the rules of Java,
they must be identical to declare a method specifying the
same functionality — even when the implementation is
different. When there is only one way to express an idea
or function, then everyone is free to do so and no one can
monopolize that expression. And, while the Android
method and class names could have been different from
the names of their counterparts in Java and still have
worked, copyright protection never extends to names or
short phrases as a matter of law.

It is true that the very same functionality could have
been offered in Android without duplicating the exact
command structure used in Java. This could have been
done by re-arranging the various methods under different
groupings among the various classes and packages (even
if the same names had been used). In this sense, there
were many ways to group the methods yet still duplicate
the same range of functionality.

216a

But the names are more than just names — they are
symbols in a command structure wherein the commands
take the form

java.package.Class.method()

Each command calls into action a pre-assigned
function. The overall name tree, of course, has creative
elements but it is also a precise command structure — a
utilitarian and functional set of symbols, each to carry out
a pre-assigned function. This command structure is a
system or method of operation under Section 102(b) of the
Copyright Act and, therefore, cannot be copyrighted.
Duplication of the command structure is necessary for
interoperability.

STATEMENT OF FINDINGS

1. JAVA AND ANDROID.

Java was developed by Sun, first released in 1996, and
has become one of the world’s most popular programming
languages and platforms.2 The Java platform, through the
use of a virtual machine, enables software developers to
write programs that are able to run on different types of
computer hardware without having to rewrite them for
each different type. Programs that run on the Java
platform are written in the Java language. Java was

2 For purposes of this order, the term “Java” means the Java platform,
sometimes abbreviated to “J2SE,” which includes the Java
development kit (JDK), javac compiler, tools and utilities, runtime
programs, class libraries (API packages), and the Java virtual
machine.

217a

developed to run on desktop computers and enterprise
servers.3

The Java language, like C and C++, is a human-
readable language. Code written in a human-readable
language — “source code” — is not readable by computer
hardware. Only “object code,” which is not human-
readable, can be used by computers. Most object code is
in a binary language, meaning it consists entirely of 0s and
1s. Thus, a computer program has to be converted, that is,
compiled, from source code into object code before it can
run, or “execute.” In the Java system, source code is first
converted into “bytecode,” an intermediate form, before it
is then converted into binary machine code by the Java
virtual machine.

The Java language itself is composed of keywords and
other symbols and a set of pre-written programs to carry
out various commands, such as printing something on the
screen or retrieving the cosine of an angle. The set of pre-
written programs is called the application programming
interface or simply API (also known as class libraries).

In 2008, the Java API had 166 “packages,” broken into
more than six hundred “classes,” all broken into over six

3 Rather than merely vet each and every finding and conclusion
proposed by the parties, this order has navigated its own course
through the evidence and arguments, although many of the proposals
have found their way into this order. Any proposal that has been
expressly agreed to by the opposing side, however, shall be deemed
adopted (to the extent agreed upon) even if not expressly adopted
herein. It is unnecessary for this order to cite the record for all of the
findings herein. In the findings, the phrase “this order finds . . .” is
occasionally used to emphasize a point. The absence of this phrase,
however, does not mean (and should not be construed to mean) that a
statement is not a finding. All declarative fact statements set forth in
the order are factual findings.

218a

thousand “methods.” This is very close to saying the Java
API had 166 “folders” (packages), all including over six
hundred pre-written programs (classes) to carry out a
total of over six thousand subroutines (methods). Google
replicated the exact names and exact functions of virtually
all of these 37 packages but, as stated, took care to use
different code to implement the six thousand-plus
subroutines (methods) and six-hundred-plus classes.

An API is like a library. Each package is like a
bookshelf in the library. Each class is like a book on the
shelf. Each method is like a how-to-do-it chapter in a book.
Go to the right shelf, select the right book, and open it to
the chapter that covers the work you need. As to the 37
packages, the Java and Android libraries are organized in
the same basic way but all of the chapters in Android have
been written with implementations different from Java
but solving the same problems and providing the same
functions. Every method and class is specified to carry out
precise desired functions and, thus, the “declaration” (or
“header”) line of code stating the specifications must be
identical to carry out the given function.4

The accused product is Android, a software platform
developed by Google for mobile devices. In August 2005,
Google acquired Android, Inc., as part of a plan to develop
a smartphone platform. Google decided to use the Java
language for the Android platform. In late 2005, Google
began discussing with Sun the possibility of taking a
license to use and to adapt the entire Java platform for

4 The term “declaration” was used throughout trial to describe the
headers (non-implementing code) for methods and classes. While
“header” is the more technically accurate term, this order will remain
consistent with the trial record and use “declaration” and “header”
interchangeably.

219a

mobile devices. They also discussed a possible co-
development partnership deal with Sun under which Java
technology would become an open-source part of the
Android platform, adapted for mobile devices. Google and
Sun negotiated over several months, but they were unable
to reach a deal.

In light of its inability to reach agreement with Sun,
Google decided to use the Java language to design its own
virtual machine via its own software and to write its own
implementations for the functions in the Java API that
were key to mobile devices. Specifically, Google wrote or
acquired its own source code to implement virtually all the
functions of the 37 API packages in question.
Significantly, all agree that these implementations —
which account for 97 percent of the lines of code in the 37
API packages — are different from the Java
implementations. In its final form, the Android platform
also had its own virtual machine (the so-called Dalvik
virtual machine), built with software code different from
the code for the Java virtual machine.

As to the 37 packages at issue, Google believed Java
application programmers would want to find the same 37
sets of functionalities in the new Android system callable
by the same names as used in Java. Code already written
in the Java language would, to this extent, run on Android
and thus achieve degree of interoperability.

The Android platform was released in 2007. The first
Android phones went on sale the following year. Android-
based mobile devices rapidly grew in popularity and now
comprise a large share of the United States market. The
Android platform is provided free of charge to
smartphone manufacturers. Google receives revenue
through advertisement whenever a consumer uses

220a

particular functions on an Android smartphone. For its
part, Sun and Oracle never successfully developed its own
smartphone platform using Java technology. All agree
that Google was and remains free to use the Java language
itself.

All agree that Google’s virtual machine is free of any
copyright issues. All agree that the six-thousand-plus
method implementations by Google are free of copyright
issues. The copyright issue, rather, is whether Google was
and remains free to replicate the names, organization of
those names, and functionality of 37 out of 166 packages in
the Java API, which has sometimes been referred to in
this litigation as the “structure, sequence and
organization” of the 37 packages.

The Android platform has its own API. It has 168
packages, 37 of which are in contention. Comparing the 37
Java and Android packages side by side, only three
percent of the lines of code are the same. The identical
lines are those lines that specify the names, parameters
and functionality of the methods and classes, lines called
“declarations” or “headers.” In particular, the Android
platform replicated the same package, method and class
names, definitions and parameters of the 37 Java API
packages from the Java 2SE 5.0 platform. This three
percent is the heart of our main copyright issue.

A side-by-side comparison of the 37 packages in the
J2SE 5.0 version of Java versus in the Froyo version of
Android shows that the former has a total of 677 classes
(plus interfaces) and 6508 methods wherein the latter has
616 and 6088, respectively. Twenty-one of the packages
have the same number of classes, interfaces and methods,
although, as stated, the method implementations differ.

221a

The three percent of source code at issue includes
“declarations.” Significantly, the rules of Java dictate the
precise form of certain necessary lines of code called
declarations, whose precise and necessary form explains
why Android and Java must be identical when it comes to
those particular lines of code. That is, since there is only
one way to declare a given method functionality, everyone
using that function must write that specific line of code in
the same way. The same is true for the “calls,” the
commands that invoke the methods. To see why this is so,
this order will now review some of the key rules for Java
programming. This explanation will start at the bottom
and work its way upward.

2. THE JAVA LANGUAGE AND ITS API—IMPORTANT

DETAILS.

Java syntax includes separators (e.g., {, }, ;), operators
(e.g., +, -, *, /, <, >), literal values (e.g., 123, ‘x’, “Foo”),
and keywords (e.g., if, else, while, return). These elements
carry precise predefined meanings. Java syntax also
includes identifiers (e.g., String, java.lang.Object), which
are used to name specific values, fields, methods, and
classes as described below.

These syntax elements are used to form statements,
each statement being a single command executed by the
Java compiler to take some action. Statements are run in
the sequence written. Statements are commands that tell
the computer to do work.

A method is like a subroutine. Once declared, it can be
invoked or “called on” elsewhere in the program. When a
method is called on elsewhere in the program or in an
application, “arguments” are usually passed to the method
as inputs. The output from the method is known as the

222a

“return.” An example is a method that receives two
numbers as inputs and returns the greater of the two as
an output. Another example is a method that receives an
angle expressed in degrees and returns the cosine of that
angle. Methods can be much more complicated. A method,
for example, could receive the month and day and return
the Earth’s declination to the sun for that month and day.

A method consists of the method header and the
method body. A method header contains the name of the
method; the number, order, type and name of the
parameters used by the method; the type of value
returned by the method; the checked exceptions that the
method can throw; and various method modifiers that
provide additional information about the method. At the
trial, witnesses frequently referred to the method header
as the “declaration.” This discrepancy has no impact on
the ultimate analysis. The main point is that this header
line of code introduces the method body and specifies very
precisely its inputs, name and other functionality. Anyone
who wishes to supply a method with the same functionality
must write this line of code in the same way and must do
so no matter how different the implementation may be
from someone else’s implementation.

The method body is a block of code that then
implements the method. If a method is declared to have a
return type, then the method body must have a statement
and the statement must include the expression to be
returned when that line of code is reached. During trial,
many witnesses referred to the method body as the
“implementation.” It is the method body that does the
heavy lifting, namely the actual work of taking the inputs,
crunching them, and returning an answer. The method
body can be short or long. Google came up with its own

223a

implementations for the method bodies and this accounts
for 97 percent of the code for the 37 packages.

Once the method is written, tested and in place, it can
be called on to do its work. A method call is a line of code
somewhere else, such as in a different program that calls
on (or invokes) the method and specifies the arguments to
be passed to the method for crunching. The method would
be called on using the command format
“java.package.Class.method()” where () indicates the
inputs passed to the method. For example, a =
java.package.Class.method() would set the field “a” to
equal the return of the method called. (The words
“java.package.Class.method” would in a real program be
other names like “java.lang.Math.max”;
“java.package.Class.method” is used here simply to
explain the format.)

After a method, the next higher level of syntax is the
class. A class usually includes fields that hold values (such
as pi = 3.141592) and methods that operate on those
values. Classes are a fundamental structural element in
the Java language. A Java program is written as one or
more classes. More than one method can be in a class and
more than one class can be in a package. All code in a Java
program must be placed in a class. A class declaration (or
header) is a line that includes the name of the class and
other information that define the class. The body of the
class includes fields and methods, and other parameters.

Classes can have subclasses that “inherit” the
functionality of the class itself. When a new subclass is
defined, the declaration line uses the word “extends” to
alert the compiler that the fields and methods of the
parent class are inherited automatically into the new

224a

subclass so that only additional fields or methods for the
subclass need to be declared.

The Java language does not allow a class to extend (be
a subclass of) more than one parent class. This
restrictiveness may be problematic when one class needs
to inherit fields and methods from two different non-
related classes. The Java programming language
alleviates this dilemma through the use of “interfaces,”
which refers to something different from the word
“interface” in the API acronym. An interface is similar to
a class. It can also contain methods. It is also in its own
source code file. It can also be inherited by classes. The
distinction is that a class may inherit from more than one
interface whereas, as mentioned, a class can only inherit
from one other class.

For convenience, classes and interfaces are grouped
into “packages” in the same way we all group files into
folders on our computers. There is no inheritance function
within packages; inheritance occurs only at the class and
interface level.

Here is a simple example of source code that illustrates
methods, classes and packages. The italicized comments
on the right are merely explanatory and are not compiled:

package java.lang; // Declares package java.lang

public class Math { // Declares class Math

public static int max
(int x, int y) {

// Declares method max

if (x > y) return x; // Implementation, returns x or

225a

else return y; // Implementation, returns y

} // Closes method

} // Closes class

To invoke this method from another program (or
class), the following call could be included in the program:

int a = java.lang.Math.max (2, 3);

Upon reaching this statement, the computer would go
and find the max method under the Math class in the
java.lang package, input “2” and “3” as arguments, and
then return a “3,” which would then be set as the value of
“a.”

The above example illustrates a point critical to our
first main copyright issue, namely that the declaration line
beginning “public static” is entirely dictated by the rules
of the language. In order to declare a particular
functionality, the language demands that the method
declaration take a particular form. There is no choice in
how to express it. To be specific, that line reads:

public static int max (int x, int y) {

The word “public” means that other programs can call
on it. (If this instead says “private,” then it can only be
accessed by other methods inside the same class.) The
word “static” means that the method can be invoked
without creating an instance of the class. (If this instead is
an instance method, then it would always be invoked with
respect to an object.) The word “int” means that an integer
is returned by the method. (Other alternatives are
“boolean,” “char,” and “String” which respectively mean
“true/false,” “single character,” and “character string.”)

226a

Each of these three parameters is drawn from a short
menu of possibilities, each possibility corresponding to a
very specific functionality. The word “max” is a name and
while any name (other than a reserved word) could have
been used, names themselves cannot be copyrighted, as
will be shown. The phrase “(int x, int y)” identifies the
arguments that must be passed into the method, stating
that they will be in integer form. The “x” and the “y” could
be “a” and “b” or “arg1” and “arg2,” so there is a degree
of creativity in naming the arguments. Again, names
cannot be copyrighted. (Android did not copy all of the
particular argument names used in Java but did so as to
some arguments.) Finally, “{” is the beginning marker
that tells the compiler that the method body is about to
follow. The marker is mandatory. The foregoing
description concerns the rules for the language itself.
Again, each parameter choice other than the names has a
precise functional choice. If someone wants to implement
a particular function, the declaration specification can only
be written in one way.

Part of the declaration of a method can list any
exceptions. When a program violates the semantic
constraints of the Java language, the Java virtual machine
will signal this error to the program as an exception for
special handling. These are specified via “throw”
statements appended at the end of a declaration. Android
and Java are not identical in their throw designations but
they are very similar as to the 37 packages at issue.

A Java program must have at least one class. A typical
program would have more than one method in a class.
Packages are convenient folders to organize the classes.

This brings us to the application programming
interface. When Java was first introduced in 1996, the API

227a

included eight packages of pre-written programs. At least
three of these packages were “core” packages, according
to Sun, fundamental to being able to use the Java language
at all. These packages were java.lang, java.io, and
java.util. As a practical matter, anyone free to use the
language itself (as Oracle concedes all are), must also use
the three core packages in order to make any worthwhile
use of the language. Contrary to Oracle, there is no bright
line between the language and the API.

Each package was broken into classes and those in
turn broken into methods. For example, java.lang (a
package) included Math (a class) which in turn included
max (a method) to return the greater of two inputs, which
was (and remains) callable as java.lang.Math.max with
appropriate arguments (inputs) in the precise form
required (see the example above).

After Java’s introduction in 1996, Sun and the Java
Community Process, a mechanism for developing a
standard specifications for Java classes and methods,
wrote hundreds more programs to carry out various nifty
functions and they were organized into coherent packages
by Sun to become the Java application programming
interface. In 2008, as stated, the Java API had grown from
the original eight to 166 packages with over six hundred
classes with over six thousand methods. All of it was
downloadable from Sun’s (now Oracle’s) website and
usable by anyone, including Java application developers,
upon agreement to certain license restrictions. Java was
particularly useful for writing programs for use via the
Internet and desktop computers.

Although the declarations must be the same to achieve
the same functionality, the names of the methods and the
way in which the methods are grouped do not have to be

228a

the same. Put differently, many different API
organizations could supply the same overall range of
functionality. They would not, however, be interoperable.
Specifically, code written for one API would not run on an
API organized differently, for the name structure itself
dictates the precise form of command to call up any given
method.

To write a fresh program, a programmer names a new
class and adds fields and methods. These methods can call
upon the pre-written functions in the API. Instead of re-
inventing the wheels in the API from scratch,
programmers can call on the tried-and-true pre-packaged
programs in the API. These are ready-made to perform a
vast menu of functions. This is the whole point of the API.
For example, a student in high school can write a program
that can call upon java.lang.Math.max to return the
greater of two numbers, or to find the cosine of an angle,
as one step in a larger homework assignment. Users and
developers can supplement the API with their own
specialized methods and classes.

The foregoing completes the facts necessary to decide
the copyrightability issue but since Oracle has made much
of two small items copied by Google, this order will now
make findings thereon so that there will be proper context
for the court of appeals.

3. RANGECHECK AND THE DE-COMPILED TEST FILES.

Oracle has made much of nine lines of code that crept
into both Android and Java. This circumstance is so
innocuous and overblown by Oracle that the actual facts,
as found herein by the judge, will be set forth below for
the benefit of the court of appeals.

229a

Dr. Joshua Bloch worked at Sun from August 1996
through July 2004, eventually holding the title of
distinguished engineer. While working at Sun, Dr. Bloch
wrote a nine-line code for a function called “rangeCheck,”
which was put into a larger file, “Arrays.java,” which was
part of the class library for the 37 API packages at issue.
The function of rangeCheck was to check the range of a
list of values before sorting the list. This was a very simple
function.

In 2004, Dr. Bloch left Sun to work at Google, where
he came to be the “chief Java architect” and “Java guru.”
Around 2007, Dr. Bloch wrote the files, “Timsort.java” and
“ComparableTimsort,” both of which included the same
rangeCheck function he wrote while at Sun. He wrote the
Timsort files in his own spare time and not as part of any
Google project. He planned to contribute Timsort and
ComparableTimsort back to the Java community by
submitting his code to an open implementation of the Java
platform, OpenJDK, which was controlled by Sun. Dr.
Bloch did, in fact, contribute his Timsort file to OpenJDK
and Sun included Timsort as part of its Java J2SE 5.0
release.

In 2009, Dr. Bloch worked on Google’s Android project
for approximately one year. While working on the Android
team, Dr. Bloch also contributed Timsort and
ComparableTimsort to the Android platform. Thus, the
nine-line rangeCheck function was copied into Google’s
Android. This was how the infringement happened to
occur. When discovered, the rangeCheck lines were taken
out of the then-current version of Android over a year ago.
The rangeCheck block of code appeared in a class
containing 3,179 lines of code. This was an innocent and

230a

inconsequential instance of copying in the context of a
massive number of lines of code.

Since the remainder of this order addresses only the
issue concerning structure, sequence and organization,
and since rangeCheck has nothing to do with that issue,
rangeCheck will not be mentioned again, but the reader
will please remember that it has been readily conceded
that these nine lines of code found their way into an early
version of Android.

Google also copied eight computer files by decompiling
the bytecode from eight Java files back into source code
and then using the source code. These files were merely
used as test files and never found their way into Android
or any handset. These eight files have been treated at trial
as a single unit.

Line by line, Oracle tested all fifteen million lines of
code in Android (and all files used to test along the way
leading up to the final Android) and these minor items
were the only items copied, save and except for the
declarations and calls which, as stated, can only be written
in one way to achieve the specified functionality.

ANALYSIS AND CONCLUSIONS OF LAW

1. NAMES AND SHORT PHRASES.

To start with a clear-cut rule, names, titles and short
phrases are not copyrightable, according to the United
States Copyright Office, whose rule thereon states as
follows:

Copyright law does not protect names, titles, or
short phrases or expressions. Even if a name,
title, or short phrase is novel or distinctive or
lends itself to a play on words, it cannot be

231a

protected by copyright. The Copyright Office
cannot register claims to exclusive rights in brief
combinations of words such as:

• Names of products or services.

• Names of business organizations, or
groups (including the names of
performing groups).

• Pseudonyms of individuals (including pen
or stage names).

• Titles of works.

• Catchwords, catchphrases, mottoes,
slogans, or short advertising expressions.

• Listings of ingredients, as in recipes,
labels, or formulas. When a recipe or
formula is accompanied by an explanation
or directions, the text directions may be
copyrightable, but the recipe or formula
itself remains uncopyrightable.

U.S. Copyright Office, Circular 34; see 37 C.F.R. 202.1(a).

This rule is followed in the Ninth Circuit. Sega Enters.,
Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524 n.7 (9th Cir.
1992). This has relevance to Oracle’s claim of copyright
ownership over names of methods, classes and packages.

2. THE DEVELOPMENT OF LAW ON THE

COPYRIGHTABILITY OF COMPUTER PROGRAMS AND

THEIR STRUCTURE, SEQUENCE AND ORGANIZATION.

Turning now to the more difficult question, this trial
showcases a distinction between copyright protection and
patent protection. It is an important distinction, for
copyright exclusivity lasts 95 years whereas patent

232a

exclusivity lasts twenty years. And, the Patent and
Trademark Office examines applications for anticipation
and obviousness before allowance whereas the Copyright
Office does not. This distinction looms large where, as
here, the vast majority of the code was not copied and the
copyright owner must resort to alleging that the accused
stole the “structure, sequence and organization” of the
work. This phrase — structure, sequence and organization
— does not appear in the Act or its legislative history. It
is a phrase that crept into use to describe a residual
property right where literal copying was absent. A
question then arises whether the copyright holder is more
appropriately asserting an exclusive right to a functional
system, process, or method of operation that belongs in
the realm of patents, not copyrights.

A. Baker v. Seldon.

The general question predates computers. In the
Supreme Court’s decision in Baker v. Seldon, 101 U.S. 99
(1879), the work at issue was a book on a new system of
double-entry bookkeeping. It included blank forms,
consisting of ruled lines, and headings, illustrating the
system. The accused infringer copied the method of
bookkeeping but used different forms. The Supreme
Court framed the issue as follows:

The evidence of the complainant is principally
directed to the object of showing that Baker uses
the same system as that which is explained and
illustrated in Selden’s books. It becomes
important, therefore, to determine whether, in
obtaining the copyright of his books, he secured
the exclusive right to the use of the system or
method of book-keeping which the said books are
intended to illustrate and explain.

233a

Id. at 101. Baker held that using the same accounting
system would not constitute copyright infringement. The
Supreme Court explained that only patent law can give an
exclusive right to a method:

To give to the author of the book an exclusive
property in the art described therein, when no
examination of its novelty has ever been officially
made, would be a surprise and a fraud upon the
public. That is the province of letters-patent, not
of copyright. The claim to an invention or
discovery of an art or manufacture must be
subjected to the examination of the Patent Office
before an exclusive right therein can be obtained;
and it can only be secured by a patent from the
government.

Id. at 102. The Supreme Court went on to explain that
protecting the method under copyright law would
frustrate the very purpose of publication:

The copyright of a work on mathematical science
cannot give to the author an exclusive right to the
methods of operation which he propounds, or to
the diagrams which he employs to explain them,
so as to prevent an engineer from using them
whenever occasion requires. The very object of
publishing a book on science or the useful arts is
to communicate to the world the useful
knowledge which it contains. But this object
would be frustrated if the knowledge could not
be used without incurring the guilt of piracy of
the book.

234a

Id. at 103. Baker also established the “merger” doctrine
for systems and methods intermingled with the texts or
diagrams illustrating them:

And where the art it teaches cannot be used
without employing the methods and diagrams
used to illustrate the book, or such as are similar
to them, such methods and diagrams are to be
considered as necessary incidents to the art, and
given therewith to the public; not given for the
purpose of publication in other works
explanatory of the art, but for the purpose of
practical application.

Ibid. It is true that Baker is aged but it is not passé. To
the contrary, even in our modern era, Baker continues to
be followed in the appellate courts, as will be seen below.

B. The Computer Age and Section 102(b) of the 1976
Act.

Almost a century later, Congress revamped the
Copyright Act in 1976. By then, software for computers
was just emerging as a copyright issue. Congress decided
in the 1976 Act that computer programs would be
copyrightable as “literary works.” See H.R. REP. NO. 94-
1476, at 54 (1976). There was, however, no express
definition of a computer program until an amendment in
1980.

The 1976 Act also codified a Baker-like limitation on
the scope of copyright protection in Section 102(b). See
Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435,
1443 n.11 (9th Cir. 1994). Section 102(b) stated (and still
states):

235a

In no case does copyright protection for an
original work of authorship extend to any idea,
procedure, process, system, method of
operation, concept, principle, or discovery,
regardless of the form in which it is described,
explained, illustrated, or embodied in such work.

The House Report that accompanied Section 102(b) of the
Copyright Act explained:

Copyright does not preclude others from using
the ideas or information revealed by the author’s
work. It pertains to the literary, musical,
graphic, or artistic form in which the author
expressed intellectual concepts. Section 102(b)
makes clear that copyright protection does not
extend to any idea, procedure, process, system,
method of operation, concept, principle, or
discovery, regardless of the form in which it is
described, explained, illustrated, or embodied in
such work.

Some concern has been expressed lest copyright
in computer programs should extend protection
to the methodology or processes adopted by the
programmer, rather than merely to the ‘writing’
expressing his ideas. Section 102(b) is intended,
among other things, to make clear that the
expression adopted by the programmer is the
copyrightable element in a computer program,
and that the actual processes or methods
embodied in the program are not within the
scope of the copyright law.

Section 102(b) in no way enlarges or contracts
the scope of copyright protection under the

236a

present law. Its purpose is to restate, in the
context of the new single Federal system of
copyright, that the basic dichotomy between
expression and idea remains unchanged.

H.R. REP. NO. 94-1476, at 56–57 (1976) (emphasis added).5

Recognizing that computer programs posed novel
copyright issues, Congress established the National
Commission on New Technological Uses of Copyrighted
Works (referred to as CONTU) to recommend the extent
of copyright protection for software. The Commission
consisted of twelve members with Judge Stanley Fuld as
chairman and Professor Melville Nimmer as vice-
chairman.

The Commission recommended that a definition of
“computer program” be added to the copyright statutes.
This definition was adopted in 1980 and remains in the
current statute:

A “computer program” is a set of statements or
instructions to be used directly or indirectly in a
computer in order to bring about a certain result.

17 U.S.C. 101. Moreover, the CONTU report stated that
Section 102(b)’s preclusion of copyright protection for
“procedure, process, system, method of operation” was
reconcilable with the new definition of “computer
program.” The Commission explained the dichotomy

5 The Court has reviewed the entire legislative history. The quoted
material above is the only passage of relevance. This order includes a
summary of the CONTU report but it came after-the-fact and had
little impact on the Act other than to include a definition of “computer
program.”

237a

between copyrightability and non-copyrightability as
follows:

Copyright, therefore, protects the program so
long as it remains fixed in a tangible medium of
expression but does not protect the
electromechanical functioning of a machine. The
way copyright affects games and game-playing is
closely analogous: one may not adopt and
republish or redistribute copyrighted game
rules, but the copyright owner has no power to
prevent others from playing the game.

Thus, one is always free to make a machine
perform any conceivable process (in the absence
of a patent), but one is not free to take another’s
program.

NAT’L COMM’N ON NEW TECHNOLOGICAL USES OF

COPYRIGHTED WORKS, FINAL REPORT 20 (1979)
(emphasis added). The Commission also recognized the
“merger” doctrine, a rule of importance a few pages below
in this order (emphasis added):

The “idea-expression identity” exception
provides that copyrighted language may be
copied without infringing when there is but a
limited number of ways to express a given idea.
This rule is the logical extension of the
fundamental principle that copyright cannot
protect ideas. In the computer context this
means that when specific instructions, even
though previously copyrighted, are the only and
essential means of accomplishing a given task,
their later use by another will not amount to an
infringement [C]opyright protection for

238a

programs does not threaten to block the use of
ideas or program language previously developed
by others when that use is necessary to achieve a
certain result. When other language is available,
programmers are free to read copyrighted
programs and use the ideas embodied in them in
preparing their own works.

Ibid. The Commission realized that differentiating
between the copyrightable form of a program and the
uncopyrightable process was difficult, and expressly
decided to leave the line drawing to federal courts:

[T]he many ways in which programs are now
used and the new applications which advancing
technology will supply may make drawing the
line of demarcation more and more difficult. To
attempt to establish such a line in this report
written in 1978 would be futile. . . . Should a line
need to be drawn to exclude certain
manifestations of programs from copyright, that
line should be drawn on a case-by-case basis by
the institution designed to make fine distinctions
— the federal judiciary.

Id. at 22–23.

Congress prepared no legislative reports discussing
the CONTU comments regarding Section 102(b). See H.R.
REP. NO. 96-1307, at 23–24 (1980). Nevertheless,
Congress followed CONTU’s recommendations by adding
the definition of computer programs to the statute and
amending a section of the Act not relevant to this order.
See Apple Computer, Inc. v. Formula Intern. Inc., 725
F.2d 521, 522–25 (9th Cir. 1984).

239a

Everyone agrees that no one can copy line-for-line
someone else’s copyrighted computer program. When the
line-by-line listings are different, however, some
copyright owners have nonetheless accused others of
stealing the “structure, sequence and organization” of the
copyrighted work. That is the claim here.

C. Decisions Outside the Ninth Circuit.

No court of appeals has addressed the copyrightability
of APIs, much less their structure, sequence and
organization. Nor has any district court. Nevertheless, a
review of the case law regarding non-literal copying of
software provides guidance. Circuit decisions outside the
Ninth Circuit will be considered first.

The Third Circuit led off in Whelan Associates, Inc. v.
Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d Cir.
1986). In that case, the claimant owned a program,
Dentalab, that handled the administrative and
bookkeeping tasks of dental prosthetics businesses. The
accused infringer developed another program, Dentcom,
using a different programming language. The Dentcom
program handled the same tasks as the Dentalab program
and had the following similarities:

The programs were similar in three significant
respects . . . most of the file structures, and the
screen outputs, of the programs were virtually
identical . . . five particularly important
“subroutines” within both programs — order
entry, invoicing, accounts receivable, end of day
procedure, and end of month procedure —
performed almost identically in both programs.

240a

Id. at 1228. On these facts, the district court had found,
after a bench trial, that the accused infringer copied the
claimant’s software program. Id. at 1228–29.

On appeal, the accused infringer argued that the
structure of the claimant’s program was not protectable
under copyright. In rejecting this argument, the court of
appeals created the following framework to deal with non-
literal copying of software:

[T]he line between idea and expression may be
drawn with reference to the end sought to be
achieved by the work in question. In other words,
the purpose or function of a utilitarian work
would be the work’s idea, and everything that is
not necessary to that purpose or function would
be part of the expression of the idea.

Id. at 1236 (emphasis in original). Applying this test,
Whelan found that the structure of Dentalab was
copyrightable because there were many different ways to
structure a program that managed a dental laboratory:

[T]he idea of the Dentalab program was the
efficient management of a dental laboratory
(which presumably has significantly different
requirements from those of other businesses).
Because that idea could be accomplished in a
number of different ways with a number of
different structures, the structure of the
Dentalab program is part of the program’s
expression, not its idea.

Id. at 1236 n.28. The phrase “structure, sequence and
organization” originated in a passage in Whelan
explaining that the opinion used those words
interchangeably and that, although not themselves part of

241a

the Act, they were intended to capture the thought that
“sequence and order could be parts of the expression, not
the idea, of a work.” Id. at 1239, 1248.

To summarize, in affirming the district court’s final
judgment of infringement, Whelan held that the structure
of the Dentalab program was copyrightable because there
were many other ways to perform the same function of
handling the administrative and bookkeeping tasks of
dental prosthetics businesses with different structures
and designs. Id. at 1238. Others were free to come up with
their own version but could not appropriate the Dentalab
structure. This decision plainly seems to have been the
high-water mark of copyright protection for the structure,
sequence and organization of computer programs. It was
also the only appellate decision found by the undersigned
judge that affirmed (or directed) a final judgment of
copyrightability on a structure, sequence and organization
theory.

Perhaps because it was the first appellate decision to
wade into this problem, Whelan has since been criticized
by subsequent treatises, articles, and courts, including our
own court of appeals. See Sega Enters., Ltd. v. Accolade,
Inc., 977 F.2d 1510, 1524–25 (9th Cir. 1992). Instead, most
circuits, including ours, have adopted some variation of an
approach taken later by the Second Circuit. See Apple
Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1445 (9th
Cir. 1994).

In Computer Associates International, Inc. v. Altai,
982 F.2d 693 (2d Cir. 1992), the claimant owned a program
designed to translate the language of another program
into the particular language that the computer’s operating
system would be able to understand. The accused
infringer developed its own program with substantially

242a

similar structure but different source code (using the
same programming language). The Second Circuit
criticized Whelan for taking too narrow a view of the
“idea” of a program. The Second Circuit adopted instead
an “abstract-filtration-comparison” test. The test first
dissected the copyrighted program into its structural
components:

In ascertaining substantial similarity under [the
abstract-filtration-comparison test], a court
would first break down the allegedly infringed
program into its constituent structural parts.
Then, by examining each of these parts for such
things as incorporated ideas, expression that is
necessarily incidental to those ideas, and
elements that are taken from the public domain,
a court would then be able to sift out all non-
protectable material.

Id. at 706.

Then, the test filtered out structures that were not
copyrightable. For this filtration step, the court of appeals
relied on the premise that programmers fashioned
structures “to maximize the program’s speed, efficiency,
as well as simplicity for user operation, while taking into
consideration certain externalities such as the memory
constraints of the computer upon which the program will
be run.” Id. at 698. Because these were “practical
considerations,” the court held that structures based on
these considerations were not copyrightable expressions.

Thus, for the filtration step, the court of appeals
outlined three types of structures that should be
precluded from copyright protection. First, copyright

243a

protection did not extend to structures dictated by
efficiency. A court must inquire

whether the use of this particular set of modules
[is] necessary efficiently to implement that part
of the program’s process being implemented. If
the answer is yes, then the expression
represented by the programmer’s choice of a
specific module or group of modules has merged
with their underlying idea and is unprotected.

Id. at 708 (emphasis in original). Paradoxically, this meant
that non-efficient structures might be copyrightable while
efficient structures may not be. Nevertheless, the Second
Circuit explained its reasoning as follows:

In the context of computer program design, the
concept of efficiency is akin to deriving the most
concise logical proof or formulating the most
succinct mathematical computation. Thus, the
more efficient a set of modules are, the more
closely they approximate the idea or process
embodied in that particular aspect of the
program’s structure

While, hypothetically, there might be a myriad of
ways in which a programmer may effectuate
certain functions within a program — i.e.,
express the idea embodied in a given subroutine
— efficiency concerns may so narrow the
practical range of choice as to make only one or
two forms of expression workable options.

Ibid. Efficiency also encompassed user simplicity and ease
of use. Id. at 708–09.

244a

Second, copyright protection did not extend to
structures dictated by external factors. The court
explained this as follows:

[I]n many instances it is virtually impossible to
write a program to perform particular functions
in a specific computing environment without
employing standard techniques. This is a result
of the fact that a programmer’s freedom of
design choice is often circumscribed by extrinsic
considerations such as (1) the mechanical
specifications of the computer on which a
particular program is intended to run;
(2) compatibility requirements of other
programs with which a program is designed to
operate in conjunction; (3) computer
manufacturers’ design standards; (4) demands of
the industry being serviced; and (5) widely
accepted programming practices within the
computer industry.

Id. at 709–10.

Third, copyright protection did not extend to
structures already found in the public domain. The court
reasoned that materials in the public domain, such as
elements of a computer program that have been freely
accessible, cannot be appropriated. Ibid. Ultimately, in
the case before it, the Second Circuit held that after
removing unprotectable elements using the criteria
discussed above, only a few lists and macros in accused
product were similar to the copied product, and their
impact on the program was not large enough to declare
copyright infringement. Id. at 714–15. The copyright
claim, in short, failed.

245a

The Tenth Circuit elaborated on the abstract-
filtration-comparison test in Gates Rubber Co. v. Bando
Chemical Industries, Ltd., 9 F.3d 823 (10th Cir. 1993).
There, the claimant developed a computer program that
determined the proper rubber belt for a particular
machine by performing complicated calculations involving
numerous variables. The program used published
formulas in conjunction with certain mathematical
constants developed by the claimant to determine belt
size. The Tenth Circuit offered the following description
of a software program’s structure:

The program’s architecture or structure is a
description of how the program operates in
terms of its various functions, which are
performed by discrete modules, and how each of
these modules interact with each other.

Id. at 835. As had the Second Circuit, the Tenth Circuit
held that filtration should eliminate the unprotectable
elements of processes, facts, public domain information,
merger material, scenes a faire material, and other
unprotectable elements suggested by the particular facts
of the program under examination. For Section 102(b)
processes, the court gave the following description:

Returning then to our levels of abstraction
framework, we note that processes can be found
at any level, except perhaps the main purpose
level of abstraction. Most commonly, processes
will be found as part of the system architecture,
as operations within modules, or as algorithms.

Id. at 837. The court described the scenes a faire doctrine
for computer programs as follows:

246a

The scenes a faire doctrine also excludes from
protection those elements of a program that have
been dictated by external factors. In the area of
computer programs these external factors may
include: hardware standards and mechanical
specifications, software standards and
compatibility requirements, Sega Enterprises
Ltd. v. Accolade, Inc., 977 F.2d 1510, 1525–27
(9th Cir. 1993), computer manufacturer design
standards, target industry practices and
demands, and computer industry programming
practices.

* * *

We recognize that the scenes a faire doctrine
may implicate the protectability of interfacing
and that this topic is very sensitive and has the
potential to effect [sic] widely the law of
computer copyright. This appeal does not
require us to determine the scope of the scenes a
faire doctrine as it relates to interfacing and
accordingly we refrain from discussing the issue.

Id. at 838 & n.14 (all citations omitted except Sega). Like
the Second Circuit, the Tenth Circuit also listed many
external considerations — such as compatibility,
computer industry programming practices, and target
industry practices and demands — that would exclude
elements from copyright protection under the scenes a
faire doctrine. Ultimately, the Tenth Circuit remanded
because the district court had failed to make specific
findings that fit this framework.

The First Circuit weighed in with its 1995 decision
Lotus Development Corp. v. Borland International, Inc.,

247a

49 F.3d 807 (1st Cir. 1995). In Lotus, the claimant owned
the Lotus 1-2-3 spreadsheet program that enabled users
to perform accounting functions electronically on a
computer. Users manipulated and controlled the program
via a series of menu commands, such as “Copy,” “Print,”
and “Quit.” In all, Lotus 1-2-3 had 469 commands
arranged into more than 50 menus and submenus. Lotus
1-2-3 also allowed users to write “macros,” whereby a user
could designate a series of command choices (sequence of
menus and submenus) with a single macro keystroke.
Then, to execute that series of commands, the user only
needed to type the single pre-programmed macro
keystroke, causing the program to recall and perform the
designated series of commands automatically. Id. at 809–
10.

The accused infringer Borland developed a competing
spreadsheet program. Borland included the Lotus menu
command hierarchy in its program to make it compatible
with Lotus 1-2-3 so that spreadsheet users who were
already familiar with Lotus 1-2-3 would be able to switch
to the Borland program without having to learn new
commands or rewrite their Lotus macros. In so doing,
Borland did not copy any of Lotus’s underlying source or
object code. (The opinion did not say whether the
programs were written in the same language.)

The district court had ruled that the Lotus 1-2-3 menu
command hierarchy was a copyrightable expression
because there were many ways to construct a spreadsheet
menu tree. Thus, the district court had concluded that the
Lotus developers’ choice and arrangement of command
terms, reflected in the Lotus menu command hierarchy,
constituted copyrightable expression. Id. at 810–11.

248a

The First Circuit, however, held that the Lotus menu
command hierarchy was not copyrightable because it was
a method of operation under Section 102(b). The court
explained:

We think that “method of operation,” as that
term is used in § 102(b), refers to the means by
which a person operates something, whether it
be a car, a food processor, or a computer. Thus a
text describing how to operate something would
not extend copyright protection to the method of
operation itself; other people would be free to
employ that method and to describe it in their
own words. Similarly, if a new method of
operation is used rather than described, other
people would still be free to employ or describe
that method.

Id. at 815.

The court reasoned that because the menu command
hierarchy was essential to make use of the program’s
functional capabilities, it should be properly categorized
as a “method of operation” under Section 102(b). The court
explained:

The Lotus menu command hierarchy does not
merely explain and present Lotus 1-2-3’s
functional capabilities to the user; it also serves
as the method by which the program is operated
and controlled In other words, to offer the
same capabilities as Lotus 1-2-3, Borland did not
have to copy Lotus’s underlying code (and indeed
it did not); to allow users to operate its programs
in substantially the same way, however, Borland
had to copy the Lotus menu command hierarchy.

249a

Thus the Lotus 1-2-3 code is not a
uncopyrightable “method of operation.”

Ibid. Thus, the court reasoned that although Lotus had
made “expressive” choices of what to name the command
terms and how to structure their hierarchy, it was
nevertheless an uncopyrightable “method of operation.”
The Lotus decision was affirmed by an evenly divided
Supreme Court (four to four).

The Federal Circuit had the opportunity to apply
Lotus in an appeal originating from the District of
Massachusetts in Hutchins v. Zoll Medical Corp., 492
F.3d 1377 (Fed. Cir. 2007) (affirming summary judgment
against copyright owner). In Hutchins, the claimant
owned a program for performing CPR and argued that his
copyright covered the “system of logic whereby CPR
instructions are provided by computerized display, and []
the unique logic contained in [his] software program.” Id.
at 1384. The claimant argued that the accused program
was similar because it “perform[ed] the same task in the
same way, that is, by measuring heart activity and
signaling the quantity and timing of CPR compressions to
be performed by the rescuer.” Ibid. The court of appeals
rejected this argument, holding that copyright did not
protect the “technologic method of treating victims by
using CPR and instructing how to use CPR.” Ibid. (citing
Lotus).

D. Decisions in the Supreme Court and in our
Circuit.

Our case is governed by the law in the Ninth Circuit
and, of course, the Supreme Court. The Supreme Court
missed the opportunity to address these issues in Lotus
due to the four-to-four affirmance and has, thus, never

250a

reached the general question. Nonetheless, Baker, which
is still good law, provides guidance and informs how we
should read Section 102(b).

Another Supreme Court decision, Feist Publications,
Inc. v. Rural Telephone Services Co., Inc., 499 U.S. 340
(1991), which dealt primarily with the copyrightability of
purely factual compilations, provided some general
principles. In Feist, the Supreme Court considered the
copyrightability of a telephone directory comprised of
names, addresses, and phone numbers organized in
alphabetical order. The Supreme Court rejected the
notion that copyright law was meant to reward authors for
the “sweat of the brow.” This meant that we should not
yield to the temptation to award copyright protection
merely because a lot of sweat went into the work. The
Supreme Court concluded that protection only extended
to the original components of an author’s work. Id. at 353.
The Supreme Court concluded:

This inevitably means that the copyright in a
factual compilation is thin. Notwithstanding a
valid copyright, a subsequent compiler remains
free to use the facts contained in another’s
publication to aid in preparing a competing work,
so long as the competing work does not feature
the same selection and arrangement.

Id. at 349.

Turning to our own Ninth Circuit, our court of appeals
has recognized that non-literal components of a program,
including the structure, sequence and organization and
user interface, can be protectable under copyright
depending on whether the structure, sequence and
organization in question qualifies as an expression of an

251a

idea rather than an idea itself. Johnson Controls, Inc. v.
Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir.
1989). This decision arrived between the Third Circuit’s
Whelan decision and the Second Circuit’s Computer
Associates decision. Johnson Controls is one of Oracle’s
mainstays herein.

In Johnson Controls, the claimant developed a system
of computer programs to control wastewater treatment
plants. The district court found that the structure,
sequence and organization of the program was expression
and granted a preliminary injunction even though the
accused product did not have similar source or object code.
Id. at 1174. Therefore, the standard of review on appeal
was limited to abuse of discretion and clear error. Our
court of appeals affirmed the preliminary injunction,
stating that the claimant’s program was very
sophisticated and each individual application was
customized to the needs of the purchaser, indicating there
may have been room for individualized expression in the
accomplishment of common functions. Since there was
some discretion and opportunity for creativity in the
structure, the structure of the program was expression
rather than an idea. Id. at 1175. Johnson Controls,
however, did not elaborate on which particular structures
deserved copyright protection.

In Brown Bag Software v. Symantec Corp., 960 F.2d
1465 (9th Cir. 1992), our court of appeals outlined a two-
part test for determining similarity between computer
programs: the extrinsic and intrinsic tests. This pertained
to infringement, not copyrightability. The claimant, who
owned a computer program for outlining, alleged that an
accused infringer copied his program’s non-literal
features. Id. at 1472. The claimant alleged that seventeen

252a

specific features in the programs were similar. On
summary judgment, the district court had found that each
feature was either not protectable or not similar as a
matter of law:

The district court ruled that one group of
features represented a claim of copyright in
“concepts . . . fundamental to a host of computer
programs” such as “the need to access existing
files, edit the work, and print the work.” As such,
these features, which took the form of four
options in the programs’ opening menus, were
held to be unprotectable under copyright.

A second group of features involved “nine
functions listed in the menu bar” and the fact
that “virtually all of the functions of the PC-
Outline program [] can be performed by
Grandview.” The district court declared that
“these functions constitute the idea of the
outlining program” and, furthermore, “[t]he
expression of the ideas inherent in the features
are . . . distinct.” The court also held that “the
similarity of using the main editing screen to
enter and edit data . . . is essential to the very
idea of a computer outlining program.”

The third group of features common to PC-
Outline and Grandview concerned “the use of
pull-down windows.” Regarding these features,
the district court made three separate rulings.
The court first found that “[p]laintiffs may not
claim copyright protection of an . . . expression
that is, if not standard, then commonplace in the
computer software industry” [and] that the

253a

pull-down windows of the two programs look
different.

Id. at 1472–73. Our court of appeals affirmed the district
court’s order without elaborating on the copyrightability
rulings quoted above.

In Atari Games Corp. v. Nintendo of America Inc.,
975 F.2d 832 (Fed. Cir. 1992), the Federal Circuit had
occasion to interpret Ninth Circuit copyright precedent.
In Atari, the claimant Nintendo sued Atari for copying the
Nintendo 10NES program, which prevented the Nintendo
game console from accepting unauthorized game
cartridges. Atari deciphered the 10NES program through
reverse engineering and developed its own program to
unlock the Nintendo game console. Atari’s new program
generated signals indistinguishable from 10NES but was
written in a different programming language. Id. at 835–
36.

Applying our Ninth Circuit precedents, Johnson
Controls and Brown Bag, the Federal Circuit affirmed the
district court’s preliminary injunction for copyright
infringement. The Federal Circuit held that the 10NES
program contained copyrightable expression because it
had organization and sequencing unnecessary to the
unlocking function:

Nintendo’s 10NES program contains more than
an idea or expression necessarily incident to an
idea. Nintendo incorporated within the 10NES
program creative organization and sequencing
unnecessary to the lock and key function.
Nintendo chose arbitrary programming
instructions and arranged them in a unique
sequence to create a purely arbitrary data

254a

stream. This data stream serves as the key to
unlock the NES. Nintendo may protect this
creative element of the 10NES under copyright.

Id. at 840 (emphasis added). The Federal Circuit stated
that there were creative elements in the 10NES program

beyond the literal expression used to effect the
unlocking process. The district court defined the
unprotectable 10NES idea or process as the
generation of a data stream to unlock a console.
This court discerns no clear error in the district
court’s conclusion. The unique arrangement of
computer program expression which generates
that data stream does not merge with the
process so long as alternate expressions are
available. In this case, Nintendo has produced
expert testimony showing a multitude of
different ways to generate a data stream which
unlocks the NES console.

Ibid. (citation omitted). Thus, the Federal Circuit held
that the district court did not err in concluding that the
10NES program contained protectable expression and
affirmed the preliminary injunction.

Next came two decisions holding that Section 102(b)
bars from copyright software interfaces necessary for
interoperability. The Section 102(b) holdings arose in the
context of larger holdings that it had been fair use to copy
software to reverse-engineer it so as to isolate the
unprotectable segments. These two decisions will now be
described in detail.

In Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d
1510 (9th Cir. 1992), the accused infringer had to copy
object code in order to understand the interface

255a

procedures between the Sega game console and a game
cartridge, that is, how the software in the game console
interacted with the software in the game cartridge to
achieve compatibility. Id. at 1515–16. After learning and
documenting these interactions (interface procedures),
the accused infringer wrote its own source code to mimic
those same interface procedures in its own game
cartridges so that its cartridges could run on the Sega
console. Our court of appeals held that the copying of
object code for the purpose of achieving compatibility was
fair use. Notably, in its fair-use analysis, our court of
appeals expressly held that the interface procedures for
compatibility were functional aspects not copyrightable
under Section 102(b): “Accolade copied Sega’s software
solely in order to discover the functional requirements for
compatibility with the Genesis console — aspects of Sega’s
programs that are not protected by copyright. 17 U.S.C.
§ 102(b).” Id. at 1522. The court used the phrase “interface
procedures,” a term describing the interface between
applications, multiple times to describe the functional
aspect of the interaction between software programs and
summarized its analysis of copyrightability as follows:

In summary, the record clearly establishes that
disassembly of the object code in Sega’s video
game cartridges was necessary in order to
understand the functional requirements for
Genesis compatibility. The interface procedures
for the Genesis console are distributed for public
use only in object code form, and are not visible
to the user during operation of the video game
program. Because object code cannot be read by
humans, it must be disassembled, either by hand
or by machine. Disassembly of object code

256a

necessarily entails copying. Those facts dictate
our analysis of the second statutory fair use
factor. If disassembly of copyrighted object code
is per se an unfair use, the owner of the copyright
gains a de facto monopoly over the functional
aspects of his work — aspects that were
expressly denied copyright protection by
Congress. 17 U.S.C. § 102(b). In order to enjoy a
lawful monopoly over the idea or functional
principle underlying a work, the creator of the
work must satisfy the more stringent standards
imposed by the patent laws. Bonito Boats, Inc. v.
Thunder Craft Boats, Inc., 489 U.S. 141, 159–64,
109 S.Ct. 971, 982–84, 103 L.Ed.2d 118 (1989).
Sega does not hold a patent on the Genesis
console.

Sega, 977 F.2d at 1526 (emphasis added). In Sega, the
interface procedure that was required for compatibility
was “20 bytes of initialization code plus the letters S–E–
G–A.” Id. at 1524 n.7. Our court of appeals found that this
interface procedure was functional and therefore not
copyrightable under Section 102(b). The accused infringer
Accolade was free to copy this interface procedure for use
in its own games to ensure compatibility with the Sega
Genesis game console. Our court of appeals distinguished
the Atari decision, where the Federal Circuit had found
that the Nintendo’s 10NES security system was infringed,
because there was only one signal that unlocked the Sega
console, unlike the “multitude of different ways to unlock”
the Nintendo console:

We therefore reject Sega’s belated suggestion
that Accolade’s incorporation of the code which
“unlocks” the Genesis III console is not a fair

257a

use. Our decision on this point is entirely
consistent with Atari v. Nintendo, 975 F.2d 832
(Fed. Cir. 1992). Although Nintendo extended
copyright protection to Nintendo’s 10NES
security system, that system consisted of an
original program which generates an arbitrary
data stream “key” which unlocks the NES
console. Creativity and originality went into the
design of that program. See id. at 840. Moreover,
the federal circuit concluded that there is a
“multitude of different ways to generate a data
stream which unlocks the NES console.” Atari,
975 F.2d at 839. The circumstances are clearly
different here. Sega’s key appears to be
functional. It consists merely of 20 bytes of
initialization code plus the letters S–E–G–A.
There is no showing that there is a multitude of
different ways to unlock the Genesis III console.

Sega, 977 F.2d at 1524 n.7.

This order reads Sega footnote seven (quoted above)
as drawing a line between copying functional aspects
necessary for compatibility (not copyrightable) versus
copying functional aspects unnecessary for compatibility
(possibly copyrightable). Our court of appeals explained
that in Atari, the Nintendo game console’s 10NES
program had had functionality unnecessary to the lock-
and-key function. See also Atari, 975 F.2d at 840. Since the
accused infringer Atari had copied the entire 10NES
program, it also had copied aspects of the 10NES program
unnecessary for compatibility between the console and
game cartridges. This was inapposite to the facts of Sega,
where the accused infringer Accolade’s final product
duplicated only the aspect of Sega’s program necessary

258a

for compatibility between the console and game
cartridges. Thus, the holding of our court of appeals was
that the aspect of a program necessary for compatibility
was unprotectable, specifically invoking Section 102(b),
but copyrightable expression could still exist for aspects
unnecessary for compatibility.

The Sega decision and its compatibility reasoning was
followed in a subsequent reverse-engineering decision by
our court of appeals, Sony Computer Entertainment, Inc.,
v. Connectix Corporation, 203 F.3d 596 (9th Cir. 2000).
The facts were somewhat different in Sony. There, the
accused infringer Connectix did not create its own games
for Sony’s Playstation game console; instead, the accused
infringer created an emulated environment that
duplicated the interface procedures of Sony’s console so
that games written for Sony’s console could be played on
a desktop computer running the emulator. In order to do
this, the accused infringer copied object code for the Sony
Playstation’s operating software, its BIOS program, in
order to discover signals sent between the BIOS and the
rest of the game console. Id. at 600. After uncovering these
signals (again, application interfaces), the accused
infringer wrote its own source code to duplicate these
interfaces in order to create its emulator for the desktop
computer. Thus, games written for the Playstation console
were playable on Connectix’s emulator for the desktop
computer. Citing Section 102(b) and Sega, our court of
appeals stated that the Playstation BIOS contained
“unprotected functional elements,” and concluded that the
accused infringer’s intermediate step of copying object
code was fair use because it was done for the “purpose of

259a

gaining access to the unprotected elements of Sony’s
software.” Id. at 602–03.6

* * *

With apology for its length, the above summary of the
development of the law reveals a trajectory in which
enthusiasm for protection of “structure, sequence and
organization” peaked in the 1980s, most notably in the
Third Circuit’s Whelan decision. That phrase has not been
re-used by the Ninth Circuit since Johnson Controls in
1989, a decision affirming preliminary injunction. Since
then, the trend of the copyright decisions has been more
cautious. This trend has been driven by fidelity to Section
102(b) and recognition of the danger of conferring a
monopoly by copyright over what Congress expressly
warned should be conferred only by patent. This is not to
say that infringement of the structure, sequence and
organization is a dead letter. To the contrary, it is not a
dead letter. It is to say that the Whelan approach has
given way to the Computer Associates approach, including
in our own circuit. See Sega Enters., Ltd. v. Accolade, Inc.,
977 F.2d 1510, 1525 (9th Cir. 1992); Apple Computer, Inc.
v. Microsoft Corp., 35 F.3d 1435, 1445 (9th Cir. 1994).

In this connection, since the CONTU report was
issued in 1980, the number of software patents in force in
the United States has dramatically increased from barely
a thousand in 1980 to hundreds of thousands today. See

6 Sega and Sony are not the only Ninth Circuit decisions placing a
premium on functionality as indicating uncopyrightability. Other such
decisions were surveyed in the summary earlier in this order. See also
Triad Sys. Corp. v. Southeastern Exp. Co., 64 F.3d 1330, 1336 (9th
Cir. 1995); Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435,
1444 (9th Cir. 1994); Apple Computer, Inc. v. Formula Intern., Inc.,
725 F.2d 521, 525 (9th Cir. 1984).

260a

Iain Cockburn, Patents, Tickets and the Financing of
Early-Stage Firms: Evidence from the Software
Industry, 18 JOURNAL OF ECONOMICS & MANAGEMENT

STRATEGY 729–73 (2009). This has caused at least one
noted commentator to observe:

As software patents gain increasingly broad
protection, whatever reasons there once were for
broad copyright protection of computer
programs disappear. Much of what has been
considered the copyrightable “structure,
sequence and organization” of a computer
program will become a mere incident to the
patentable idea of the program or of one of its
potentially patentable subroutines.

Mark Lemley, Convergence in the Law of Software
Copyright?, 10 HIGH TECHNOLOGY LAW JOURNAL 1, 26–
27 (1995). Both Oracle and Sun have applied for and
received patents that claim aspects of the Java API. See,
e.g., U.S. Patents 6,598,093 and 7,006,855. (These were not
asserted at trial.)7

7 The issue has been debated in the journals. For example, Professor
Pamela Samuelson has argued that Section 102(b) codified the Baker
exclusion of procedures, processes, systems, and methods of
operation for computer programs as well as the pre-Baker exclusion
of high-level abstractions such as ideas, concepts, and principles.
Pamela Samuelson, Why Copyright Law Excludes Systems and
Processes from the Scope of Protection, 85 TEX. L. REV. 1921 (2007).
In contrast, Professor David Nimmer (the son of Professor Melville
Nimmer) has argued that Section 102(b) should not deny copyright
protection to “the expression” of a work even if that work happens to
consist of an idea, procedure or process. 1-2 NIMMER ON COPYRIGHT
§ 2.03[D] (internal citations omitted). Similarly, Professor Jane
Ginsburg has argued that the Section 102(b) terms “process,”
“system,” and “method of operation” should not be understood

261a

* * *

In view of the foregoing, this order concludes that our
immediate case is controlled by these principles of
copyright law:

• Under the merger doctrine, when there is
only one (or only a few) ways to express
something, then no one can claim
ownership of such expression by
copyright.

• Under the names doctrine, names and
short phrases are not copyrightable.

• Under Section 102(b), copyright
protection never extends to any idea,
procedure, process, system, method of
operation or concept regardless of its
form. Functional elements essential for
interoperability are not copyrightable.

• Under Feist, we should not yield to the
temptation to find copyrightability
merely to reward an investment made in
a body of intellectual property.

APPLICATION OF CONTROLLING
LAW TO CONTROLLING FACTS

All agree that everyone was and remains free to
program in the Java language itself. All agree that Google
was free to use the Java language to write its own API.

literally for computer programs. Jane Ginsburg, Four Reasons and a
Paradox: The Manifest Superiority of Copyright Over Sui Generis
Protection of Computer Software, 94 COLUM. L. REV. 2559, 2569–70
(1994).

262a

While Google took care to provide fresh line-by-line
implementations (the 97 percent), it generally replicated
the overall name organization and functionality of 37
packages in the Java API (the three percent). The main
issue addressed herein is whether this violated the
Copyright Act and more fundamentally whether the
replicated elements were copyrightable in the first place.

This leads to the first holding central to this order and
it concerns the method level. The reader will remember
that a method is like a subroutine and over six thousand
are in play in this proceeding. As long as the specific code
written to implement a method is different, anyone is free
under the Copyright Act to write his or her own method
to carry out exactly the same function or specification of
any and all methods used in the Java API. Contrary to
Oracle, copyright law does not confer ownership over any
and all ways to implement a function or specification, no
matter how creative the copyrighted implementation or
specification may be. The Act confers ownership only over
the specific way in which the author wrote out his version.
Others are free to write their own implementation to
accomplish the identical function, for, importantly, ideas,
concepts and functions cannot be monopolized by
copyright.

To return to our example, one method in the Java API
carries out the function of comparing two numbers and
returning the greater. Google — and everyone else in the
world — was and remains free to write its own code to
carry out the identical function so long as the
implementing code in the method body is different from
the copyrighted implementation. This is a simple example,
but even if a method resembles higher mathematics,
everyone is still free to try their hand at writing a different

263a

implementation, meaning that they are free to use the
same inputs to derive the same outputs (while throwing
the same exceptions) so long as the implementation in
between is their own. The House Report, quoted above,
stated in 1976 that “the actual processes or methods
embodied in the program are not within the scope of the
copyright law.” H.R. REP. NO. 94-1476, at 57 (1976).

Much of Oracle’s evidence at trial went to show that
the design of methods in an API was a creative endeavor.
Of course, that is true. Inventing a new method to deliver
a new output can be creative, even inventive, including the
choices of inputs needed and outputs returned. The same
is true for classes. But such inventions — at the concept
and functionality level — are protectable only under the
Patent Act. The Patent and Trademark Office examines
such inventions for validity and if the patent is allowed, it
lasts for twenty years. Based on a single implementation,
Oracle would bypass this entire patent scheme and claim
ownership over any and all ways to carry out methods for
95 years — without any vetting by the Copyright Office of
the type required for patents. This order holds that, under
the Copyright Act, no matter how creative or imaginative
a Java method specification may be, the entire world is
entitled to use the same method specification (inputs,
outputs, parameters) so long as the line-by-line
implementations are different. To repeat the Second
Circuit’s phrasing, “there might be a myriad of ways in
which a programmer may . . . express the idea embodied
in a given subroutine.” Computer Associates, 982 F.2d at
708. The method specification is the idea. The method

264a

implementation is the expression. No one may monopolize
the idea.8

To carry out any given function, the method
specification as set forth in the declaration must be
identical under the Java rules (save only for the choices of
argument names). Any other declaration would carry out
some other function. The declaration requires precision.
Significantly, when there is only one way to write
something, the merger doctrine bars anyone from
claiming exclusive copyright ownership of that expression.
Therefore, there can be no copyright violation in using the
identical declarations. Nor can there be any copyright
violation due to the name given to the method (or to the
arguments), for under the law, names and short phrases
cannot be copyrighted.

In sum, Google and the public were and remain free to
write their own implementations to carry out exactly the
same functions of all methods in question, using exactly
the same method specifications and names. Therefore, at
the method level — the level where the heavy lifting is
done — Google has violated no copyright, it being
undisputed that Google’s implementations are different.

As for classes, the rules of the language likewise insist
on giving names to classes and the rules insist on strict
syntax and punctuation in the lines of code that declare a
class. As with methods, for any desired functionality, the

8 Each method has a singular purpose or function, and so, the basic
function or purpose of a method will be an unprotectable process.
Gates Rubber Co. v. Bando Chemical Industries, Ltd., 9 F.3d 823, 836
(10th Cir. 1993); see Apple Computer, Inc. v. Formula Intern. Inc.,
725 F.2d 521, 525 (9th Cir. 1984) (holding that while a particular set of
instructions is copyrightable, the underlying computer process is not).

265a

declaration line will always read the same (otherwise the
functionality would be different) — save only for the
name, which cannot be claimed by copyright. Therefore,
under the law, the declaration line cannot be protected by
copyright. This analysis is parallel to the analysis for
methods. This now accounts for virtually all of the three
percent of similar code.

* * *

Even so, the second major copyright question is
whether Google was and remains free to group its
methods in the same way as in Java, that is, to organize its
Android methods under the same class and package
scheme as in Java. For example, the Math classes in both
systems have a method that returns a cosine, another
method that returns the larger of two numbers, and yet
another method that returns logarithmic values, and so
on. As Oracle notes, the rules of Java did not insist that
these methods be grouped together in any particular
class. Google could have placed its trigonometric function
(or any other function) under a class other than Math
class. Oracle is entirely correct that the rules of the Java
language did not require that the same grouping pattern
(or even that they be grouped at all, for each method could
have been placed in a stand-alone class).9

9 As to the groupings of methods within a class, Google invokes the
scenes a faire doctrine. That is, Google contends that the groupings
would be so expected and customary as to be permissible under the
scenes a faire doctrine. For example, the methods included under the
Math class are typical of what one would expect to see in a group of
math methods. Just as one would expect certain items in the alcove
for nuts, bolts and screws in a hardware store, one would expect the
methods of the math class to be in, say, a typical math class. At trial,
however, neither side presented evidence from which we can now say

266a

Oracle’s best argument, therefore, is that while no
single name is copyrightable, Java’s overall system of
organized names — covering 37 packages, with over six
hundred classes, with over six thousand methods — is a
“taxonomy” and, therefore, copyrightable under
American Dental Association v. Delta Dental Plans
Association, 126 F.3d 977 (7th Cir. 1997). There was
nothing in the rules of the Java language that required
that Google replicate the same groupings even if Google
was free to replicate the same functionality.10

The main answer to this argument is that while the
overall scheme of file name organization resembles a
taxonomy, it is also a command structure for a system or
method of operation of the application programming
interface. The commands are (and must be) in the form

java.package.Class.method()

that the same is true for all the other hundreds of classes at issue.
Therefore, it is impossible to say on this record that all of the classes
and their contents are typical of such classes and, on this record, this
order rejects Google’s global argument based on scenes a faire.
10 This is a good place to point out that while the groupings appear to
be the same, when we drill down into the detail code listings, we see
that the actual sequences of methods in the listings are different. That
is, the sequence of methods in the class Math in Android is different
from the sequence in the same class in Java, although all of the
methods in the Java version can be found somewhere in the Android
version, at least as shown in their respective listings (TX 47.101, TX
623.101). The Court has not compared all six-hundred-plus classes.
Nor has any witness or counsel so far on the record. Oracle does not,
however, contend that the actual sequences would track method-for-
method and it has not so proven. This detailed observation, however,
does not change the fact that all of the methods in the Java version
can be found somewhere in the Android version, classified under the
same classes.

267a

and each calls into action a pre-assigned function.11

To repeat, Section 102(b) states that “in no case does
copyright protection for an original work of authorship
extend to any idea, procedure, process, system, method of
operation . . . regardless of the form” That a system
or method of operation has thousands of commands
arranged in a creative taxonomy does not change its
character as a method of operation. Yes, it is creative. Yes,
it is original. Yes, it resembles a taxonomy. But it is
nevertheless a command structure, a system or method of
operation — a long hierarchy of over six thousand
commands to carry out pre-assigned functions. For that
reason, it cannot receive copyright protection — patent
protection perhaps — but not copyright protection.

* * *

Interoperability sheds further light on the character of
the command structure as a system or method of
operation. Surely, millions of lines of code had been
written in Java before Android arrived. These programs
necessarily used the java.package.Class.method()
command format. These programs called on all or some of
the specific 37 packages at issue and necessarily used the
command structure of names at issue. Such code was
owned by the developers themselves, not by Oracle. In
order for at least some of this code to run on Android,
Google was required to provide the same
java.package.Class.method() command system using the
same names with the same “taxonomy” and with the
same functional specifications. Google replicated what
was necessary to achieve a degree of interoperability —

11 The parentheses indicate that inputs/arguments may be included in
the command.

268a

but no more, taking care, as said before, to provide its own
implementations.

That interoperability is at the heart of the command
structure is illustrated by Oracle’s preoccupation with
what it calls “fragmentation,” meaning the problem of
having imperfect interoperability among platforms. When
this occurs, Java-based applications may not run on the
incompatible platforms. For example, Java-based code
using the replicated parts of the 37 API packages will run
on Android but will not if a 38th package is needed. Such
imperfect interoperability leads to a “fragmentation” — a
Balkanization — of platforms, a circumstance which Sun
and Oracle have tried to curb via their licensing programs.
In this litigation, Oracle has made much of this problem,
at times almost leaving the impression that if only Google
had replicated all 166 Java API packages, Oracle would
not have sued. While fragmentation is a legitimate
business consideration, it begs the question whether or
not a license was required in the first place to replicate
some or all of the command structure. (This is especially
so inasmuch as Android has not carried the Java
trademark, and Google has not held out Android as fully
compatible.) The immediate point is this: fragmentation,
imperfect interoperability, and Oracle’s angst over it
illustrate the character of the command structure as a
functional system or method of operation.

In this regard, the Ninth Circuit decisions in Sega and
Sony, although not on all fours, are close analogies. Under
these two decisions, interface procedures required for
interoperability were deemed “functional requirements
for compatibility” and were not copyrightable under
Section 102(b). Both decisions held that interface
procedures that were necessary to duplicate in order to

269a

achieve interoperability were functional aspects not
copyrightable under Section 102(b). Here, the command
structure for the 37 packages (including inheritances and
exception throws), when replicated, at least allows
interoperability of code using the replicated commands.
To the extent of the 37 packages — which, after all, is the
extent of Oracle’s copyright claim — Sega and Sony are
analogous. Put differently, if someone could duplicate the
interfaces of the Sony BIOS in order to run the
Playstation games on desktops (taking care to write its
own implementations), then Google was free to duplicate
the command structure for the 37 packages in Android in
order to accommodate third-party source code relying on
the 37 packages (taking care to write its own
implementations). Contrary to Oracle, “full compatibility”
is not relevant to the Section 102(b) analysis. In Sony, the
accused product implemented only 137 of the Playstation
BIOS’s 242 functions because those were the only
functions invoked by the games tested. Connectix’s
Opening Appellate Brief at 18, available at 1999 WL
33623860, (9th Cir. May 27, 1999). Our court of appeals
held that the accused product “itself infringe[d] no
copyright.” Sony, 203 F.3d at 608 n.11. This parallels
Google’s decision to implement some but not all of the Java
API packages in Android.

* * *

This explains why American Dental Association v.
Delta Dental Plans Association, 126 F.3d 977 (7th Cir.
1997), is not controlling. Assuming arguendo that a
taxonomy is protectable by copyright in our circuit, see
Practice Mgmt. Info. Corp. v. Am. Med. Ass’n, 121 F.3d
516 (9th Cir. 1997), the taxonomy in ADA had nothing to
do with computer programs. It was not a system of

270a

commands, much less a system of commands for a
computer language. The taxonomy there subdivided the
universe of all dental procedures into an outline of
numbered categories with English-language descriptions
created by the ADA. This was then to be used by
insurance companies and dentists to facilitate billings. By
contrast, here the taxonomy is composed entirely of a
system of commands to carry out specified computer
functions. For a similar reason, Oracle’s analogy to
stealing the plot and character from a movie is inapt, for
movies involve no “system” or “method of operation” —
scripts are entirely creative.

In ADA, Judge Frank Easterbrook (writing for the
panel) suggested that a “system” under Section 102(b) had
to come with “instructions for use.” 126 F.3d at 980.
Because the taxonomy there at issue had no instructions
for use, among other reasons, it was held not to be a
system. By contrast, the API at issue here does come with
instructions for use, namely, the documentation and
embedded comments that were much litigated at trial.
They describe every package, class and method, what
inputs they need, and what outputs they return — the
classic form of instructions for use.

In our circuit, the structure, sequence and
organization of a computer program may (or may not)
qualify as a protectable element depending on the
“particular facts of each case” and always subject to
exclusion of unprotectable elements. Johnson Controls v.
Phoenix Control Sys., 886 F.2d 1173, 1175 (9th Cir. 1989).
Contrary to Oracle, Johnson Controls did not hold that all
structure, sequence and organization in all computer
programs are within the protection of a copyright. On a
motion for preliminary injunction, the district court found

271a

that the structure, sequence and organization of the
copyrighted program, on the facts there found, deserved
copyright protection. (The structure, sequence and
organization features found protectable were not
described in the appellate decision.) On an appeal from the
preliminary injunction, our court of appeals merely said
no clear error had occurred. Again, the appellate opinion
stated that the extent to which the structure, sequence
and organization was protectable depended on the facts
and circumstances of each case. The circumstances there
are not the circumstances here.

In closing, it is important to step back and take in the
breadth of Oracle’s claim. Of the 166 Java packages, 129
were not violated in any way. Of the 37 accused, 97 percent
of the Android lines were new from Google and the
remaining three percent were freely replicable under the
merger and names doctrines. Oracle must resort,
therefore, to claiming that it owns, by copyright, the
exclusive right to any and all possible implementations of
the taxonomy-like command structure for the 166
packages and/or any subpart thereof — even though it
copyrighted only one implementation. To accept Oracle’s
claim would be to allow anyone to copyright one version of
code to carry out a system of commands and thereby bar
all others from writing their own different versions to
carry out all or part of the same commands. No holding
has ever endorsed such a sweeping proposition.

CONCLUSION

This order does not hold that Java API packages are
free for all to use without license. It does not hold that the
structure, sequence and organization of all computer
programs may be stolen. Rather, it holds on the specific
facts of this case, the particular elements replicated by

272a

Google were free for all to use under the Copyright Act.
Therefore, Oracle’s claim based on Google’s copying of the
37 API packages, including their structure, sequence and
organization is DISMISSED. To the extent stated herein,
Google’s Rule 50 motions regarding copyrightability are
GRANTED (Dkt. Nos. 984, 1007). Google’s motion for a new
trial on copyright infringement is DENIED AS MOOT (Dkt.
No. 1105).

IT IS SO ORDERED.

Dated: May 31, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

273a

Appendix H

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

FINDINGS OF FACT AND CONCLUSIONS OF LAW
ON EQUITABLE DEFENSES

This order addresses Google’s equitable defenses,
(1) laches; (2) equitable estoppel; (3) implied license; and
(4) waiver, for both copyright and patent infringement. In
light of the Court’s accompanying ruling that the
structure, sequence and organization of the Java API
packages are not copyrightable, and the jury’s verdict of
patent non-infringement, Google’s equitable defenses are
moot, at least pending appeal. Nonetheless, even in the
event of a remand on one or more other liability issues, it
is so unlikely that the remand could affect the calculus of
the defenses of implied license and waiver that this order
will go ahead and clear those away, leaving open the
defenses of laches and equitable estoppel.

1. IMPLIED LICENSE.

An implied license requires a finding of an affirmative
grant of consent or permission. Though rare, consent can
be inferred from a course of conduct between parties.
Wang Labs., Inc. v. Mitsubishi Elecs., 103 F.3d 1571,

274a

1581–82 (Fed. Cir. 1997). As with the other equitable
defenses, there must be a nexus between the alleged
conduct giving rise to the implied license and the
infringing action. Ibid. In the context of both copyrights
and patents, circumstances giving rise to an implied
license are exceedingly narrow. See Id. at 1251–52; A&M
Records, Inc. v. Napster, Inc., 239 F.3d 1004, 1026 (9th
Cir. 2001).

The requisite nexus between Oracle and/or Sun’s
conduct and Google’s infringement has not been proved.
Google agrees that Oracle and/or Sun did not specifically
and affirmatively grant permission to Google to use the
structure, sequence and arrangement of the 37 API
packages (Dkt. No. 1079 ¶ 183). The same is true for the
asserted patents. This leaves open only the “course of
conduct” theory, which also fails.

Google’s evidence of implied consent at most
establishes Oracle’s inaction. Google’s equitable defenses
rest primarily on a November 2007 blog post by Sun’s
CEO congratulating Google on the release of Android, as
well as similar positive statements by Sun executives
thereafter. Congratulatory statements do not fall under
the narrow circumstances proscribed by our court of
appeals. Even if Google understood Oracle and/or Sun’s
conduct to condone use of the Java API packages, the
“course of conduct” must be assessed for an affirmative
grant of such consent. None is apparent from the evidence
Google presented here. Google has supplied no relevant
authority that would support a finding in its favor on these
facts. Furthermore, from the present record it would be
impossible to determine the scope of any implied license.
Under Google’s theory, infringement is excused as to any
aspect of Android because the whole of the platform was

275a

generally applauded by Sun. Such a finding is not
supported by precedent. The parties negotiated for a real
license but the talks collapsed and no license was given. It
would be most bizarre to somehow find an implied license
in this scenario.

2. WAIVER.

To prevail on a waiver defense, Google must show by a
preponderance of the evidence that Oracle and/or Sun,
with full knowledge of the material facts, intentionally
relinquished its rights to enforce the rights it now asserts.
Waiver of a known right must be “manifested by some
overt act indicating an intention to abandon that right.”
Micro Star v. Formgen, Inc., 154 F.3d 1107, 1114 (9th Cir.
1998). The parties agree that inaction alone is insufficient
to show waiver.

This order finds Google has not met its burden of
proving an overt act by Oracle and/or Sun indicating its
intention to abandon all rights to the Java platform, or to
the specific technology at issue here. Google’s best
evidence on the issue of waiver is Jonathan Schwartz’s
testimony that Sun made a decision to not sue Google
following the release of Android. This decision, however,
is not an overt act. So long as it did not induce reliance by
Google, Sun was free to change its mind and assert its
rights within the statute of limitations period. The several
congratulatory communications do not, as discussed
above, constitute a clear indication that Oracle and/or Sun
intended to relinquish its rights as to the entirety of its
platform. Google concedes Oracle continued and continues
to assert its rights as to other aspects of the platform such
as the language specification and code (Dkt. No. 1079
¶¶ 58–60). Save for a total relinquishment, Google has to
prove an overt act by Oracle and/or Sun relaying its intent

276a

to abandon rights as to the specific elements asserted
here. The evidence is devoid of any such showing.

3. EQUITABLE ESTOPPEL AND LACHES.

There remains a possibility that these two equitable
defenses can be revived on remand. Both these defenses
are based, in part, on what intellectual property rights Sun
and Oracle had in Java, and more specifically, rights to
preventing others from using the structure, sequence and
organization of the API packages. In the event of a
remand, this could affect the calculus involving the
defenses and the judge will reserve on deciding these
defenses. If that occurs, those issues will likely be decided
based on the existing trial record.

CONCLUSION

For the reasons stated, Google’s defenses of implied
license and waiver are rejected on the merits and Google’s
defenses of equitable estoppel and laches are denied as
moot.

IT IS SO ORDERED.

Dated: May 31, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

277a

Appendix I

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

FINAL JUDGMENT

The pleadings in this action asserted the following:
Oracle asserted infringement of seven patents, U.S.
Patent Nos. 6,125,447; 6,192,476; 5,966,702; 7,426,720;
RE38,104; 6,910,205; and 6,061,520. Oracle further
asserted infringement of its copyrights in the code,
documentation, specifications, libraries, and other
materials that comprise the Java platform. Oracle alleged
that the infringed elements included Java method and
class names, definitions, organization, and parameters;
the structure, organization and content of Java class
libraries; and the content and organization of Java’s
documentation. In turn, Google asserted declaratory
judgments of non-infringement and invalidity, and
equitable defenses. Before trial, Oracle dismissed with
prejudice all claims for relief based on the ’447, ’476, ’702,
’720, and ’205 patents. During trial, Google abandoned
claims for relief for invalidity declarations as to the ’104
and ’520 patents.

278a

Based upon the verdicts by the jury and orders
entered by the Court, it is now ORDERED,
ADJUDGED, AND DECREED that:

With respect to Oracle’s claim for relief and Google’s
counterclaim for declaratory judgment of non-
infringement for the ’520 and ’104 patents, judgment is
entered for Google and against Oracle. With respect to
Google’s counterclaims for declaratory judgment of
invalidity for the ’520 and ’104 patents, judgment is
entered for Oracle and against Google, such counterclaims
having been abandoned during trial. With respect to the
five remaining patents, claims for relief by Oracle were
completely dismissed with prejudice by Oracle (and may
not be resurrected except as indicated in the orders of
May 3, 2011, and March 2, 2012, with respect to new
products). In this regard, it is the intent of this judgment
and order that general principles of merger of claims into
the judgment and res judicata shall be applicable.

With respect to Oracle’s claim for relief for copyright
infringement, judgment is entered in favor of Google and
against Oracle except as follows: the rangeCheck code in
TimSort.java and ComparableTimSort.java, and the eight
decompiled files (seven “Impl.java” files and one “ACL”
file), as to which judgment for Oracle and against Google
is entered in the amount of zero dollars (as per the parties’
stipulation).

With respect to Google’s equitable defenses, judgment
is entered for Oracle and against Google as to waiver and
implied license. As to equitable estoppel and laches, no
ruling need be made due to mootness.

IT IS SO ORDERED.

Dated: June 20, 2012.

279a

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

280a

Appendix J

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER DENYING MOTION FOR JUDGMENT AS
A MATTER OF LAW AND NEW TRIAL

Plaintiff Oracle America, Inc. moves for judgment as a
matter of law under Rule 50(b), or in the alternative, for a
new trial under Rule 59, on issues of patent and copyright
infringement. Oracle’s arguments are repetitive of its
Rule 50(a) motions and rely on the same evidence. For
reasons stated in prior orders (Dkt. Nos. 1119, 1165, 1201,
1202, 1203, 1211), Oracle’s motion is DENIED. The hearing
scheduled for July 26 is VACATED.

IT IS SO ORDERED.

Dated: July 13, 2012.

/s/

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

281a

Appendix K

IN THE UNITED STATES DISTRICT COURT FOR
THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA,
INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

No. C 10-03561
WHA

ORDER DENYING MOTION FOR JUDGMENT AS
A MATTER OF LAW AND NEW TRIAL

Defendant Google Inc. moves for judgment as a matter
of law under Rule 50(b), or in the alternative, for a new
trial under Rule 59, on copyright issues regarding the
rangeCheck function and decompiled files. Google’s
arguments are repetitive of its Rule 50(a) motion and rely
on the same evidence. For reasons stated in the prior
orders (Dkt. Nos. 1119, 1123), Google’s motion is DENIED.

The Court takes this opportunity to state that it will
take no further action regarding the subject of payments
by the litigants to commentators and journalists and
reassures both sides that no commentary has in any way
influenced the Court’s orders and ruling herein save and
except for any treatise or article expressly cited in an
order or ruling.

IT IS SO ORDERED.

Dated: September 4, 2012.

/s/

282a

WILLIAM ALSUP, UNITED STATES DISTRICT JUDGE

283a

Appendix L

United States Court of Appeals
for the Federal Circuit

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE LLC,

Defendant-Cross-Appellant.

2017-1118, 2017-1202

Appeals from the United States District Court for the
Northern District of California in No. 3:10-cv-03561-

WHA, Judge William H. Alsup.

ON PETITION FOR REHEARING EN BANC

* * *

Before: PROST, Chief Judge, NEWMAN, PLA-
GER*, LOURIE, DYK, MOORE, O’MALLEY, REYNA,
WALLACH, TARANTO, CHEN, HUGHES, and
STOLL, Circuit Judges.

PER CURIAM.

ORDER

284a

The petition was first referred as a petition for
rehearing to the panel that heard the appeal, and
thereafter the petition for rehearing en banc was referred
to the circuit judges who are in regular active service.

Upon consideration thereof,

IT IS ORDERED THAT:

The petition for panel rehearing is denied.

The petition for rehearing en banc is denied.

The mandate of the court will issue on September 4,
2018.

FOR THE COURT
August 28, 2018 /s/Peter R. Marksteiner
 Date Peter R. Marksteiner

Clerk of Court

285a

Appendix M

17 U.S.C. § 101

Definitions

Except as otherwise provided in this title, as used in
this title, the following terms and their variant forms mean
the following:

An “anonymous work” is a work on the copies or
phonorecords of which no natural person is identified as
author.

An “architectural work” is the design of a building as
embodied in any tangible medium of expression, including
a building, architectural plans, or drawings. The work
includes the overall form as well as the arrangement and
composition of spaces and elements in the design, but does
not include individual standard features.

“Audiovisual works” are works that consist of a series
of related images which are intrinsically intended to be
shown by the use of machines, or devices such as
projectors, viewers, or electronic equipment, together
with accompanying sounds, if any, regardless of the
nature of the material objects, such as films or tapes, in
which the works are embodied.

The “Berne Convention” is the Convention for the
Protection of Literary and Artistic Works, signed at
Berne, Switzerland, on September 9, 1886, and all acts,
protocols, and revisions thereto.

The “best edition” of a work is the edition, published in
the United States at any time before the date of deposit,
that the Library of Congress determines to be most
suitable for its purposes.

286a

A person’s “children” are that person’s immediate
offspring, whether legitimate or not, and any children
legally adopted by that person.

A “collective work” is a work, such as a periodical issue,
anthology, or encyclopedia, in which a number of
contributions, constituting separate and independent
works in themselves, are assembled into a collective
whole.

A “compilation” is a work formed by the collection and
assembling of preexisting materials or of data that are
selected, coordinated, or arranged in such a way that the
resulting work as a whole constitutes an original work of
authorship. The term “compilation” includes collective
works.

A “computer program” is a set of statements or
instructions to be used directly or indirectly in a computer
in order to bring about a certain result.

“Copies” are material objects, other than
phonorecords, in which a work is fixed by any method now
known or later developed, and from which the work can be
perceived, reproduced, or otherwise communicated, either
directly or with the aid of a machine or device. The term
“copies” includes the material object, other than a
phonorecord, in which the work is first fixed.

“Copyright owner”, with respect to any one of the
exclusive rights comprised in a copyright, refers to the
owner of that particular right.

A “Copyright Royalty Judge” is a Copyright Royalty
Judge appointed under section 802 of this title, and
includes any individual serving as an interim Copyright
Royalty Judge under such section.

287a

A work is “created” when it is fixed in a copy or
phonorecord for the first time; where a work is prepared
over a period of time, the portion of it that has been fixed
at any particular time constitutes the work as of that time,
and where the work has been prepared in different
versions, each version constitutes a separate work.

A “derivative work” is a work based upon one or more
preexisting works, such as a translation, musical
arrangement, dramatization, fictionalization, motion
picture version, sound recording, art reproduction,
abridgment, condensation, or any other form in which a
work may be recast, transformed, or adapted. A work
consisting of editorial revisions, annotations, elaborations,
or other modifications which, as a whole, represent an
original work of authorship, is a “derivative work”.

A “device”, “machine”, or “process” is one now known
or later developed.

A “digital transmission” is a transmission in whole or
in part in a digital or other non-analog format.

To “display” a work means to show a copy of it, either
directly or by means of a film, slide, television image, or
any other device or process or, in the case of a motion
picture or other audiovisual work, to show individual
images nonsequentially.

An “establishment” is a store, shop, or any similar
place of business open to the general public for the
primary purpose of selling goods or services in which the
majority of the gross square feet of space that is
nonresidential is used for that purpose, and in which
nondramatic musical works are performed publicly.

288a

The term “financial gain” includes receipt, or
expectation of receipt, of anything of value, including the
receipt of other copyrighted works.

A work is “fixed” in a tangible medium of expression
when its embodiment in a copy or phonorecord, by or
under the authority of the author, is sufficiently
permanent or stable to permit it to be perceived,
reproduced, or otherwise communicated for a period of
more than transitory duration. A work consisting of
sounds, images, or both, that are being transmitted, is
“fixed” for purposes of this title if a fixation of the work is
being made simultaneously with its transmission.

A “food service or drinking establishment” is a
restaurant, inn, bar, tavern, or any other similar place of
business in which the public or patrons assemble for the
primary purpose of being served food or drink, in which
the majority of the gross square feet of space that is
nonresidential is used for that purpose, and in which
nondramatic musical works are performed publicly.

The “Geneva Phonograms Convention” is the
Convention for the Protection of Producers of
Phonograms Against Unauthorized Duplication of Their
Phonograms, concluded at Geneva, Switzerland, on
October 29, 1971.

The “gross square feet of space” of an establishment
means the entire interior space of that establishment, and
any adjoining outdoor space used to serve patrons,
whether on a seasonal basis or otherwise.

The terms “including” and “such as” are illustrative
and not limitative.

An “international agreement” is—

289a

(1) the Universal Copyright Convention;

(2) the Geneva Phonograms Convention;

(3) the Berne Convention;

(4) the WTO Agreement;

(5) the WIPO Copyright Treaty;

(6) the WIPO Performances and Phonograms Treaty;
and

(7) any other copyright treaty to which the United
States is a party.

A “joint work” is a work prepared by two or more
authors with the intention that their contributions be
merged into inseparable or interdependent parts of a
unitary whole.

“Literary works” are works, other than audiovisual
works, expressed in words, numbers, or other verbal or
numerical symbols or indicia, regardless of the nature of
the material objects, such as books, periodicals,
manuscripts, phonorecords, film, tapes, disks, or cards, in
which they are embodied.

The term “motion picture exhibition facility” means a
movie theater, screening room, or other venue that is
being used primarily for the exhibition of a copyrighted
motion picture, if such exhibition is open to the public or is
made to an assembled group of viewers outside of a
normal circle of a family and its social acquaintances.

“Motion pictures” are audiovisual works consisting of
a series of related images which, when shown in
succession, impart an impression of motion, together with
accompanying sounds, if any.

290a

To “perform” a work means to recite, render, play,
dance, or act it, either directly or by means of any device
or process or, in the case of a motion picture or other
audiovisual work, to show its images in any sequence or to
make the sounds accompanying it audible.

A “performing rights society” is an association,
corporation, or other entity that licenses the public
performance of nondramatic musical works on behalf of
copyright owners of such works, such as the American
Society of Composers, Authors and Publishers (ASCAP),
Broadcast Music, Inc. (BMI), and SESAC, Inc.

“Phonorecords” are material objects in which sounds,
other than those accompanying a motion picture or other
audiovisual work, are fixed by any method now known or
later developed, and from which the sounds can be
perceived, reproduced, or otherwise communicated, either
directly or with the aid of a machine or device. The term
“phonorecords” includes the material object in which the
sounds are first fixed.

“Pictorial, graphic, and sculptural works” include two-
dimensional and three-dimensional works of fine, graphic,
and applied art, photographs, prints and art
reproductions, maps, globes, charts, diagrams, models,
and technical drawings, including architectural plans.
Such works shall include works of artistic craftsmanship
insofar as their form but not their mechanical or utilitarian
aspects are concerned; the design of a useful article, as
defined in this section, shall be considered a pictorial,
graphic, or sculptural work only if, and only to the extent
that, such design incorporates pictorial, graphic, or
sculptural features that can be identified separately from,
and are capable of existing independently of, the
utilitarian aspects of the article.

291a

For purposes of section 513, a “proprietor” is an
individual, corporation, partnership, or other entity, as the
case may be, that owns an establishment or a food service
or drinking establishment, except that no owner or
operator of a radio or television station licensed by the
Federal Communications Commission, cable system or
satellite carrier, cable or satellite carrier service or
programmer, provider of online services or network
access or the operator of facilities therefor,
telecommunications company, or any other such audio or
audiovisual service or programmer now known or as may
be developed in the future, commercial subscription music
service, or owner or operator of any other transmission
service, shall under any circumstances be deemed to be a
proprietor.

A “pseudonymous work” is a work on the copies or
phonorecords of which the author is identified under a
fictitious name.

“Publication” is the distribution of copies or
phonorecords of a work to the public by sale or other
transfer of ownership, or by rental, lease, or lending. The
offering to distribute copies or phonorecords to a group of
persons for purposes of further distribution, public
performance, or public display, constitutes publication. A
public performance or display of a work does not of itself
constitute publication.

To perform or display a work “publicly” means—

(1) to perform or display it at a place open to the public
or at any place where a substantial number of persons
outside of a normal circle of a family and its social
acquaintances is gathered; or

292a

(2) to transmit or otherwise communicate a
performance or display of the work to a place specified by
clause (1) or to the public, by means of any device or
process, whether the members of the public capable of
receiving the performance or display receive it in the same
place or in separate places and at the same time or at
different times.

“Registration”, for purposes of sections 205 (c)(2), 405,
406, 410 (d), 411, 412, and 506 (e), means a registration of
a claim in the original or the renewed and extended term
of copyright.

“Sound recordings” are works that result from the
fixation of a series of musical, spoken, or other sounds, but
not including the sounds accompanying a motion picture
or other audiovisual work, regardless of the nature of the
material objects, such as disks, tapes, or other
phonorecords, in which they are embodied.

“State” includes the District of Columbia and the
Commonwealth of Puerto Rico, and any territories to
which this title is made applicable by an Act of Congress.

A “transfer of copyright ownership” is an assignment,
mortgage, exclusive license, or any other conveyance,
alienation, or hypothecation of a copyright or of any of the
exclusive rights comprised in a copyright, whether or not
it is limited in time or place of effect, but not including a
nonexclusive license.

A “transmission program” is a body of material that,
as an aggregate, has been produced for the sole purpose
of transmission to the public in sequence and as a unit.

To “transmit” a performance or display is to
communicate it by any device or process whereby images

http://www.law.cornell.edu/uscode/text/17/205
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000205----000-#c_2
http://www.law.cornell.edu/uscode/text/17/406
http://www.law.cornell.edu/uscode/text/17/410
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000410----000-#d
http://www.law.cornell.edu/uscode/text/17/411
http://www.law.cornell.edu/uscode/text/17/412
http://www.law.cornell.edu/uscode/text/17/506
http://www.law.cornell.edu/uscode/text/17/usc_sec_17_00000506----000-#e

293a

or sounds are received beyond the place from which they
are sent.

A “treaty party” is a country or intergovernmental
organization other than the United States that is a party
to an international agreement.

The “United States”, when used in a geographical
sense, comprises the several States, the District of
Columbia and the Commonwealth of Puerto Rico, and the
organized territories under the jurisdiction of the United
States Government.

For purposes of section 411, a work is a “United States
work” only if—

(1) in the case of a published work, the work is first
published—

(A) in the United States;

(B) simultaneously in the United States and another
treaty party or parties, whose law grants a term of
copyright protection that is the same as or longer than the
term provided in the United States;

(C) simultaneously in the United States and a foreign
nation that is not a treaty party; or

(D) in a foreign nation that is not a treaty party, and
all of the authors of the work are nationals, domiciliaries,
or habitual residents of, or in the case of an audiovisual
work legal entities with headquarters in, the United
States;

(2) in the case of an unpublished work, all the authors
of the work are nationals, domiciliaries, or habitual
residents of the United States, or, in the case of an

294a

unpublished audiovisual work, all the authors are legal
entities with headquarters in the United States; or

(3) in the case of a pictorial, graphic, or sculptural work
incorporated in a building or structure, the building or
structure is located in the United States.

A “useful article” is an article having an intrinsic
utilitarian function that is not merely to portray the
appearance of the article or to convey information. An
article that is normally a part of a useful article is
considered a “useful article”.

The author’s “widow” or “widower” is the author’s
surviving spouse under the law of the author’s domicile at
the time of his or her death, whether or not the spouse has
later remarried.

The “WIPO Copyright Treaty” is the WIPO
Copyright Treaty concluded at Geneva, Switzerland, on
December 20, 1996.

The “WIPO Performances and Phonograms Treaty” is
the WIPO Performances and Phonograms Treaty
concluded at Geneva, Switzerland, on December 20, 1996.

A “work of visual art” is—

(1) a painting, drawing, print, or sculpture, existing in
a single copy, in a limited edition of 200 copies or fewer
that are signed and consecutively numbered by the
author, or, in the case of a sculpture, in multiple cast,
carved, or fabricated sculptures of 200 or fewer that are
consecutively numbered by the author and bear the
signature or other identifying mark of the author; or

(2) a still photographic image produced for exhibition
purposes only, existing in a single copy that is signed by
the author, or in a limited edition of 200 copies or fewer

295a

that are signed and consecutively numbered by the
author.

A work of visual art does not include—

(A) (i) any poster, map, globe, chart, technical drawing,
diagram, model, applied art, motion picture or other
audiovisual work, book, magazine, newspaper, periodical,
data base, electronic information service, electronic
publication, or similar publication;

(ii) any merchandising item or advertising,
promotional, descriptive, covering, or packaging material
or container;

(iii) any portion or part of any item described in clause
(i) or (ii);

(B) any work made for hire; or

(C) any work not subject to copyright protection under
this title.

A “work of the United States Government” is a work
prepared by an officer or employee of the United States
Government as part of that person’s official duties.

A “work made for hire” is—

(1) a work prepared by an employee within the scope
of his or her employment; or

(2) a work specially ordered or commissioned for use
as a contribution to a collective work, as a part of a motion
picture or other audiovisual work, as a translation, as a
supplementary work, as a compilation, as an instructional
text, as a test, as answer material for a test, or as an atlas,
if the parties expressly agree in a written instrument
signed by them that the work shall be considered a work
made for hire. For the purpose of the foregoing sentence,

296a

a “supplementary work” is a work prepared for
publication as a secondary adjunct to a work by another
author for the purpose of introducing, concluding,
illustrating, explaining, revising, commenting upon, or
assisting in the use of the other work, such as forewords,
afterwords, pictorial illustrations, maps, charts, tables,
editorial notes, musical arrangements, answer material
for tests, bibliographies, appendixes, and indexes, and an
“instructional text” is a literary, pictorial, or graphic work
prepared for publication and with the purpose of use in
systematic instructional activities.

In determining whether any work is eligible to be
considered a work made for hire under paragraph (2),
neither the amendment contained in section 1011(d) of the
Intellectual Property and Communications Omnibus
Reform Act of 1999, as enacted by section 1000(a)(9) of
Public Law 106–113, nor the deletion of the words added
by that amendment—

(A) shall be considered or otherwise given any legal
significance, or

(B) shall be interpreted to indicate congressional
approval or disapproval of, or acquiescence in, any judicial
determination,

by the courts or the Copyright Office. Paragraph (2)
shall be interpreted as if both section 2(a)(1) of the Work
Made For Hire and Copyright Corrections Act of 2000 and
section 1011(d) of the Intellectual Property and
Communications Omnibus Reform Act of 1999, as enacted
by section 1000(a)(9) of Public Law 106–113, were never
enacted, and without regard to any inaction or awareness
by the Congress at any time of any judicial
determinations.

297a

The terms “WTO Agreement” and “WTO member
country” have the meanings given those terms in
paragraphs (9) and (10), respectively, of section 2 of the
Uruguay Round Agreements Act.

298a

17 U.S.C. § 102

Subject matter of copyright: In general

(a) Copyright protection subsists, in accordance with
this title, in original works of authorship fixed in any
tangible medium of expression, now known or later
developed, from which they can be perceived, reproduced,
or otherwise communicated, either directly or with the aid
of a machine or device. Works of authorship include the
following categories:

(1) literary works;

(2) musical works, including any accompanying words;

(3) dramatic works, including any accompanying
music;

(4) pantomimes and choreographic works;

(5) pictorial, graphic, and sculptural works;

(6) motion pictures and other audiovisual works;

(7) sound recordings; and

(8) architectural works.

(b) In no case does copyright protection for an original
work of authorship extend to any idea, procedure, process,
system, method of operation, concept, principle, or
discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.

299a

17 U.S.C. § 107

Limitations on exclusive rights: Fair Use

Notwithstanding the provisions of sections 106 and
106A, the fair use of a copyrighted work, including such
use by reproduction in copies or phonorecords or by any
other means specified by that section, for purposes such
as criticism, comment, news reporting, teaching (including
multiple copies for classroom use), scholarship, or
research, is not an infringement of copyright. In
determining whether the use made of a work in any
particular case is a fair use the factors to be considered
shall include—

(1) the purpose and character of the use, including
whether such use is of a commercial nature or is for
nonprofit educational purposes;

(2) the nature of the copyrighted work;

(3) the amount and substantiality of the portion used
in relation to the copyrighted work as a whole; and

(4) the effect of the use upon the potential market for
or value of the copyrighted work.

The fact that a work is unpublished shall not itself bar
a finding of fair use if such finding is made upon
consideration of all the above factors.

	Google cert petition text.pdf
	appendix cover (cert)
	Google cert petition appendix

