

No. 18-956

IN THE

GOOGLE LLC,

Petitioner,
v.

ORACLE AMERICA, INC.,

Respondent.

On Writ of Certiorari to the
U.S. Court of Appeals for the Federal Circuit

JOINT APPENDIX VOLUME 1
PAGES 1-341

Thomas C. Goldstein
GOLDSTEIN & RUSSELL, P.C.
7475 Wisconsin Ave.
Suite 850
Bethesda, MD 20814
(202) 362-0636
tg@goldsteinrussell.com

E. Joshua Rosenkranz
ORRICK, HERRINGTON &

SUTCLIFFE LLP
51 West 52nd Street
New York, NY 10019
(212) 506-5000
jrosenkranz@orrick.com

Counsel of Record for Petitioner Counsel of Record for Respondent

PETITION FOR A WRIT OF CERTIORARI FILED JAN. 24, 2019

CERTIORARI GRANTED NOV. 15, 2019

TABLE OF CONTENTS

VOLUME 1

Docket Excerpts: U.S. Court of Appeals for the
Federal Circuit, No. 13-1021 1

Docket Excerpts: U.S. Court of Appeals for the
Federal Circuit, No. 17-1118 3

Docket Excerpts: U.S. District Court for the
Northern District of California,
No. 3:10-cv-03561 .. 5

Transcript of 2012 Jury Trial Proceedings
(excerpts) ... 30

Final Charge to the Jury (Phase One) and
Special Verdict Form, Dist. Ct. Docs. 1018
& 1018-1 (Apr. 30, 2012) 72

Special Verdict Form, Dist. Ct. Doc. 1089
(May 7, 2012) ... 95

Trial Exhibit 7803, Deposition Clips of Henrik
Stahl Played by Video During Trial
(Jan. 14, 2016) (excerpts) 98

Order re 62 Classes and Interfaces, Dist. Ct.
Doc. 1839 (May 6, 2016) 103

Joint Filing Regarding Agreed Statement
Regarding Copyrightability (ECF No. 1788),
Dist. Ct. Doc. 1846 (May 7, 2016) 105

Transcript of 2016 Jury Trial Proceedings
(excerpts) ... 109

Final Charge to the Jury (Phase One) and
Special Verdict Form, Dist. Ct. Doc. 1981
(May 26, 2016) .. 267

ii

Special Verdict Form, Dist. Ct. Doc. 1982
(May 26, 2016) .. 295

Final Judgment, Dist. Ct. Doc. 1989
(June 8, 2016) .. 296

Transcript of 2012 Jury Trial Proceedings
(further excerpts) .. 297

Joint Response to Court’s Request for Chart of
Elements in Accused Packages, Dist. Ct.
Doc. 1124 (May 12, 2012) 333

Trial Exhibit 1072, Accused API Packages and
Files in Android ... 339

VOLUME 2

Transcript of 2016 Jury Trial Proceedings
(further excerpts) .. 342

Order in Limine re Oracle’s Motion re
Dr. Roderic Cattell, Dist. Ct. Doc. 1879
(May 12, 2016) ... 470

Trial Exhibit 1, Google PowerPoint Presentation
Titled Android GPS: Key Strategic Decisions
Around Open Source (dated July 26, 2005)
(excerpts) ... 472

Trial Exhibit 7, Emails re Sun Meeting
(dated Oct. 11, 2005) ... 475

Trial Exhibit 10, Email re Context for Discussion
re Alternatives to Java (dated Aug. 6, 2010) 478

Trial Exhibit 13, Emails re New Java World
(dated Jan. 3, 2006) ... 480

Trial Exhibit 14, Email re Sun Microsystems
(dated Jan. 13, 2006) ... 484

iii

Trial Exhibit 15, Emails re EMG Deal
Review Agenda and Slides - Feb 6, 2006
(dated Feb. 5, 2006) (excerpts) 486

Trial Exhibit 18, Emails re The open J2ME
project (dated Mar. 24, 2006) (excerpts) 492

Trial Exhibit 29, Emails re Android Presence
at JavaOne (dated Mar. 24, 2008) 494

Trial Exhibit 31, Google PowerPoint presentation:
“Android 101: An introduction to Android
and Android Partnerships” (dated Dec. 2008)
(excerpts) ... 497

Trial Exhibit 134, Email re Urgent stats needed
(Jan. 31, 2006) (excerpts) 499

Trial Exhibit 158, Email re Materials on Google
Open Handset OS, attaching Android
PowerPoint presentation: “Android: Open
Handset Platform” (dated Sept. 28, 2006)
(excerpts) ... 502

Trial Exhibit 205, Emails re Potential Sun
Google partnership in the Mobile Java and
OS Space (dated Feb. 8, 2006) 504

Trial Exhibit 215, Email re Java Class Libraries
(dated June 1, 2006) .. 506

Trial Exhibit 370, Internal Google document:
“Mobile Strategy Summit - Notes”
(dated Nov. 4-5, 2010) (excerpts) 507

Trial Exhibit 610.1, Java 2 Platform Standard
Edition Development Kit 5.0 Specification
(license.html) (dated Aug. 25, 2004) 511

iv

Trial Exhibit 877, Joshua Bloch: Bumper-Sticker
API design, http://www.infoq.com/articles/API-
Design-Joshua-Bloch (dated Sept. 22, 2008) 517

Trial Exhibit 951, Google Inc. GOOG Q3 2010
Earnings Call Transcript (dated Oct. 14, 2010)
(excerpts) ... 523

Trial Exhibit 1056, Email re no doubt you saw…
(dated Mar. 26, 2008) .. 532

Trial Exhibit 2052, PowerPoint “Java in Wireless
Business Review” (dated Mar. 16, 2009)
(excerpts) ... 535

Trial Exhibit 2368, Email re Java
(dated Nov. 7, 2007) .. 538

Trial Exhibit 3211, Google’s Form 10-K for
fiscal year ended Dec. 31, 2004
(dated Mar. 30, 2005) (excerpts) 539

Trial Exhibit 5046, Email re and what if we
accepted the damn FOU restriction?
(dated Apr. 17, 2008) ... 553

Trial Exhibit 5048, Email re java open source
(dated Nov. 28, 2006) .. 557

Trial Exhibit 5114, Email re Latest material for
CMCC’s VP Sha visit Wed morning (dated
Mar. 28, 2007) (excerpts) 558

Trial Exhibit 5121, Wayback Machine: Google
Web APIs (beta) - Terms and Conditions
for Google Web API Service (dated
May 14, 2005) .. 561

v

Trial Exhibit 5250, Wayback Machine:
Google AdWords API beta: Terms &
Conditions (dated Jan. 25, 2005) 567

Trial Exhibit 5322, Email re Android announce
at 3GSM (dated Oct. 23, 2006) (excerpts) 584

Trial Exhibit 5562, Email re some materials
from today (dated Mar. 27, 2007) (excerpts) 589

Trial Exhibit 5585, Email and attachment re
Docs for LG (dated July 7, 2006) (excerpts) 594

Trial Exhibit 5586, Email re Draft deck for
AT&T meeting (dated Sept. 11, 2008)
(excerpts) ... 598

Trial Exhibit 6053, cnbc.com - Dauble “CNBC’s
Jim Cramer Interviews Google Inc. Chairman
& CEO Eric Schmidt” (dated Aug. 15, 2008)
(excerpts) ... 602

Trial Exhibit 7326, JavaOne Tim Ellison
presentation “Apache Harmony: An Open
Innovation” (2010) (excerpts) 611

Trial Exhibit 7787, Deposition Clips of Larry
Ellison Played by Video During Trial
(Aug. 12, 2011) (excerpts) 613

Trial Exhibit 9201, Email re Oracle buys Sun
(dated Apr. 20, 2009) ... 616

Trial Exhibit 9214, Deposition Designations of
Anwar Ghuloum Played by Video During
Trial (Dec. 9, 2015) (excerpts) 627

vi

Trial Exhibit 9223, Declarations That Are
Subject to a Technical Constraint Imposed
by the Java Programming Language
Specification (3d ed.) (dated May 17, 2016) 631

Oracle’s Brief Regarding Copyright Issues,
Dist. Ct. Doc. 853 (Apr. 3, 2012) (excerpts) 640

Transcript of 2016 Jury Trial Proceedings
(further excerpts) .. 641

Trial Exhibit 1026, Sun Community Source
License between Sun Microsystems and
Danger, Inc. (dated Aug. 26, 2003) (excerpts) 678

Trial Exhibit 7787, Deposition Clips of Larry
Ellison Played by Video During Trial
(Aug. 12, 2011) (further excerpts) 693

Trial Exhibit 7788, Deposition Clips of Donald
Smith Played by Video During Trial
(Nov. 20, 2015) (excerpts).................................... 697

Trial Exhibit 1045, The Apache Software
Foundation, Blogging in Action (dated
Dec. 9, 2010) .. 703

Transcript of 2016 Jury Trial Proceedings
(further excerpts) .. 706

vii

The following decisions have been omitted in
printing the joint appendix because they appear in the
appendix to the petition for certiorari, beginning on
the following pages:

Opinion of the United States Court of Appeals
for the Federal Circuit (Mar. 27, 2018) 1a

Order Denying Renewed Motion for Judgment
as a Matter of Law and Motion for a New
Trial of the United States District Court
for the Northern District of California
(Sept. 27, 2016) .. 56a

Order Denying Rule 50 Motions of the United
States District Court for the Northern
District of California (June 8, 2016) 92a

Opinion of the United States Court of Appeals
for the Federal Circuit (May 9, 2014) 121a

Order Partially Granting and Partially Denying
Defendant’s Motion for Summary Judgment
on Copyright Claim of the United States
District Court for Northern District of
California (Sept. 15, 2011) 193a

Order on Motions for Judgment as a Matter of
Law of the United States District Court for
Northern District of California
(May 10, 2012) ... 211a

Order re Copyrightability of Certain Replicated
Elements of the Java Application
Programming Interface of the United States
District Court for Northern District of
California (May 31, 2012) 212a

viii

Findings of Fact and Conclusions of Law on
Equitable Defenses of the United States
District Court for Northern District of
California (May 31, 2012) 273a

Final Judgment of the United States District
Court for Northern District of California
(June 20, 2012) .. 277a

Order Denying Motion for Judgment as a Matter
of Law and New Trial of the United States
District Court for the Northern District of
California (July 13, 2012) 280a

Order Denying Motion for Judgment as a Matter
of Law and New Trial of the United States
District Court for the Northern District of
California (Sept. 4, 2012) 281a

Order on Petition for Rehearing En Banc of
the United States Court of Appeals for the
Federal Circuit (Aug. 28, 2018) 283a

1
UNITED STATES COURT OF APPEALS

FOR THE FEDERAL CIRCUIT

————

No. 13-1021

————

ORACLE AMERICA, INC.,

Plaintiff-Appellant,
v.

GOOGLE INC.,

Defendant-Cross-Appellant.
————

DOCKET ENTRIES

Date # Docket Text

10/19/2012 1 Appeal docketed. Received:
10/10/2012. [30710] Entry of Appear-
ance due 11/02/2012. Certificate of
Interest is due on 11/02/2012. Dock-
eting Statement due 11/02/2012.
Appellant/Petitioner’s brief due
12/18/2012. [SJ] [Entered:
10/19/2012 12:54 PM]

10/19/2012 2 Note to file: 13-1022 (cross-appeal
started 10/19/2012) is consolidated
with 13-1021. [30735] [SJ] [Entered:
10/19/2012 01:52 PM]

10/19/2012 3 Amended Notice of Appeal for
Google Inc. Service: 10/05/2012 by
US mail. [30737] [SJ] [Entered:
10/19/2012 01:59 PM]

* * *

2

Date # Docket Text

12/04/2013 152 Submitted after ORAL ARGU-
MENT by Mr. E. Joshua Rosenkranz
for Oracle America, Inc. and Robert
A. Van Nest for Google Inc.. Panel:
Judge: O’Malley , Judge: Plager ,
Judge: Taranto. [120763] [LB]
[Entered: 12/04/2013 10:50 AM]

05/09/2014 153 OPINION and JUDGMENT filed.
The judgment or decision is:
Affirmed-in-part,Reversed-in-part
and Remnded. (Precedential Opin-
ion). (For the Court: O’Malley,Circuit
Judge; Plager,Circuit Judge and
Taranto,Circuit Judge). [153414]
[13-1021, 13-1022] [LP] [Entered:
05/09/2014 11:32 AM]

* * *

06/16/2014 156 Mandate issued to the United States
District Court for the Northern
District of California. Service:
06/16/2014 by clerk. [161547] [13-
1021, 13-1022] [LAJ] [Entered:
06/16/2014 09:28 AM]

* * *

3
UNITED STATES COURT OF APPEALS

FOR THE FEDERAL CIRCUIT

————

No. 17-1118

————

ORACLE AMERICA, INC.,

Plaintiff-Appellant,
v.

GOOGLE LLC,

Defendant-Cross-Appellant.
————

DOCKET ENTRIES

Date # Docket Text

10/28/2016 1 Appeal docketed. Received:
10/27/2016. [378284] Entry of
Appearance due 11/14/2016.
Certificate of Interest due
11/14/2016. Docketing Statement
due 11/14/2016. Appellant’s brief
due 12/27/2016. [MJL] [Entered:
10/28/2016 10:43 AM]

* * *

11/14/2016 25 Note to file: The following cases
are consolidated: 17-1118 (Lead)
with 17-1202 (Cross-Appeal). FUR-
THER ENTRIES WILL BE ADDED
TO THE LEAD APPEAL ONLY.
[382361] [17-1118, 17-1202] [MJL]
[Entered: 11/14/2016 10:12 AM]

* * *

4

Date # Docket Text

12/07/2017 239 Submitted after ORAL ARGU-
MENT by E. Joshua Rosenkranz
for Oracle America, Inc. and Daryl
Joseffer for Google Inc. Panel:
Judge: O’Malley , Judge: Plager ,
Judge: Taranto. [481029] [JAB]
[Entered: 12/07/2017 03:33 PM]

* * *

03/27/2018 243 OPINION and JUDGMENT filed.
The judgment or decision is:
Reversed and Remanded; Cross-
Appeal Dismissed. (Precedential
Opinion). (For the Court: O’Malley,
Circuit Judge; Plager, Circuit Judge
and Taranto, Circuit Judge).
[508126] [17-1118, 17-1202] [SJ]
[Entered: 03/27/2018 09:38 AM]

* * *

08/28/2018 304 ORDER filed denying [249] peti-
tion for en banc rehearing filed by
Google LLC. By: En Banc (Per
Curiam). Service as of this date by
the Clerk of Court. [545797] [SJ]
[Entered: 08/28/2018 10:42 AM]

09/04/2018 305 Mandate issued to the United States
District Court for the Northern
District of California. Service as of
this date by the Clerk of Court.
[546915] [17-1118, 17-1202] [SJ]
[Entered: 09/04/2018 01:09 PM]

* * *

5
UNITED STATES DISTRICT COURT
CALIFORNIA NORTHERN DISTRICT

(SAN FRANCISCO)

————

No. 3:10-cv-03561-WHA

————

ORACLE AMERICA, INC.,
v.

GOOGLE INC.,

————

DOCKET ENTRIES

Date # Docket Text

8/12/2010 1 COMPLAINT (with jury demand)
For Patent and Copyright
Infringement against Google Inc.
(Filing fee $350, receipt number
54611007901). Filed by Oracle
America, Inc. (Attachments: # 1
Civil Cover Sheet)(vlk, COURT
STAFF) (Filed on 8/12/2010)
Modified on 8/18/2010 (cjl, COURT
STAFF). (Entered: 08/17/2010)

* * *

10/04/2010 32 GOOGLE INC.’S ANSWER to
Complaint with Jury Demand,
COUNTERCLAIM against Oracle
America, Inc. byGoogle Inc..
(Zimmer, Donald) (Filed on
10/4/2010) (Entered: 10/04/2010)

* * *

6

Date # Docket Text

10/27/2010 36 AMENDED COMPLAINT for
patent and copyright infringement
against Google Inc.. Filed byOracle
America, Inc.. (Attachments: # 1
Exhibit A, # 2 Exhibit B, # 3
Exhibit C, # 4 Exhibit D, # 5
Exhibit E, # 6 Exhibit F, # 7
Exhibit G, # 8 Exhibit H, # 9
Exhibit I, # 10 Exhibit J)(Peters,
Marc) (Filed on 10/27/2010)
(Entered: 10/27/2010)

* * *

10/28/2010 41 ANSWER TO COUNTERCLAIM
32 Answer to Complaint, Counter-
claim Oracle America, Inc.’s Reply
to Defendant Google Inc.’s Answer
to Complaint for Patent and Copy-
right Infringement and Counter-
claims byOracle America, Inc..
(Ballinger, Richard) (Filed on
10/28/2010) (Entered: 10/28/2010)

* * *

11/10/2010 51 Google Inc.’s ANSWER to Amended
Complaint for Patent and Copy-
right Infringement, Amended
COUNTERCLAIM against Oracle
America, Inc. byGoogle Inc..
(Zimmer, Donald) (Filed on
11/10/2010) (Entered: 11/10/2010)

* * *

11/29/2010 60 ANSWER TO COUNTERCLAIM
51 Answer to Amended Complaint,

7

Date # Docket Text

Counterclaim byOracle America,
Inc.. (Peters, Marc) (Filed on
11/29/2010) (Entered: 11/29/2010)

* * *

09/15/2011 433 ORDER PARTIALLY GRANTING
AND PARTIALLY DENYING
DEFENDANT’S MOTION FOR
SUMMARY JUDGMENT ON
COPYRIGHT CLAIM by Judge
Alsup granting in part and deny-
ing in part 260 Motion for Summary
Judgment (whalcl, COURT STAFF)
(Filed on 9/15/2011) (Entered:
09/15/2011)

* * *

09/26/2011 461 ORDER GRANTING UNOPPOSED
MOTION FOR PARTIAL SUM-
MARY JUDGMENT REGARDING
35 U.S.C. 271(f) THEORY, Order
by Hon. William Alsup granting
409 Motion for Summary
Judgment.(whalcl, COURT STAFF)
(Filed on 9/26/2011) (Entered:
09/26/2011)

* * *

11/15/2011 621 ORDER DENYING MOTION FOR
PARTIAL SUMMARY JUDGMENT
LIMITING DAMAGES BASED
ON PATENT–MARKING STAT-
UTE by Judge Alsup denying 552
Motion for Summary Judgment

8

Date # Docket Text

(whalcl, COURT STAFF) (Filed on
11/15/2011) (Entered: 11/15/2011)

* * *

04/16/2012 930 Minute Entry: Jury Trial began on
4/16/2012 before William Alsup
(Date Filed: 4/16/2012), Jury
Selection held on 4/16/2012 before
William Alsup (Date Filed:
4/16/2012). (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 4/16/2012)
(Entered: 04/16/2012)

* * *

04/17/2012 936 Minute Entry: Jury Trial held on
4/17/2012 before William Alsup
(Date Filed: 4/17/2012). Witnesses
called. Further Jury Trial 4/18/2012
7:30 AM. (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 4/17/2012)
(Entered: 04/17/2012)

* * *

04/18/2012 939 Minute Entry: Jury Trial held on
4/18/2012 before William Alsup
(Date Filed: 4/18/2012). Witnesses
called. Further Jury Trial 4/19/2012
7:30 AM. (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 4/18/2012)
(Entered: 04/18/2012)

* * *

9

Date # Docket Text

04/19/2012 944 Minute Entry: Jury Trial held on
4/19/2012 before William Alsup
(Date Filed: 4/19/2012). Witnessess
called. Further Jury Trial set for
4/20/2012 7:30 AM. (Court Reporter
Kathy Sullivan; Debra Pas.) (dtS,
COURT STAFF) (Date Filed:
4/19/2012) (Entered: 04/19/2012)

* * *

04/20/2012 947 Minute Entry: Jury Trial held on
4/20/2012 before William Alsup
(Date Filed: 4/20/2012). Witnesses
called. Further Jury Trial 4/23/2012
7:30 AM. (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 4/20/2012)
(Entered: 04/20/2012)

* * *

04/23/2012 975 Minute Entry: Jury Trial held on
4/23/2012 before Judge William
Alsup (Date Filed: 4/23/2012). Wit-
nesses called. Further Jury Trial
4/24/2012 7:30 AM. (Court Reporter
Kathy Sullivan; Debra Pas.) (dt,
COURT STAFF) (Date Filed:
4/23/2012) (Entered: 04/25/2012)

* * *

04/24/2012 976 Minute Entry: Jury Trial held on
4/24/2012 before Judge William
Alsup (Date Filed: 4/24/2012). Wit-
ness called. Plaintiff REST –
Phase One. Further Jury Trial set

10

Date # Docket Text

for 4/25/2012 7:30 AM. (Court
Reporter Kathy Sullivan; Debra
Pas.) (dt, COURT STAFF) (Date
Filed: 4/24/2012) (Entered:
04/25/2012)

* * *

04/25/2012 977 Minute Entry: Jury Trial held on
4/25/2012 before Judge William
Alsup (Date Filed: 4/25/2012).
Witnesses called. Further Jury
Trial set for 4/26/2012 7:30 AM.
(Court Reporter Kathy Sullivan;
Debra Pas.) (dt, COURT STAFF)
(Date Filed: 4/25/2012) (Entered:
04/25/2012)

* * *

04/26/2012 992 Minute Entry: Jury Trial held on
4/26/2012 before William Alsup
(Date Filed: 4/26/2012). Further
Jury Trial set for 4/27/2012 7:30
AM. Charging Conference set for
4/27/2012 02:15 PM in Courtroom
8, 19th Floor, San Francisco before
Hon. William Alsup. (Court Reporter
Kathy Sullivan; Debra Pas.) (dt,
COURT STAFF) (Date Filed:
4/26/2012) (Entered: 04/26/2012)

* * *

04/27/2012 1019 Minute Entry: Jury Trial held on
4/27/2012 before William Alsup
(Date Filed: 4/27/2012). Charging
Conference held. Further Jury

11

Date # Docket Text

Trial set for 4/30/2012 7:30 AM.
(Court Reporter Debra Pas.) (dt,
COURT STAFF) (Date Filed:
4/27/2012) (Entered: 04/30/2012)

* * *

04/30/2012 1020 Minute Entry: Jury Trial held on
4/30/2012 before William Alsup
(Date Filed: 4/30/2012). Closing
Arguments held. Jury Instructions
read. Deliberations began. Further
Jury Trial set for 5/1/2012 8:00 AM.
(Court Reporter Kathy Sullivan;
Debra Pas.) (dt, COURT STAFF)
(Date Filed: 4/30/2012) (Entered:
04/30/2012)

* * *

05/01/2012 1058 Minute Entry: Jury Trial held on
5/1/2012 before William Alsup
(Date Filed: 5/1/2012). Jury Delib-
erations continued. Further Jury
Trial set for 5/2/2012 8:00 AM.
(Court Reporter Kathy Sullivan.)
(dt, COURT STAFF) (Date Filed:
5/1/2012) (Entered: 05/03/2012)

* * *

05/02/2012 1059 Minute Entry: Jury Trial held on
5/2/2012 before William Alsup
(Date Filed: 5/2/2012). Jury Delib-
erations continued. Further Jury
Trial set for 5/3/2012 8:00 AM. (Court
Reporter Debra Pas.) (dt, COURT
STAFF) (Date Filed: 5/2/2012)

12

Date # Docket Text

(Entered: 05/03/2012)

* * *

05/03/2012 1060 Minute Entry: Jury Trial held on
5/3/2012 before William Alsup
(Date Filed: 5/3/2012). Jury Delib-
erations continued. Further Jury
Trial 5/4/2012 8:00 AM. (Court
Reporter Kathy Sullivan.) (dt,
COURT STAFF) (Date Filed:
5/3/2012) (Entered: 05/03/2012)

* * *

05/04/2012 1063 Minute Entry: Jury Trial held on
5/4/2012 before William Alsup
(Date Filed: 5/4/2012). Jury Delib-
erations continued. Further Jury
Trial set for 5/7/12 at 8:00 AM.
(Court Reporter Kathy Sullivan.)
(dt, COURT STAFF) (Date Filed:
5/4/2012) (Entered: 05/04/2012)

* * *

05/07/2012 1089 JURY VERDICT – Phase One.
(dt, COURT STAFF) (Filed on
5/7/2012) (Entered: 05/07/2012)

05/07/2012 1090 Minute Entry: Jury Trial held on
5/7/2012 before William Alsup
(Date Filed: 5/7/2012). Jury Delib-
erations Continued. Verdict read.
Phase II – Plaintiffs Opening State-
ment. Further Jury Trial set for
5/8/2012 7:30 AM. (Court Reporter
Kathy Sullivan; Debra Pas.) (dt,

13

Date # Docket Text

COURT STAFF) (Date Filed:
5/7/2012) (Entered: 05/07/2012)

* * *

05/08/2012 1100 Minute Entry: Jury Trial held on
5/8/2012 before Willliam Alsup
(Date Filed: 5/8/2012). Defendant’s
Opening Statement made. Wit-
nesses called. Further Jury Trial
set for 5/9/2012 7:30 AM. Rule 50
Motion Hearing set for 5/9/2012
01:45 PM in Courtroom 8, 19th
Floor, San Francisco before Hon.
William Alsup. (Court Reporter
Kathy Sullivan; Debra Pas.) (dt,
COURT STAFF) (Date Filed:
5/8/2012) (Entered: 05/08/2012)

* * *

05/09/2012 1174 Minute Entry: Jury Trial held on
5/9/2012 before William Alsup
(Date Filed: 5/9/2012). Witnesses
Called. Rule 50 Motions argued.
Further Jury Trial set for 5/10/2012
7:30 AM. (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 5/9/2012)
(Entered: 05/18/2012)

* * *

05/10/2012 1119 ORDER ON MOTIONS FOR
JUDGMENT AS A MATTER OF
LAW re 1043 Brief, filed by Google
Inc., 1045 MOTION for Judgment
as a Matter of Law Oracle’s

14

Date # Docket Text

Corrected Rule 50(A) Motion at the
Close of Evidence (WITH TABLES)
filed by Oracle America, Inc.. Signed
by Judge Alsup on May 10, 2012.
(whalc 1, COURT STAFF) (Filed
on 5/10/2012) (Entered: 05/10/2012)

* * *

05/10/2012 1175 Minute Entry: Jury Trial held on
5/10/2012 before William Alsup
(Date Filed: 5/10/2012). Witnesses
called. Plaintiff REST. Charging
Conference held. Further Jury
Trial set for 5/11/2012 7:30 AM
(Court Reporter Kathy Sullivan;
Debra Pas.) (dt, COURT STAFF)
(Date Filed: 5/10/2012) (Entered:
05/18/2012)

* * *

05/11/2012 1123 ORDER GRANTING MOTION
FOR JUDGMENT AS A MATTER
OF LAW ON DECOMPILED FILES
re 1045 MOTION for Judgment as
a Matter of Law Oracle’s Corrected
Rule 50(A) Motion at the Close of
Evidence (WITH TABLES) filed by
Oracle America, Inc.. Signed by
Judge Alsup on May 11, 2012.
(whalc 1, COURT STAFF) (Filed
on 5/11/2012) (Entered: 05/11/2012)

05/11/2012 1176 Minute Entry: Jury Trial held on
5/11/2012 before William Alsup
(Date Filed: 5/11/2012). Witnesses

15

Date # Docket Text

called. Further Jury Trial set for
5/14/2012 7:30 AM. (Court Reporter
Kathy Sullivan; Debra Pas.) (dt,
COURT STAFF) (Date Filed:
5/11/2012). (Entered: 05/18/2012)

* * *

05/14/2012 1177 Minute Entry: Jury Trial held on
5/14/2012 before William Alsup
(Date Filed: 5/14/2012). Witnesses
called. Defendant Rest. Rebuttal
witness called. Plaintiff and
Defendant Rest. Further Charging
Conference held. Further Jury
Trial set for 5/15/2012 7:30
AM.(Court Reporter Kathy Sullivan;
Debra Pas.) (dt, COURT STAFF)
(Date Filed: 5/14/2012) (Entered:
05/18/2012)

* * *

05/15/2012 1178 Minute Entry: Jury Trial held on
5/15/2012 before William Alsup
(Date Filed: 5/15/2012). Closing
Arguments Made. Jury Instruc-
tions Read. Deliberation Began.
Further Jury Trial set for 5/16/2012
8:00 AM. (Court Reporter Kathy
Sullivan; Debra Pas.) (dt, COURT
STAFF) (Date Filed: 5/15/2012)
(Entered: 05/18/2012)

* * *

05/16/2012 1165 ORDER DENYING MOTION
FOR JUDGMENT AS A MATTER

16

Date # Docket Text

OF LAW REGARDING REGIS-
TRATION AND OWNERSHIP.
Signed by Judge Alsup on May 16,
2012. (whalcl, COURT STAFF)
(Filed on 5/16/2012) (Entered:
05/16/2012)

* * *

05/17/2012 1180 Minute Entry: Jury Trial held on
5/17/2012 before William Alsup
(Date Filed: 5/17/2012). Jury
Deliberations Continued. Further
Jury Trial set for 5/18/2012 7:30
AM. (Court Reporter Debra Pas.)
(dt, COURT STAFF) (Date Filed:
5/17/2012) (Entered: 05/18/2012)

* * *

05/18/2012 1179 Minute Entry: Jury Trial held on
5/16/2012 before William Alsup
(Date Filed: 5/18/2012). Delibera-
tions continued. Further Jury
Trial set for 5/17/2012 8:00 AM.
(Court Reporter Kathy Sullivan.)
(dt, COURT STAFF) (Date Filed:
5/18/2012). (Entered: 05/18/2012)

05/18/2012 1186 Minute Entry: Jury Trial held on
5/18/2012 before William Alsup
(Date Filed: 5/18/2012). Deliber-
tions continued. Further Jury Trial
set for 5/21/2012 8:00 AM.(Court
Reporter Kathy Sullivan.) (dtS,
COURT STAFF) (Date Filed:
5/18/2012) (Entered: 05/22/2012)

17

Date # Docket Text

* * *

05/21/2012 1187 Minute Entry: Jury Trial held on
5/21/2012 before William Alsup
(Date Filed: 5/21/2012). Delibera-
tions continued. Further Jury Trial
set for 5/22/2012 8:00 AM.(Court
Reporter Kathy Sullivan.) (dtS,
COURT STAFF) (Date Filed:
5/21/2012) (Entered: 05/22/2012)

* * *

05/22/2012 1199 Minute Entry: Jury Trial held on
5/22/2012 before William Alsup
(Date Filed: 5/22/2012). Jury Delib-
erations continued. Further Jury
Trial set for 5/23/2012 8:00
AM.(Court Reporter Kathy
Sullivan.) (dt, COURT STAFF)
(Date Filed: 5/22/2012) (Entered:
05/24/2012)

* * *

05/23/2012 1190 JURY VERDICT (Phase II). (dt,
COURT STAFF) (Filed on
5/23/2012) (Additional attachment(s)
added on 2/20/2019: # 1 Special
Verdict Form) (amgS, COURT
STAFF). (Entered: 05/23/2012)

* * *

05/23/2012 1200 Minute Entry: Jury Trial (Phase
II) completed on 5/23/2012 before
William Alsup (Date Filed:
5/23/2012). Jury Verdict read.

18

Date # Docket Text

Jury polled, thanked and dis-
charged. (Court Reporter Kathy
Sullivan.) (dt, COURT STAFF)
(Date Filed: 5/23/2012) (Entered:
05/24/2012)

* * *

05/30/2012 1201 ORDER DENYING ORACLE
MOTION FOR JUDGMENT AS A
MATTER OF LAW RE PATENT
INFRINGEMENT by Hon. William
Alsup denying 1168 Motion for
Judgment as a Matter of
Law.(whalcl, COURT STAFF)
(Filed on 5/30/2012) (Entered:
05/30/2012)

05/31/2012 1202 ORDER RE COPYRIGHTABIL-
ITY OF CERTAIN REPLICATED
ELEMENTS OF THE JAVA
APPLICATION PROGRAMMING
INTERFACE by Judge William
Alsup [granting 984 Motion for
Judgment as a Matter of Law;
granting 1007 Motion for Judg-
ment as a Matter of Law; finding
as moot 1105 Motion for New Trial].
(whasec, COURT STAFF) (Filed
on 5/31/2012) (Entered: 05/31/2012)

05/31/2012 1203 FINDINGS OF FACT AND
CONCLUSIONS OF LAW ON
EQUITABLE DEFENSES re 1049
Proposed Findings of Fact filed
by Oracle America, Inc., 1047
Proposed Findings of Fact filed by

19

Date # Docket Text

Google Inc.. Signed by Judge
Alsup on May 31, 2012. (whalcl,
COURT STAFF) (Filed on
5/31/2012) (Entered: 05/31/2012)

* * *

06/20/2012 1211 FINAL JUDGMENT. Signed by
Judge Alsup on June 20, 2012.
(whalcl, COURT STAFF) (Filed on
6/20/2012) (Entered: 06/20/2012)

* * *

07/13/2012 1221 ORDER DENYING MOTION
FOR JUDGMENT AS A MATTER
OF LAW AND NEW TRIAL by
Hon. William Alsup denying 1212
Motion for Judgment as a Matter
of Law.(whalcl, COURT STAFF)
(Filed on 7/13/2012) (Entered:
07/13/2012)

* * *

09/04/2012 1242 ORDER DENYING MOTION
FOR JUDGMENT AS A MATTER
OF LAW AND NEW TRIAL by
Hon. William Alsup denying 1222
Motion for Judgment as a Matter
of Law.(whalcl, COURT STAFF)
(Filed on 9/4/2012) (Entered:
09/04/2012)

* * *

10/03/2012 1243 NOTICE OF APPEAL to the
Federal Circuit as to 1211 Judg-
ment by Oracle America, Inc..

20

Date # Docket Text

Filing fee $ 455, receipt number
0971-7174810. – PLAINTIFF
ORACLE AMERICA, INC.’S
NOTICE OF APPEAL – Appeal
Record due by 11/2/2012. (Jacobs,
Michael) (Filed on 10/3/2012)
(Entered: 10/03/2012)

* * *

10/04/2012 1247 Amended NOTICE OF APPEAL to
the Federal Circuit as to 1242
Order on Motion for Judgment as
a Matter of Law by Google Inc.. See
receipt number 0971–7176729
Appeal Record due by 11/5/2012.
(Hirsch, Steven) (Filed on 10/4/2012)
(Entered: 10/04/2012)

10/04/2012 1248 NOTICE OF CROSS APPEAL as
to 1243 Notice of Appeal to the
Federal Circuit, by Google Inc..
Filing fee $ 455, receipt number
0971-7177323. Appeal Record due
by 11/5/2012. (Hirsch, Steven) (Filed
on 10/4/2012) (Entered: 10/04/2012)

* * *

08/12/2015 1292 COMPLAINT Plaintiff Oracle’s
Supplemental Complaint for Copy-
right Infringement against Google
Inc.. Filed byOracle America, Inc..
(Bicks, Peter) (Filed on 8/12/2015)
(Entered: 08/12/2015)

* * *

02/05/2016 1479 ORDER RE GOOGLE’S MOTION

21

Date # Docket Text

TO STRIKE by Hon. William
Alsup granting 1454 Motion to
Strike.(whalcl, COURT STAFF)
(Filed on 2/5/2016) (Entered:
02/05/2016)

* * *

05/02/2016 1781 MEMORANDUM OPINION RE
GOOGLE’S MOTION IN LIMINE
NO. 2 REGARDING NEW PROD-
UCTS by Judge William Alsup
[granting 1559 Motion in Limine].
(whasec, COURT STAFF) (Filed
on 5/2/2016) (Entered: 05/02/2016)

* * *

05/09/2016 1856 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial began on 5/9/2016. Jury
Selection Completed. Further Jury
Trial set for 5/10/2016 7:30 AM.
Total Time in Court 6:05. Court
Reporter Name Kathy Sullivan;
Pam Batalo. Plaintiff Attorney Peter
Bicks. et al.Defendant Attorney
Robert Van Nest. et al.Attachment
minute order.(dl, COURT STAFF)
(Date Filed: 5/10/2016) Modified
on 5/11/2016 (dl, COURT STAFF).
(Entered: 05/10/2016)

* * *

05/10/2016 1857 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/10/2016. Witness

22

Date # Docket Text

called. Further Jury Trial set for 5/11/2016 7:30 AM.
Total Time in Court 5:40. Court Reporter Name
Kathy Sullivan; Pam Batalo. Plaintiff Attorney
Peter Bicks. Defendant Attorney Robert Van Nest.
Attachment minute order.(dl, COURT STAFF)
(Date Filed: 5/10/2016) (Entered: 05/10/2016)

* * *

05/11/2016 1864 Minute Entry for proceedings held before
Hon. William Alsup: Jury Trial held on 5/11/2016.
Witnesses Called. Further Jury Trial set for
5/12/2016 7:30 AM.Total Time in Court 5:38.
Court Reporter Name Kathy Sullivan; Pam
Batalo. Plaintiff Attorney Peter Bicks. et
al.Defendant Attorney Robert Van Nest. et
al.Attachment minute order.(dl, COURT STAFF)
(Date Filed: 5/11/2016) (Entered: 05/11/2016)

* * *

05/12/2016 1879 ORDER IN LIMINE RE ORACLE’S
MOTION RE DR. RODERIC CATTELL [re
1824 MOTION in Limine to Exclude Testimony
of Roderic Cattell filed by Oracle America,
Inc.]. Signed by Judge William Alsup on
5/12/2016. (whasec, COURT STAFF) (Filed on
5/12/2016) (Entered: 05/12/2016)

* * *

05/12/2016 1882 Minute Entry for proceedings held before
Hon. William Alsup: Jury Trial held on
5/12/2016. Witness called. Further Jury Trial
set for 5/13/2016 at 7:30 AM; Total Time in
Court: 5 hours; 33 minutes. Court Reporter:
Pam Batalo. Plaintiff Attorneys: Peter
Bicks; Annette Hurst; Matthew Bush; Lisa

23

Date # Docket Text

Simpson; Gabriel Ramsey;
Christina Von Der Ahe; George
Saab (Corp Rep). Defendant
Attorneys: Robbert Van Nest;
Bruce Baber; Christa Anderson;
Daniel Purcell; Matthias Kamber;
Michael Kwun; Reid Mullen;
Maya Karwande; Steven Ragland;
Catherine Locavera (Corp Rep).
Attachment: Minute Order.(afmS,
COURT STAFF) (Date Filed:
5/12/2016) (Entered: 05/12/2016)

* * *

05/13/2016 1886 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/13/2016. Witnesses
called. Further Jury Trial set for
5/16/2016 at 7:30 a.m. Total Time
in Court: 5:05. Court Reporter:
Pam Batalo. Plaintiff Attorneys:
Peter Bicks; Annette Hurst;
Matthew Bush; Lisa Simpson;
Gabriel Ramsey; Christina Von
Der Ahe. Defendant Attorney:
Robert Van Nest; Bruce Baber;
Christa Anderson; Ed Bailey;
Daniel Purcell; Matthias Kamber;
Michael Kwun; Reid Mullen; Maya
Karwande; Steven Ragland. Attach-
ment: Minute Order.(afmS, COURT
STAFF) (Date Filed: 5/13/2016)
(Entered: 05/13/2016)

* * *

24

Date # Docket Text

05/16/2016 1902 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/16/2016. Witnesses
called. Further Jury Trial set for
May 17, 2017 at 7:30 A.M. Total
Time in Court: 5:26. Court Report-
ers: Pam Batalo; Kathryn Sullivan.
Plaintiff Attorneys: Peter Bicks;
Annette Hurst; Matthew Bush;
Lisa Simpson; Gabriel Ramsey;
Christina Von Der Ahe. Defendant
Attorneys: Robert Van Nest;
Christa Anderson; Daniel Purcell;
Ed Bailey; Eugene Paige; Bruce
Baber; Matthias Kamber; Reid
Mullen; Michael Kwun; Maya
Karwande; Steven Ragland. Inter-
preter N/A.Attachment: Minute
Order.(afmS, COURT STAFF)
(Date Filed: 5/16/2016) (Entered:
05/16/2016)

* * *

05/17/2016 1911 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/17/2016. Witnesses
called. Further Jury Trial set for
5/18/2016 at 7:30 a.m. Total Time
in Court: 5:25. Court Reporters:
Pam Batalo/Kathryn Sullivan.
Plaintiff Attorneys: Peter Bicks;
Annette Hurst; Matthew Bush;
Lisa Simpson; Gabriel Ramsey;
Christina Von Der Ahe; Alyssa
Caridis. Defendant Attorneys:

25

Date # Docket Text

Robert Van Nest; Bruce Baber;
Christa Anderson; Ed Bailey;
Daniel Purcell; Matthias Kamber;
Eugene Paige; Michael Kwun;
Reid Mullen; Maya Karwande;
Steven Ragland. Interpreter
N/A.Attachment: Minute
Order.(afmS, COURT STAFF)
(Date Filed: 5/17/2016) (Entered:
05/17/2016)

* * *

05/18/2016 1922 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/18/2016. Witnesses
called. Further Jury Trial set for
May 19, 2016 at 7:30 a.m. Total
Time in Court: 5:37. Court Reporter:
Kelly Polvi. Plaintiff Attorneys:
Peter Bicks; Annette Hurst;
Matthew Bush; Lisa Simpson;
Gabriel Ramsey; Christina Von
Der Ahe; Alyssa Caridis. Defend-
ant Attorneys: Robert Van Nest;
Bruce Baber; Christa Anderson;
Ed Bailey; Daniel Purcell; Matthias
Kamber; Eugene Paige; Michael
Kwun; Reid Mullen; Maya
Karwande; Steven Ragland. Attach-
ment: Minute Order.(afmS, COURT

STAFF) (Date Filed: 5/18/2016)
(Entered: 05/18/2016)

* * *

26

Date # Docket Text

05/19/2016 1927 AMENDED 1926 MINUTE
ENTRY: for proceedings held before
Hon. William Alsup: Jury Trial
and Charging Conference held on
5/19/2016. Witnesses called. Plain-
tiff and Defendant RESTS. Further
Jury Trial set for May 23, 2016 at
7:30 a.m. Total Time in Court:
5:32. Court Reporters: Pam Batalo;
Kathryn Sullivan. Plaintiff Attor-
neys: Peter Bicks; Annette Hurst;
Lisa Simpson; Gabriel Ramsey;
Matthew Bush; Christina Von
Der Ahe; Alyssa Caridis; Andrew
Silverman. Defendant Attorneys:
Robert Van Nest; Christa
Anderson; Bruce Baber; Ed Bailey;
Daniel Purcell; Michael Kwun;
Steven Ragland; Reid Mullen;
Eugene Paige; Matthias Kamber;
Maya Karwande. Interpreter:
N/A.Attachment: Minute Order.
(afmS, COURT STAFF) (Filed on
5/19/2016) (Entered: 05/19/2016)

* * *

05/23/2016 1947 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/23/2016. Closing
Arguments made. Jury Instruction
read. Jury Deliberation began.
Further Jury Trial set for
5/24/2016 7:45 AM.Total Time in
Court 5:09. Court Reporter Name

27

Date # Docket Text

Kathy Sullivan; Pam Batalo. Plain-
tiff Attorney Peter Bicks. Defendant
Attorney Robert Van Nest. Attach-
ment minute order.(dl, COURT
STAFF) (Date Filed: 5/23/2016)
(Entered: 05/23/2016)

* * *

05/24/2016 1969 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/24/2016. Delibera-
tion continued. Further Trial
set for 5/25/2016 7:30 AM. Total
Time in Court 55 minutes. Court
Reporter Name Kathy Sullivan.
Plaintiff Attorney Peter Bicks.
Defendant Attorney Robert Van
Nest. Attachment minute order.(dl,
COURT STAFF) (Date Filed:
5/24/2016) (Entered: 05/25/2016)

* * *

05/25/2016 1972 Minute Entry for proceedings held
before Hon. William Alsup: Jury
Trial held on 5/25/2016. Delibera-
tion Continued. Further Jury Trial
set for 5/26/16 7:30 AM.Total Time
in Court 1:12. Court Reporter
Name Kathy Sullivan. Plaintiff
Attorney Peter Bicks. Defendant
Attorney Robert Van Nest. Attach-
ment minute order.(dl, COURT
STAFF) (Date Filed: 5/25/2016)
(Entered: 05/25/2016)

28

Date # Docket Text

* * *

05/26/2016 1982 JURY VERDICT. (dl, COURT
STAFF) (Filed on 5/26/2016)
(Entered: 05/26/2016)

05/26/2016 1983 Jury Notes. (dl, COURT STAFF)
(Filed on 5/26/2016) (Entered:
05/26/2016)

05/26/2016 1984 Minute Entry for proceedings
held before Hon. William Alsup:
Jury Trial completed on 5/26/2016.
Verdict Reached. Jury polled,
thanked and discharged.Total Time
in Court 10 minutes. Court Reporter
Name Pam Batalo. Plaintiff Attor-
ney Peter Bicks. Defendant Attorney
Robert Van Nest. Attachment
minute order.(dl, COURT STAFF)
(Date Filed: 5/26/2016) (Entered:
05/26/2016)

* * *

06/08/2016 1988 ORDER DENYING RULE 50
MOTIONS by Judge William Alsup
[denying 1914 Motion for Judg-
ment as a Matter of Law; denying
1937 Motion for Judgment as a
Matter of Law]. (whasec, COURT
STAFF) (Filed on 6/8/2016)
(Entered: 06/08/2016)

06/08/2016 1989 FINAL JUDGMENT in favor of
defendant Google Inc., and against
plaintiff Oracle America, Inc.
Signed by Judge William Alsup on

29

Date # Docket Text

6/8/2016. (whasec, COURT STAFF)
(Filed on 6/8/2016) (Entered:
06/08/2016)

* * *

09/27/2016 2070 ORDER DENYING RENEWED
MOTION FOR JUDGMENT AS A
MATTER OF LAW AND MOTION
FOR A NEW TRIAL by Judge
Alsup denying 1993 Motion for
Judgment as a Matter of Law;
denying 1997 Motion for New
Trial. (whalcl, COURT STAFF)
(Filed on 9/27/20161 (Entered:
09/27/20161

10/26/2016 2071 NOTICE OF APPEAL to the
Federal Circuit by Oracle America,
Inc.. Filing fee $ 505, receipt
number 0971-10881532. Appeal
Record due by 11/25/2016. (Bicks,
Peter) (Filed on 10/26/2016)
(Entered: 10/26/2016)

* * *

11/09/2016 2073 NOTICE OF CROSS APPEAL to
the Federal Circuit (USCA –
Federal Circuit 17-1202) by Google
Inc.. Filing fee $ 505, receipt
number 0971-10918837. Appeal
Record due by 12/9/2016. (Baber,
Bruce) (Filed on 11/9/2016) Modified
on 11/16/2016 (ecgS, COURT
STAFF). (Entered: 11/09/2016)

* * *

30
[648] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOOGLE, INC.,

Defendant.
————

San Francisco, California
April 19, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[683] the two circles?

A. That intersection would be is a lot smaller than
it’s shown. It was shown a little bigger because other-
wise it would be very hard to see.

Q. And we’re looking, for the record, at Slide 20.

THE COURT: Can I ask a question? Now, the 37
APIs that we’re most concerned about in this case, are
they all within that little shaded area or are they
somewhere else?

31
THE WITNESS: Your Honor, most of them are – the

bulk of them are outside of that little shaded area.

THE COURT: In the purple area?

THE WITNESS: Correct, sir.

BY MR. JACOBS:

Q. Without any kind of class library at all – I want
you to assume no class library – what kind of program-
ming could you do with the Java programming lan-
guage itself?

A. With no class library at all, you could do very
little.

Q. What would be the first increment you would
need to put in to be able to do something meaningful?

A. To do something meaningful you would need a
way to get results out of the program. As the Java –
take the Java language just by itself. It can – it can
take some parameters to a single method from the
command line. If you’re typing at the computer, you
can type Java, then the name of your program, and
then some words. And those words are passed in to the
[684] program as strings. So there is limited input
there, but there is no way for the program to do output.
It can compute. It can do a lot of computation inside,
but it can never communicate the results of that com-
putation.

Q. Now, changing the assumption a little bit, you
are told you can create a class library, but you can’t
copy the Java platform API specification for any APIs.

Can you create your own class library to perform the
functions that you just described?

MR. PURCELL: Objection. It’s a hypothetical.

32
THE COURT: Sustained.

BY MR. JACOBS:

Q. Does the Java programming language give you
the capability to write your own APIs and class librar-
ies?

A. Yes, it does.

Q. Does one need to use Sun’s class libraries,
Oracle’s class libraries, Sun’s APIs, Oracle’s APIs in
order to program in the Java programming language?

A. At the very least you need to use the few that
are tightly related to the Java programming language.

THE COURT: When you say that, you’re pointing at
something. What are you pointing at?

THE WITNESS: Sir, I’m pointing to the Exhibit
1062.

THE COURT: And so the few are everything on that
page?

* * *

[762] implementing the same kind of collections on
distributed systems, where the data was stored on mul-
tiple machine machines so that if one of the machines
crashed you wouldn’t lose any of your data. You could
keep using the data on the other machines. That’s
called fault tolerance.

And I had to write APIs to use these distributed
collections, much as the Java collections framework is
a set of APIs to use collections.

Q. Dr. Bloch, is it fair to say you’ve been involved
with APIs for your entire 30 years of education and
professional life?

33
A. That’s a fair statement.

Q. Dr. Bloch, how did you learn the Java language?

A. I learned it on an airplane, reading a copy of a
book called Java In A Nutshell, by a guy named David
Flanagan.

Q. Do you recall approximately when that was?

A. Yeah. It was on my way to the job interview for
the Java job at Sun. So that would be in 1996, around,
you know, May or something. I don’t know.

Q. And when you learned the Java language from
the Java In A Nutshell book, did that include any
discussion of APIs?

A. Yeah. In fact, the entire API set of the platform
is summarized in that book.

Q. And, now, Mr. Jacobs asked you about some of
your writings. You have written a book, yourself,
about the Java

* * *

[769] And, also, it’s a specification. That API should
hopefully be precise enough that it allows other people
to do an independent lead limitation of the same API.

Q. Dr. Bloch, is an API like a blueprint in any way?

A. It’s not – not really like a blueprint because a
blueprint tells you how to build something. And you
can build something in many different ways that
implements the same API.

The API, as I said, it tells you how to talk to some-
thing rather than how to build it. So I don’t think of an
API as being like a blueprint.

34
Q. Does an API itself tell you how to build any-

thing?

A. Not really.

Q. Okay. Do you believe that an API serves as a
blueprint even for the libraries that house the APIs?

A. Once again, you know, it’s a stretch. It’s not
really like a blueprint because of the fact that a blue-
print tells you how to implement something. It basi-
cally says use this timber here, and this length should
be this.

API specifications, APIs don’t do that. They are
requirements. They tell you what this thing that you’re
building has to do. How to talk to it. How to write a
program on top of it. But they don’t tell you how to
build it.

Q. In the Java language, Dr. Bloch, what is it that
determines the organization of the code libraries that
implement the APIs?

[770] A. The names of the methods basically deter-
mine that, because names in Java, they have three
parts. It’s called a fully-qualified name. It consists of
the class – actually, the package, the class, and then
the method or field.

So the whole name of something might be something
like Java.lang.math.cos. So it’s not math. It’s a pack-
age. And then – sorry Java.lang is a package. Math is
a class. And then cos is the cosine function. And so the
name determines the organization.

Q. And is this notion of a fully-qualified name
something that’s a part of the Java Language Speci-
fication?

A. Yes. I’m certain that term is in there.

35
Q. If you could give us just an example. You just

described in general terms package.class.method would
be the format of – at least a start of part of a fully-
qualified name. Correct?

A. Uh-huh.

Q. Use using the example you just gave, what
would be the fully-qualified name under the Java
Language Specification for the math function you just
described?

A. All right. So Java.lang is the name of the
package.

Q. For the fully-qualified name, would there be
anything before the words “Java”?

A. No. And it has to be lower case, by the way.
Lower case Java period l-a-n-g period. And then we
have an upper case M- – because the class names are
upper case – a-t-h. And [771] then a period. And then
the method name, which I believe is cos, c-o-s. I don’t
do a lot of trigonometry.

Q. So that is the name of the specific method, and
that’s what would be considered to be a fully-qualified
name under the language specification (indicating)?

A. Yes.

THE COURT: Where’s the API part on all that?

THE WITNESS: That is part of the Java SE APIs.

So this is one small element in the API. When you
say the API, I think I know what you mean, as in, yes,
Java.lang is the package. You if you talk about – some-
times people here in these trials in form we talk about
a number, like 37 APIs. They mean 37 packages. And
Java.lang would be one of those packages.

36
THE COURT: Can you do this. Circle the word pack-

age.

(Counsel complies.)

THE COURT: Is that what you’re saying, that is,
one API would correspond to that package?

THE WITNESS: So, honestly, that isn’t a terminol-
ogy that I heard before this trial. You know, quantiz-
ing APIs is kind of hard.

But in this trial people have been using the number
of APIs to be the number of packages. When they say,
oh, yes, this contains 43 APIs, they really mean 43
packages. So, yes.

[772] THE COURT: But your own document that
you did in Holland had the word “API.” You’ve heard
of that word before.

THE WITNESS: I have. But what I’m saying is, to
me, a package is a part of an API. A class is a part of
an API. A method is a part of an API.

And I don’t talk about a number of APIs any more
than I would talk about a number of meat. You know,
meat is measured in pounds.

There’s no good metric for APIs, really.

THE COURT: Well, look. We are trying to just get
the terminology down. It says package.class.method.
Now, is the package the API?

Help us understand what more you need to put up
there so that we know what API is versus package, or
whether they are the same. So you describe it however
you want. We’re trying to understand.

THE WITNESS: So think of it as, you know, your
city, your state, and your street. They are all part of

37
your address. So, you know, the APIs here are the
addresses, and the package is the city. The class is the
street. And method is the house number, if you want.
It’s not a great analogy, but you get the idea.

THE COURT: Yes, but where is the API part?

THE WITNESS: All three of them are parts of it.

THE COURT: And could, in the same API, there be
the [773] same package but a different class, and yet a
different method?

THE WITNESS: Yes. So, for example, in Java.util
we have that collections framework that I wrote. And
there’s one class for lists, and another class for sets,
which can contain duplicates. So those are two differ-
ent classes in the same package.

THE COURT: And so it sounds like the API is at the
package level. No? Yes?

THE WITNESS: You know, every language has its
own way of breaking these things up. But, actually,
class is somewhat more fundamental to Java than
package, simply because the Java – at runtime, you
know, entire classes are loaded at once.

But, you know, as I say, I think the address meta-
phor is pretty good. Which is a more important part of
your address, the street or the city?

THE COURT: So you didn’t answer my question.

THE WITNESS: I tried.

THE COURT: Either say yes, no, or it’s impossible
to answer yes or no.

The question was, it sounds like the API is at the
package level.

38
THE WITNESS: Yes, but it’s also at the class and

method levels.

THE COURT: All right. Thank you.

[774] I’m sorry for the interruption. Please continue.

MR. BABER: Thank you, Your Honor.

BY MR. BABER:

Q. You were talking about, Dr. Bloch, the concept
of a fully-qualified name in the Java language. Once a
fully-qualified name for a specific method has been
chosen, how does that name dictate the organization
or where that piece of code will reside in the libraries?

A. Well, if it’s a public API, then you – you have to
put – an entire class goes in one file. And the file has
to have the name of the class.

So, you know, in the case of our Java.lang.math
class there actually is a file called math.Java. And at
the top of that file there’s a line that says “Package
Java.lang.” And that means that class, Math, is inside
the package Java.lang.

Q. So just to be clear, the class name is Java.lang.-
math, correct?

A. Correct. And that – by the way, a fully-qualified
class name is the class including the package.

Q. And then once the name for an individual
method or some other element of the APIs has been
chosen, does that name then tell you where you can
find that code?

A. Yes, it does.

Q. Okay. And does the language specification for
the Java programming language give you any choice
as to how to compose a [775] fully-qualified name?

39
A. I’m not sure what you mean, sorry, by “compose.”

Q. Does it have rules about what fully-qualified
names have to look like?

A. Yeah, it has conventions.

Q. And prior to this lawsuit, Dr. Bloch, have you
ever heard any discussion about the structure, sequence,
and organization of APIs?

A. Actually, no. This is the first time I’ve heard
that term.

Q. Dr. Bloch, how do the APIs and the language
relate to each other (indicating)?

A. Uhm, well, in a couple of ways. Language lets
you write your own APIs.

MR. JACOBS: Objection, Your Honor. So the record
is clear, Mr. Baber is holding up the Java Language
Specification to the witness.

THE WITNESS: Okay.

THE COURT: I’m not sure. I was maybe two sen-
tences back. So you may have a good objection and I
just don’t understand it. He’s –

MR. JACOBS: Objection, the question was vague.
And on the record he’s holding up the Java Language
Specification. The witness may be answering two dif-
ferent questions.

THE COURT: That’s a good point.

* * *

40
[904] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOOGLE, INC.,

Defendant.
————

San Francisco, California
April 20, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

 [961] Q. And did you have occasion to use Java
programming language in your work at Danger?

A. Umm, I wrote some of the Danger library code
and a little bit of application code in Java.

Q. How did you actually learn how to program in
Java?

A. Umm, I think my first encounter with Java
again was in 1995 when the language was first
released by Sun.

41
It was interesting at the time because it was this

new programming language. And I think I mostly
learned by, you know, just tinkering with the compiler,
writing little programs and reading some tutorials
that had been posted online about the language.

Q. Did you ever read any books about Java to help
learn how to program in the language?

A. I think at one point I borrowed or purchased a
copy of the Java Programming Language, which was
an introductory book in Java.

Q. All right. And did those materials you reviewed
to learn how to program in Java include discussion of
Java APIs?

MR. NORTON: Objection, leading.

THE COURT: What extent, if at all. Remember
magic words.

BY MS. ANDERSON:

Q. To what extent, if at all, did the materials you
reviewed include discussion of Java APIs?

[962] A. Pretty much all examples of how to write
programs in the language involved use of sort of stand-
ard Java libraries and APIs.

Q. As a programmer in Java over the years, have
you had an understanding as to whether or not the
language is free for use?

A. My understanding like all, you know, other sim-
ilarly – and, actually, I’m not aware of programming
languages that aren’t free for use.

Q. And how about Java APIs? Have you had an
understanding over the years as a Java programmer
as to whether Java APIs were free for use?

42
A. My understanding is they would be. Otherwise,

how could you write meaningful programs without,
you know. . .

Q. You were asked some questions earlier about
the time you spent working at the company called
Danger related to development of the Hiptop; do you
recall generally those questions?

A. I do recall.

Q. You also testified that you had learned that
Danger took a license from Sun eventually, is that
right?

A. That was my understanding, yes.

Q. Did you have an understanding as a Danger
employee as to why it took that license?

A. My understanding was that we felt that the
company –

* * *

[1018] A. Sure. I have a bachelor’s degree in physics
and computer science from Clarkson University. And
I have a master’s degree in computer science from
Western Polytechnic Institute.

Q. And are you familiar with the Java
programming language?

A. Yeah.

Q. When did you first learn to program in the Java
language?

A. First learned as an undergraduate, I believe in
the – my last two years of college, which I think would
have been ’97-’98.

43
Q. How did you learn to program in the Java lan-

guage?

A. I found a online tutorial like a web page that
kind of taught you how to program. So I sort of self-
taught myself from a website.

Q. And did that tutorial include any instruction
about the Java APIs?

A. Yeah, definitely.

Q. And in your experience – so how many years
have you been programming in Java?

A. Off and on, probably about 10 to 12, I guess.

Q. And in your 10 to 12 years of programming in
the Java programming language, have you ever writ-
ten a Java program that didn’t use the Java APIs?

A. Uhm, no.

Q. You testified a little bit about compatibility and
in particular about the Compatibility Definition Docu-
ment and the

* * *

44
[1646] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOOGLE, INC.,

Defendant.
————

San Francisco, California
April 25, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

 [1687] Are you talking about programs that were
previously written in Java or that were not previously
written in Java?

THE WITNESS: That were not previously written
in Java.

THE COURT: Then the transcript was correct. All
right.

THE WITNESS: I’ll slow down a little bit.

THE COURT: Okay.

45
BY MR. VAN NEST:

Q. How many engineers at Google worked on the
Android platform during this period from ’05 to ’08?

A. Well, we started with – you know, we were only
eight people when we got acquired, and I think four or
five of those were actual engineers. And then over the
process of the development of the platform, we hired a
bunch of people. By the time we shipped Version 1.0 in
2008, there were about 85 or 90 engineers on the pro-
ject.

Q. And did that number continue to grow from
2008 on?

A. Yes. It continues to grow.

Q. Can you give the jury an estimate of how many
lines of source code were written or contributed to
make up the whole stack?

A. So, yeah. I mean, it’s not done. It’s always evolv-
ing and it’s always getting bigger. Every time some-
body comes into work, they are adding functionality to
the platform.

* * *

[1769] already in evidence in this case. Do you recog-
nize this?

A. I recognize the cover, certainly.

Q. And what does it look like to you?

A. This looks like the Java Language Specifica-
tion, the book that I just mentioned.

Q. Okay. And was this one of the books you read to
learn how to program in Java?

A. It was.

46
Q. All right. Did you actually read this book?

A. Uhm, cover to cover, actually.

Q. Did the documentation you reviewed to learn
how to program in Java include discussion of Java
APIs?

A. Uhm, I’m sorry, say again please.

Q. Sure. Did the documents you reviewed, the trea-
tises and things that you reviewed to learn how to
program in Java include any discussion of Java APIs?

A. Oh, yeah, absolutely.

Q. And throughout the course of your history as a
Java programmer, did you consider yourself free to use
the Java programming language?

A. Oh, yeah, I did.

Q. And also during your career in working in Java
programming, have you had an expectation as to
whether or not you could use Java APIs as part of
programming in the language?

A. It’s really impossible to use the language
productively

* * *

[1781] THE COURT: Is an API the same thing as a
package? If not, what is the difference?

THE WITNESS: Well, you can kind of slice and dice
APIs in many ways. Sometimes an API – and it kind
of depends on context.

You might – sometimes you might talk about an API
being just a single method. So you could say, well,
Math.max, that’s an API, but you could also talk about
the API of Java.lang or, you know, the API – or you

47
could even say the API of a set of – of a set of packages.
And it’s all kind of contextual.

THE COURT: Is there a “yes” or “no” answer to my
question?

THE WITNESS: I’m sorry.

THE COURT: I asked: Is an API the same thing as
a package?

THE WITNESS: Not necessarily, no.

THE COURT: Is it ever the same thing?

THE WITNESS: It could be, yes.

BY MS. ANDERSON:

Q. Let’s talk about the core library and the work
that you were doing. Did you have a role in determin-
ing which packages would be implemented as part of
Android’s core library?

A. I did.

Q. And what was your role?

[1782] A. My role was to, using my sort of
experience and taste, figure out a set of – a set of
packages that are associated – that would be
associated with the Java programming language, to
figure out that set of packages that made sense to
implement in the context of Android.

Q. Did your determination of what packages would
be implemented in the core library have anything to
do with what you thought were expectations of Java
language programmers?

A. Yes, absolutely.

Q. And what did it have to do with that?

48
A. Well, you know, I was talking a bit about, like,

what’s in people’s heads as part of what it means to
be an API. And so as a Java programmer, as, say, a
typical Java programmer, there’s certain of these APIs
which you just sort of, like, fundamentally think of as
kind of part of – part of the system that you can just
use without really having to think too much about it.

And there are other – there are other packages
where it might – you know, it might not be necessary,
but it would be surprising to not find them. And, you
know, there’s kind of various – you know, you can sort
of, like, make various determinations about, say, any
given API, any given package, any given method, any
given class to figure out – you know, to at least sort of
have a best guess at, well, if I were a programmer
programming on this system, would I – would I [1783]
expect that to be there? Would I want it to be there?
Or would I just not miss it?

And my job was sort of to kind of sift through all of
that and come up with a nice and consistent set of APIs
that we have would then implement and provide to
developers.

Q. Was it your goal to assure that the packages
that you think Java language programmers would
expect to see there, to be able to use the Java language,
be present in the core library?

A. Yes.

Q. Are you familiar generally with the idea that
there are certain Java Platforms out there; Java ME,
Java SE, Java EE? Have you heard about those gener-
ally?

A. I recognize those names. Yes.

49
Q. Did Android implement all the API packages

present in any particular Java Platform?

A. No.

Q. All right. And why not?

A. That wasn’t a goal of the project. The goal of the
project was to provide something that was familiar to
developers. It wasn’t to provide any particular preex-
isting set of packages.

Q. Did you make any judgments in deciding what
packages would be implemented in the core library
based on whether or not certain APIs are even appro-
priate for a mobile platform?

[1784] A. Yeah, absolutely.

Q. And, please, explain what you mean by that?

A. Well, if you look at the – say, the universe of
packages that have been made for the Java language
in general, some of them just don’t really apply in – or,
you know, didn’t apply in the case of what we were
doing with Android.

And you can remember that, again, the point was to
be a good mobile platform and there are certain con-
straints that that makes. You know, you can assume
that the thing that you’re running on is running on a
battery, and that’s – that’s a particular limitation. You
can know that there’s going to be less memory availa-
ble than, say, on a desktop or a server. You’ll know
that, say, the typical CUP speed is going to be slower
than you would find on a – you know, on a desktop or
server. And you’ll also know that – just the sorts of
things that you would do as a mobile application are
going to be different than the things that you would do
if you’re, say, sitting in a data center running a web
server, for example.

50
It’s just – there’s different – there are different needs.

And so to the extent that some of those needs are rep-
resented in potential Java packages, those are Java
packages that we wouldn’t necessarily – you know, or,
we wouldn’t really want to – to have an implementa-
tion for, especially in that it takes – implementation
takes up space and, you know, storage space on a
mobile device an also limited.

[1785] Q. So did you, in fact, exclude from the API
packages in the core library certain Java language
APIs because you believed they were not appropriate
for the mobile platform?

A. That’s right.

Q. With respect to the API packages that Google
actually did implement as part of the core library, did
Google use Sun’s source code for that implementation?

A. No.

Q. All right. Where did the source code implemen-
tation come from for the API packages that are imple-
mented as part of the core library?

A. There are a few different sources. Would you
like me to enumerate?

Q. Yes. Please explain to the jury, generally speak-
ing, where the source code came from?

A. Okay. One of the bigger sources of code that we
used was a project called Apache Harmony. Apache
Harmony is itself a large body of code written in Java
and other languages, and it – it, itself, is an imple-
mentation of a Java language platform.

And Harmony itself wasn’t appropriate to use entire-
ly, but as an Open Source project it was – it was actu-
ally a, you know, sort of expected use of its code for it

51
to be incorporated into other Open Source projects as
Android was and, in fact, the license was exactly
compatible. So that [1786] was one major source.

Another source was actually a project called Bouncy
Castle, and it’s an implementation of a bunch of APIs
in Java that made sense to include in Android.

There are a few other Open Source libraries that we
used. And, in addition, we wrote a lot of code from
scratch ourselves and we had, we had a third-party
contractor also write a bunch of the – a bunch of the
code.

Q. And with respect to the 37 packages that we’re
talking about in this case, did any of the code for the
37 purely come from Apache or purely come from
Google?

A. I think if you look at any given package, it
was – it was always – it always ended up being a mix
of code from Google and code from, you know, one of
the other sources.

Q. Okay.

THE COURT: May I ask a question? Can I ask a
question on this subject?

MS. ANDERSON: Of course, your Honor. Thank you.

THE COURT: I’m trying to understand, and maybe
the jury is trying to understand, and they are probably
way ahead of me, but what was and was not the same
as between Java on the one hand and Android on the
other?

Here is what I hear you saying, but you tell me if
this is right. Here is the part that was the same, the
name; true?

52
[1787] THE WITNESS: You mean, of the – say, of a

method or a class?

THE COURT: Or – yeah, the name. I guess – what
goes into a name? You tell me.

THE WITNESS: So maybe – maybe this is what
you’re trying to get at. So let’s just talk about -

THE COURT: Go ahead.

THE WITNESS: So let’s just narrow and talk about
Math. max for a second.

THE COURT: Okay.

THE WITNESS: The name of the class Math or in
the case of Java it’s going to be Java.lang.Math, that
is going to have to be represented in implementation
for – of – of that API.

The name “max” is going to have to show up in the
source code as well.

THE COURT: It’s going to be the same on the Java
version and the Android version?

THE WITNESS: That’s right.

THE COURT: All right. And as I understand it, you,
in fact, wanted to do that so that the programming
community would feel comfortable using the same
terminology?

THE WITNESS: Yeah. And, actually, not even just
a matter of comfort, but there’s a lot of source code out
there that wasn’t – you know, wasn’t written by – well,
that was [1788] written by lots of people that already
existed that could potentially work just fine on
Android. And if we went and changed all the names of
things, then that source code wouldn’t just work –

53
THE COURT: All right. So the names are the same

literally symbol-by-symbol.

THE WITNESS: Uh-huh.

THE COURT: Java versus Android, true?

THE WITNESS: If I understand you correctly, yes.

THE COURT: All right. And then the declarations,
the same, right?

THE WITNESS: Umm, the – there’s a little – a little
bit of leeway in the declarations in that there are –
there are variable names that are kind of built into
declarations in the Java programming language, and
there would be leeway in those, but in the rest of the
declaration this would be none.

THE COURT: So like in the example of max where
you can put in two – compare two numbers, you might
have X and Y and they may have A and B.

THE WITNESS: That’s right.

THE COURT: But otherwise it’s the same?

THE WITNESS: That’s right.

THE COURT: All right. But then those are the parts
that are the same.

* * *

54
[1879] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOOGLE, INC.,

Defendant.
————

San Francisco, California
April 26, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

 [1961] just walk up to it and say, “Beep.” You would
need to know, okay, how do I generate sound? And
what are the different functions that are available for
me to generate sound? And now how do I write an
instruction in such a way that I can use the underlying
sound library to cause a beep?

THE COURT: From memory do you know what the–

THE WITNESS: I do not.

THE COURT: You would have to look it up some-
where?

55
THE WITNESS: I’d have to look it up. I’d have to

look at the specs to know that.

THE COURT: Okay. Go ahead.

BY MR. VAN NEST:

Q. Mr. Schwartz, did Sun promote the Java lan-
guage APIs along with the language?

A. Absolutely. We had to, if you wanted to see that
language be broadly accepted.

So it’s insufficient to just give you a language because
what do you do with it? I mean, how do you now write
an application?

So those APIs enabled people to write really full,
complete applications that leveraged all the technol-
ogy that was underlying the platform. So the combina-
tion of the language and the APIs, the distribution of
those across the world, is what enabled the effect we
were seeking, which is broad scale adoption of the
platform that would allow us to [1962] bypass Microsoft
Windows.

Q. So were the APIs simply marketed along with
the language? In other words, free and available for
everyone?

A. Yes. Absolutely. We talked about open APIs,
and then you compete on implementations. And what
that means is we all had the same set of APIs, but
we would then create products, the virtual machine
specifically or the technology that underlies the lan-
guage, to go off and perform – I’m doing a bad job of
explaining.

Q. Let me ask this question, Mr. Schwartz. You’re
doing a fine job.

56
Were the APIs ever sold or licensed separately from

the language?

A. No, of course not.

Q. And they were considered free and available as
part of the language?

A. As part of the platform, yes.

Q. Now, you were talking about implementations
being separate.

A. Yes.

Q. Can you explain to the jurors what you mean by
that? What do you mean by a separate implementation
of a program?

A. So just because you’ve written an application to
make a beep – you know, if I write it, you can write it
on your note pad right now. It’s not going to do any-
thing. You actually

* * *

[2091] better language for beginners and for people
that didn’t want their programs to crash.

Q. And have you taught courses specifically in the
Java language?

A. I have taught many courses that use Java, yes.

Q. And when you taught those – have you taught
introductory courses in the Java language?

A. I have taught introductory courses.

Q. Have you ever said anything about APIs in any
of your introductory level courses in the Java lan-
guage?

57
A. We discuss with all our students that we want

to write programs that actually do something. And
when programs do something, they need to use APIs.

So we absolutely talk about APIs so that our pro-
grams can do something interesting and useful.

Q. And are there any sort of standard reference
materials relating to the Java programming language
that you’re familiar with?

A. There are. There are books on the Java
programming language. We’ve seen some of those in
court, is my understanding.

Q. We’ve seen a book in court called the Java Pro-
gramming Language Specification. You’re familiar
with that?

A. Yes, I am.

MR. BABER: May I approach, your Honor?

* * *

58
[2128] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOOGLE, INC.,

Defendant.
————

San Francisco, California
April 27, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

 [2162] Q. Would it be possible for you to write a
program or not?

A. I could write a very simple program, yes.

MR. BABER: Your honor, may the professor step
down?

THE COURT: Of course.

(Witness steps down)

THE COURT: Do we have a good bold magic marker?

MR. BABER: We have a brand-new black magic
marker, and we have a red one.

59
THE COURT: Okay. You can come up, and remem-

ber to keep your voice loud and clear.

BY MR. BABER

Q. Professor, is there a program that you could
write that would show how programmers would use an
API?

A. There are many simple programs. I think one
program that might resonate what people do is a
program that would go over the internet, grab a web
page and print it, since most people have used a
browser to be online.

Using the Java APIs, I can specify a location on the
internet, read the contents of that website, and then
cause them to be displayed on my screen.

Q. And how many steps would be in that program
that you’re talking about?

A. Those three steps that I just talked about,
specify where to go on the internet – actually, make a
connection to that location on the internet, and then
read it, and display it on [2163] the screen. Those are
the three steps that I’d write in my program to just
illustrate how to call the libraries that are provided
with android and Java.

Q. Okay. Could you do so?

A. Yes. We’ve heard already that the components
of an API in a class in Java include the package and
the class and the method. So if I’m writing a program,
I have to – I have to write it in a class. That’s what
Java language requires, that I write a class. So I’m
going to specify the class, and I specify that by writing
kind of a class signature. I will say, “public class
webReader.”

60
So I have to specify that it’s a class, and I have to

give it a name. I’m going to implement it, so I’m going
to put a curly brace there and a curly brace there
because that’s where my code is going to be.

And Java requires that all classes be in a package.
So I’m going to name my package at the very top. I’m
going to write package. And I’m using the name
simple, because this is a simple example. So I’m in the
class webReader, in the package Simple, which means
using – well, we’ve heard this phrase, Java.lang. This
would be simple.webReader. That’s where my code is
going to be.

(Witness writing on demonstrative.)

A. And now I need to write a method –

Q. Can I ask my question first, Professor
Astrachan. Just so [2164] we’re clear, even though it
has a name of simple.webReader, is what you’re about
to write, does that become a part of the API?

A. No, this would not be part of the API. This is my
own code I’m going to call into the API. This is not part
of the API. This is –

I’m a client programmer. I might have been hired to
write a program to go online. So this is not part of the
API. I’m going to use the power of the API in that
library to read a web page and display it, but this is
not part of the API. This package simple is not one of
the 37 packages that we have heard about at all.

Q. Please continue.

A. Because I’m a careful programmer, I’d like to
make this my work. I’ll put a comment in it so that
we’ll know, and anybody using this code will know,
that it’s me. I will put a stylized comment indicating
that this is my work. I will say “@author.” And I’ll just

61
write my “OLA,” that’s my abbreviation for my name so
that I don’t have to spend time writing it.

This is the comment, and it indicates that I’m the
author of this class and this method. And that way
people that see this code will know that’s me. That’s
not part of the code. That’s just a comment for people
reading this to know that I’ve wrote it.

Now, I need to make – this is a program, and I’m
sure you’ve heard of computer programs before. And it
turns [2165] out that in Java to make a program, as
opposed to a library of classes a program runs, the
library is code that’s called when a program runs. And
in Java you have to have a special name of the method
that’s executed when a program runs.

So I would write that. And I know, because I’ve writ-
ten a lot of Java programs, what it – what this method
signature looks like. It’s the method signature that
every program needs. APIs don’t need this method sig-
nature because they are not programs. They are code
that I call.

So I just know I’m going to have to write “public stat-
ic void main, parenthesis, string, bracket, bracket, r,
parenthesis, curly brace, curly brace.”

That’s kind of a mouthful, but once you have written
a lot of programs, you just kind of remember that. And
sometimes it might be typed automatically if you’ve
got lucky by the programming environment you’re in.

My programming environment is this easel, so I’m
writing it out by hand, “public static void main.” This
is the method signature for my class so that this code
will run on my computer. It allows Java to run this
program.

62
And I still haven’t called the API to do the three

things I said it was going to do, which is specify the
location on the internet, open a connection to that loca-
tion, and then print the contents of that we object page.

So now I’m going to get ready to do that.

[2166] Q. What would come next in your code?

A. I need to specify the location on the internet.
That’s called a URL. I know, because I have some expe-
rience, that network stuff in Java is in the Java.net
package. So I know what I need is Java.net.url. That’s
the class that I’m going to use, Java.net.url.

I’m going to specify a website. And the way you
create a new location on the internet is to say “new
Java.net.url.” And I have to tell it where to go on the
internet. I’m going to go to cnn.com, so I write “http://
cnn.com.”

So I’ve specified the location on the internet. I made
a URL. That’s what it’s called when you use a web
browser. And I used the Java.net.url class. I created a
new Java.net.url object. I gave it a name “site.” That’s
a website. And now I’m going to use that.

So I’ve done one step, specify a location on the inter-
net by using the Java.net.url class in the Java.net
package, and I know that that class exists because I’ve
written code before.

Q. What would be the second step?

A. I need to open a location to that website to be
able to read it. And since I’m going to read it, I know –
again, because I’m experienced – that the location on
the internet, I need a connection to it, and it’s going to
stream information [2167] to me. So I know what I
need is a Java.io.inputStream, and that’s the source of
my information. So the class is inputStream in the

63
package Java.io. And I get that by saying “open-
Stream.”

So I’ve called a method in the URL class. It says
“site.openstream.” OpenStream is the method. I’m
going to go over the internet, make a connection to
cnn.com, and I’ve got that connection, and now I’m
ready to read it and print it on my screen.

Q. Is there another step for that?

A. One more step to print it on the screen:
system.out.print. I’m going to take the source, and I’m
going to read it. So I call the method read, which is in
the Java.io.inputStream. It allows me to read the
stream.

This is a lot of steps. It’s specify location, make the
connection to it, read it, and print it on my screen.
Those are the three steps that I need to specify
location, make the connection to it, and cause it to, the
contents of that website to be displayed on the screen.

I took one small liberty. This actually prints just one
character from the website. It would be a little more
complicated to read all the characters from the web-
site. That would be just one other method, but this
illustrates how to call the libraries in the packages
that we have been hearing about.

[2168] Q. Professor, you testified that in order to use
the prewritten code in the libraries, the programmer
has to use the method signature that’s defined under
the specification exactly.

Do you recall that testimony?

A. Yes. I talked about that.

Q. In this program you’ve just written– first of all,
is this program now complete?

64
A. That program is complete.

Q. In this program, these three lines of code, did
you, in fact, include any method signatures that would
call for something, prewritten code, in any of the
libraries?

A. Yes. I used essentially four different method
signatures, four.

Q. Can you, using a red marker, just identify the
method signatures that you used to invoke the code in
the libraries?

A. I called the constructor for the URL class – we
heard some testimony, I think from dr. Bloch, that
constructors are like methods. They are pretty similar.
Sometimes people talk about them as different, but
they are almost the same.

So I called the URL constructor right there. That’s
code in the Java libraries.

I called the openStream method. That’s a method
that’s in the URL class. And I know that I don’t send
it anything, and it returns a stream, an input stream.
I have to [2169] understand what to pass to it, which
is nothing, and what I get back, which is an input
stream.

Then I called the read method, and it gives me back
a character from that stream.

And I called the print method to print it on my
screen.

So those are the four methods I called. All of those
are in the API packages that we have heard about.

Q. Are they in the same package or different pack-
ages that you just – if I – quickly, how do you know what
package –

65
A. Java.net.url, that’s the class in the package.

Java.net is the package, URL is the class.

site.openStream, that’s in the URL class. The
method is openStream.

Read is in the inputStream class of Java.io.

And print is in the outputStream class of
system.out, which is actually in Java.io, also.

So I have Java.url, Java.net.url, Java.net.url, Java.io,
Java.io.

Q. How many packages have you called on, in just
writing those three lines of code?

A. I called on Java.lang, which I left out.
Everything uses Java.lang. So Java.lang, Java.net,
and Java.io. Three packages.

Q. And now are these actual, real signatures, what
you’ve [2170] written on the board, or were they just
for illustrative purposes, examples?

A. These are exactly the method signatures that
you would need to call.

Q. And how do you know that those are exactly the
method signatures?

A. I know these are the method signatures because
I have had some experience writing programs, and
that’s how I know that these are the right method
signatures.

Q. Have you memorized these method signatures?

A. I haven’t sat down with a piece of paper to
memorize them. Because I have written code for so
long, I know the ones I use often. They are in my head.

66
Q. And now when you wrote out those method

signatures exactly as they appear in the specifications,
did you copy them from the specifications?

A. No. I just used these method signatures. I used
them here so that I could write my code. I’m using
these signatures. I need to use them to call the librar-
ies. As a programmer you rely on those libraries. I use
them to call the library code.

Q. And so would or would not this program
actually run if you put it on a computer?

A. This program would run. I left out an exception,
but it would run.

[2171] Q. And what would it show on the screen?

A. It would show the first character from cnn.com
on my screen.

Q. In order to actually have it show pictures and
other content from cnn.com, tell the jury briefly what
else you would need to add to this program, if any-
thing?

A. If I wanted to show pictures – right now all this
does is read a stream of information. If I wanted to
show pictures, I would have to call a library that dis-
played pictures. This just prints words, characters.

To make a picture appear, I would need a different
library in a different package to cause pictures to be
displayed on a screen.

Q. To do that, would you need to use additional
API methods that have been implemented in API?

A. I would use a library that allowed that, other
classes in other packages and other methods to cause
those pictures to be displayed. This would not do that.

67
Q. And would this program run on the Android

platform?

A. This program would run on the Android
platform, yes.

Q. Would this program run on a computer that had
the Java platform on it?

A. Yes, it runs on a Java platform as well.

Q. Professor, do you have an opinion whether, from
a Computer Science perspective, Android and Java
would be compatible with [2172] respect to these three
methods you just invoked in your program?

A. Yes. Since this runs on both the android
platform and the Java platform, that’s my definition
for what it means to be compatible, that the same code
runs on both platforms.

Q. Do you have an opinion, professor, whether,
from a Computer Science perspective, Android and
Java are compatible with respect to the methods and
other constructors and other items in the classes of the
37 accused packages?

A. Yes. For those 37 packages, the code that I write
on one platform will run on the other platform.

Q. Now, you’ve testified you used three or four
AP – you invoked three or four methods from the API
in writing this program; is that right?

A. Yes, that’s correct.

Q. Approximately, can you tell us how many lines
of code writing did you save by invoking those four
methods rather than just writing a completely new
program that didn’t use any prewritten code from the
libraries?

68
A. By writing these, I’ve saved probably, not even

probably, absolutely a thousand lines of code. For me
to write this out all by myself without using those
libraries, it would be a thousand lines of code.

Q. All right. Thank you.

THE COURT: I’ve got some questions before he
leaves.

* * *

[2183] than the implementation code in Java.

Q. Have you formed an opinion, Professor, regard-
ing what, if anything, accounts for the fact that the 37
packages in both platforms have the same structure,
organization, and use the same names?

A. Those same names that we have in android and
in Java are needed so that the code inter-operates, so
that code I write can be reused in another situation.
So for the functionality of using those APIs, the meth-
od signatures need to be the same so that the code will
inter-operate and meet programmer expectations.

Q. Does use of the same structure and organization
for the packages in android and the same names, does
it or does it not serve any functional purpose in
Android?

A. The language specification says I must use
package, class and method names. And the functional-
ity that those complete signatures provide is what
allows me to use the libraries on both – use the code
I write, like that code up there, on both platforms.
Because I’m using those method signatures, my code
will function the same on both platforms.

Q. All right. I’m going to ask you now about a
second comparison, professor. I would like you now to

69
compare what we see on the third line of the chart,
which is, I want to take the APIs in both platforms.

So in the Java platform they are all Java packages;

* * *

[2202] THE WITNESS: the functionality provided
by those packages is necessary.

THE COURT: All right. Thank you.

Go ahead.

BY MR. BABER

Q. Professor, do you have an opinion regarding
whether or not having these 37 packages in android is
or is not something that’s required to meet the expec-
tations of programmers who are writing in the Java
language?

A. I think it’s required to meet expectations of Java
programmers.

Q. And do you have an opinion regarding whether
having these 37 packages in android is or is not required
by expectations of industry, of people who use the pro-
gramming language?

MR. JACOBS: Lacks foundation, your honor. He has
no idea what industry requires.

THE COURT: Are you qualified to answer that
Question?

THE WITNESS: I believe I am qualified to answer
that Question.

THE COURT: Why would you be qualified?

THE WITNESS: Because my students want jobs in
industry, and industry comes and tells me what the

70
characteristics my students need to go get jobs in
industry are.

* * *

[2291] Q. How about Java, Dr. Mitchell. Let’s talk
about writing in the Java language. When a program-
mer is writing a new program in the Java language,
he or she expects to have available APIs that will
perform all the functions that are in these 37 pack-
ages; isn’t that right?

A. I think if you said write something in Java, that
might be the default assumption, but if you explain
more about the context, someone would happily –

Q. And, in fact –

MR. JACOBS: can we let the witness finish his
Answer.

THE COURT: Yes. Please let the witness finish.

Had you finished your answer?

THE WITNESS: I have now, yes.

MR. BABER: I apologize, Dr. Mitchell. Just trying
to watch the clock.

BY MR. BABER

Q. If, instead of using the specifications for the
packages as they are in the Java platform, and as
programmers know them, if instead you had written
completely new APIs, would programmers be able to
access these functionalities using the names that they
have memorized and have used for years?

A. The new APIs use different names, then the old
names would not work.

71
Q. So it’s true, is it not, Dr. Mitchell, that if you wrote

[2292] completely new APIs, experienced
programmers who wanted to access well-known
functions that are contained in these 37 packages
would have to learn completely new names and
wouldn’t be able to use what they have been using for
years; isn’t that right?

A. They would have to adapt to the new API. And
whatever the new API gave them, that would be the
programming context.

Q. Okay. Now, you talked about Dr. Astrachan’s
program down there that he wrote. And do you recall
his testimony about the entry point for the platform;
that there might be a slight difference between the
Java platform and the android platform, as to how you
first communicate with a program that someone has
written?

A. Yes, I do.

Q. And you agree with what he said about that?

A. I believe so, yes.

Q. So is there anything you would do to Dr.
Astrachan’s program? If somebody said, “we need this
to be executable, compilable on android,” would you do
anything to it, other than change that word “main,” to
use the appropriate protocol entry point for Android?

A. I think the source code is fine, module of that
change. There are other steps you would follow with
that code that are different.

Q. So as to the – as to the three lines of code that

* * *

72
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

FINAL CHARGE TO THE JURY (PHASE ONE)
AND SPECIAL VERDICT FORM

————

1.

Members of the jury, it is now time for me to give
you the final instructions, including instructions on
the law that governs this case. A copy of these instruc-
tions will be available in the jury room for you to
consult as necessary.

It is your duty to find the facts from all the evidence
and to decide whether the side with the burden of proof
has carried that burden, applying the elements of
proof required by the law, elements I will provide you
in a moment. In following my instructions, you must
follow all of them and not single out some and ignore
others. You must not read into these instructions or
into anything the Court may have said or done as
suggesting what verdict you should return — that is a
matter entirely up to you.

73
2.

The evidence from which you are to decide what the
facts are consists of:

1. The sworn testimony of witnesses, whether
presented in person or by depositions;

2. The exhibits received into evidence; and

3. Any stipulated facts or facts I told you were
deemed to be evidence.

3.

Certain things, however, are not evidence, and you
may not consider them in deciding what the facts are.
I will list them for you:

1. Arguments, statements and objections by
lawyers are not evidence. The lawyers are
not witnesses. What they have said in their
opening statements, closing arguments and at
other times is intended to help you interpret
the evidence, but it is not evidence itself. If the
facts as you remember them differ from the
way the lawyers have stated them, your
memory of them controls.

2. A suggestion in a question by counsel or
the Court is not evidence unless it is adopted
by the answer. A question by itself is not
evidence. Consider it only to the extent it is
adopted by the answer.

3. Testimony or exhibits that have been excluded
or stricken, or that you have been instructed to
disregard, are not evidence and must not be
considered. In addition, some testimony and
exhibits have been received only for a limited

74
purpose; where I have given a limiting instruc-
tion, you must follow it.

4. Anything you may have seen or heard when
the Court was not in session is not evidence.

4.

Evidence may be direct or circumstantial. Direct
evidence is direct proof of a fact, such as testimony by
a witness about what that witness personally saw or
heard, or did. Circumstantial evidence is proof of one
or more facts from which you could find another fact.
By way of example, if you wake up in the morning and
see that the sidewalk is wet, you may find from that
fact that it rained during the night. However, other
evidence, such as a turned-on garden hose, may explain
the presence of water on the sidewalk. Therefore,
before you decide that a fact has been proved by
circumstantial evidence, you must consider all the
evidence in the light of reason, experience and common
sense. You should consider both kinds of evidence. The
law makes no distinction between the weight to be
given to either direct or circumstantial evidence. It is
for you to decide how much weight to give to any
evidence.

5.

In deciding the facts in this case, you may have to
decide which testimony to believe and which testimony
not to believe. You may believe everything a witness
says, or part of it or none of it. In considering the
testimony of any witness, you may take into account:

1. The opportunity and ability of the witness to
see or hear or know the things testified to;

2. The witness’ memory;

3. The witness’ manner while testifying;

75
4. The witness’ interest in the outcome of the case

and any bias or prejudice;

5. Whether other evidence contradicted the
witness’ testimony;

6. The reasonableness of the witness’ testimony
in light of all the evidence; and

7. Any other factors that bear on believability.

6.

You are not required to decide any issue according
to the testimony of a number of witnesses, which does
not convince you, as against the testimony of a smaller
number or other evidence, which is more convincing to
you. The testimony of one witness worthy of belief is
sufficient to prove any fact. This does not mean that
you are free to disregard the testimony of any witness
merely from caprice or prejudice, or from a desire to
favor either side. It does mean that you must not
decide anything by simply counting the number of
witnesses who have testified on the opposing sides.
The test is not the number of witnesses but the
convincing force of the evidence. You should base your
decision on all of the evidence regardless of which
party presented it.

7.

A witness may be discredited or impeached by
contradictory evidence or by evidence that, at some
other time, the witness has said or done something or
has failed to say or do something that is inconsistent
with the witness’ present testimony. If you believe
any witness has been impeached and thus discredited,
you may give the testimony of that witness such
credibility, if any, you think it deserves.

76
8.

Discrepancies in a witness’ testimony or between a
witness’ testimony and that of other witnesses do not
necessarily mean that such witness should be discred-
ited. Inability to recall and innocent misrecollection
are common. Two persons witnessing an incident or a
transaction sometimes will see or hear it differently.
Whether a discrepancy pertains to an important matter
or only to something trivial should be considered by you.

However, a witness willfully false in one part of his
or her testimony is to be distrusted in others. You may
reject the entire testimony of a witness who willfully
has testified falsely on a material point, unless, from
all the evidence, you believe that the probability of
truth favors his or her testimony in other particulars.

9.

In determining what inferences to draw from evi-
dence you may consider, among other things, a party’s
failure to explain or deny such evidence.

10.

Certain charts and summaries have been received
into evidence. Charts and summaries are only as good
as the underlying supporting testimony or material.
You should, therefore, give them only such weight as
you think the underlying material deserves.

11.

Now I will address the burden of proof. In this case,
the preponderance of the evidence standard applies on
all sides, so whoever has the burden of proof on an
issue must carry that issue by a preponderance of the
evidence. When a party has the burden of proof on any
claim by a preponderance of the evidence, it means you
must be persuaded by the evidence that the claim is

77
more probably true than not true. To put it differently,
if you were to put the evidence favoring a plaintiff and
the evidence favoring a defendant on opposite sides of
a scale, the party with the burden of proof on the issue
would have to make the scale tip somewhat toward its
side. If the party fails to meet this burden, then the
party with the burden of proof loses on the issue.
Preponderance of the evidence basically means “more
likely than not.”

12.

On any claim, if you find that plaintiff carried its
burden of proof as to each element of a particular
claim, your verdict should be for plaintiff on that
claim. If you find that plaintiff did not carry its burden
of proof as to each element, you must find against
plaintiff on that claim. This same principle also
applies to defendants on claims or defenses for which
it has the burden of proof.

13.

I will now turn to the law that applies to this case.
Oracle seeks relief against Google for alleged copy-
right infringement. Google denies infringing any such
copyrighted material and asserts that any use by it
of copyrighted material was protected, among other
things, by a defense called “fair use,” which will be
explained below. If you find liability in this phase, we
will consider the extent of damages in the third phase
of the trial. Now, I will give you an overview of copy-
right law in general. Then I will give you a summary
of the claims and defenses at issue in this case. After
that I will give you a further statement of copyright
law to help you in resolving the claims and defenses.

78
14.

By federal statute, copyright includes exclusive
rights to copy a work, rights that lasts for 95 years
from the date of publication. The rights include the
exclusive rights to:

1. Make additional copies or otherwise reproduce
the copyrighted work or to license others to do
so;

2. Recast, transform, or adapt the work, that
is, prepare derivative works based upon the
copyrighted work;

3. Distribute copies of the copyrighted work to
the public by sale; and

4. Display publicly a copyrighted work.

It is the owner of a copyright who may exercise these
exclusive rights to copy. Even though someone may
acquire a copy of the copyrighted work, such as a book
from a bookstore, for example, the copyright owner retains
rights to control the making of copies of the work.

15.

Copyright automatically exists in a work the
moment it is fixed in any tangible medium of expres-
sion, such as putting pen to paper. The owner of the
copyright may then register the copyright by deliver-
ing to the Copyright Office of the Library of Congress
a copy of the copyrighted work and applying via a
registration form, after which the Copyright Office
will either allow or disallow the application. By way of
examples, copyrighted works can include

1. Literary works like books, periodicals and, of
particular interest here, operating manuals;

2. Musical works;

79
3. Photographs and drawings;

4. Motion pictures;

5. Computer programs, also of particular interest
here.

Only that part of the work comprised of original
works of authorship fixed in any tangible medium of
expression from which it can be perceived, reproduced,
or otherwise communicated, either directly or with the
aid of a machine or device, can be protected by copy-
right. To take examples, words can be fixed on paper,
and a computer program can be fixed in the memory
of a mobile phone.

16.

As stated, the owner of a copyright has the exclusive
right to make copies of all or more than a de minimis
part of the copyrighted work, subject only to the right
of anyone to make fair use of all or a part of any
copyrighted material, all as will be explained below.

17.

The copyright confers ownership over the particular
expression of ideas in a work but it never confers
ownership over ideas themselves. For example, if a
book describes a strategy for playing a card game,
the copyright prevents anyone (but the owner) from
duplicating the book itself but everyone is still free to
read the book and to use the strategy, for the idea set
forth in the book, that is the strategy, is not protected
by copyright. And, everyone is entitled to write their
own book about the same game and the same strategy
so long as they do not plagiarize the earlier book.
Again, the main point is that the copyright protects
the particular expression composed by the author.

80
Another statutory limitation on the scope of a copy-

right is that copyright never protects any procedure,
process, system, method of operation, concept, principle,
or discovery. Possibly such things can be claimed
under the patent system or by trade secret laws but
they may not be claimed by copyright. For purposes of
your deliberations, however, I instruct you that the
copyrights in question do cover the structure, sequence
and organization of the compilable code.

18.

I will now turn to the claims in this case. Oracle
claims Google has infringed its copyrights in two
registered works, namely, “Java 2 Standard Edition,
Version 1.4” (TX 464) and “Java 2 Standard Edition,
Version 5.0” (TX 475), and the applications leading to
those registrations appear at TX 3529 and 3530.
Among other things, the registered copyrights gener-
ally include the compilable code and documentation
for the Java API packages. The main issues you must
decide concern these two general types of material
contained therein, namely “compilable code” and “docu-
mentation.” As used in these instructions and the
Special Verdict Form, the term API “compilable code”
refers to method names and class names, declarations,
definitions, parameters, organization, and implemen-
tation (whether in the form of source code or object code)
implementing the various API functions. The “compilable
code” does not include the English-language comments
you have heard about. Even though such comments
are embedded in the software program, these English-
language comments do not get compiled and are not
used by the computer to perform API functions. Instead,
the English-language comments are part of what I will
call the API “documentation,” sometimes referred to
as the “specification,” a term that encompasses all of

81
the English-language comments. The term “API
documentation” includes all content — including
English-language comments as well as method names
and class names, declarations, definitions, parameters,
and organization — in the reference document for
programmers. Again, please remember that although
these English-language comments appear in the soft-
ware program listing, they can be extracted for handy
reference in the guides made available to program-
mers. So, I will be referring to the “API compilable
code” and to the “API documentation.”

19.

The copyrighted Java platform has more than 37
API packages and so does the accused Android plat-
form. As for the 37 API packages that overlap, Google
agrees that it uses the same names and declarations
but contends that its line-by-line implementations are
different (with the exception of the rangeCheck lines),
a contention not disputed by Oracle. Instead, Oracle
contends that Google copied the structure, sequence
and organization of the compilable code for the 37 API
packages as a group. Google agrees that the structure,
sequence and organization of the 37 accused API
packages in Android is substantially the same as the
structure, sequence and organization of the corre-
sponding 37 API packages in Java. Google states,
however, that the elements it has used are not
infringing and, in any event, its use was protected by
a statutory rule permitting anyone to make “fair use”
of copyrighted works.

20.

Now, let me tell you the law about names. The
copyrights do not cover the names, such as those given
to files, packages, classes, and methods, because under

82
the law, names cannot be copyrighted. This applies to
the name lava” as well. Although “Java” has been
registered as a trademark, there is no trademark
claim in this lawsuit. The name java cannot be copy-
righted, nor can any other name, whether one or two
words or longer in length. While individual names are
not protectable on a standalone basis, names must
necessarily be used as part of the structure, sequence,
and organization and are to that extent protectable by
copyright.

21.

With respect to the API documentation, Oracle
contends Google copied the English-language comments
in the registered copyrighted work and moved them
over to the documentation for the 37 API packages in
Android. Google agrees that there are similarities in
the wording but, pointing to differences as well, denies
that its documentation is a copy. Google further
asserts that the similarities are largely the result of
the fact that each API carries out the same functions
in both systems. Google again asserts the statutory
defense of fair use.

22.

The issues just discussed center on the API pack-
ages. Apart from the API issues, I will now describe a
list of specific items that Oracle contends were copied
verbatim by Google. Specifically, Oracle contends that
Google copied verbatim certain lines of compilable
code, namely the rangeCheck method in two files,
other source code as compiled into object code in seven
“Impl.Java” files and one other file and, finally, certain
English-language comments in two other files. Google
responds that any verbatim copying by it was excus-
able under the law as “de minimis.” For purposes of

83
this group of infringement contentions, the structure,
sequence and organization is irrelevant and the
comparison must be made to the work as a whole as
defined in a moment.

23.

Now, I will turn to the more detailed law. In order
to prove infringement, Oracle must first prove that
Oracle’s work is original and that it is the owner of the
part of the work allegedly copied. For your purposes,
the parties agree that there are no issues of ownership
or originality for you to decide.

24.

Oracle must also prove that Google copied all or a
protected part of a copyrighted work owned by Oracle
and that the amount of copying was more than de
minimis. So, there are two elements Oracle must prove
to carry its burden on infringement, namely copying of
a protected part and that the part copied was more
than de minimis when compared to the work as a
whole. These are issues for you to decide.

There are two ways to prove copying. One is by proof
of direct copying, as where the copyrighted work itself
is used to duplicate or restate the same words and
symbols on a fresh page.

The second way is via circumstantial evidence by
showing the accused had access to the copyrighted
passages in question and that there are substantial
similarities or, in certain instances, virtual identity
between the copyrighted work and the accused work.
The virtual identity test is used when the subject
under consideration is a narrow one and we would
expect certain terms and phrases to be used. This is in
contrast to, for example, a fictional work in which

84
there will be a broad range of creativity, in which case
it is necessary only to prove substantial similarity. In
this trial, you should use the substantial similarity
test for all such comparisons except for those involving
the API documentation, in which case you should use
the virtual identity test. This is because the documen-
tation for the API packages describe narrow technical
functions and it is to be expected that some of the same
words and phrases would likely be used.

25.

To determine whether the copyrighted work and
the accused work are substantially similar, or where
appropriate, virtually identical, you must compare the
works as a whole. I will define the works as a whole in
a moment.

However, in comparing the works as a whole, you
cannot consider similarities to the unprotectable ele-
ments of Oracle’s works. I have instructed you about
the protectable and unprotectable elements of Oracle’s
work.

26.

Now, I will explain the law governing Google’s
defense based on the statutory right of anyone to
make “fair use” of copyrighted works. Anyone may use
any copyrighted work in a reasonable way under the
circumstances without the consent of the copyright
owner if it would advance the public interest. Such use
of a copyrighted work is called a “fair use.” The owner
of a copyright cannot prevent others from making a
fair use of the owner’s copyrighted work. For example,
fair use may include use for criticism, comment, news
reporting, teaching (including multiple copies for
classroom use), scholarship, or research.

85
Google has the burden of proving this defense by a

preponderance of the evidence.

In determining whether the use made of the work
was fair, you should consider the following factors:

1. The purpose and character of the use, includ-
ing whether such use is of a commercial nature,
for nonprofit educational purposes, and whether
such work is transformative (meaning whether
Google’s use added something new, with a
further purpose or different character, altering
the copied work with new expression, mean-
ing, or message). Commercial use cuts against
fair use while transformative use supports fair
use;

2. The nature of the copyrighted work, including
whether the work is creative (which cuts against
fair use), functional (which supports fair use),
or factual (which also supports fair use);

3. The amount and substantiality of the portion
used in relation to the copyrighted work as a
whole. The greater the quantity and quality of
the work taken, the less that fair use applies;
and

4. The effect of the use upon the potential market
for or value of the copyrighted work. Impairment
of the copyrighted work cuts against fair use.

All the factors should be weighed together to decide
whether Google’s use was fair use or not. It is up to you
to decide how much weight to give each factor but you
must consider all factors. If you find that Google
proved by a preponderance of the evidence that Google
made a fair use of Oracle’s work, your verdict should

86
be for Google on that question in the Special Verdict
Form.

27.

With respect to the infringement issues concerning
the rangeCheck and other similar files, Google agrees
that the accused lines of code and comments came
from the copyrighted material but contends that the
amounts involved were so negligible as to be de
minimis and thus should be excused. To be clear with
respect to a different issue. The parties are in agree-
ment that the structure, sequence, and organization of
the API packages is more than de minimis.

28.

Copying that is considered “de minimis” is not
infringing. Copying is “de minimis” only if it is so
meager and fragmentary that compared to the work as
a whole the average audience would not recognize the
appropriation. You must consider the qualitative and
quantitative significance of the copied portions in
relation to the work as a whole. The burden is on
Oracle to prove that the copied material was more
than de minimis.

The relevant comparison is the copied portion
contrasted to the work as a whole, as drawn from
the copyrighted work, not contrasted to the accused
infringer’s work as a whole. For example, if an infring-
ing excerpt is copied from a book, it is not excused from
infringement merely because the infringer includes
the excerpt in a much larger work of its own.

29.

In your deliberations, you will need to make certain
comparisons to the “work as a whole.” It is my job to
isolate and identify for you the “work as a whole.” You

87
must take my identification as controlling if and when
this comes up in your deliberations. This issue arises
when (1) comparing Oracle’s work and Google’s work
for similarity under both substantial similarity and
virtual identity standards, (2) deciding whether
Google copied only a de minimis amount of Oracle’s
work, and (3) evaluating the third factor of fair use:
the amount and substantiality of the portion used in
relation to the copyrighted work as a whole.

Although you have seen that the copyright regis-
trations cover a large volume of work, the entire
registered work is not the work as a whole for these
purposes. This may seem odd to you, so let me give
an example. An entire magazine issue may be
copyrighted but a specific article or advertisement or
photograph may be the relevant work as a whole,
depending on what was allegedly copied.

For purposes of this case, I have determined that the
“work as a whole” means the following: For purposes
of Question No. 1 in the Special Verdict Form, the
“work as a whole” constitutes all of the compilable
code associated with all of the 166 API packages (not
just the 37) in the registered work. This excludes
the virtual machine. Similarly, for the purposes of
Question No. 2 in the Special Verdict Form, the “work
as a whole” means the contents (including names,
declarations and English-language comments) of the
documentation for all of the 166 API packages (not just
the 37) in the registered work. For purposes of
Question No. 3, the “work as a whole” is the compilable
code for the individual file except for the last two files
listed in Question No. 3, in which case the “work as
a whole” is the compilable code and all the English-
language comments in the same file.

88
30.

Unless you find fair use, de minimis, or non-
infringement in Google’s favor, Google had no right to
copy any elements of the Java platform protected by
copyright unless it had a written license to do so from
Sun or Oracle or had a written sub-license to do so
from a third party who had a license from Sun or
Oracle conferring the right to grant such sub-licenses.
The burden would be on Google to prove it had any
such express license or sublicense rights. But in this
trial it makes no such contention. Put differently, if
Google claims a license from a third party, Google has
the burden to prove that the third party itself had the
proper right and authority from Sun or Oracle as to
any of the copyrights owned by Sun or Oracle and used
by Google, for Google could acquire from the third
party no greater right than the third party itself had
in the first place. Similarly, if Google contends that
Oracle or Sun had dedicated elements protected by
copyright to the public domain for free and open use,
the burden would be on Google to prove such a public
dedication but the parties agree that that issue is for
me to decide, not for you as the jury to decide. This
statement of the law regarding licenses is simply to
put some of the evidence you heard in context.

31.

When you begin your deliberations, you should elect
one member of the jury as your foreperson. That
person will preside over the deliberations and speak
for you here in court. I recommend that you select a
foreperson who will be good at leading a fair and
balanced discussion of the evidence and the issues.

You will then discuss the case with your fellow
jurors to reach agreement if you can do so. Your verdict

89
as to each claim and each defense, if any, must be
unanimous. Each of you must decide the case for
yourself, but you should do so only after you have
considered all of the evidence, discussed it fully with
the other jurors, and listened to the views of your
fellow jurors.

Do not be afraid to change your opinion if the
discussion persuades you that you should. Do not come
to a decision simply because other jurors think it is
right. It is important that you attempt to reach a
unanimous verdict but, of course, only if each of you
can do so after having made your own conscientious
decision. Do not change an honest belief about the
weight and effect of the evidence simply to reach a
verdict.

I will give you a special verdict form to guide your
deliberations.

32.

Some of you have taken notes during the trial.
Whether or not you took notes, you should rely on your
own memory of what was said. Notes are only to assist
your memory. You should not be overly influenced by
the notes. When you go into the jury room, the Clerk
will bring in to you the trial exhibits received into
evidence to be available for your deliberations. The
Clerk will also provide you with an index to them.

33.

As I noted before the trial began, when you retire to
the jury room to deliberate, you will have with you the
following things:

1. All of the exhibits received into evidence;

2. An index of the exhibits;

90
3. A work copy of these jury instructions for each

of you;

4. A work copy of the verdict form for each of you;
and

5. An official verdict form.

When you recess at the end of a day, please place
your work materials in the brown envelope provided
and cover up any easels with your work notes so that
if my staff needs to go into the jury room, they will not
even inadvertently see any of your work in progress.

34.

A United States Marshal will be outside the jury-
room door during your deliberations. If it becomes
necessary during your deliberations to communicate
with me, you may send a note through the marshal,
signed by your foreperson or by one or more members
of the jury. No member of the jury should ever attempt
to communicate with me except by a signed writing,
and I will respond to the jury concerning the case only
in writing or here in open court. If you send out a
question, I will consult with the lawyers before answer-
ing it, which may take some time. You may continue
your deliberations while waiting for the answer to any
question. Remember that you are not to tell anyone —
including me — how the jury stands, numerically or
otherwise, until after you have reached a unanimous
verdict or have been discharged. Do not disclose any
vote count in any note to the Court.

35.

Now you are going to begin your deliberations. As
mentioned earlier, you must stay until 1:00 P.M.
today. If you do not reach a verdict by the end of today,
then you will resume your deliberations tomorrow and

91
thereafter. The Court recommends that you deliberate
at least from 8:00 A.M to 4:00 P.M tomorrow and
thereafter. Your schedule is up to you. You may, of
course, take reasonable lunch breaks.

It is very important that you let the Clerk know in
advance what hours you will be deliberating so that
the lawyers may be present in the courthouse at any
time the jury is deliberating.

36.

You may only deliberate when all of you are
together. This means, for instance, that in the morn-
ings before everyone has arrived or when someone
steps out of the jury room to go to the restroom, you
may not discuss the case. As well, the admonition that
you are not to speak to anyone outside the jury room
about this case still applies during your deliberation.

37.

After you have reached a unanimous agreement on
a verdict, your foreperson will fill in, date and sign the
verdict form and advise the Court that you have
reached a verdict. The foreperson should hold onto the
filled-in verdict form and bring it into the courtroom
when the jury returns the verdict. Thank you for
your careful attention. The case is now in your hands.
You may now retire to the jury room and begin your
deliberations.

Dated: April 30, 2012.

/s/ William Alsup
WILLIAM ALSUP
UNITED STATES DISTRICT JUDGE

92
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

SPECIAL VERDICT FORM

YOUR ANSWERS MUST BE UNANIMOUS.

1. As to the compilable code for the 37 Java API
packages in question taken as a group:

A. Has Oracle proven that Google has infringed the
overall structure, sequence and organization of
copyrighted works?

 Yes ______ No ______

(IF YOU ANSWER “NO” TO QUESTION 1A, THEN SKIP TO
QUESTION NO. 2.)

B. Has Google proven that its use of the overall
structure, sequence and organization constituted
“fair use”?

 Yes ______ No ______

93
2. As to the documentation for the 37 Java API

packages in question taken as a group:

A. Has Oracle proven that Google has infringed?

 Yes ______ No ______

(IF YOU ANSWER “NO” TO QUESTION 2A, THEN SKIP TO
QUESTION NO. 3.)

B. Has Google proven that its use of Oracle’s Java
documentation constituted “fair use”?

 Yes ______ No ______

3. Has Oracle proven that Google’s conceded use
of the following was infringing, the only issue being
whether such use was de minimis:

Yes

(Infringing)

No
(Not

Infringing)
A. The rangeCheck method

in TimSort.java and
ComparableTimSort.Java ______ ______

B. Source code in seven
“Impl.java” files and the one
“ACL” file ______ ______

C. The English-language
comments in
CodeSourceTest.java and
CollectionCertStoreParameters
Test.java ______ ______

94
4. Answer the following special interrogatories

only if you answer “yes” to Question 1A.

A. Has Google proven that Sun and/or Oracle
engaged in conduct Sun and/or Oracle knew or
should have known would reasonably lead
Google to believe that it would not need a license
to use the structure, sequence, and organization
of the copyrighted compilable code?

 Yes ______ No ______

B. If so, has Google proven that it in fact reasonably
relied on such conduct by Sun and/or Oracle in
deciding to use the structure, sequence, and
organization of the copyrighted compilable code
without obtaining a license?

 Yes ______ No ______

Your answers to Questions 4A and 4B will be used
by the judge with issues he must decide. Questions 4A
and 4B do not bear on the issues you must decide on
Questions 1 to 3.

Dated:

FOREPERSON

95
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

SPECIAL VERDICT FORM

————

YOUR ANSWERS MUST BE UNANIMOUS.

1. As to the compilable code for the 37 Java API
packages in question taken as a group:

A. Has Oracle proven that Google has infringed the
overall structure, sequence and organization of
copyrighted works?

 Yes ______ No ______

(IF YOU ANSWER “NO” TO QUESTION 1A, THEN SKIP TO
QUESTION NO. 2.)

B. Has Google proven that its use of the overall
structure, sequence and organization constituted
“fair use”?

 Yes ______ No ______

96
2. As to the documentation for the 37 Java API

packages in question taken as a group:

A. Has Oracle proven that Google has infringed?

 Yes ______ No ______

(IF YOU ANSWER “NO” TO QUESTION 2A, THEN SKIP TO
QUESTION NO. 3.)

B. Has Google proven that its use of Oracle’s Java
documentation constituted “fair use”?

 Yes ______ No ______

3. Has Oracle proven that Google’s conceded use
of the following was infringing, the only issue being
whether such use was de minimis:

Yes

(infringing)

No
(Not

Infringing)
A. The rangeCheck method

in TimSort.java and
ComparableTimSort.Java ______ ______

B. Source code in seven
“Impl.java” files and the one
“ACL” file ______ ______

C. The English-language
comments in
CodeSourceTest.java and
CollectionCertStoreParameters
Test.java ______ ______

97
4. Answer the following special interrogatories

only if you answer “yes” to Question 1A.

A. Has Google proven that Sun and/or Oracle
engaged in conduct Sun and/or Oracle knew or
should have known would reasonably lead
Google to believe that it would not need a license
to use the structure, sequence, and organization
of the copyrighted compilable code?

 Yes ______ No ______

B. If so, has Google proven that it in fact reasonably
relied on such conduct by Sun and/or Oracle in
deciding to use the structure, sequence, and
organization of the copyrighted compilable code
without obtaining a license?

 Yes ______ No ______

Your answers to Questions 4A and 4B will be used
by the judge with issues he must decide. Questions 4A
and 4B do not bear on the issues you must decide on
Questions 1 to 3.

Dated: May 7, 2012

/s/ [Illegible]
FOREPERSON

98
UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA
SAN FRANCISCO DIVISION

————

Case No. 3:10-cv-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiffs,
v.

GOOGLE INC.,

Defendant.
————

Trial Date: May 9, 2016
Dept: Courtroom 8, 19th Fl.
Judge: Hon. William Alsup

————

GOOGLE INC.’S DEPOSITION CLIPS OF HENRIK
STAHL PLAYED BY VIDEO DURING TRIAL

————

Trial Exhibit 7803

* * *

01/14/2016

* * *

Q. Has Oracle ever licensed Java SE for use in a
mobile phone?

A. I don’t know. Not that I’m aware of.

Q. Are you aware of any efforts by Oracle to do so?

A. Not that I can recall.

99
* * *

Q. So consumers began to demand smartphones
with more features as opposed to older feature phones,
correct?

A. Consumers began to demand a more advanced
functionality from their phones. That’s correct.

Q. And Oracle did not provide a solution that could
be used in those more modern feature-rich phones,
correct?

A. We did not provide – actually, we never pro-
vided a complete software stack for any phone. We
licensed Java for phones.

Now, when lower-end phones were more prevalent,
Java ME was a great solution and a lot of vendors
licensed Java from us.

When the hardware became more capable, the
OEMs moved to Android, because it provided a Java-
like environment. Why would they come and buy
something from Oracle.

You could have taken Oracle’s Java technology and
used it in an Android phone, right? There are no
technical issues with that. It just wasn’t done.

Q. And as people moved towards more advanced
phones with more capabilities, they moved away from
feature phones, correct?

A. They moved away from low-end phones where
Java ME was the best solution to run Java applica-
tions, which is, I guess, what we mean when we say
feature phones here.

Q. The second bullet point in the document on page
30 says, “Old technology stack.”

100
A. Uh-huh.

Q. Was it your view, at the time of this document
in April 2012, that Java ME was an old technology
stack?

A. Yes, I believe that if you wanted to continue to
use and license Java ME and, in particular, to be able
to compete with something like Android, would have
to make significant investments in it.

Now, that might not be the right decision, which is
kind of what the third bullet here is referring to.

Q. And Oracle did not, in fact, make the significant
investment required to keep up, correct?

A. We considered it.

A. We considered it. We decided against it.

Q. So there eventually came a point in time where
Oracle gave up marketing Java ME for phones of any
kind, correct?

A. There came a time when we decided that we
would not invest in new versions of Java ME for
phones. It’s quite possible that

Q. Do you recognize Exhibit 1426, Mr. Stahl?

A. (Perusing.) I don’t remember it, but I’m sure I
sent this.

Q. In the e-mail in Exhibit 1426, you say, “TCK’s
concern, on the other hand, was more geared towards
dated upper stack APIs, which make Java ME look old
and feature poor compared to Android.”

A. Uh-huh.

Q. What did you mean by that?

101
A. So with upper stack APIs, we meant APIs that

were specifically built to interact with modern, you
know, hardware capabilities provide by in the current
generation phones at the time, things like cameras
and, you know, the GPS receiver, so on and so forth.

There were Java ME APIs that provided access to
such features, but those APIs were fairly dated, and
they didn’t work on Java SE.

So what we did here was try to analyze, like, which
of those APIs could we carry forward, and if we carried
them forward, like, where would we start.

Q. What do you mean by carry forward?

A. Take the APIs, modernize them, and make
them – make them work, not only on ME, but also on
SE, so that you could more easily move between the
two platforms.

Q. And why didn’t Oracle go very far down that
path of modernizing Java ME and Java SE?

A. So that’s not a correct statement. We actually
did modernize both Java ME and Java SE. The core
platforms, as a matter of fact, are significantly mod-
ernized, and actually very, very good today, both Java
ME 8 and SE 8.

What we didn’t do is we didn’t produce new versions
of all of these APIs that we identified as necessary to
have, you know, a complete, modernized phone tablet
stack.

And the reason for that was simply once, you know,
push came to shove, and we did the resource cost
analysis and the revenue analysis, it didn’t make
sense anymore. We didn’t think there would be enough
market. So we went and focused on embedded, which
didn’t need these APIs.

102
Q. So Oracle chose not to reproduce or modernize

the APIs in Java ME or Java SE, correct?

A. For supporting phone-specific hardware, yes,
we never produced any product or, like, officially sup-
ported updated library with this functionality.

We did spend a fair amount of time on it, and there
was a number of R&D projects proving the concept
that this would be doable.

Q. But Oracle chose not to actually complete that
process?

A. We choose never to productize it, correct.

Q. Did you believe, at the time you wrote this, that
Java ME looked old and feature poor compared to
Android?

A. I don’t remember. I certainly believed that there
were, you know, development we had to make to
enable the full range of, you know, modern phone
capabilities to Java developers, things like an updated
camera API, a GPS stack and Bluetooth, and so on and
so forth.

103
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

ORDER RE 62 CLASSES AND INTERFACES

————

The Court has reviewed the parties’ responses to the
order to show cause regarding specific class, interface,
and method declarations from 62 classes and inter-
faces and the structure, sequence, and organization
thereof that all agree were technically necessary to
copy (Dkt. No. 1765). It is hereby established that
copying the declaring code identified by Oracle (TX
5332, Dkt. No. 1794-2) was technically necessary for
Google to use the Java language and thus constituted
fair use. This is without prejudice to either side’s argu-
ments as to fair use of the other elements of the 37 API
packages at issue herein, including Google’s conten-
tion that the declaring code and SSO of additional
classes and interfaces in the three core packages
identified by the Federal Circuit were also technically
necessary to copy. Further, this order does not pre-
clude the parties from offering evidence relating to the
declaring code and SSO addressed herein, provided
such evidence is consistent with this ruling.

104
The parties’ experts may update their reports to

ensure any proffered testimony complies with this
ruling, but only for that purpose. Any updated report
shall be served by THURSDAY, MAY 11 AT NOON.

IT IS SO ORDERED.

Dated: May 6, 2016.

/s/ William Alsup
WILLIAM ALSUP
UNITED STATES DISTRICT JUDGE

105
UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA
SAN FRANCISCO DIVISION

————

Case No. CV 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

Dept. Courtroom 8, 19th Floor
Judge: Hon. William Alsup

————

JOINT FILING REGARDING AGREED
STATEMENT REGARDING COPYRIGHTABILITY

(ECF NO. 1788)

————

* * *

In its May 3 Order entitled “Further Mediation With
Judge Kim,” ECF No. 1788, the Court ordered the
parties to meet and confer with Magistrate Judge Kim
regarding an agreed statement for the jury regarding
what is protected by copyright and what is not, and
regarding the additional issues addressed in the
Order.

The parties met and conferred with Judge Kim
starting at 10:00 a.m. on Saturday, May 7, 2016, and
agreed to the following statement:

106
AGREED STATEMENT

The Java platform is a software application platform
that is used to write and to run programs in the Java
programming language. The Java programming lan-
guage is free and available to use. The Java platform
includes, among other things, the Java Virtual
Machine and the Java API packages. “API” stands for
“Application Programming Interface.”

What is at issue in this case are the Java API
packages, which are sets of prewritten computer pro-
grams used to perform common computer functions
without a programmer needing to write code from
scratch. These prewritten computer programs assist
developers in writing applications. These prewritten
programs are organized into packages, classes, and
methods. An API package is a collection of classes.
Each class contains methods and other elements.

The packages, classes and methods are defined by
declaring code. The declaring code is the line or lines
of source code that introduce, name, and specify the
package, class, or method. The declaring code allows
programmers to understand and make use of the
prewritten programs in the API packages to write
their own programs.

The declaring code for the packages, classes and
methods reflects the structure, sequence, and organ-
ization (or “SSO”) for the Java API packages. The SSO
specifies the relationships between and among the ele-
ments of the Java API packages, and also organizes
the classes, methods and other elements in the package.

Each individual method performs a specific function.
The declaring code for a method is sometimes referred
to as the “method declaration,” “header” or “signature.”
The declaring code for a method tells the programmer

107
the information the method needs (the inputs) to
perform the desired function.

Each method also contains implementing code. The
implementing code provides step by-step instructions
that tell the computer how to perform the function
specified by the declaring code.

The declaring code and the SSO of the 37 Java API
packages at issue are protected by copyrights owned
by Oracle. The copyright protection does not extend to
the idea of organizing functions into packages, classes,
and methods, but the copyright protection does cover
the SSO as expressed in the 37 Java API packages.

Dated: May 7, 2016

ORRICK, HERRINGTON & SUTCLIFFE LLP

By: /s/Vickie Feeman
ANNETTE L. HURST
GABRIEL M. RAMSEY
PETER A. BICKS
LISA T. SIMPSON

Attorneys for Plaintiff
ORACLE AMERICA, INC.

Dated: May 7, 2016

KEKER & VAN NEST LLP

By: /s/Bruce W. Baber
ROBERT A. VAN NEST
CHRISTA M. ANDERSON
DANIEL PURCELL

Attorneys for Defendant
GOOGLE INC.

108
ATTESTATION OF CONCURRENCE

I, Bruce W. Baber, the ECF user whose ID and
password are being used to file this Joint Statement
Regarding Agreed Revisions To Modified Proposed
Jury Instructions On Fair Use (ECF No. 1688), hereby
attest that Vickie Feeman, one of the attorneys for
plaintiff Oracle America, Inc., concurs in this filing.

Dated: May 7, 2016

By: /s/ Bruce W. Baber
BRUCE W. BABER

109
[216] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Tuesday, May 10, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[337] Q. What about the language itself? Did Sun
make efforts to promote the language and its use?

A. Well, of course. We wanted everyone to use the
language because the more people who would use the
language, the more – the bigger the ecosystem that
would be built would occur.

Q. How did you go about promoting the language?
Was it taught?

A. Yes. But we had big programs – we decided to
try to get computer science schools to teach it, so there
were textbooks that were developed in universities,

110
and the theory was that young programmers would
emerge with the ability to use this language and do
amazing things.

Q. What is JavaOne?

A. JavaOne was a conference that we held also
here at Moscone which I was in charge of when I was
at Sun, and the idea was to get all of the people in the
ecosystem in one place. And we had our – a huge
JavaOne conference. All the programmers came. We
celebrated the brilliance of our ideas and our accom-
plishments.

Q. Did JavaOne become an annual event?

A. Yes.

Q. And continues on through the ’90s and beyond
as well?

A. Yes. It was of immense scale.

Q. Are you familiar with the term API, Application
Programming Interface?

* * *

[347] A. No. The work that had been done was
simply preparatory. It was exploratory. It was research
and development, and the first Android phone did not
come out until years after the acquisition.

Q. And were there various options for Google in
building Android?

A. Well, we purchased Android.

Q. Right.

A. So we had the choice of not purchasing Android
and doing something else. We had tried strategies
before involving partnerships with telecommunica-

111
tions companies, but none of them worked very well.
They were just bad products, if I could be blunt.

Q. Okay. And once Android came in, once Android
had been acquired by Google, did you still have options
as to how to build it, whether to buy it or build it
internally?

A. We had many choices once we acquired because
we needed to fill out the offering. And at the time, if
you wanted to build a smartphone, you had to pay a
lot of different fees to a lot of different players.

So typical example is that there is the thing that
does audio and video. You had to pay a royalty or fee
to use this particular piece of software. So our idea was
that we would have an offering, a piece of software,
that would pay off all of those royalties. In other words,
it would be free software [348] to the licensee who
wanted to use it. This is called an open source. And it
was revolutionary at the time.

Q. Why was it so revolutionary?

A. Because most people were trying to pay for their
implementations by licensing, but we thought we will
just allow it to be freely licensed, and we could always
make money from our applications.

Q. Your applications being things like Search?

A. I think Search would be a primary example
there.

Q. Early on, did you consider partnering with Sun
to develop Android?

A. We did.

Q. At that time, did Sun have a Java product for
use in mobile phones?

112
A. At the time – and, again, remember I’m now at

Google so these are my friends at Sun, but I’m not at
Sun anymore. Google had Android, and we thought it
would be a good idea to take what is called the Java
Mobile and put it inside of this Android product. We
thought that that would be good for everybody. I’m
obviously very pro Java, etc.

Q. And did Google expect Android to be different
from what existed at that time? By that I mean feature
phones?

A. Our view of Android was there was never
anything like it and it was completely different from
any other approach. There was nothing like – we were
building something new from our [349] experience.

Q. What did you see as the benefit to Google as a
partnership with Sun?

A. Well, I had an emotional reason why I thought
it would be good to work with Sun from my own his-
tory, but as a technical matter, I liked the team, I liked
the implementation that they had done because I had
overseen it, and it would be good to have that quality
inside of our phone, in my view.

Q. And what is the technology you were hoping
Sun would contribute to the partnership?

A. So if we go back to this business about imple-
mentations, there was an implementation that the
Java people had done on the Sun side that we – that if
we just put it in our phone, it would allow people to
write applications and invent the future in interesting
ways. We did not understand at the time how it would
be used, but we thought it would be useful.

Q. And were you considering using the Java logo
and brand, too?

113
A. Yes. That would be ideal because, again, we

liked the logo, we liked the brand.

Q. Would there have been a time advantage to
Google if you had been able to work out a partnership
with Sun?

A. Well, probably.

MR. BICKS: Objection, Your Honor. Hypothetical.

THE COURT: You may rephrase that. It’s improperly

* * *

[361] that you didn’t have a partnership with Sun?

MR. BICKS: Objection on relevance, Your Honor.

MR. VAN NEST: Good faith, Your Honor.

THE COURT: No. That’s a proper question. It is
leading, but please don’t lead the witness, but the
objection made is overruled.

Please answer.

THE WITNESS: We believed it was permissible to
implement the language without a license from Sun.

BY MR. VAN NEST:

Q. And did you have a belief as to whether or not
you could use the APIs?

A. Yes.

Q. What was that believe based on?

A. That it was permissible to do so.

Q. What was your belief in that based on?

A. Forty years of experience.

Q. Tell the jury what you mean.

114
MR. BICKS: Your Honor, we’re going on 40 years of

experience. I’m going to object depending on where
this is going in terms of time frame.

MR. VAN NEST: Let me ask another question, Your
Honor.

Q. At the time that Google built Android using the
Java APIs, was it your understanding that that was
permissible to do as [362] long as you wrote your own
implementing code?

A. That is correct.

Q. What was that understanding based on at the
time?

A. Well, business advice, legal advice, many years
of experience in the industry.

Q. Let’s leave the legal advice out.

What was the many years of experience contributing
to this belief?

THE COURT: The jury will disregard that comment
about legal advice. Because –

MR. VAN NEST: Let’s stick – excuse me.

THE COURT: – because I could get into the reasons,
but the parties have elected not to get into and tell you
what the legal advice was, so we can’t make these
vague allusions to legal advice. You must disregard
the idea that there was legal advice behind what the
witness is going to say. I’m not saying the legal advice
was bad or good, but you just have to disregard it.

However, the other parts of the question are
permissible.

So please answer as to the other parts of the
question, the basis.

115
THE WITNESS: Would you like a historical

example?

BY MR. VAN NEST:

Q. Sure.

A. Okay. When I was at Sun in the early ’90s, I
built a [363] product called WABI which was roughly
analogous to what we were doing at Google, and this
used the public – public interfaces for Windows to
build an implementation of Windows without the
license fee to Windows.

Q. That was something you did at Sun?

A. That is correct.

Q. Now, by then, by 2006/2007 at Google, did you
have other experience with APIs that informed your
decision?

MR. BICKS: Again, Your Honor, objection because
this witness is not an expert on custom relating to
APIs.

THE COURT: Well, as long as it’s his actual – he’s
explained – as long as this is meant to explain what he
actually thought at the time as to his good faith or bad
faith, it’s permissible. So I will overrule that objection,
but it has to be cast in terms of what he actually had
in mind at the time and not veer off into expert
opinion.

So to that extent, the objection is overruled.

Please answer.

THE WITNESS: So in the industry, I had seen a
number of examples over my service of this kind of
thing. So that’s why I believed what I did.

116
BY MR. VAN NEST:

Q. Was it a secret that Google was developing
Android with Java?

A. Certainly not.

[364] Q. Was Mr. Schwartz told that you would be
continuing to use the Java language in the APIs?

MR. BICKS: Again, Your Honor, leading.

THE COURT: It is leading. Sustained.

Please don’t lead the witness on something that is
important.

BY MR. VAN NEST:

Q. Had you and Mr. Schwartz discussed the nature
of Google’s effort to build the phone?

A. Yes. Many times.

Q. Okay. And in those discussions, did you have
any discussion about either the language or the APIs?

A. I told Mr. Schwartz the details of what we were
doing as I knew them at the time, which would have
included that information.

Q. Now, do you have any idea how long it took
Google to build Android, Mr. Schmidt?

A. If we refer to the timelines, since I got the date
wrong last time, we purchased Android in –

Q. 2005?

A. – 2005. And it had been in development for a
couple of years before. And we released the first
version of Android in 2009 – 2008.

Q. Actually, November 2007 Google releases
Android?

117
A. Yeah. But that one didn’t work. We really

released the [365] working version in 2008.

Q. Why did it take so long to develop? That’s three
years. July ’05 to ’08?

A. There is just a tremendous number of pieces to
make the magic happen on these smartphones, and we
were under a great deal of pressure because the
iPhone had come out earlier.

Q. Okay. We have on our timeline an announce-
ment, Google releases Android. What announcement
was made in November of 2007?

A. So we announced something called the Open
Handset Alliance, and again, our idea was to have as
many partners in the ecosystem that would use this,
so our goal was to get as many people on this platform
as possible, which, of course, we were freely licensed –
licensing. Excuse me.

Q. Was the announcement made on behalf of the
entire Alliance?

A. Yes. And I did it.

Q. Can you provide a few examples of members of
the Alliance to the jurors?

A. Well, pretty much all of the telecommunications
companies and pretty much all of the enterprise
software companies.

Q. At the time you announced Android, did you
also announce the nature of licensing for Android to
the public?

A. Yes. We indicated that Android would be freely
licensed.

Q. What do you mean by that?

118
[366] A. You did not need to pay a fee to use Android.

Q. Now, at this time, November of 2007, was Mr.
Schwartz still the CEO of Sun?

A. He was.

Q. And did he have a popular blog?

A. He did.

Q. Was this something you read periodically?

A. I did.

Q. Did you understand whether or not it was an
official statement of Sun?

A. I – I assumed it was his view and also the view
of the company.

Q. Did Mr. –

MR. BICKS: Objection, Your Honor. It’s add-on
testimony. It’s not responsive.

THE COURT: Well, it – even if he doesn’t know for
sure, it may go to his state of mind, which is an issue
in the case, on propriety of the use under Factor 1, so
the objection is overruled.

BY MR. VAN NEST:

Q. Did Mr. Schwartz publish a blog post
concerning Android?

A. He did.

Q. Did you read it at the time?

A. I did.

MR. VAN NEST: May I approach the witness, Your
Honor.

* * *

119
[378] Q. Did he express disapproval, in any way, of

Android’s use of the Java APIs?

A. He did not.

Q. Did he ever tell you, in any of your meetings,
discussions or emails, that Google needed a license
from Sun to use the Java APIs?

A. He did not.

Q. Based on your discussions with Mr. Schwartz,
and his comments to you, did you feel you had a good
understanding of what was permissible from Sun’s
perspective?

A. I did.

Q. And what was that?

A. That our approach was appropriate and
permitted.

Q. And what understanding, if any, did you
have at the time as to whether or not your use of the
APIs in Android was consistent with Sun’s business
practices?

A. Well, because of my own history, I – I had a long
history with this, and I was quite sure this was all
permissible.

Q. Why?

A. Because I set up the original deal 20 years
earlier, and I participated with them for such a long
time.

Q. Okay. And when you say you “set up the original
deal,” would you tell our jurors what you mean.

A. This was when we did the original Java
announcements. These were the terms. So I did them.

120
[379] THE COURT: It’s unclear whether you’re

talking about Google or Sun.

THE WITNESS: Oh, I apologize.

THE COURT: Please clarify.

THE WITNESS: In 1995, when we announced Java–
which I did – these were the terms that I set. So I knew
them quite well.

BY MR. VAN NEST

Q. And by these are the terms we set, can you tell
the jury what you mean?

A. To summarize, that if you have an implementa-
tion, it has to be licensed and you have to pay for it;
but that you can use the published interfaces and build
your own implementation.

Q. Did you rely on that knowledge in going forward
in building Android?

A. I did. Or we did.

MR. VAN NEST: Pass the witness, Your Honor.

THE COURT: All right. Thank you.

CROSS-EXAMINATION

Before you get started, Mr. Bicks. . .

My plan is to push all the way through to 1:00 o’clock.
If anyone in the jury box needs a break we, of course,
will take one. So if we get to that point, raise your hand
and just let me know. Are we okay for now, or do we
need to break now?

Great. We will push on. If you need one, raise your
hand

* * *

121
[439] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Wednesday, May 11, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

 [495] A. I believe so.

Q. What responsibilities did you have as – in Java
product marketing?

A. To pair with the engineering leader at the time
to try to help craft the products and the strategy we
would use to get those products distributed across the
world.

Q. And as you rose up through the company
through Chief Operating Officer and Chief Executive,
did you continue to have oversight responsibility for
Java?

122
A. Absolutely, yes.

Q. Now, during the time you were employed at
Sun, was the Java programming language free and
available for anyone to use?

A. Absolutely, yes.

Q. And how long has that been the case?

A. Since its inception. Since long before I arrived
at Sun.

Q. Okay. And during your time there, was Sun
promoting widespread use of the Java programming
language?

A. Absolutely, yes.

Q. How did you go about doing that?

A. Any way we could.

Q. Can you tell the jurors how you went about
promoting the language?

A. Yes. We distributed free educational materials.
We made sure the technology was broadly available to
anyone who wanted to use it.

[496] We visited high schools and colleges universi-
ties around the world. We gave money to those univer-
sities and students to try to promote their becoming
aware of and educated about Java, because it was in
our interests to do so.

As we promoted that language and as we promoted
that technology, that created – that opened that mar-
ket that historically we couldn’t have gone after. But
if you were using Java, then everything else that Sun
sold we could sell to you.

123
If you were using Microsoft Windows, which was at

the time the dominating operating system, we had
nothing to sell you. So by promoting Java we were
creating an alternative to Windows and creating a
marketing opportunity for the company.

Q. I’m going to ask you just to slow down a little
bit, Mr. Schwartz. We’re trying to transcribe every
word.

A. My apologies.

Q. You mentioned that one goal was to help you
sell the other Java products that Sun had, apart from
the language. What products are those or were those?

A. So when you write a program, at some point the
program has to run somewhere. So it’s going to run on
a computer. And we made those computers.

Q. And what is JavaOne?

A. JavaOne is a conference.

THE COURT: No. Wait. Wait. Let’s put it in the

* * *

[500] creating those APIs.

Q. Okay. Fair enough.

What was the purpose for having APIs as part of
Sun’s offerings?

A. They make the underlying technology
accessible. They help organize the technology. And
they give developers the standardized way of writing
applications using those preexisting sets of
functionality.

Q. Did Sun promote the Java APIs along with the
language?

124
A. Yes.

Q. How did they go about doing that?

A. They were promoted across the world. We
wanted people to understand how to write programs.
But then when we wanted them to use preexisting
functionality, we delivered our own preexisting
functionality. We licensed those APIs. We made them
broadly available to anybody else who wanted to
create technology.

So it was one in the same. We wanted to promote the
availability of the programming language, and then
we wanted to make the APIs available as well.

Q. And were the APIs marketed by Sun along with
the language; in other words, as free and open?

A. Absolutely, yes.

Q. And can you tell the jurors how that was done?

A. When you are marketing products to
technologists across [501] the world, you are not
simply saying, here is the book, good luck.

You are saying, here’s the download site. Go down-
load not only technologies that might help you show
movies and display pictures and manipulate text or do
calculations, you are promoting the language and
giving a whole set of APIs and preexisting functional-
ity to those developers.

Q. And were the APIs made free and open like the
language at that time?

A. Absolutely, yes.

Q. Okay. Were the APIs – during your tenure at
Sun, were the Java APIs ever sold or licensed sepa-
rately from the language?

125
A. No.

Q. Did you use the term “open APIs” at Sun in the
aughts when you were employed there?

(Reporter interrupts.)

Q. The aughts. In the period that you were employed
at Sun.

A. Absolutely, yes.

Q. Tell the jury what open APIs meant at that
time.

A. So the strategy, which had been the strategy
long before I joined Sun, was we agree on APIs, on
these open APIs; we share them; and then we compete
on implementations.

So we have a way to think about, for example, ren-
dering a movie. And we’re going to tell developers how
they could go [502] about doing that. But the code you
would use to show the movie, you are going to have to
write on your own. We have to agree on the APIs so
that the application I write to show a movie runs on
your device. Then it would still run, but it would run
your implementation of how to show a movie.

So you agreed at a high level on what you wanted
the application to do. You used a standard set of inter-
faces. But then when you went to run the application,
you would compete on those implementations. My
movie rendering application would compete against
your movie rendering application.

Q. You’re distinguishing or you distinguished
between the API and the implementation. Can you
explain to the jurors what you meant by implementa-
tion.

126
We’ve been hearing about implementing code and

that sort of thing. What do you mean by implementa-
tion?

A. Can I go back to my restaurant analogy? Because
I think that might be helpful.

Q. Well, that didn’t work with the judge, but go
ahead.

(Laughter)

THE COURT: If you think it works, go ahead.

THE WITNESS: I do think it works.

When you walk into a restaurant, there’s a menu.
And you understand what the different items on the
menu are. And one restaurant may offer hamburgers.
The hamburgers are the implementation of the item
you saw on the menu.

[503] And so when you agree on APIs, you’re agree-
ing on the menus. And then you all have your own
implementation. The implementations are the products
that you create that are accessed through the APIs.

So if I write a complicated application server for my
enterprise, the way it’s used is accessed through a set
of APIs that are common to all application servers like
that. And then we compete by delivering our own
application server.

The reason why you agree on APIs and compete on
applications is then you can turn around to another
developer who wants to use your application server,
and you can say, hey, write to my server; it will run
here. But because we and all these other companies
had agreed on APIs, the application you write can
work on their servers as well.

127
So it’s a way of pooling together resources to make

sure we can all agree to a common set of instructions.
And then the applications can run wherever the imple-
mentations are available. But you’re not locked into
one company’s implementation.

I hope that was helpful.

BY MR. VAN NEST

Q. Well, was it important – that last phrase you
mentioned, you’re not tied to one company or locked
into one company, why was that particularly important,
if it was, at that time?

MR. BILKS: Your Honor, again, the examples and
things [504] like this are really expert testimony.

THE COURT: Well, you have to rephrase it and ask,
first, “To what extent, if at all,” and stop leading the
witness. You’re doing a lot of leading. To what extent
if at all did you think it was important? That’s the
proper question.

MR. VAN NEST: There’s a good one.

THE COURT: All right.

THE WITNESS: What was important?

BY MR. VAN NEST

Q. Having open APIs, so no one company could
control things.

A. Having an open API was very important to us.

As an example, we agreed on how applications could
be written for servers running in big businesses. The
companies we got together to agree on how those
applications could be written had names like Oracle
and IBM and SAP. You know, very large companies

128
who if they felt that what Sun was delivering prefer-
enced Sun, they would never agree to work with us.

So open APIs allowed us all to say, let’s agree on this
common set of standards. And then we’ll go be com-
petitive in the marketplace, but we won’t have to
change what any one company is doing to give anyone
a bias or preference.

So it was a way to try to make things fair. We would
make the APIs accessible to anyone who was willing to
use them, and then we would compete on the imple-
mentations of the products [505] that would be built
using those APIs.

Q. During your tenure at Sun, did you use the
phrase “reimplementing APIs”?

A. I don’t believe I did.

Q. Do you know – well, was the phrase a common
one during your tenure at Sun, “reimplementing
APIs”?

A. I don’t recall.

Q. Let me ask this question: During the time you
were at Sun, did Sun ever build its own implementa-
tions for APIs produced originally by other companies?

A. Yes.

Q. Can you give us an example?

MR. BICKS: Your Honor, on this testimony now
we’re really getting beyond the disclosures for this wit-
ness, because there’s no disclosure about API practices
and things of this nature.

MR. VAN NEST: He was broadly disclosed, Your
Honor, on practices regarding Java and APIs at Sun.

MR. BICKS: I have it right here.

129
THE COURT: Can I see what you’re talking about?

(Pause)

MR. VAN NEST: Your Honor, I stand by my question.

THE COURT: Show me the part that you think
picks up this question.

MR. VAN NEST: Sun’s positions and – Sun’s posi-
tions [506] and communications with regard to inde-
pendent implementations. Sun’s actions regarding
copyrights. The history of Java program and the APIs.
His representations to the public. Sun’s actions or
inactions. Industry use of and support –

THE COURT: We’re going to pass this until the jury
is not here.

You have to go to something else for now.

MR. VAN NEST: That’s fine, Your Honor.

BY MR. VAN NEST

Q. Mr. Schwartz, during your tenure at Sun, all
the way up to the very end, was there ever a time
where the Java APIs were considered proprietary to
Sun?

A. No, never.

Q. Did Sun have a trademark for Java?

A. Absolutely, yes.

Q. And what was the Java trademark?

A. The Java trademark was the name as well as
the logo.

Q. Okay. And was that licensed to folks for a fee?

A. Absolutely, yes.

130
Q. Were your implementations, the implementa-

tions that Sun wrote, were those also licensed for a fee?

A. It was important that when people went to
companies to sell their products, that they could put a
logo on the top to say this is Java compatible or this is
written to be Java, so that they would understand this
is consistent with the Java

* * *

[538] world. Rather than going through people who
would interpret what we were doing, we wanted to
speak directly.

Q. And did you consider, at the time, the blog to be
an official statement of Sun itself?

A. It was an official statement.

Q. What do you mean by that?

A. It was how we announced our quarters. It was
how we told the SEC to view our statements we were
making, the regulatory agency that oversees compa-
nies. So it was very much a formal mechanism for us
to communicate with the world about where we were
headed.

Q. Now, when Android was announced, did you
publish a statement on your official company blog?

A. Yes, I did.

MR. VAN NEST: May I approach the witness, Your
Honor?

THE COURT: Yes, you may.

BY MR. VAN NEST

Q. Mr. Schwartz, if you would please identify Trial
Exhibit 2352.

131
MR. VAN NEST: This is in evidence, Your Honor.

BY MR. VAN NEST

Q. What is it?

A. It is a blog from November of 2007.

Q. Okay.

MR. VAN NEST: And could we publish it to the jury,
[539] please, first paragraph.

(Document displayed.)

BY MR. VAN NEST

Q. Mr. Schwartz, let’s come back to our timeline.
Discussions with Google, we’re showing, ended in
around May of 2006.

Is that consistent, roughly, with your recollection.

A. Yes.

Q. And then in November of 2007, that’s the date
of your blog post?

A. Yes.

Q. So we’re a year and a half later.

The very first paragraph says, “I just wanted to add
my voice to the chorus of others from Sun in offering
my heartfelt congratulations to Google on the announce-
ment of their new Java/Linux phone platform, Android.
Congratulations.”

When you said “Java/Linux phone platform,” what
were you referring to there?

A. The fact they were going to use the Java pro-
gramming language and build a phone using the
Linux operating system.

Q. And there’s a reference in the next paragraph.

132
MR. VAN NEST: Let’s highlight that. Can we make

it bigger? There we go. Okay.

BY MR. VAN NEST

Q. The last sentence there says – let me read the
first one.

[540] “I’d also like Sun to be the first platform soft-
ware company to commit to a complete developer
environment around the platform as we throw Sun’s
NetBeans developer platform for mobile devices behind
the effort. We’ve obviously done a ton of work to sup-
port developers on all Java-based platforms. We’re
pleased to add Google’s Android to the list.”

What is NetBeans?

A. NetBeans is a developer environment. It’s a
software product you would use as a developer to write
an application.

Q. And does NetBeans have to be adjusted depend-
ing on the platform, or does it work on all platforms?

A. It basically runs on computers and can be used
primarily to write Java applications.

Q. And then a little further down, two paragraphs
down, you say, “And, needless to say, Google and the
Open Handset Alliance. . .” What was the Open Hand-
set Alliance?

A. The group of companies that came together with
Google to try to promote Android.

Q. You say that Google and that group “just
strapped another set of rockets to the community’s
momentum.”

What did you mean by that? “The community’s
momentum,” what does that mean?

133
A. So we referred, at the time, to the Java commu-

nity not to the Java customers. Because there were so
many developers who were just a part of the move-
ment we were creating to get people [541] aware of
Java, using Java, promoting Java.

So we did our best to invest in the community by
making free products available, by making educa-
tional materials available. And our view at the time
was this was going to give more for the community to
take advantage of, create more opportunities for that
community.

Q. So at this time, at the time of your blog, can you
tell us to what extent you thought Android might help
Sun?

A. It was certainly helpful that it wasn’t a
Microsoft phone. And given the choice between Google
embracing Microsoft or Google embracing Java, obvi-
ously Google embracing Java was better.

It would have been better yet if they had agreed to
take a license from Sun to do so.

MR. VAN NEST: May I approach the witness, Your
Honor? THE COURT: Yes.

BY MR. VAN NEST

Q. Mr. Schwartz, take a look at TX 3441.

MR. VAN NEST: This is in evidence, Your Honor.

BY MR. VAN NEST

Q. Do you recognize that email?

A. Yes.

Q. Is it an email exchange between you and Mr.
Schmidt on November 9th?

134
A. Yes.

* * *

[560] evidence TX 7275_1, which is an excerpt from his
announcement of open sourcing at JavaOne in 2006.

THE COURT: 7275?

MR. VAN NEST: Underscore 1, yes. It’s a video.
THE COURT: Any objection?

MR. BICKS: Objection on relevance grounds, Your
Honor.

THE COURT: Overruled. Go ahead.

(Government Exhibit 7275_1 received in evidence)

MR. VAN NEST: Could we play 7275_1 for the jury,
please.

(Whereupon, the video was played for the jury)

BY MR. VAN NEST:

Q. Is that a somewhat younger version of Jonathan
Schwartz in the video?

A. I’m not sure I’d say somewhat younger.

Q. Did Sun ever consider, during your tenure
there, building a full-stack smartphone platform
based on Java?

A. Absolutely, yes.

Q. Do you recall approximately when you first
considered doing so?

A. I – from the earliest times surveying other
handset manufacturers. We sold technology to Nokia
and Ericcson and Sony and other companies.

Q. Was Sun ever able to successfully build a Java-
based [561] smartphone platform?

135
A. We had the foundation technologies to make it

work. Had Java FX Mobile, which was the core
platform. But we weren’t able to get it to market by
the time we were sold.

Q. Why not?

A. It’s complicated. It’s very difficult, as Google can
no doubt attest. But, you know, we also had R&D
choices we had to make given R&D – Research and
Development choices and staffing. Given the economic
environment we were operating in, we couldn’t fund
every project with every dollar we had.

Q. Was Sun’s failure to build its own Java smart-
phone platform attributable in any way to Android?

MR. BICKS: Objection, Your Honor. It’s beyond the
scope, the disclosure.

THE COURT: All right. Let me see the disclosure. I
think I handed it back.

MR. VAN NEST: I have one in a notebook right here,
Your Honor.

THE COURT: Can you highlight the language you
think covers it? Highlight the language you say covers
it so that I can – Mr. Van Nest, can you highlight it or
circle it in some way so I can just focus on what you
think is the key language.

MR. VAN NEST: Thank you, Your Honor. Thank
you, Dawn.

THE COURT: All right. Have you shown counsel?

* * *

[581] Q. Right.

Because at that time, you had commercial relation-
ships with many of the major handset carriers; right?

136
A. Not for Java SE. That was freely available on

computers.

Q. Sir, how many contracts and licenses did you
have with people in the handset company, handset
world?

A. For a tiny version of Java, we had contracts
with all the major handset manufacturers.

Q. And which handset manufacturers?

A. Nokia, Ericcson, Sony, many. I don’t recall the
number.

Q. And how many phones, mobile phones, at this
time was Java in, ballpark?

A. Well, none of them were running SE. None of
them were running desktop Java.

Q. Right.

And did you – are you familiar actually with the
terms of your licensing to tell us here under oath that
you didn’t have licenses out to the handset manufac-
turers for SE?

A. To the best of my knowledge, we didn’t. We had
licenses for Java ME which was the micro edition, the
tiny version of Java.

Q. Are you familiar with the license agreement
with Nokia?

A. I don’t recall the terms of it, no.

Q. Are you familiar with the license agreement
with Danger?

A. No.
* * *

[621] A. Left Danger in 2004.

137
Q. And why did you leave Danger?

A. I wanted to pursue my next – my next startup
company.

You know, I thought Danger – we did a good job of,
kind of, creating that category of smartphones – really
nailed being a very, very good Internet device.

When we founded the company, we loved the
Internet. We loved that you could always have
information at your fingertips. But we didn't like being
rolled up to our desktop computer to do it.

So we spent a lot of time thinking about the
technology necessary to cut that cord and bring the
Internet with you. So I hope we did a great job.

But in order for it to be the hundred-million
category, you know, the mass-marketed product, I felt
it also needed to be a very good phone. Needed to be
pocketable. It needed to be small.

So I left to start another company that really focused
on bringing that to the mass market.

Q. And what was the other company that you
decided to found?

A. That company was Android.

Q. What year did you found Android?

A. Android was founded in 2004, right after I left
Danger.

Q. And what was the goal of Android?

A. To create a combination of the best Internet
experience [622] and the best phone.

138
Q. All right. Did you have a business plan, when

you founded Android, as to how you would make
Android devices available?

A. Again, I mean, this is a matter of scale. How do
you – how are you a small startup company, and how
can you best leverage your expertise to bring it to as
many people as possible. That was the goal of the new
company.

So we kind of innovated this model of open source,
which is, I didn’t need to have a skyscraper full of sales-
people selling my product into the wireless industry,
which is a global industry. So I didn’t have to have
people in Korea, China, in the United States.

With open source, I could just basically create the
perfect operating system and the perfect smartphone,
and let the open source adoption spread it across the
globe.

Q. And who would be using this open source soft-
ware that you are describing?

A. Primarily, it would be the engineers at – at
mobile phone manufacturers like Samsung, as well as
wireless operators. But it was basically – it was soft-
ware, right. So it was mostly meant for engineers.

Q. And when you say “open source,” what do you
mean by that?

A. I mean that everything we created we gave
away for free. So there was no charge to get it. And we
uploaded it to a file server on the Internet. And any-
body could download it in [623] source code form.

Q. When you say you were planning to provide the
software for free in an open source fashion, what were
you hoping that would accomplish, if anything, in
regard to innovation?

139
A. Well, you know, I was kind of unhappy with the

innovation in the cell phone space in that era. It was
really, really hard to build a phone. And it was mostly
hard because there was a whole ecosystem of software
developers, these little companies that somebody like
a Motorola would have to aggregate all these different
pieces, like pieces of a puzzle. And they would have to
build a video player from one company, and an operat-
ing system from another company, and the user
interface from a third company.

And that would all get kind of put into these feature
phones. And the result, it just wasn’t a good user expe-
rience. It wasn’t good for the consumer.

And I was frustrated because I was a consumer. I
used these things. And I just wanted it to be much,
much better. So our goal was to make that whole
vertical stack in one space, where we could control the
user experience and make it the best for consumers.

Q. Did you have any business plan, in regard to
Android, that Android would provide any way to make
any money, given that you were providing the soft-
ware, the open source software, on a free basis?

* * *

[633] A. My opinion was it wasn’t necessary. It was
just another one of those accelerants.

Q. Why did you decide to turn to the Java Lan-
guage as the language that would be available for
developers who wanted to write apps for Android?

A. I mean, one of the mechanisms I used to reduce
the set of all of the languages that everybody was argu-
ing for is I spent a lot of time thinking about, how do
developers learn these languages? You know, what
does it take to bring a developer up to speed?

140
I mean, we could have created our own program-

ming language for this thing. But the work that a
developer would have to go through to learn something
completely new, I thought, was just out of question. I
didn’t want to burden a new developer with having to
learn something new, because I had a new platform
that I was about to release to the market and they had
other choices. So I was trying to get the mind share of
the developer so that it was frictionless for them to
adopt my platform.

And the way I did that is I looked at all the program-
ming language that a developer – that an engineer
might be taught in university, right. And that reduced
dramatically the number of languages we could have
chosen, including building our own because that couldn’t
have been taught in university. And we ended up pick-
ing one that was, you know, taught in university [634]
to engineers.

Q. During the course of your time with the Android
team at Google, did you have reason to pay attention
to what potential competition existed in the market to
Android phones?

A. Of course. We spent a lot of time thinking about
the landscape and where the market would move in
the future.

Q. Okay. Did there come a point in time when you
became aware of the iPhone during the period you
were with Android?

A. Yeah. I mean, the iPhone was – we were going
to be in development a long time when we were work-
ing with Android. And then, you know, even before we
shipped our first phone, the iPhone launched.

141
Q. Okay. And did you have an understanding as to

what language developers were using to develop apps
for iPhone as part of the work you did in studying the
market?

A. Sure. I mean, you know, the market – the exist-
ing mobile market consisted of a lot of different pro-
gramming languages to make phones work.

You know, there was Microsoft Windows software
that was out there, that used a specific programming
language called C and C++. And when the iPhone was
announced and the developer kit was made available,
they used an derivative of C called Objective C.

Q. So when you’re talking about Objective C, is
that the same language as Java?

* * *

[639] BY MS. ANDERSON

Q. During your time with the Android team, Mr.
Rubin, to what extent did you have an opinion, if at
all, as to whether your team was free to use API decla-
rations and organization for the Java APIs as part of
the development of the platform?

A. I mean, we didn’t think there was any problem
with us using the API declarations for the develop-
ment of Android.

Q. All right. Let’s turn, now, to another subject but
during the same period of time. Your discussions that
you may have had with Sun, all right.

After you joined Google in 2005, did you begin
having discussions with Sun as to whether or not they
might have a relationship with Google with respect to
Android?

142
A. Yes. I was – we had a lot of discussions with Sun

over the years. The initial discussions around them
contributing some of the pieces of Android in the
make-versus-buy decisions, and ultimately inviting
them to become a member of the Open Handset Alli-
ance.

Q. Beginning in 2005, did you have any personal
interaction with Sun over these subjects?

A. Yeah, I would frame it as I led those discussions.

Q. All right. And at a high level, could you please
explain to the jury what was the general nature of
what you were discussing with Sun on behalf of Google
in or around 2005, on the subject of Android?

* * *

[658] THE WITNESS: That’s when you, kind of,
know what the target is. You know what you want to
build. You’re not going to get help from anybody else.
And you just do it in first principles.

You sit down at your blank screen on the computer,
and the engineers start writing the code to basically
target your destination. Just created from scratch.

THE COURT: All right.

BY MS. ANDERSON

Q. During the time that you were with the Android
team at Google, did you have an understanding of
what the phrase “implementing code” meant?

A. Yes.

Q. And what did it mean to you?

A. It means allowing a computer scientist to prac-
tice their craft, which is write software.

143
Q. Can you be more specific in distinguishing it

from any other part of code?

A. Sorry, can you ask that question again. I want
to be sure I understand.

Q. Sure. I would be happy to.

Have you ever heard of the phrase “declarations”?

A. Yes.

Q. And have you heard of the phrase “declarations”
used in the context of writing source code?

[659] A. Yes.

Q. All right. And is that concept distinct or the
same as the concept of implementing code?

A. I think it’s different.

Q. Okay. Could you please explain what your
understanding was during the time you were with
Android.

A. Sure.

I mean, implementing code is what an engineer does
when he wants to make something happen. I think he
or she could write code in a thousand different ways.
And they have to be very precise in the way they craft
this code. It’s a little bit of a creative process.

And the majority of the work in making these things
work, whether – you know, we talked about a desktop
computer and we talked about mobile phones.

I think the magic that happens when an engineer
practices their craft is worrying about things like power
management, does it run on a battery. You know, un-
like your desktop computer that you have to plug into
the wall.

144
So all those, kind of, thousands of decisions they

have to make along the way are the things that actu-
ally make the function serve its purpose. It does its
function by executing/ implementing those decisions.

Q. Thank you.

Let’s turn to the time you were at Google when you
were

* * *

[672] A. It was a variety, but it was mostly C and
C++.

Q. And I see in that green area there, there’s a box
called “WebKit,” which is the far-right column of the
three columns there.

Do you see that?

A. Yes.

Q. All right. Did you have an understanding, based
on your work with the Android team, as to whether or
not that had been provided to Android under an open
source license?

A. Yes. WebKit is a – it’s the engine that runs brows-
ers. And it was a – it was licensed as open source.

Q. Do you know which open source license it had
been offered to Google under?

A. That one was under the LGPL license.

Q. All right. You mentioned, in response to the
Court’s questions, that in describing the Android
runtime section, and specifically the core libraries.
Would you tell the jury whether or not that is the part
of the platform that contains declarations of Java
APIs.

145
A. Yeah. A small part of that is the declarations

themselves.

Q. Okay. And so if you were to be looking at this
diagram for where the 37 Java API declarations would
be found, would you look to that box or somewhere
else?

A. That box. A small part of that box, yes.

[673] Q. All right. And you mentioned there were
other things in that box. Could you describe what’s
also in that core library box?

A. Sure. You know, when – when – when you adopt
something, we were trying to fit Android between,
kind of, a desktop computer and the mobile phones of
that era, which were these flip phones, these feature
phones.

So we added a lot of libraries of our own that made
phones do more desktop-like things. That functional-
ity wasn’t available in the – in the Java implementa-
tion.

Q. Okay. And based on your experience working
with the Android team and supervising its develop-
ment, did you have views as to the relative importance
of various levels of the Android platform?

A. Yeah. I mean, I had – I had some view into it.

I think, you know, we were taking industry
approaches in some places, and then our own approach
in other places. And I think I had a pretty good grasp
of that.

Q. Did you have a particular view about the appli-
cation framework layer?

A. Yeah. I mean, I think – again, if you’re – if the
whole reason you’re doing this – the world doesn’t need

146
another operating system. The world needs an open
one.

Your customer – you have to think both of the con-
sumer, the person like you and me who would use the
phone, and also

* * *

[694] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Thursday, May 12, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[729] much time and resources in it.

Q. Would you explain to the jury, please, why you
thought it was fine to do that?

147
A. It was just my understanding as a computer sci-

entist about how open source works and how to build
systems that were interoperable.

Q. What, if anything, did the concept of independ-
ent implementation have to do with your beliefs
regarding the use of declarations for Java APIs?

A. Well, the independent implementation or the
clean room implementation – I believe software engi-
neering is a creative process. The implementation is
where a lot of the creativity happens. We had a lot of
computer scientists on staff whose job it was to do this
every day. So setting them on that course and asking
them to, you know, create these independent imple-
mentations, it’s what engineers do.

I think that, you know, the clean room implementa-
tion, again, I was really transparent with how I man-
aged the team and I asked everybody to beware of
external influences that might, you know, change the
creativity and the code that you were writing. So I
asked people not to, you know – you know, seek out the
aid of outsiders and just do it in a clean room, in a
closed chamber.

Q. And –

MS. HURST: Your Honor, this is going behind the

* * *

[743] You testified yesterday that Android was
announced in November of 2007. Did you observe how
the industry responded to that announcement?

A. Yes, of course. I read the press that it generated.

Q. Okay. Please take a look at – excuse me.

Could you characterize the reaction that you observed
at the time to the announcement?

148
A. I would say enthusiastic. You know, some of

the– some of the competitors were skeptical, but the
majority of the press was positive and enthusiastic.

Q. All right. Did you ever have occasion to see any
press released by Sun in response to that release?

A. Yes. I remember.

Q. All right. Would you take a look at Exhibit 2352,
which is in evidence.

Do you recognize this exhibit?

MS. HURST: Your Honor, I object to the character-
ization of this document as a press release by counsel.

THE COURT: All right. It’s up to the jury to decide
what it is so the jury will disregard the characteriza-
tion by counsel, but whatever the witness says is okay.

Go ahead.

MS. ANDERSON: Thank you, Your Honor.

Q. What is Exhibit 2352?

[744] A. It looks like a post from the then CEO of
Sun’s blog.

Q. When did you first read this post?

A. Pretty much the day it came out.

Q. All right. And where did you read it?

A. Online after somebody had forwarded me to the
link letting me know that it existed.

Q. All right. And how did you feel about this par-
ticular announcement in Exhibit 2352 by Jonathan
Schwartz?

A. Similar to their announcement to open source
Java. This is more support for what we’re doing and I

149
think a further indication that Sun was kind of think-
ing along the same lines that we were.

Q. And who did you understand had authored
Exhibit 2352 when you read it back at the time?

A. I mean, it was posted to the CEO’s blog. It’s his
personal blog.

Q. And the CEO of what company?

A. Sun.

Q. What was your reaction to reading this blog at
the time?

A. I was excited and delighted.

Q. And why is that?

A. Because it was basically putting Sun’s support
behind our open source mobile operating system. In,
you know, no uncertain terms, it was thrilling.

Q. All right. Did you receive any visit from any Sun

* * *

150
[924] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Friday, May 13, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

 [964] what we’re talking about.

A. Yeah. So when a programmer sits down to write
a Java program, there are certain things that they all
have to do, certain just basic tasks. So programs have
a lot of, let’s say, sorting of lists, searching in lists. You
have to write things out to the screen of the computer,
write things out to the disk to be stored, and it would
be at best tedious and at worst impossible for every
programmer to write these low level building blocks
themselves so the libraries provide this functionality
in nice little packages of code that the programmer can
call on, and those are the libraries.

151
Q. How are the libraries that you worked on at Sun

organized?

A. A, it’s a three-level hierarchy, so you have pack-
ages which consist of multiple classes, and each class
consists of multiple methods or functions. You can call
them one or the other, but they’re the same things, and
those are the things you actually call on to do stuff like
searching and sorting.

Q. Why did you organize the libraries in that way,
in that hierarchy?

A. I actually had no choice in the matter. That’s
mandated by the language. The language spells that
out for you. A computer language is completely inflexi-
ble. You – it has a certain set of rules, and you have to
obey those rules; and in Java, all libraries are orga-
nized in that way. They are packages containing
classes containing methods.

* * *

[972] and development?

A. Pretty much all of it. The first API that I actu-
ally remember writing was, like, back in the summer
of 1983. I worked for IBM Yorktown Heights Research
Center as a summer intern, and I wrote an API for a
parallel processing IBM 370 that they had there.

Q. For which edition of Java were you developing
APIs?

A. It’s the one that eventually became known as
Java SE for standard edition. Before that it was Java
2 SE, and before that it was just Java, the JDK.

Q. What kind of environment was Java SE being
used in during the time you were at Sun?

152
A. It was being used for desktop computers, serv-

ers, you know, powerful laptops, that sort of thing.

THE COURT: Remind us when you were at Sun
again.

THE WITNESS: I joined Sun in 1996, and I left Sun
in 2004.

THE COURT: Okay. Thank you.

Go ahead.

BY MR. KAMBER:

Q. Dr. Bloch, how, if at all, were the APIs that you
developed made public?

A. They are translated into HTML, which you
probably know is the basic language of the Web. So
when you look at a Web page, you’re looking at HTML,
and that – excuse me – that HTML was [973] pub-
lished on the Web, and you can look at it now. Probably
not now; but, anyway, it was also – we – we – I wrote
books about it and, as I said, I gave lectures about it.
So that’s how they were published.

Q. Can you explain to the jury why it was that the
APIs that you were writing were being made public?

A. Yeah. They were – they were being made public
so people could use them. If you build a tool but you
don’t tell people about it, you know, might as well not
have built it. So you have to both build the tool and
you have to tell people, “We’ve got this new tool for you
that you can use.”

Q. How were you involved in documenting the
APIs that you developed?

A. I documented all of my own APIs. I took great
care to do my best to document them well.

153
Q. Why were – excuse me.

Why did you want to provide documentation for the
APIs you developed?

A. Again, so they could be used. I mean, if you give
people a tool but you don’t tell them how to use it, you
might as well not give it to them.

Q. Were there any other reasons besides having
them know how to use the API?

A. Yeah. Sure. Once an API has been documented,
then other people can provide their own independent
implementations of [974] that API, and so that’s
another reason to write good documents. If your docu-
mentation isn’t good, then people won’t be able to re-
implement the API.

Q. When you talk about re-implement, again, that
was the implementation code that we saw before; cor-
rect?

A. Yeah. That – that was like the code that actu-
ally told the computer how to reverse the list. So it
would – like, you could write a new way of doing that.

Q. Okay. To what extent, if at all, did you expect
that other people, other programmers, might create
independent implementations of the APIs that you
developed at Sun?

A. I certainly hoped they would.

Q. Why did you hope so?

A. Because it’s pretty much the mark of a
successful API. Once an API starts getting reimple-
mented, you know it has succeeded.

Q. What, if anything, did you do to promote the
APIs that you developed at Sun?

154
A. Well, as I said, I – I gave lectures. I wrote books.

I talked to engineers about them whenever I could.
You know, pretty much did everything in my power.

Q. You just mentioned a book, Dr. Bloch. Let me
hand you what’s been marked as Trial Exhibit 7640.
Do you recognize this document?

A. I do.
* * *

[991] would improve the specification.

As I mentioned, it takes a very, very good specifica-
tion to admit an independent re-implementation. So
by having these guys doing a re-implementation so
early, they improved the quality of the specification,
and that improvement was usable by every program-
mer who used this spec to do their programs.

And the other benefit is that when you have
multiple implementations of an API, the skill sets
transfer so someone who’s learned it from GNU
Classpath can then transfer those skills to Sun’s JDK
and vice versa. So it makes the skill set of learning
these APIs more valuable if there are more imple-
mentations of it out there.

Q. Okay. To what extent, if at all, were you aware
of anyone at Sun suggesting that it wasn’t acceptable
for GNU to do an independent implementation of those
declarations that we saw of APIs that you wrote?

A. I was unaware of anyone saying anything of the
sort.

Q. When you were at Sun, to what extent were you
ever involved in re-implementing an API sort of from
the outside world?

155
A. That same release, Java 5, under a project

called nio, we added what was called regular expres-
sion processing to the language at the time. And that’s
a complicated word, but it’s just a kind of text pro-
cessing. When you’re dealing with text, it makes things
much easier to do.

[992] And it was a junior engineer by the name of
Michael McCloskey who actually did the work. And
instead of designing our own API from scratch, we
decided we would use the regular expression API from
this language called Perl 5. It was a – it was a large,
complex, and well-known API to do regular expression
handling.

Q. How did you go about doing the re-
implementation of that specification?

A. We downloaded the specification from the Web,
from their website, and then the engineer, Michael
McCloskey, studied it until he understood it well enough
to write a new implementation from the ground up
without using any existing code.

Q. Why did you choose to re-implement the regular
expression API from Perl 5 instead of creating your
own?

A. Because it was really quite widely known. It
was called a de facto standard. Every programmer –
not every programmer, but most programmers who
wanted to use regular expressions wanted to use Perl
regular expressions, so we transferred their skill set
from the Perl language to the Java language by imple-
menting the same API.

Q. To what extent, if at all, did you seek permission
from the folks, Perl 5, before doing your re-
implementation?

156
A. To the best of my knowledge, we didn’t seek

permission at all.

[993] MS. HURST: Objection. Lacks foundation.
Calls for a legal conclusion.

THE COURT: When you say “to the best of your
knowledge,” it begs the question how good your know-
ledge is. So tell us what you base your statement on
that no permission was sought.

THE WITNESS: I didn’t seek it. I was – you know,
David Bowen, our manager, didn’t seek it, but I don’t
know that anyone did. It seems unlikely that anyone
did. Just based on the way we did things at the time,
it seems very unlikely.

THE COURT: If someone had tried to obtain permis-
sion, to what extent would you have known about that
effort?

THE WITNESS: I almost certainly would have
known because we made extensive use of mailing lists,
and it would have been on the mailing list.

THE COURT: All right. The objection is overruled.
There is sufficient foundation for the testimony.

Next question.

BY MR. KAMBER:

Q. To what extent, if at all, were you aware of a
license that would have allowed you to do an independ-
ent implementation of the regular expression APIs
from Perl 5?

MS. HURST: Objection. Lacks foundation.

THE COURT: Just a moment.

Well, I think the same foundation applies. Objection
[994] overruled.

157
Please answer.

THE WITNESS: I’m quite certain that we never
sought a license.

BY MR. KAMBER:

Q. Why did you think it was okay to re-implement
the Perl 5 regular expression API?

A. Because we’ve always done things this way. I’ve
been in the profession for a long time, at Sun Microsys-
tems from 1996 to 2004, and before that we have
always felt free to re-implement each other’s APIs.

Q. At the time that you were at Sun, were you –
what, if any, industry or what, if any, sort of practice
were you aware of with respect to re-implementing
APIs?

A. You know, as I say, it was all over the place.
FORTRAN APIs, which were designed by IBM–

THE COURT: Wait one second. This is – I’m going
to say that is outside the scope of his work at Sun, and
at this point, Ms. Hurst would have a good point. So
I’m going to sustain the objection on the grounds that
this is not his work at Sun. This is a more general
statement about what others were doing. That would
have to be expert testimony. So I’m sustaining her
objection on – which she made earlier to this particular
question.

[995] BY MR. KAMBER:

Q. Dr. Bloch, what did you do after you left Sun?

A. I moved on to Google.

Q. When did you move on to Google?

A. In 2004, just after Java 5 was released, the
release that was documented in this exhibit.

158
Q. And you’re pointing to TX984; is that correct?

A. I’m pointing to the third edition, yes.

Q. Now, what did you do at Google when you went
there?

A. All things Java.

Q. What do you mean?

A. I had a very sort of wide-ranging role over my
time there. I wrote Java APIs at Google for our own
internal infrastructure. Google had a file system and
it had something called a MapReduce bulk data
processing system, and I led a team that implemented
Java APIs for these things.

I contributed – I continued contributing back to this
platform, so I actually wrote Java language features
as well as Java libraries while I was employed at Google.
I actually wrote documentation for the stuff from Java
5 and contributed that back while I was at Google.

You know, I gave talks. I – once again, I helped jun-
ior engineers with their designs, their APIs. You know,
too many things to list.

Q. At any time when you were at Google, did you
work on [996] Android?

A. Yes. I worked on Android for approximately one
year starting at the very end of 2008 or the very begin-
ning of 2009. I forget which.

Q. Okay. What did do you as a member of the
Android team?

A. I worked on these same core libraries – java.util,
java.lang – and I worked on implementations, inde-
pendent implementations, of these libraries trying to

159
make them run their best on these mobile devices for
which the Android platform was targeted.

Q. Okay. How, if at all, was the work that you did
on Android related or specific to the fact that Android
was this mobile platform?

A. It was actually quite specific to it because
mobile devices have really different constraints from
those servers and desktops for which Java 2 SE was
written.

So, for example, a server or desktop is plugged in,
you have infinite power. You don’t have to worry about
power consumption. But your cell phone has a little
battery and if you use too much power, the battery
runs out and that’s bad.

So we had to always be conscious of how much power
we were consuming. Phones have less memory. They
have chips which are called ARM chips, which are far
less powerful than Intel chips that run our servers and
our desktops, and also it is just different instructions
run at different speeds on these two [997] things. So
one has to engineer them specifically to run their best
in this constrained environment, and it actually can be
quite a challenge.

Q. And remembering back to the code that we had
up on the screen, Dr. Bloch, which part of the code was
that optimization work being done in? Was it being
done in the method declaration or the package or class
declaration, or was it being done in the implementing
code?

A. Of course it was being done in implementing
code, as I hope I showed you. The declarations don’t
change. The declarations can’t change. They are the
nexus. They are what allows the caller of a function to

160
call it, but then you write a new implementation that
is tuned for the new environment, and that’s what we
did.

MR. KAMBER: Thank you, Dr. Bloch.

Pass the witness.

THE COURT: Maybe we should take our 15 minute
break at this time, give counsel a chance to set up.

Please remember the admonition. No talking about
the case. Thank you.

(Proceedings were heard out of presence of the jury)

THE COURT: Be seated, please. The witness can
step outside for a moment.

Can counsel give me the percentage breakdown on
the Ellison and Duimovich read-ins?

* * *

[1013] name is Reed Mullen. I’m one of the lawyers
representing Google in this case.

The next witness we’re going to here from is by
video. It’s Mr. Donald Smith. His sworn testimony was
taken on November 20, 2015, and at the time of his
deposition he was an employee of Oracle.

THE COURT: All right. Don’t play it yet until we get
all this stuff out of the way; and then once we have the
jury’s undivided attention, hit the button.

(Pause in proceedings.)

THE COURT: Roll the tape.

(Whereupon, the video deposition of Donald Smith
was played for the jury not reported.)

MR. VAN NEST: We need to start that again.
Excuse us, Your Honor.

161
THE COURT: What’s the issue?

MR. VAN NEST: Just the system needs to be
switched, and madame clerk is going to do that right
now.

(Whereupon, the video deposition of Donald Smith
was played for the jury not reported.)

MR. VAN NEST: That concludes the presentation,

Your Honor.

THE COURT: All right.

MR. VAN NEST: We’re ready to call our next wit-
ness.

THE COURT: Please do.

* * *

[1085] declaration and –

A. (Witness complying.)

Q. Perfect.

And now could you take a different color and identify
for us where the implementing code or implementa-
tion would have been in this example from your time
at Android?

A. Yep. So this right here (indicating) is the imple-
mentation. Too many letters. Okay.

Q. And if you can, maybe step either a little more
that way or to this side, whatever side is easier just so
the whole jury can see.

There you go, so everybody can see.

With respect to what you’ve identified as the dec-
laration for the particular method max, that’s the one
that starts public static; is that what you said?

162
A. Yeah. That’s right.

Q. When you were with Android, were there rules
that governed how that had to be written?

A. Yeah. Absolutely.

Q. And could you give us an explanation of what
kind of rules you were operating under at the time?

A. Oh, sure. Okay. Math.max is something that is
available for application programmers to use, which
means it has to be declared public. So this word “pub-
lic” is required.

“Static” means that – it’s something that we haven’t
[1086] really talked about here, but there is two
different sort of categories of methods in Java. It so
happens max has to be a static one given the way it’s
defined for programmers. So this word has to be there.

The name is – the name is the name, so there’s no
choice in what the name is.

Parens also have to surround these things called
parameters.

The types of the parameters are well-defined. So as
I said, int is short for integer, a kind of number. And
then this names the parameters.

Q. Thank you.

And in terms of flexibility, how would you have char-
acterized the rules governing how one writes declara-
tions back at the time at Android?

MS. HURST: I’m going to object to that question,
Your Honor. I don’t know what “rules” means in this
context.

THE COURT: It’s also present-day opinion. Sus-
tained. You can rephrase it.

163
BY MS. ANDERSON:

Q. Back at the time you were with Android when
you were working on the Java language, what did you
understand to be the amount of flexibility you had in
how you would write a declaration for a method like
max?

MS. HURST: Objection. Leading.

[1087] THE COURT: No. It’s not leading. That’s
overruled. Please answer.

THE WITNESS: I would say that there’s very little
flexibility.

BY MS. ANDERSON:

Q. Why is that?

A. So the names of the – the places where these
names occur, there’s – there’s fixed positions – there’s
some flexibility, like these two could have been
reversed. There’s a standard way of doing it. So it
could have been, but probably wasn’t, the name just –
the name had to go here. There’s no other choice about
that. The parens had to go there. No other choice about
that.

These names of these types, the int, there was no
choice about that. And there was, say, some flexibility
in the names of these parameters. That would – I
think that covers the flexibility.

Q. And, again, back at the time you were with
Android, what did you understand to be the relative
amount of flexibility available to you in writing the
actual implementation for this method?

A. For the implementation?

Q. Yes?

164
A. Much more flexibility. That’s where more of,

say, a programmer’s experience and taste in sort of
design limitation [1088] would come into play.

Q. We’ve heard the phrase “independent imple-
mentation.” How, if at all, does that relate to the testi-
mony you just gave, back at the time you were with
Android?

A. Oh, at the time. So an independent implementa-
tion, it’s talking about what would go here and, of
course, there’s lots of packages, lots of classes. So it’s
sort of all of the peers for the many, many methods in–
in the – that are defined by the API. So an independent
implementation is just somebody taking the know-
ledge that they have about how Java works and
writing a whole bunch of new code to implement it.

Q. When you said “here,” you were pointing to
which box?

A. The orange implementation box.

Q. All right. Thank you very much.

So I think you can take the stand again. Thank you,
Mr. Bornstein.

Putting you back again to the time you were on the
Android team, at the time did you have a view as to
whether or not you were free to use the Java program-
ming language?

A. I did.

Q. What was your view?

A. I believed I was free to use the Java program-
ming language.

Q. Why did you believe that at the time?

165
A. Because programming languages are made to

be used. [1089] They’re made to be used by
programmers. There would be no point in its existence
for it to be somehow published in, you know, like, a
book like this, to have documentation made available
if the intent wasn’t to make it used.

And there’s, you know, long history of, like, my
entire career of, you know, new programming lan-
guages coming along and things get published about
them and people use them in various ways.

Q. Again back at the time you were working on the
Android team at Google, did you have a view as to
whether or not you were free to use declarations for
Java APIs?

A. Yeah.

Q. What was your view?

A. I thought that the – that Java declarations were
A-okay to be used.

Q. Why was that?

A. Because I had seen at the time many – many
examples of a programming language coming along
published by or built by one set of people, and a differ-
ent set of people come along and do a new implementa-
tion of that language and inevitably you use, you
know, the same declarations.

Q. Okay. Do you have a particular example in
mind?

A. I’m thinking of the C programming language or
C++. Very early in my career I actually had reason to
use – to build a system that was mostly in the C pro-
gramming language, and we [1090] used three differ-
ent C compiler and runtime products from three differ-

166
ent companies, but we used the same code base. So we
used our – like, our application code was the same. We
used three different C implementations to provide the
executables, the applications for a few different plat-
forms.

Q. You just described, when you were showing us
the sketch you made on the easel, information that you
knew back at the time in Android about how much
flexibility you did or did not have in how you wrote a
declaration.

Back when you were with Google, did that have any
effect on your view as to whether or not declarations
for the Java APIs were available for use?

A. Okay. That was a bit of a mouthful. Could you–

Q. No problem. I’m happy to –

MS. HURST: Your Honor, I’m going to object. This
seems to be about designing APIs. There has been no
foundation laid that this witness was in any way
involved in that. That was Dr. Bloch’s job. We already
heard from him.

MS. ANDERSON: Your Honor, we are simply explain-
ing the witness’ testimony, and this witness, we will
be discussing momentarily, was very much involved
in–

THE COURT: Why don’t you go at it a slightly differ-
ent way and tell the story up until the point that he
gets to where he’s using or redesigning some API, and
then you can ask to what extent did you feel you were
able to do that;

* * *

[1097] So at one point, I issued some commands on
a command line and – which caused the source code

167
from the Apache Harmony project, hosted at the
Apache organization or hosted on their servers – that
came – so that was – via network was pulled onto my
local computer. From my local computer I issued
another series of commands that caused that code to
then get integrated into the Android code base.

THE COURT: And so that example came from
Apache Harmony?

THE WITNESS: That’s right.

THE COURT: And that was, at least as you’re
telling us – it was the Java APIs, but with an inde-
pendent implementation? Is that correct or not cor-
rect?

THE WITNESS: Yeah. It was an independent imple-
mentation of Java APIs.

THE COURT: Okay. All right. Thank you.

Go ahead.

MS. ANDERSON: Thank you, Your Honor.

Q. You mentioned a minute ago, Mr. Bornstein,
that sometimes Google had to work on modifying the
open source Apache Harmony code that it had down-
loaded to work on. Could you give us some examples of
why you would have to do that?

A. Sure. Apache Harmony – I guess – the thing to
remember is any given software project has sort of a
context in which it’s sort of envisioned to operate.
Apache Harmony happened to [1098] be one that was
targeted towards servers and desktop computers and
not for mobile devices. And there’s a lot of differences
between a big computer that sits on a desk or on a data
center and a little computer that fits on your hand and
runs on a battery.

168
So a lot of what we were doing when we were modify-

ing the Apache code was finding those places where it–
you know, where the code was kind of – assuming it
was in a – in a different context and changing it– chang-
ing the code to no longer make those assumptions and
to in fact make different assumptions.

Q. At the time when you were doing this work, did
you have an understanding as to whether the Apache
Harmony code was an independent implementation of
a particular Java platform?

A. When you – I’m not sure what you’re asking. I’m
sorry.

Q. Sure. We’ve talked a little bit about independ-
ent implementations and open source. Did you have an
understanding as to which, if any, platform Apache
Harmony was an independent implementation of?

A. I would – speaking very informally, I would have
said it was an independent implementation of Java,
but there’s a lot to unpack in that.

Q. Okay. And you mentioned that Apache
Harmony’s implementation was more targeted at desk-
tops and servers. How did you know that?

* * *

[1104] A. The Android engineering team as a whole.

Q. Were those the same or different than the Java
API packages?

A. They were different.

Q. Why did Google develop Android API packages?

A. Because the short version is there wasn’t any-
thing like what we wanted to achieve out there in the

169
world, so that was something that we had to write
ourselves.

Q. Could you give us a few examples of goals you
wanted to achieve with the Android API packages?

A. Sure. So, for example, we intended to have a
smartphone that did multiple – multiple – it was able
to run multiple applications simultaneously, and there’s
some – that has implications on how an application
itself is designed, so we had to define Android pack-
ages and classes to enable application developers to
play in that – in that world of multiple applications,
running on a smartphone-type device.

Q. Thank you.

Did you have any role in determining which Java
API packages would be implemented as part of
Android’s core libraries?

A. I did.

Q. What was your role?

A. As I said before, I was the technical lead for the
core libraries, and among the duties that fell to me was
figuring [1105] out what made sense to have in our
Java APIs.

Q. When you say “figuring out what made sense,”
what do you mean by that?

A. What I mean is that Android was – was this dif-
ferent context for running code in general. We were
looking at a – you know, we were looking at a previous,
you know – previously-exiting set of APIs that had
been defined. Not all of them made sense in the con-
text of a smartphone, and it was in part up to me to
help figure out which pieces of that made sense to sort
of – to include in our core libraries.

170
Q. And did any of those considerations relate to

specific aspects of a mobile device?

A. Yeah.

Q. Can you give us a few more examples of those
considerations.

A. Oh, so – let’s see. So there were – I don’t know.
I’m sorry. I can’t think of, like, a very good example for
you.

Q. That’s fine. No problem.

Did your team create implementations of all the
Java APIs in Java SE?

A. No.

Q. Why is that?

A. It didn’t make sense.

Q. Why didn’t it make sense?

A. Like I said, I wish I could give you a concrete
example. [1106] It’s been a while. But in looking
through, you know, like what was being defined as
part of Java SE, there was – there was some stuff that
just – you know, just didn’t really make sense to have–
actually, here’s a good one.

So Java SE included its own idea of what an applica-
tion looked like. And that implied kinds of interaction
models of like what, you know – what it means to run
two applications at the same time, what it means to
switch between them, how does an application start up
and shut down, and we didn’t want to use any of that
for Android, so it did not make sense to include that
in– among the APIs that we were using on Android.

Q. All right. Thank you.

171
Approximately how long did it take, based on your

experience while you were at Android, to do the devel-
opment work required to launch the first full source
code stack for Android?

A. So I – I joined in October 2005. The project was
already underway. We released the first phone using
it – “we” in a larger sense – in, what was it, October of
2008. So – and I guess before I joined, the project was
ongoing in one form or another for something like a
year, year and a half. So add that all together.

Q. All right. In or around 2006, did you hear of any
announcements by Sun relating to open source?

* * *

172
[1129] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Monday, May 16, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[1194] system. Those kind of things which weren’t part
of Java.

Q. So in contrast to Java, Android, the Google plat-
form that eventually came out, Android was a full
stack; correct?

A. Uhm, in how – how it was referred to in that
time, my understanding is yes.

Q. And Apple’s iPhone operating system, that was
also a full stack; correct?

A. Oh, it’s a completely closed platform. So I don’t
actually – I don’t know, actually, what’s in there. But

173
the highest level of trying to get – characterize those
things, yes.

Q. At the time Sun bought Savaje, Sun didn’t have
a full stack on the market; correct?

A. That’s correct.

Q. But you do know that Sun, after acquiring
Savaje, attempted to turn the Savaje technology into a
full stack platform; correct?

A. I know there were plans to build a stack of some
sort. I don’t know if it was a completely full stack or a
mostly full stack. That I don’t know.

Q. The project that Sun pursued to build a stack
from the Savaje technology, that was internally at Sun
called Project Arcadia; correct?

A. So there were multiple projects for that basic
idea of the vertical offering. It was called Arcadia at
one point in time, [1195] but it changed names a few
times based on where it was in the organization, who
it was reporting to. And I’m not sure if the feature sets
changed or not with it. It was referred to with multiple
names over a period of time.

Q. If Sun had gotten the Project Arcadia technol-
ogy to market, it would have had a full stack on the
market to compete with Android; correct?

A. I don’t remember the exact details of what
Arcadia was versus the initial Savaje acquisition. So I
don’t recall if the Arcadia project was still a complete
full stack or mostly a full stack. I just don’t recall the
details.

Q. Mr. Gering, as you sit here today, you’re not
aware of any product that Sun brought to marked
based on the technology Sun bought from Savage?

174
A. No.

Q. And, certainly, Sun never brought a full stake
mobile operating platform to market based on the
Savaje technology; correct?

A. No, not to my knowledge.

Q. In fact, during your time at Sun, Sun never
brought a full stack mobile operating platform to mar-
ket at all, did it?

A. No.

Q. All right. So you were at Sun when Google
released Android; correct?

A. Yes.

[1196] Q. And you were aware that Google had
released Android?

A. I was aware of Android being in the market-
place. I don’t know the exact date.

Q. After Google released Android, Sun made an
effort to develop technologies that would work with
Android; correct?

A. There was a point in time when we did technical
explorations of various technologies that we had in-
house, with Android, for different reasons.

Q. I’ve just handed the witness Trial Exhibit 2052.

Mr. Gering, there is a presentation on – a Sun-
formatted presentation titled “Java and Wireless
Business Review.” Do you see that?

(Document displayed.)

A. Yes, I do.

Q. And your name is there on the front page; cor-
rect?

175
A. Yes, it is.

Q. It’s dated March 16, 2009?

A. Yes.

Q. So just going by the timeline, that’s after Google
released the Android platform in October 2008.

A. Okay.

Q. Could we turn to page 20 of the document.

(Document displayed.)

Q. This page discusses something called Project
Daneel. Do you see that?

[1197] A. Yes, I do.

Q. And Project Daneel was also known inside Sun
as Project Sundroid; isn’t that right?

A. There was a Project Sundroid. There was a Pro-
ject Daneel. They had a lot of the same similar charac-
teristics. I don’t remember if they were exactly the same
or not.

Q. All right. The idea of both Project Daneel and
Project Sundroid was to try to insert a Sun Java vir-
tual machine into the Android platform in place of
Google’s Dalvik virtual machine; right?

A. Yes. Daneel project had two – it had multiple
phases. The first phase was to put Sun’s VM and stack
next to the Google stack that was 0, a Google VM. So
it had two VMs on that stack. And that was called a
Google stack approach.

And then the second, the Phase One, which was the
second phase, was to actually replace the VM with
Sun’s VM.

176
Q. And that’s reflected here on Trial Exhibit 2052.

There’s a reference to Phase 0 and Phase 1?

A. Yes.

Q. And there’s also Phase 2, which is a full Linux
platform. Do you see that?

A. I do.

Q. So Project Daneel ultimately would have evolved
into a full stack. Is that how you understand that?

A. So my memory of Daneel is Phase 0 and Phase
1 were fairly [1198] well defined. And Phase 2 was not
as well defined, at least as I recall.

Q. So as far as you recall, Sun never really devel-
oped a concrete definition of Phase 2 of Project Daneel?

A. More accurately, I think there were multiple
definitions at that Sundroid-Daneel time. But I just
don’t recall what were the contents of that bucket,
because we were focused – the engineering team was
focused on Phase 0 and Phase 1.

Q. With respect to Project Daneel, Sun got as far
as developing a Phase 1 prototype of a Sun virtual
machine running on the Android platform in place of
the Dalvik virtual machine; is that right?

A. That’s correct.

Q. But that was as far as it went; correct?

A. As far as I know.

Q. The product that was developed in Project
Daneel never got to market; correct?

A. Correct.

Q. Mr. Gering, I just handed you Trial Exhibit
2061.

177
(Document displayed.)

MR. PURCELL: If we could blow up the top half of
that.

Thank you, Ben.

BY MR. PURCELL

Q. This is an email that you sent to Vineet Gupta
in [1199] January 2009; correct?

A. Yes.

Q. First off, Mr. Gupta, in January 2009, his job at
Sun was negotiating Java licenses with manufactur-
ers of mobile phones; correct?

A. He was the CTO of the – he was in charge of the
SEs and also the CTO for the embedded sales force. So
as part of that responsibility, he was involved in those
discussions.

Q. Mr. Gupta is referring there in the second
paragraph, “I’ve been getting several requests regard-
ing partnering with us to provide a Dalvik/Java ME
combined platform. Samsung is really pushing for
partnership discussions ASAP.”

Do you see that?

A. Yes.

Q. And in the next paragraph he refers to,
“Samsung, HTC, Sprint, T-Mobile, LGE are the top
candidates approaching us.”

Do you see that?

A. I do.

Q. Those are some of the most prominent phone
manufacturers in the world, aren’t they?

A. Yes, they’re a subset of them, yes.

178
Q. Despite Mr. Gupta’s optimism that there were

these opportunities out there for Sundroid, with some
of the most prominent mobile phone manufacturers in
the world, Sun still never managed to get a Sundroid
product to market; correct?

[1200] A. Sun did not bring a Sundroid product to
market.

Q. Mr. Gering, this document is Trial Exhibit
3508. And, Mr. Gering, this is an email you received in
October 2009.

Do you see that?

(Document displayed.)

A. Yes, I do.

Q. And it attaches a couple of presentations?

A. Yes, I see it.

Q. If we can just look at the first presentation right
after the cover email. It’s called “OneJava Market
Landscape Discussion.” Do you see that?

A. I do.

Q. And if we could just go to the second page.

(Document displayed.)

Q. Looking at the second bullet point there, that’s
“Sun’s leadership around Java is perceived as stag-
nant, and Java is considered legacy.”

Do you see that?

A. I do.

Q. First bullet under that says, “Stagnant innova-
tion.” Do you see that?

A. Yes.

179
Q. The third bullet says, “Fragmented between

Java SE and Java ME, and between Java ME mobile
and TV and within mobile and TV.”

* * *

[1208] teaching computer science.

Q. So you’re familiar with the Java programming
language?

A. I am. I have written many programs in Java. I
teach many courses that use Java programming lan-
guage.

Q. How did you first learn Java?

A. I first learned Java right in about 1995, when it
came out, so I could begin teaching with it. And I read
books and used some online sources to help me under-
stand how Java worked and how the API libraries with
it worked as well.

Q. When you first learned Java, how did it com-
pare to computer languages with which you were
already familiar?

A. Java is an object-oriented language, which
means it uses classes. And that’s similar to C++, a lan-
guage with which I was very familiar because I had
been using it for several years in both my research and
my teaching.

So it was relatively straightforward to pick up Java
because, conceptually, it was related to C++. And, also,
the API libraries were similar to C and C++ as well.

Q. What courses, if any, have you taught on Java?

A. The first course I taught in Java was in 1996.
That was an advanced course in software design. And
we continue to use Java in that course today.

180
We also began using Java in our first courses for

majors in the early 2000s. And I still teach a course
with Java. That’s the second course that our majors
take, and we continue [1209] to use it there.

Q. Have you won any awards?

A. I’ve won several teaching awards at Duke for
my teaching. I’ve won an award, when I was on leave,
at the University of British Columbia, in Canada, for
teaching a Java course when I was there for one year.

And I’ve won some awards from the National Science
Foundation.

(Reporter interrupts.)

A. Sorry.

I’ve won an award for teaching a Java course at
University of British Columbia. I’ve also won some
awards from NSF, for the work I do on my research
and teaching.

MR. PAIGE: Your Honor, may I approach the wit-
ness?

THE COURT: Yes.

BY MR. PAIGE

Q. Professor Astrachan, I’ve handed you Trial
Exhibit 7642.1. Could you take a look at it and identify
that document?

A. This is a copy of my curriculum vitae, my CV or
resume.

MR. PAIGE: Your Honor, me move the admission of
TX 7642.1.

MS. HURST: That’s fine, Your Honor.

THE COURT: All right. It’s received in evidence.

181
(Trial Exhibit 7642.1 received in evidence.)

[1210] BY MR. PAIGE

Q. Professor Astrachan, have you been retained by
Google in this case?

A. I have.

Q. And are they compensating you for your time in
this case?

A. They are.

Q. Okay. What assignment were you given by
Google?

A. I was asked to look at the 37 API package labels
that are at issue in this case and to develop opinions
about how those API package labels are used on the
Android platform as part of creating Android.

Q. What did you do to form your opinions on that
subject?

A. I used my understanding of programming lan-
guages, and of Java in particular. I used my knowledge
of Android and programming. And I wrote software
that I used to analyze the code base for both Android
and Java SE, as part of developing my opinions.

Q. And could you just tell the jury, at a high level,
what the opinions you developed were.

A. At a high level, Google is using the 37 API
packages, the labels, the method declarations from
these 37 API packages in creating a new context, the
Android Operating System.

So in my technical analysis using the code bases for
these, I’ve seen that the 37 API labels are combined
with new implementing code as part of creating the

182
Android Operating [1211] System and full stack
platform.

And they’ve used C++ and Java libraries also opti-
mized and designed for a mobile platform in creating
Android.

I also see that these API levels, the method declara-
tions and class declarations, are by nature functional
because that’s what API labels are. And, in particular,
these API labels are short, descriptive and functional
in terms of what they do. And the API label declara-
tions are very small part of the Java SE platform.

In creating – in develop – in using these labels to
make Android, we see that Java is still the number one
programming language in the world, and these API
package declarations are part of the OpenJDK release
of Java SE.

Q. So before we go into the details of your opinion,
I would like to have you give the jury a little back-
ground.

Can you explain to the jury what a computer pro-
gramming language is.

A. Sure. And I have a slide that shows some of this
information.

At the lowest level, programs run on computers.
That’s why they’re called computer programs. And
those are 0s and 1s.

But when we talk about programming languages,
we’re talking about languages like Java and C++.
That’s the source code that you see in this diagram on
the right.

And the process of taking a program written in these
[1212] high-level languages, in Java and C++, if you

183
look at the language, they look a little more like
English, a language that you would, kind of, be able to
read and write, not like the 0s and 1s that are actually
executed on the computer.

And the high-level source code is translated – in the
diagram you see it’s compiled – into the binary code or
0s and 1s that are executed on the computer.

Q. And you have two different types of setups
there.

Can you explain to the jury what the top and bottom
ones are.

A. Sure. In some languages, like C++, when that
source code is compiled or translated into the 0s or 1s,
that binary code runs directly on the hardware.

And in a language like Java, there’s a virtual
machine. And the source code in Java is compiled into
bytecode. And that bytecode is run on the virtual
machine, which turns it into the 0s and 1s that are
executed on the computer.

But their process is the same in both languages.
Starting with source code and ultimately getting to the
0s and 1s that are the computer program that runs.

Q. What are the differences, if any, between lan-
guages that use virtual machines and those that do
not?

A. The virtual machine has a small overhead. So
often programs that are run on the virtual machine
might run slightly more slowly than they do for pro-
grams that don’t use the [1213] virtual machine.

Q. Was Java the first language to use a virtual
machine?

184
A. No. Virtual machines had been used for years

before Java. The P-code virtual machine ran both
Pascal and PL1. So there were virtual machines in
existence before Java.

Q. Why do computer programmers use high-level
computer programming languages?

A. It would be really hard to write a program just
with 0s and 1s. So the high-level programming lan-
guages allow programmers to be productive and effec-
tive in making the programs and applications that
they do as part of their job and their hobbies.

Q. Can a computer programmer who writes in one
language generally write in any computer language?

A. Well, you have to pick up the new language. But
once you’ve learned one language and the libraries
that are associated with it, it’s usually reasonably
straightforward to pick up a new language and the
new API libraries, especially if those languages are
similar.

But computer languages are much closer to each
other than, say, if I already know Spanish, it would be
really hard for me to learn Chinese. The alphabets are
different. The words are different.

But when you know Java and the libraries associ-
ated with it, it’s relatively straightforward to be able
to pick up a new [1214] language because the source
languages and the libraries are often very similar.

Q. Now, could you explain to the jury what an
application programming interface is.

A. Sure. We’ve heard “application programming
interface” or “API.”

185
And that’s a piece of software that allows you to

connect my – the program I’m writing as the developer
with code written that’s stored in the library. So the
API is one way that I can write my code and use code
that someone else has developed.

Q. What is an API used for by programmers?

A. Well, as I explained, when I write my source
code, my software, I could write everything myself.
But some programs would be unbelievably long and
complicated.

For example, the process of opening a Web page in a
program would be really long. Or Internet protocols
and Web protocols I would have to understand, I would
like to just be able to say “open a Web page,” and then
have thousands of lines of code that were needed to
actually open that Web page and get it. It would be
wonderful if those were already written and debugged
and robust and I could just use that code.

So what the API does in this case, the label “open
Web page” would be enough for me to use in my pro-
gram and then access the thousands of lines of imple-
menting code that had [1215] already been written
and tested.

So in that case, the API is, I write the code that says
“open Web page,” and then I access the step-by-step
functionality that’s part of the implementing code that
lets me actually accomplish that task.

Q. Now, can you provide the jury with an example
of something in everyday life that’s comparable to an
API?

A. Sure.

186
I have an example that I often use in my classes.

And I have an exhibit that we’ve created to kind of
explain that.

Probably everybody has been in a car. Most of us
have been a driver in a car.

And when you get into a car, even if you’ve never
had that model car before, whether it’s a convertible or
a pickup truck or a smart car, we know that the steer-
ing wheel, when you turn it to the left, the car goes to
the left. When the steering wheel turns to the right,
the car goes to the right. And that works whether the
steering is a rack and pinion or power steering.

So the steering wheel is this, kind of, API that allows
me to operate the car without knowing how the under-
lying steering mechanism works.

The accelerator works the same way. I know, in any
kind of car I get into, when I press down on the accel-
erator, the car is going to go. And when I ease up, the
car slows down.

[1216] And that works whether it’s an electric car, a
V6, a V8, fuel injection.

(Reporter interrupts.)

A. Sorry. Sure.

If the car has an electric engine, or a fuel-injected
engine, a V6, a V8, when you press down, the car goes.
And I don’t have to know how the drive shaft works
our how the pistons work. So all that functionality of
how the engine works is accessed by the accelerator
that works the same way.

Brakes work in a similar way. When I press the
brake, I know that some kind of brake, disk brake,
caliper, is going to stop the car.

187
So these aspects of driving, steering wheel, accelera-

tor, brake, they serve as a kind of analogy because I
can use them to accomplish the task of driving my car
without knowing how the underlying system works,
without having to understand what kind of engine it
is.

And the API software also allows me to access that
functionality of the implementing code without need-
ing to understand exactly how it works, just being able
to rely on the step-by-step instructions that I’ve accessed
by using the label declaration of the API.

Q. How does use of APIs help computer program-
mers that are trying to program in other contexts or
other platforms?

A. Well, I talk about how, first, it saves me the
time from [1217] having to write the thousands of
steps that might be needed.

And if an API in one language is the same between
platforms, whether I might be writing for a desktop or
a mobile device, if I can rely on that API being used to
access that same functionality, that will help me
develop software more easily.

Q. And can you –

THE COURT: Can I ask a question on this?

MR. PAIGE: Of course.

THE COURT: It sounds like, you know, you’ve
drawn a distinction between the label or the declaring
code and then the implementing code; right?

THE WITNESS: Yes.

THE COURT: Okay. As you use the term “API,” it
sounds like you’re referring to the collection of all of

188
the labels and not including the implementing code; is
that correct?

THE WITNESS: I’m – I’m trying to be careful because
I understand that what we’re talking about here is just
the declaring code. And so I’m trying to say declaring
code in API.

But API as a term is reasonably broad. And in teach-
ing with it and understanding how software engineers
use it, an API by itself could refer to API services, or
the implementing code, or, kind of, a general under-
standing of how to use the [1218] API.

So I’m trying to be precise here in saying the label
declarations, that’s the declaring code that we’re
talking about. But I might slip a few times and say
“API,” and end up encompassing the implementing
code.

So what I know here is that we’re talking about just
the declaring code for what Google used at the begin-
ning of creating the Android platform.

So I’ll try to not use “API” in this all-encompassing
way. Although, I think that’s part of the general confu-
sion that we’ve seen that can mean this conceptual
piece or the implementing code.

THE COURT: All right. Thank you.

Go ahead.

BY MR. PAIGE

Q. It seems like it’s a good time, Professor
Astrachan, to perhaps explain to the jury the parts of
the API. Could you do that?

A. Sure.

189
The API – and I’ve got a diagram that shows this;

and this goes to what Judge Alsup just asked– includes,
for the purposes of what we’re talking about here, the
method declaration. That’s the label that we’ve been
referring to when we talk about the labels of the
declaring code.

And that’s in yellow, that you see on this slide. And
[1219] this particular method, we see the name of the
method. That’s shown as “compareto.” And in Java,
that would be in a class, in a package, that’s also part
of this API not shown there.

And the method declaration “compareto” – API meth-
ods also have an input and an output. We’ve heard
that before.

You can think of things like in a calculator when
square root might be the name of the API. And it has
input, you put in the number 25. And then you have
an output. You get back 5.

In this case, the method declaration has a name,
“compareto”; an input, that’s labeled as “String
anotherString,” that’s what goes into this method; and
then an output. That’s the return type. That’s shown
as “int.”

So, in general, all these method declarations have a
name – and in Java that includes the class and pack-
age name – and an input or parameter, and output,
the return type. Name, parameter, return type.

Q. And can you point to where the return type
perimeters are found there on the slide?

A. When you read “public int,” the “int” is the
return type; “compareto” is the name of the method;
and then “anotherString” is the parameter.

190
So it starts with the return type, then the name of

the method, and then the parameter. Those all togeth-
er create the method declaration.

[1220] Q. Now, can you explain to the jury what the
implementation of an API is?

A. Sure.

I’ve talked before about how this one label allows me
to access all the functionality as a programmer, so I
don’t have to write it myself over and over again.

Here, the implementing code is shown in gray. And
that’s this step-by-step sequence of instructions that
would actually get ultimately executed as 0s and 1s
when I call the API label.

So I use the label to access the functionality. And
that gray step-by-step sequence of instructions then
returns my result. So there’s the declaration and the
implementing code.

Q. And what’s at issue in this cases, Dr. Astrachan?

A. In this case, what’s at issue is just the declaring
code, just what you see in yellow on that slide, the
return type, the name that includes the package and
class, and the parameters.

Q. Can you explain to the jury what might happen
if you had APIs change?

A. Sure.

Here’s another example that might make sense for
what an API is.

If you use software and you print a Web page or
print a wordprocessing document, sometimes you see
“print” in the file menu. And that might be control P
or command P. That just makes things print.

191
[1221] What would happen if, all the sudden, control

P or command P meant paste, because P starts with
paste. Then printing wouldn’t work anymore. So that
if the API changed so that command P meant paste,
then users of that file menu and their software
wouldn’t be able to accomplish their tasks.

The same thing would happen for a software devel-
oper. If the API labels change, then either the software
wouldn’t continue to work anymore or the developer
would have to use a whole – would have to learn a
whole new language to be able to use these API labels.

Q. Can you explain to the jury what libraries for
programming languages are.

A. Sure. A library – well, in this file menu that I
talked about, if you’ve used software before, you know
in the file menu you see “print” and “new” and “open”
and “save.” That’s a collection of operations that are in
one place. The file menu.

And a library in software is kind of the same idea.
Classes or ideas that are grouped together are in the
same library. And the methods that are in the class
that are in a library all would be related functionality.
So a library is a collection of related software.

Q. Are there other names for libraries in computer
languages?

A. There are.

In Java, we use the word “package.” That’s, kind of,
a required name in Java. And “package” is a library.

[1222] A package contains classes in Java that are
related. Conceptually related. So a package in Java is
a library.

192
Q. And what’s the relationship between libraries

and computer programming languages?

A. In order to make effective use of a programming
language, you need libraries. We can’t write all the
code ourselves. And sometimes it wouldn’t even be
possible, without libraries, to do things like print or
make your program run.

So for developers and programmers to be effective,
you have to have libraries that are essentially associ-
ated with the language, to be a productive program.

Q. I would like to turn, now, to talk a little bit
about Java.

When were the Java APIs initially created?

A. The Java APIs, along with the Java program-
ming language, were first introduced to the public in
about 1995. So we had the language and the APIs that
were released at the same time.

Q. And you’ve said in Java that libraries are called
“packages.” Can you explain to the jury how Java organ-
izes the material within those packages?

A. Sure.

I mentioned that Java is an object-oriented lan-
guage, which just means that we use the word “class”
to encompass a bunch of code, a bunch of concepts that
are realized in code.

So in Java, a package is a collection of classes. That’s
[1223] required by the language. And each class is a
collection of methods and a few other things.

So the organization in Java, that’s required by the
language, is a package. It’s a collection of classes.
That’s software. And each class is a collection of meth-
ods.

193
So these labels are methods within the class that are

part of a package in Java.

Q. And what’s the order of naming in these labels?

A. We typically, and the way Java kind of requires
things to write is you say, package name, class name,
method name.

Q. And how do the names of the labels relate to the
structure, sequence and organization of Java SE?

A. Well, the Java Language requires that we use
package name, class name, method name in describing
these labels.

So if we saw something like the max method, that
we saw Mr. Bornstein write, that would be java.lang,
that’s the package, .map, that’s the class, .max, that’s
the method.

So that sequence of package name, class name,
method name, that’s required by the language, and
that’s how Java works.

Q. So is the name of the method interchangeable
with the SSO of the method?

A. I treat the names – because they start package
name, class name, method names. That is the struc-
ture, sequence and organization that Java requires us
to use. So I, kind of, treat those declarations in the
SSO as the same.

[1224] Q. What’s your understanding of Java’s
place in the world of programming languages today?

A. I know that Java is really widely used in
teaching in the academic setting I work in. And I know
that the students I teach go out and get jobs writing
Java. And I also know that on Oracle’s website it says

194
that Java is the number one programming language.
So it’s really widely used.

Q. And do you have an understanding as to how
Java became so popular?

A. Well, I know in part how it became popular.

When Java was first released in 1995, Sun made a
great effort to make Java and the API libraries
available to both me in my teaching responsibilities,
but also to companies that would be able to use Java.
And they developed programming environments.
Some specifically for professional programmers.

We’ve heard, maybe, about NetBeans here. But also
for beginning programmers. So there’s a programming
environment called Blue Jay, that was supported by
Sun, designed specifically for teaching.

So Sun took great, kind of, care and steps to make
sure that Java and the APIs were both well-known and
easy to use for both teaching purposes and for develop-
ers writing programs.

Q. Now I would like to talk about the Java plat-
form.

Could you tell the jury about what versions there are
of the Java platform?

[1225] A. We’ve heard about three platforms here,
and I, kind of, have a graphic that describes them all.

The Java Standard Edition, that we see in the mid-
dle, that’s Java SE, that’s used by developers to create
programs that run on desktop and laptop computers
and maybe small servers. So Java SE is the platform
that we’re talking about here. And it has about 166
packages in it.

Q. What’s the Java Enterprise Edition?

195
A. The Java Enterprise Edition, that you see on

the left, is used for enterprise applications. That would
be, kind of, big server applications or things that you
would deploy in a business with thousands of
computers.

And that has a hundred more packages, roughly,
than we see in Java SE because those programs have,
kind of, a different functionality or purpose than they
do on the ones – than the ones that run on your laptop
or desktop computer.

Q. And can you tell the jury a little bit about the
Java Micro Edition?

A. We see there on the right the Micro Edition that
we’ve heard it’s a programming platform used on fea-
ture phones. And that has far fewer of the packages
that we’re talking about here. It has about 10 pack-
ages.

Q. Which of these versions of Java is at issue in
this case, Professor Astrachan?

A. The API declarations, the label declarations
that we’re [1226] talking about here, come from Java
SE, the platform that’s designed to create programs
that run on desktop and laptop computers.

Q. And what specific packages are at issue in the
case?

A. There are 37 packages that we’re talking about
here. And we can see them listed up there.

We don’t have to go through all these packages, but
these are all the package names. And you can see they
start with either Java or JavaX. And then the names
essentially describe what you’d expect to find in those
classes – in those packages.

196
Q. Now let’s talk a little bit about Android. Could

you explain to the jury what the Android platform is?

A. Sure.

We have a picture of the Android platform that I
could use –

MR. PAIGE: Your Honor, may I show the board?

THE COURT: Of course.

MR. PAIGE: Exhibit 43.1 in evidence.

THE WITNESS: It would be helpful if I could go over
there and point –

THE COURT: Be my guest. Just keep your voice up.

THE WITNESS: Okay.

THE COURT: Can the jury see that okay? We’ll
move it if you can’t see.

[1227] Why don’t you move it closer to the jury box.

THE WITNESS: Okay.

MR. PAIGE: Certainly.

THE WITNESS: Here we go.

THE COURT: How many lawyers does it take to
move an easel?

(Laughter)

THE COURT: Can you all see now?

All right. Mr. Paige, you’re going to have to move
back. I think you’re blocking the view of some of the
jurors.

THE WITNESS: Stand to the side.

THE COURT: So let’s go ahead.

197
BY MR. PAIGE

Q. So could you explain what exists at the lowest
level of the Android platform?

A. At this lowest level, we see the Linux kernel.
That’s the low-level operating system. And this is an
open source kernel that Google used and made, kind
of, special for this mobile platform. And that’s what’s
at this lowest level.

Q. And what exists above that lowest level in the
Android platform?

THE COURT: Mr. Paige, would you scoot back one
more step.

MR. PAIGE: Of course.

THE COURT: There we go.

[1228] THE WITNESS: We can see here what’s
labeled the “Android runtime.” And that consists of the
core libraries, which are the new implementations of
the packages from which these 37 API package labels
come from. So those are included here, as are other
libraries that are designed for this mobile platform.

So these are the Java libraries, including new imple-
mentations of the 37 packages. And then new libraries
that are part of creating this mobile platform. Those
are part of this Android runtime.

BY MR. PAIGE

Q. And what are those new libraries for, Professor
Astrachan?

A. Well, these libraries would be for things like
making Web browsers. Or in a smartphone, it has
location awareness for GPS. That’s not something that

198
you would expect on a laptop or desktop computer,
where Java SE comes from.

It has accelerometers. When your phone shakes,
something happens. It has a camera. Those are also
features that you wouldn’t expect on desktop or laptop
computers.

So many of those libraries are designed specifically
for the mobile platform, which is a different platform
from where the 37 API packages came from.

Q. And beneath the core libraries what is that,
Professor Astrachan?

A. Well, that’s labeled here the “Dalvik virtual
machine.” [1229] And we either have a Dalvik virtual
machine or the Android runtime.

If you remember back from the first slide I had,
where translating a programming language into the 0s
and 1s used a virtual machine, this is a virtual machine
designed specifically for a mobile platform.

It has smaller bytecodes than you’d find in the
virtual machine on the Java SE platform. It’s designed
to run more efficiently on a mobile platform, which has
battery capabilities that are different than you would
find on a desktop computer. And it runs on a mobile
smartphone platform that would have less memory,
for example.

So this virtual machine is designed specifically for
this Android smartphone platform.

Q. And in the green area, can you explain to the
jury what that is, Professor Astrachan?

A. We can see here that those are labeled “librar-
ies,” which we know are collections of code. And in this

199
case these are open source or public domain libraries
that were written in C++ or maybe Java.

And they are specific, again, for a mobile platform,
a smartphone platform. Web.Kit, for example, is soft-
ware produced by Apple that allows us to create a
browser that would run on a smartphone.

We have Open GL embedded system. That’s a
graphics [1230] library that makes graphics run quick-
ly and smoothly.

SQlite is a database that allows the mobile phone to
access the database.

In general, these are libraries that are part of the
mobile platform. And these are open source libraries
that are integrated with the core libraries as part of
creating the Android platform.

Q. If a developer wanted to create an application,
how would a developer do that on the Android plat-
form.

A. Top level applications, that is where a developer
would create an application, like a contact list or a
phone screen that you see over here over here. Those
applications, which are largely written in Java or they
can be written in C++ or C – those applications take
advantage of an application framework, which is a set
of services kind of provided by the Runtime in these
other libraries.

So the key here is that the applications are written
at this high level and it makes use of all the libraries
here and then we heard how those also depend on the
Linux kernel down below.

Q. Thank you, Professor Astrachan.

200
Now, I believe you had mentioned that the – the

applications could be written in Java or C++. How
would one write an application in C++ for Android?

A. Well, an application written in C++ on Android
would use [1231] what is called the NDK. That’s a
library instead of code that Android provides to use
C++ in creating software that would also run in the
Android platform.

Q. How is the Android platform distributed?

A. The Android platform is distributed as an open
source platform. So that means the source code is free
for anyone to use.

Q. Now is the Android platform compatible or
intraoperative with the Java SE platform?

A. No, it’s not. We talked about how the Java SE is
designed for laptop and desktop computers, and an
application written for those would use likely the 37
API packages and their implementations, but maybe
the hundred-plus more that were there for a desktop
or laptop computer.

So if it used all those API packages, the declaring
code and implementing code to run on a desktop or
laptop, we wouldn’t expect it to run on a mobile device
because it wouldn’t use all those API packages.

And similarly, if we wrote an application that ran an
Android, it would – it might use some of those 37
independent implementations in the packages, but it
might use the accelerometer and the location services,
and if it used those, those new libraries that were
designed specifically for the Android platform, it
wouldn’t work on your desktop or laptop computer. So
in general, those platforms aren’t compatible.

201
[1232] Q. Was it necessary for Google – was Google

required to replicate the API labels in SSO of the 37
Java SE API packages in order to use the Java pro-
gramming language?

A. I understand that Oracle has said that roughly
60 classes in 3 packages are constrained –

MS. HURST: Your Honor, I’m going to object. This
is beyond the scope of the witness’ opening report.

THE COURT: Is that true?

MR. PAIGE: It is, Your Honor.

THE COURT: Sustained.

MR. PAIGE: It’s required by your motion in limine.

THE COURT: What?

MR. PAIGE: This is – this testimony was required
by your motion in limine. I’m happy not to put it in –

MS. HURST: But not in the opening, Your Honor.

THE COURT: Well, I apologize for not having – I
just have to count on counsel to do it the way I said
before. Can you skip this for now?

MR. PAIGE: I can, Your Honor.

THE COURT: Are you saying I ordered you to take
this up on direct?

MR. PAIGE: You ordered that he save it, so I’m
happy to move on if you don’t –

THE COURT: Let’s come back to it.

MR. PAIGE: Very good, Your Honor.

[1233] Q. Professor Astrachan, what might happen
if you use different method declarations for classes in
a given package?

202
A. Well, I talked before about how if the method

declarations changed, then software that had already
been written would no longer work, but if the method
declarations changed, that wouldn’t meet developer
expectations, and so developers wouldn’t be able to be
effective in using these packages if the label declara-
tions were all different than what they expected and
had knew from what was – their development with
Java.

Q. What would the programmer need to do if the
method declarations were to change?

A. Well, if the method declarations changed, the
programmer would have to learn the new labels by
consulting documentation and reading books, and soft-
ware that had already been written would have to be
rewritten to use these new API declarations.

Q. Okay. Professor Astrachan, you had given an
overview of your opinions earlier. I would now like to
discuss some details in your opinions.

Based on the work you’ve done, what opinions do
you have with respect to the way Google has used the
API labels of these 37 packages in Android?

A. Can I use the diagram again?

Q. Of course.

Your Honor, may he approach the easel?

THE COURT: Yes, of course.

[1234] THE WITNESS: I’m going to just kind of
describe at a high level what happened here.

We talked about these core libraries. The first thing
Google did was they selected just the 37 packages and
then you used the labels from these 37 packages in
creating the Android platform.

203
BY MR. PAIGE:

Q. How many packages did they select those 37
from?

A. Those 37 packages were from selected from 166
packages that are part of Java SE, so the ones that
were selected were the ones that would be useful to use
on this mobile platform. And then after selecting those
37 packages, they then implemented them with new
source code that was optimized for the mobile plat-
form.

So because they only took the label declarations,
they then had to create new implementations, again
optimized for a mobile platform. That was part of how
they used these declarations in creating Android.

And then once they implemented these 37, they had
to add new libraries – I talked about this before – so
the new libraries that would be part of the mobile
Android platform. So after selecting the 37 and then
implementing them, they developed new libraries that
were integrated with these as part of creating the
platform.

Q. And what did implementing, putting the new
implementing [1235] code in do for the platform?

A. This created a new context for these other labels
to be used because now they’re part of a mobile smart-
phone platform that’s different from the desktop and
laptop platform that these 37 labels had been used
before.

So in selecting them and then re-implementing
them for mobile and then developing the new libraries,
we see that these are used in the new context, a
different context than they had been used before.

204
Q. When you say they develop new implementa-

tions, how was that tuned for mobile, if at all?

A. The new implications of these 37 packages are
about 80 percent the size of the libraries that were
implemented for Java SE, so we’ve seen that those new
implementations are a smaller amount of source code
than they were on the Java SE platform.

Q. The new Java library, what was the point of
putting those in?

A. These new Java libraries, as I mentioned, are
needed to access the functionality and purpose of this
new context in which the labels are used: Cameras,
accelerometers, location services. These new libraries
allow these labels to be used in this new context.

Q. So in addition to the new libraries, what did
Android add?

A. Well, I talked before and we can see down here
that there [1236] is this Dalvik Virtual machine.
Adding that to these helped make the whole platform
work because this virtual machine was optimized
again for a smartphone platform.

So by selecting the 37, making new implementa-
tions, developing new libraries, and then creating this
new Dalvik Virtual machine, the Google engineers
were able to use those declarations in this new context
on the smartphone platform.

Q. How was Dalvik optimized for mobile?

A. Dalvik is optimized for mobile by first using
smaller bytecodes than are used in the Java Virtual
machine, and it’s also designed to take advantage, as
I mentioned earlier, of power constraints and memory
constraints that are different on a smartphone plat-
form than they are on a desktop or laptop.

205
Q. What else was added to the 37 labels?

A. Well, finally at the bottom level – and I’m not
going to get down to the floor to point. I’ll just reference
that it’s down there in red – we see the Linux kernel,
and that Linux kernel is the low-level operating sys-
tem that Google used because it’s an open source
operating system and then specialized for use on the
smartphone handset.

So that’s the lowest level of what Google did in
creating this new context in which those 37 labels were
used. So we can see that all these features went into
creating the new context that shows how those 37
labels – they’re 37 packages, labels from them, were
used in this new context.

[1237] Q. And does the green layer enter into the
context as well, Professor Astrachan?

A. Well, that green layer is kind of part of these
new libraries, so some of these libraries were written
in Java and some of the libraries were open source
libraries that were incorporated into that section.

Q. And how, if at all, did those serve to create a
new context for the 37 Java APIs?

A. Again, since we have the re-implementation,
the new libraries that allowed the smartphone to func-
tion, things like a media framework and the secure sock-
ets layer and the web kit, those hadn’t been incorpo-
rated before with these 37 packages to create this
smartphone platform.

Q. Thank you, Professor Astrachan.

A. You’re welcome.

Q. So could you explain to the jury how, if at all,
the ways in which this whole Android platform has

206
been used affect your opinion regarding the nature of
Google’s use of these APIs?

A. Yes. As I mentioned, in selecting all of these and
then creating a smartphone platform and releasing it
as open source, Google has created new opportunities.
I can show on the screen here one of my independent–
one of my exhibits that says the Kindle Fire, which is
both hardware and an operating system that Amazon
has developed, that’s based on Android, but not the
same as Android, so because Android is released as
open source, [1238] Amazon was able to use it and
develop Kindle Fire, which is both a device and an
operating system that Amazon releases that doesn’t
work the same way as Android does but is built on
Android.

On the right, we see a handset created by Wileyfox,
which is a handset manufacturer in the UK that runs
Cyanogen, which is – the CyanogenMod is an operat-
ing system, again built on Android because it’s open
source, but different with different functionality.
Because Android is open source, the Cyanogen Company
can take that and do what they want. So here are two
examples that show how the open source nature of
Android has created opportunities for companies to
use that.

Q. How, if at all, do past attempts by Sun to create
a smartphone platform figure into your opinion about
Google’s use of the 37 APIs?

A. We know that Sun had the 37 packages and
their labels and their implementation, along with 100
other packages. Those were part of Sun’s Java soft-
ware product, and Sun was not able to use those to
create a smartphone.

207
Q. To what extent, if at all, do Oracle’s statements

regarding Android enter into your opinions regarding
Google’s use of the Java APIs?

A. Well, we just saw a video right before here of
Terrence Barr saying that Android was transforma-
tive, and in my opinion, that’s true. The Android plat-
form is a transformative use of [1239] these package
labels from the 37 APIs.

MS. HURST: Your Honor, that was covered by the
MIL, and that’s a specific legal definition.

THE COURT: Well, you are talking about Mr. Barr?
Is that the motion in limine you’re referring to?

MS. HURST: Actually, the motion in limine for Dr.
Astrachan also had limitations on his ability to char-
acterize things as transformative, Your Honor.

MR. PAIGE: I don’t think that is correct, Your Honor.

THE COURT: I honestly don’t remember. We will
have to take this one up at the break. So let’s strike
that answer for the time being. We will come back to
it after the next break. Okay. Go ahead.

BY MR. PAIGE:

Q. Professor Astrachan, based on the work that
you’ve done, have you formed any opinions about the
nature of the material that Google has used from the
37 APIs?

A. Yes. I talked earlier in my kind of summary that
the label declarations are functional because they con-
nect the developer software with the software in the
library, the implementing code.

So these API labels are very functional in nature.
And the labels themselves are also descriptive and

208
functional of their purpose because that allows devel-
opers to be able to use them more effectively.

[1240] Q. And so do you have any opinions about
what the names themselves of the API are in terms of
their nature?

A. Sure. I can – I can show you some of the names.
Certainly not all of the label declarations, but I’ve got
a slide, it’s in my slide 9, that shows some of these.

We can look at this slide first. This is a slide that
shows the package names, and we can see that the
packages are very descriptive of their purpose. So, for
example – and all packages start with Java or Java X.
Net is a collection of network classes. IO is a collection
of input/output, which are called IO by programmers.

SEQUEL or SQL is a structured query language,
and in that package, we’d find the classes to access
database programs using SEQUEL.

Security is very important in programming today.
When your program accesses your bank, for example,
you want to be sure that it’s a secure transaction. And
in the security package, we’d find the classes that are
related to security.

Java.util is a collection of utility classes that pro-
grammers use to connect different pieces of software.
So here we see that the package names are highly
descriptive of what their purpose is.

And then on the next slide, we see some method and
class names.

Q. Being descriptive of their purpose, what does
that mean [1241] about the nature of these names?

A. The names, as I mentioned, are both descriptive
and functional in describing what they do.

209
Q. So you would say you’re going to look at some

method and class names. Could you explain to the jury
what these tell you about the functionality of what
Google has used?

A. As it turns out, in Java, methods are supposed
to start with a lower case letter. So on that graphic,
you see two methods that are in lower case letters,
that’s the top. That’s get date and time. And it’s
probably reasonable to think that that method gets the
date and time.

And then the method set date and time would allow
you, the programmer, to set the date and time that are
used when you write programs. So those method
names, although they’re not short, are highly function-
ally descriptive of what their purpose is.

Q. Have you looked into how many such get and
set methods there are in Java?

A. Yes. There are thousands of get and set methods
in Java. Get and set is a reasonably common conven-
tion used in programming to get and set different
properties in a class, so there are thousands of them in
these 37 API packages.

Q. How about the rest of those classes on your
slide?

A. Class names in Java start with capital letters,
and we can see here that the class names are also
descriptive of their [1242] purpose and function. So
events are things that occur in programming that you
connect one part of your program to another. And
there we see preference change event and connect
event.

For example, if a user changes their preferences in
a phone or piece of software, there might be a prefer-

210
ence change event. And then a connect event would be
connecting one event with something else.

We see three input streams. A stream is a way for
information to flow into your program. Well, an input
stream has information flowing in, and that could
come from a file or from a zip file, that’s a zip – a
compressed collection, or from an object. So we see
here that these class names are also related and simi-
lar to each other in describing their function and pur-
pose for a programmer.

Q. Again, how are these names used in Java or
Android?

A. Well, the method declarations require that we
have a package name and a class name and a method
name. So programmers would use these class names
in writing the programs that they need to run on an
Android platform, for example.

Q. When they wrote that class name, what would
then happen?

THE COURT: You’re saying wrote it in the particu-
lar program that they themselves are writing, or do
you mean when it’s written as part of the library?

[1243] BY MR. PAIGE:

Q. Sure. When someone writes that name into a
program they themselves are writing and compile it,
what does that name then do?

A. You write the class name and the method name
in the program that I’m writing over here, and that
would then complied into this bytecode that runs as 0s
and 1s, and it would access the implementing code in
the library. So as the developer of the application, I use
the package class and method name to connect my

211
software with the implementing code that’s in the
package.

Q. So what function does that name serve?

A. That name serves the function of connecting my
software with the implementing code in the library.

Q. Based on your knowledge of programming lan-
guages, what similarities, if any, exist between the
names used in Java and the names used in other
programming languages?

A. Well, we’ve heard here last week, and I know
from my experience teaching, that Java uses many
names that are similar in, say, C++ and C. So that’s
part of what makes learning a new programming lan-
guage more straightforward because we expect to see
the same names in one language in the libraries that
are associated with that language used in another
language.

Q. Based on the work that you’ve done is it
important that names for APIs be creative?

[1244] A. No. We wouldn’t want names to be crea-
tive because as software developers, we’d expect to
have the names in our programming libraries be
descriptive and functional of their purpose. So we
would want square root, for example, to mean find the
square root, not some complicated, long name that
wouldn’t be indicative of its function and purpose.

So creative names wouldn’t be helpful for a devel-
oper in finding and accessing the functionality that
we’d expect to find in libraries.

Q. Professor Astrachan, as part of your work in
this case, did you analyze amount of material that
Google used from Java SE?

212
A. I did. I wrote software to analyze both the Java

SE platform and the Android platform.

Q. And how many lines did you understand have
been used by Google from Java SE?

A. I talked about the method and class declara-
tions that were selected in creating Android, and there
are about 11,500 declaring lines of code that were
selected in creating the Android platform.

Q. Did you quantify how that Java SE material
compared to the amount of source code in Java SE?

A. If we look at Java SE and the 166 Java packages
that are part of Java SE, we see that in those 166
packages, there are about 2.86 million lines of code. So
the 11,500 that were [1245] selected, that’s about .4
percent of the implementing code for all 166 packages,
and if you look at all of Java SE, that’s about five
million lines of code.

Q. How many lines are code are there of the
Android platform generally?

A. The software I wrote indicates that there are
about 15 million lines of code in the Android platform.

Q. Professor Astrachan, based on the work you’ve
done, have you formed any opinions about the effect
that the release of Android has had on Java?

A. Yes. As I mentioned earlier, Java is the number
one programming language in use. That’s what I know
from my own work and what we see on Oracle’s web-
site. So I think that’s a good indication of part of the
development environment we see today.

Q. And what is part of that development environ-
ment that has Java still remaining number one?

213
A. We have the Android platform so that program-

mers can develop in Java for the Android platform,
and we have the Java SE platform so programmers
can continue to develop with Java for that desktop and
laptop platform as well.

Q. What is OpenJDK?

A. OpenJDK is an open source implementation of
Java SE that Sun Oracle has released.

Q. And how did it release the OpenJDK?

* * *

[1262] THE COURT: Please continue.

BY MR. PAIGE:

Q. Professor Astrachan, do you have an opinion
about what developers would expect in terms of the
Java API packages availability?

A. I do. I think developers, just like my students,
would expect that if you’re going to be using the Java
programming language, that you have access to a rich
suite of APIs, both the declarations and the libraries,
to be able to write the programs that you would be
writing for whatever platform that would be.

Q. What does that mean for the ability to make
effective use of the language?

A. In general, programs do complicated things.
They might open a web page or print something or con-
nect with a user in a touch screen. All those things
require libraries because developers couldn’t do them
from scratch.

So the effective use would be depending on the pur-
pose of your program to write it effectively I need
libraries to be able to use the language.

214
Q. How do that relate to the selection of the 37 out

of the 166?

A. I spoke earlier about selecting the 37 packages
and using just those label declarations, and in incor-
porating that into the Android mobile smartphone
platform, we saw that developers [1263] would expect
to see both the implementations of those 37 packages
and the other libraries that I spoke of to be able to
make applications for that platform.

Q. Thank you, Professor Astrachan.

May we mark as his demonstrative as Exhibit 7793,
Your Honor.

THE COURT: Sure.

(Trial Exhibit 7793 marked for identification)

THE COURT: Give me the number again. Seven
what?

MR. PAIGE: 7793.

THE COURT: All right. That will be the demonstra-
tive. All right. Okay.

Ms. Hurst, are you ready?

MS. HURST: I’m ready, Your Honor.

THE COURT: Please proceed.

CROSS-EXAMINATION

BY MS. HURST:

Q. Good morning, Dr. Astrachan.

A. Good morning.

Q. Let’s talk about some terminology first. When
you say “specification,” you mean the – both the API

215
declaration and the text that describes how to use it;
is that correct?

A. I think that’s correct. The text meaning what’s
typically the comment or what you’d find along with
the declaration to understand how to use it, that’s
right.

* * *

[1322] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Tuesday, May 17, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[1351] BY MS. HURST:

Q. Ms. Catz, we looked yesterday at the email that
Mr. Schwartz sent that mentioned battles with Google

216
Android. Can you just remind the jury what Mr.
Schwartz told you about that?

MS. ANDERSON: Objection. Hearsay again, Your
Honor.

THE COURT: Was this already testified to?

MS. HURST: Yes. It was offered for the limited pur-
pose that the Court gave for the instruction yesterday
to respond to Mr. Schwartz.

THE COURT: Is the answer going to be the same?

MS. HURST: Yes.

THE COURT: All right. Go ahead and repeat the
answer.

Objection overruled. It will be received for this lim-
ited purpose.

THE WITNESS: Mr. Schwartz told me it was an
unauthorized unlicensed fork of Java SE.

BY MS. HURST:

Q. Ms. Catz, since acquiring Sun, what has Oracle
done with respect to the Java platform?

A. We’ve invested a lot in the Java platform. We’ve
hired engineers. We’ve had hundreds of engineers
working on it to continue to enhance it. We’ve actually
had two new versions, Java 7 and Java 8. Both
versions have come out since we took [1352] over.

We have – we have really expanded the entire edu-
cational network of Java. We teach Java to high school
teachers. We share Java with universities, not only in
the United States, but around the world, so we work
very extensively through the Oracle Academy teaching
Java.

217
We market Java. We use Java and we support the

big show JavaOne which is now even larger than it’s
ever been, which is a big show for developers, for Java
developers, to meet and work, and of course we run the
JCP, the Java Community Process.

Q. And can you approximate for the jury how much
Oracle has spent in all of those efforts?

A. Hundreds of millions of dollars.

Q. Ms. Catz, how would you characterize the sig-
nificance, if any, of intellectual property protection to
Oracle?

MS. ANDERSON: Objection, Your Honor, to the
extent it calls for a legal opinion.

MS. HURST: It’s for the witness’ understanding and
her business, Your Honor.

THE COURT: Well, maybe it’s a problem, but it’s a
vague question. I’ll let her answer, and we’ll see how
problematic the answer is.

Stay away from legal things, but otherwise, you may
answer, Ms. Catz.

THE WITNESS: All right. Thank you.

* * *

218
[1572] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Wednesday, May 18, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[1664] Q. And then did you have business dealings
with the original equipment manufacturer, the OEMs?

A. Once the manufacturers understood that to sell
their products they had to have this capability, they
would come to Sun to get a license for the technology.

Q. Let’s talk a little bit about your second reason,
the developer community. Can you tell me what you
meant by that?

A. So Java began as a desktop and a enterprise
technology. And by 2000, there were several million

219
Java – Java developers. And they quickly were able to
learn to develop for the Java ME platform as well.

Q. And the third reason you mentioned, I believe,
was security reasons. Can you explain that again.
What was the security issue in the 2006 timeframe?

A. Yeah. In this time period, cell phones were built
with proprietary operating systems from the device
manufacturers. And these operating systems were
relatively weak in security.

So if you wanted to add downloadable applications
to devices at that point – which the carriers very much
did – those operating systems would have been exposed
to, you know, being hacked in the same way that many
desktop systems have been over the years by things
like viruses, rogue applications that would be built to
attack the device.

And carriers were concerned that that would subject
their networks to risk or that the applications the
phones were [1665] carrying would be tampered with
or the data lost.

So Java would give them a way to support down-
loadable apps but prevent those things from happen-
ing by using a technique called managed code. Using
that technique, the applications would be prevented
from using sensitive operating system functions like
access to the network. And they would be prevented
from accessing the data held by other apps. So it was
a very effective security solution for the situation at
the time.

Q. So as of the 2006 timeframe, when you were–
just before you left Sun, what was your view, if any, as
to whether Sun’s efforts to market Java for mobile
devices had been successful?

220
A. Well, it had been extraordinarily successful. We

were supported by hundreds of carriers. And we were
adopted in, you know, as I said, about 80 percent of the
devices that were shipping at the time.

So the approach worked. And the technology was a
very good fit for the value proposition downloadable
apps that we were trying to market.

Q. By 2006, which carriers were requiring Java in
their phones?

A. Well, some examples would be Sprint, AT&T,
T-Mobile, in the U.S. Vodafone Orange. Telefónica
Europe. NTT DoCoMo. It’s the largest carrier in
Japan. And in Korea, KT was another. So they were
all over the world. All of the major [1666] carriers or
most of the major carriers.

Q. And which manufacturers sold Java-powered
phones in 2006?

A. Again, the bulk of the industry. So, for example,
Nokia; BlackBerry; Samsung LG. Danger was anoth-
er. Panasonic. Yeah. Long list.

Q. Are any of those manufacturers still selling
Java-based phones in 2016?

A. I think most are not, at this point.

Q. I want to talk specifically about some of the
phones that were on the market just before you left
Sun, again in the end of 2006 time frame.

Did you use the term “smartphone” and “feature
phone” when you were at Sun in that time frame?

A. I did.

Q. And what was your understanding of the differ-
ence, if any, between smartphones and feature phones?

221
A. Well, in that time frame, the differences would

be different than they are today because the smart-
phone category, at that point, was just emerging. And,
in fact, sort of going through a change.

In that time frame, it was more or less a continuum.
Smartphones, at that point, often had larger screens,
higher resolution screens, color capability. They often
had keyboards, QWERTY keyboards. Whereas, a fea-
ture phone would have a 9-key keypad, like you might
see on a conventional [1667] telephone, and less screen
capability, less memory.

Both smartphones and feature phones in this period,
though, would have had network capability and down-
loadable applications.

Q. So with that continuum in mind, if we look
specifically at 2006, what percentage of feature phones
were powered by Java at that time?

A. I would say about 80 percent of the phones,
feature phones in that time, were Java-enabled.

Q. And looking, again, at that specific time frame
in 2006, what percentage of smartphones were Java-
powered at that time?

A. Nearly a hundred percent at that point.

Q. And which manufacturers were making smart-
phones at that time?

A. Uhm, well, Nokia would be one. The Series 60
devices and Series 80 devices. All of the BlackBerry
products were Java-powered. But others had as well.
Samsung LG, Panasonic. Again, quite a long list. Sony
Ericsson was another. So several.

Q. In the 2006 time frame, what was your view, if
any, regarding Sun’s ability to capitalize on its success

222
and continue in its dominant market share with respect
to the mobile industry going forward?

A. I thought we were really well-positioned in light
of our presence in the industry, the fact that the indus-
try was fully [1668] licensed. Carriers had adopted the
value proposition of downloadable apps. And we were,
you know– we had a very large developer community.
So we had a number of assets that we thought gave us
a chance, a good chance to be a strong player in the
smartphone space.

Q. What is Java ME, Mr. Brenner?

A. Java ME is an application development plat-
form for mobile devices, cell phones, and in that time
frame pagers. Connected – connected mobile devices.
You use it to build an application that runs on the
phone and executes securely.

Q. Were you involved in the initial creation of ME?

A. Yeah. I led the initial creation of ME.

Q. Can you tell me how ME was created?

A. I had a mandate to develop a Java platform for
mobile devices. And in that time frame I discovered or
my team discovered a research project in Sun labs.
Two researchers had developed a lightweight Java
implementation for the Palm Pilot, which my team
took over and commercialized in September of 2000.

Q. And how did you go about developing the ME
software?

A. We selected classes from Java SE. Java ME was
essentially derived from Java SE and complemented
or added to that mobile-specific classes that would fill
out the API of the device for mobile applications.

223
Q. And during your time at Sun what, if any,

changes did Sun

* * *

[1691] (Videotaped testimony played as follows:

“Q. You suspected that they would independently
implement the Java Class library APIs, or some subset
of those; correct?

“A. Yes.”)

BY MR. PAIGE

Q. And that belief was quite generally held by
many people at Sun at the time; right?

A. By the people who are involved – by several peo-
ple who are involved in the negotiations with Google.
I would say that’s true.

Q. Okay. Mr. Brenner, you’re not a lawyer; correct?

A. I’m not.

Q. And when you talk about something being
derived from Java SE, you weren’t offering an opinion
about whether it is a derivative work, were you?

A. I was speaking to the origins or the sources of
the technology and the content of the products.

Q. You weren’t offering any legal opinions on a
derivative work, were you, sir?

A. I can’t offer a legal opinion, no.

Q. Okay. Now, you said that there was code from
Java SE put into Java ME later on. Is that your testi-
mony?

A. My testimony is that the API – APIs from Java
SE were applied to Java ME. In some cases they – we

224
leveraged code. [1692] In other cases we implemented
a consistent API spec.

Q. How much code was put into Java ME from
Java SE, sir?

A. I can’t recall enough to quantify that.

Q. Can you give any idea as to how much was
moved in?

A. Well, my guess – my recollection would be there
were at least several dozen APIs that spanned the two
editions at the time. But I couldn’t quantify beyond
that.

Q. How many APIs did Java ME have, sir?

A. I don’t recall the number, but –

Q. How many APIs did Java SE have?

A. I don’t recall the number.

Q. Is it possible there were several dozen APIs
added to Java ME?

A. Well, the word “API,” of course, would – you
know, there are classes and methods. There were cer-
tainly several dozen methods. Probably quite a bit
more than that in Java ME.

Q. Now, your job responsibilities at Sun, they
involved licensing Java; correct?

A. Uhm, I was responsible for the business and the
P&L. And the sales team would draft and negotiate
the licenses. But I would often support them for
product purposes.

Q. You don’t recall ever offering to license just the
Java API specifically to any company; correct?

A. I don’t.

225
Q. And during the time you were with Sun, you

don’t recall

* * *

[1698] Q. Move the admission of 7238, Your Honor.

THE COURT: Any objection?

MS. SIMPSON: No objection.

THE COURT: Received.

(Trial Exhibit 7238 received in evidence.)

(Document displayed.)

BY MR. PAIGE

Q. Now, you wrote presentations, before you left
Sun at the end of 2006, saying that Java ME was frag-
mented; correct?

A. I did.

Q. And, again, 2006, that was a year before Android
was even announced; right?

A. Yes, it was.

Q. Look at page 13 of the document.

You wrote there that “Fragmentation undermines
Java value proposition in the market”; right?

A. Right. That’s what the title of the slide says.

Q. And that phrase refers to when a program writ-
ten in Java ME might not be working as well on one
OEM’s implementation as another; right?

A. It does. Working differently.

Q. And, again, these problems all existed before
Android was announced; correct?

A. That’s correct.

226
MR. PAIGE: I pass the witness, Your Honor.

[1699] THE COURT: Wait. Wait. Before you leave
that, the jury has heard the word “forked.” Forked.
F-o-r-k-e-d, forked. Is that the same thing as
fragmentation? Or are they different things?

THE WITNESS: Not as it’s used in this context.

What this slide is talking about is that each manufac-
turer had slightly different implementations. They–
each of the phones had, typically, a proprietary operat-
ing system. And the port – ports of the technology were
done by different entities. And so they were not bug-
for-bug compatible, which impacted developer costs
according to the actual devices, and changed behavior
for the user. So we were concerned about that varia-
tion in the industry.

THE COURT: What you’re talking about there was
fragmentation. And that’s what you were concerned
about. But forked is something else?

THE WITNESS: Forked is something else.

THE COURT: Okay. Thank you.

All right. Let’s go back to Ms. Simpson.

REDIRECT EXAMINATION

BY MS. SIMPSON

Q. Mr. Brenner, in connection with Trial Exhibit
7237, the revenue slide –

A. Right.

Q. – you had mentioned that you were making that
forecast,

* * *

227
[1704] context – are you asking about the negotiations
with Google or subsequent?

Q. I am not. I’m asking about what you said you
would have done to avoid the revenue drops that you
showed in your presentation.

One of the things you were trying to do in the
2005/2006 time frame, you led a project to try to create
a mobile platform that used more than 75 percent of
the API packages in Java SE?

A. That’s true, yes.

Q. And that project was never completed, as far as
you know; right? It was still unfunded when you left
Sun; correct?

A. Work had been done, but, no, I don’t believe that
project received the funding we were looking for.

Q. And, in fact, rather than continue with that
project, Sun went and bought SavaJe instead; correct?

A. That’s correct, yes.

MR. PAIGE: Nothing further.

THE COURT: May the witness be excused?

MS. SIMPSON: Yes, Your Honor.

THE COURT: Thank you, sir. You may step down.
I’m going to discharge him from the subpoena, unless
I hear an objection.

MR. PAIGE: No, Your Honor.

THE COURT: You are discharged from the subpoena.

* * *

[1750] A. Right. So what they do do is they charge
the device makers. So if you want to put Java on your
phone or you want to embed it in the operating system

228
for a phone, Sun and then Oracle will offer you a
license to do that, and they charge you what’s called a
royalty, which is just the fees that you pay on the
license. They charge you a fee for doing that. And that
is the primary mechanism by which Java makes money,
which is – monetization is just a fancy word for making
money.

Q. In this platform market, what might be the role
of open source software?

A. So, again, I’m not talking from a legal perspec-
tive, but from an economic perspective, because of the
platform nature of this market, it frequently makes
sense for the owner of the platform to say, you know
what? I’m going to make this available in an open way
with a license, an open source license so that people
can work with it, they can improve it, they can experi-
ment with it, but I’m going to do that with a license
that I think doesn’t make it suitable for the device
makers to use in a commercial product. So that what I
do is I set up that open source license in a way that it’s
not designed to substitute for the royalty-bearing
license that the device makers take to make money
from me.

Q. You said that having a large community of
developers was important. How popular was Java to
develop?

A. So I think we’ve heard that in testimony in this
trial. [1751] In the mid 2000s, there was something
like six million developers writing applications for
Java.

Q. What kind of devices were Java app developers
building programs for?

229
A. So Java was on a whole bunch of devices: Auto-

mobiles, desktop computers, then phones, Blue-ray
devices, set-top boxes and so forth. And as you can see
here, as devices evolved and new devices emerged,
Java evolved and found its way onto these new devices
as they came about.

Q. And what was Java’s position in the phone
market in the mid 2000s?

A. So we’ve heard some testimony about this as
well. But in the mid 2000s, Java was doing very well
in the phone market. I won’t go through all of this, but
basically what it says, this is a Sun document from the
mid 2000s. And what it says is there were a billion
phones that had Java in them; 600 different models;
almost 200 carrier deployments; 600 million phones
sold just in 2005. And you notice the green arrows
here, all of these things were – were growing at that
time.

Q. And let’s talk a little bit about Google. Why is it
important to understand how Google makes money?

A. So one of the issues that we’re going to talk
about, because I understand it to be related to fair use,
is just how commercial was this use, and if we’re going
to try to understand how commercial was the use, we
need to understand

* * *

[1781] A. Yes.

Q. That’s part of the platform?

A. It’s part of the Android platform, yes.

Q. Right. And there are more than a hundred
libraries, Android libraries, that were written by
Google engineers as part of the Android platform?

230
A. That is my understanding.

Q. And all these elements have value, don’t they,
Dr. Jaffe?

A. They do.

Q. And – but you haven’t bothered to sort out value
as between the 11,000 lines of method declarations
and the 15 million lines of code in Android; right?

A. It wasn’t necessary for my opinion to sort that
out, so I did not do it.

Q. And, therefore, you didn’t do it?

A. I did not do it, no.

Q. And you understand that the method declara-
tions that are at issue in this trial represent less than
one-tenth of 1 percent of the lines of code in Android;
right?

A. That arithmetic sounds right.

Q. Now, in the mid 2000s, consumers were in the
process of transforming their digital behavior; right?

A. I think that’s generally fair.

Q. In fact, in your report you said precisely that,
that in the mid 2000s, consumers were in the process
of transforming [1782] their digital behavior?

A. Uh-huh.

Q. Right?

A. Yes.

Q. And the mobile application platform space is
what you call a dynamic ecosystem; right?

A. Yes.

231
Q. It’s a market that could be characterized as

highly volatile; right?

A. Yes.

Q. One that moves up and down quickly. Isn’t that
what “volatile” means?

A. Well, I don’t think it means the market moves
up and down quickly.

Q. All right.

A. When I say it was volatile, what I meant was
there was a lot of uncertainty about the place in the
market of particular phones and particular participants.

Q. Fair enough.

But, as a result of that, the mobile platform market
we’re talking about is extremely challenging to model
and predict; right?

A. Yes.

Q. And that’s particularly true – that’s particularly
true when market outcomes are highly uncertain, as
they were at the [1783] time of Android’s launch;
right?

A. Yes.

Q. I think you said on direct, platforms often fail;
right?

A. Yes.

Q. And, in your view, predicting success in plat-
form markets with certainty is nearly impossible?

A. Yes.

Q. “Nearly impossible.” That’s what you said; right?

232
A. Predicting with certainty is nearly impossible,

yes.

Q. And, yet, it’s your conclusion that without
Android, Java was poised for great success; right?

A. Poised, yes.

Q. Poised for great success. Isn’t that what you told
the jurors?

A. That is what I said, yes.

Q. You also told our jurors that there was a market
window of opportunity; right?

A. Yes.

Q. Even though you acknowledge you can’t give us
a starting point or an ending point for that window?

A. I explained why that’s irrelevant, yes.

Q. And, in fact, do you have any idea when the
window of this market opportunity opened, Dr. Jaffe?

I’m standing over here at the timeline to give you
some help.

[1784] Can you tell us with any sort of precision
when the window opened?

A. Well, I think if we’re talking specifically about
the window, which is the way I talked about it, for
Android to get into and succeed in the –

Q. Excuse me, Dr. Jaffe. I’m not limiting my ques-
tion to Android.

You have said you can’t determine with any degree
of precision when the market opportunity for smart-
phones opened; right?

A. Well, I talked about window of opportunity only
with respect to Android.

233
Q. Well, it’s an opportunity for anyone that wants

to get there; right?

A. But the nature of that window is different for
different players.

Q. Okay.

A. Because they come to it with different assets
and different liabilities.

Q. All right. And, certainly, given your views that
this is a volatile market that’s almost impossible to
predict, you’d agree it’s almost impossible to predict
when the window closes too; right?

A. Yes.

Q. Now, you’ve said that it was a feat, a feat for
Google to [1785] have established Android as a new,
viable mobile application platform; right?

A. Yes.

Q. And that’s a feat that many other very sophisti-
cated tech companies failed to achieve; right?

A. Yes.

Q. Microsoft failed to achieve it?

A. Well, they still have a phone. It’s not very
successful.

Q. Facebook failed to achieve it?

A. Yes.

Q. Amazon failed to achieve it?

A. Yes.

Q. And Sun failed to achieve it too?

A. Yes.

234
Q. And so far Oracle has failed to achieve it as well;

right, Dr. Jaffe?

A. Yes.

Q. Sun invented Java; right?

A. Yes.

Q. And they were the experts in Java starting in
the early ’90s; right?

A. Yes.

Q. And yet they failed to achieve this feat of build-
ing a full stack smartphone platform; right?

A. Well, I don’t know what the “and yet” is about
there.

* * *

[1799] A. Well, the history that we see has Android
in it. And with that –

Q. Excuse me. Excuse me. That’s not an answer to
the question.

MR. BICKS: Your Honor, he can’t answer the ques-
tion without being interrupted.

THE COURT: He was about to slide off and go in a
different direction.

So you’ve got to answer – he’s entitled to an answer
to his question. And then you can give an explanation.

So ask the question again. Then say yes or no and
give an explanation.

THE WITNESS: Okay. Fair enough.

So in the world that we see, they did not further
develop ME. And SE has not been successful in smart-

235
phones. But all of those decisions were affected by the
entry and success of Android.

BY MR. VAN NEST

Q. Well, let’s – let’s test that, Dr. Jaffe. When did
the SavaJe phone fail?

A. In the mid 2000s.

Q. Yeah. It failed before Android was even
announced; right?

A. I don’t remember specifically.

Q. And do you recall a project at Sun called Acadia?

A. Yes.

[1800] Q. And that failed too; right?

A. It was abandoned, yes.

Q. It was abandoned.

And do you recall a project called Daneel? “Sundroid”
they called it.

A. Yes.

Q. That failed too?

A. It was abandoned, yes, is my understanding.

Q. And you saw last week that Mr. Ellison looked
at a Java phone project and concluded, at least accord-
ing to the slides that he prepared, that Oracle had too
little expertise to build a smartphone; right?

A. I did see that, yes.

Q. That slide deck that Mr. Ellison prepared and
that we examined him on, that didn’t say anything
about Android?

A. It didn’t, no.

236
MR. VAN NEST: Could I have up the chart that– it’s

TX 5397. It’s one of – it’s the – that’s the one.

(Document displayed.)

MR. VAN NEST: That’s the one.

BY MR. VAN NEST

Q. Now, you showed this as – as evidence that
Android somehow substitutes or caused harm to Java;
is that the idea of this?

A. Yes.

[1801] Q. Okay. And I think you said this is only
smartphones?

A. That’s correct.

Q. So there was a time when Java had 80 percent
of a smartphone market?

A. That’s correct.

Q. Was that with the SavaJe, or what?

A. I believe it was BlackBerry and other – also
some Simion-based phones.

This exhibit is not based on my deciding what’s a
smartphone and what’s not. It was taken from an
industry source that people frequently use. And it was
Gardner himself who characterized the phones as
smartphones versus feature phones.

Q. Okay. So the industry people, just like Sun, they
also distinguish between the feature phone and the
smartphone market; right?

A. I said in my testimony that various parties
throughout this period, at points in time, did make
that distinction, yes.

237
Q. Okay. And this was – this was from a well-

respected industry source; they were distinguishing
between smartphones and feature phones?

A. That’s correct.

Q. They considered them different markets?

A. I wouldn’t say they considered them different
markets. I would say they considered it useful, for mar-
ket analytical [1802] purposes, to look at the two groups
and their relationship.

Q. I see.

But just like the Sun people considered smartphones
and feature phones as different; right?

A. I don’t know if it was “just like” or not.

Many people, at many points in time, found it useful
to have that categorization.

Q. Now, you were aware, Dr. Jaffe, that people
inside Sun were predicting exactly that decline for
Java, before Android was even announced; right?

A. Their projections did not go through 2015.

Q. Let’s take a look at TX 7237. And this is a – this
is one of the slide decks that you had access to, Dr.
Jaffe; correct?

A. That’s correct.

Q. It was written in – this is important. September
29th, 2006.

According to this, that’s a year, more than, before
Android was announced; right?

A. That’s correct.

Q. A full year.

238
And, by the way, once it was announced, that didn’t

mean there was a phone on the market, did it?

A. It took about another year.

Q. Another year. And that phone, HTC Dream, it
didn’t take [1803] off as a barn burner either; right?

A. Not immediately, no.

Q. Not as bad as SavaJe, but it sure didn’t sky-
rocket; right?

A. That’s my understanding.

Q. It wasn’t until later, 2010, when Motorola came
out with Droid, that Android took off; right?

A. Yeah, I think that’s what my exhibit showed.

MR. VAN NEST: Now, could we go to page 3 of this.

(Document displayed.)

MR. VAN NEST: Let’s go to page 4. I think there’s a
chart here. Do I have the wrong one?

You’re right. Let’s go back. Let’s go back.

BY MR. VAN NEST

Q. So this is folks at Sun, a year before Android
came out, predicting that the market was changing;
right?

A. Yes.

Q. “Increase in device capability. . .”

MR. VAN NEST: Could we underline that?

BY MR. VAN NEST

Q. “. . . and networking, shifting the market to
advanced platforms. Growth is more than 5x feature
phones.”

239
Right?

A. That’s what it says.

Q. So before Android even came along, the folks at
Sun were aware there was a threat out there that the
market was [1804] changing; correct?

A. Yes.

Q. And – and you said that too. You are said con-
sumers were transforming their behavior; right?

A. Yes.

Q. All right.

MR. VAN NEST: Now, could we go to page 5.

(Document displayed.)

BY MR. VAN NEST

Q. This looks a lot like your chart that you showed
the jury on direct, doesn’t it, in terms of the line for
Java?

A. Well, it doesn’t really. It goes through 2010. And
it doesn’t show the revenue going to zero.

Q. Well, let’s look at what it does show. By the way,
this is Java ME; correct?

A. Yes.

Q. And Java ME is what Sun had in feature phones;
right?

A. Yes.

Q. And Sun recognized that the world was chang-
ing and that there was a new market emerging for
smartphones. Or let’s call them “more powerful phones,”
okay. Right?

A. Okay.

240
Q. And what they said was – and this is people at

Sun in 2006; right –

A. Yes.

[1805] Q. – Dr. Jaffe? Not created for litigation, but
created to plan their business?

A. That’s my understanding.

Q. Okay. They were telling their management
that, if we stay the course, revenue is going to go from
140 million down to less than 60, maybe down to 50
million potentially; right?

A. Under one scenario, yes.

Q. Right. And the other scenario, it drops – it still
drops, but not so bad?

A. Right. It remains above a hundred million.

Q. So people at Sun – and this is all before Android
was – had even been announced in a phone; right?

A. Yes. We’ve said that several times.

Q. And a couple of years before a phone came on
the market? An Android phone.

A. That is correct.

Q. Now, did you make any investigation to deter-
mine whether or not Sun did anything to avoid just
staying the course?

A. Uhm, I don’t think I did an investigation framed
in those terms, no.

Q. Okay. So you can’t tell our jury whether Sun did
or did not do anything to avoid what they saw as inev-
itable if they didn’t change what they were doing at
the time; right?

A. Not specifically with respect to this memo.

241
THE COURT: All right. We’re at 1:00 o’clock.

* * *

[1810] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
vs.

GOGGLE, INC.,

Defendant.
————

San Francisco, California
Thursday, May 19, 2016

Before the Honorable William H. Alsup

————

TRANSCRIPT OF PROCEEDINGS

————

* * *

[1842] wasn’t intending to build a search engine at all.
We were just looking at the web and the way the pages
linked to other pages, and so we actually downloaded
a large portion of the web, which was fairly small at
the time. This was ’98 or so, something – a little before
’98, and we realized we had a good way of ranking web
pages using just the links of the web.

Q. How did you get the money to start the company?

242
MR. BICKS: Your Honor, I would object. This is

beyond the scope of my cross.

THE COURT: True.

MR. VAN NEST: Very brief background, Your Honor.

MR. BICKS: We had two Google witnesses –

THE COURT: I think that – I think this is beyond
the scope of the cross.

MR. VAN NEST: Okay, Your Honor.

Q. Mr. Page, why did – let’s turn the clock forward
to 2005. We have a timeline here. I hope you can see
it.

2005, Google acquires Android. Why did Google
acquire Android?

A. Well, I think we were – you know, I was super
frustrated with the state of phones at the time, you
know, many of which were running Java. But they
didn’t really work very well. You couldn’t even like
take a picture and share it with someone.

We actually – I remember visiting – we had a closet
literally full of like a hundred phones so that we could
test [1843] them, and they all worked differently, and
basically we couldn’t get our software to work on those
phones. So it was tremendously frustrating.

Q. What software were you hoping to have work on
the phones?

MR. BICKS: Your Honor, again, this is beyond the
scope of my cross.

MR. VAN NEST: This has to do with Android, Your
Honor, and why they got it.

THE COURT: Stick to Android, and Android’s with-
in the scope.

243
MR. VAN NEST: Thank you.

THE COURT: But some of this background is beyond
the scope.

BY MR. VAN NEST:

Q. Mr. Page, what was the software you were try-
ing to get on the phones?

A. You know, we had basic Google Search, which I
think is how we make most of our money, you know,
which is available to you on any phone, but we also
like to improve it so we add things like voice. We like
having things that work really well and having a plat-
form that actually works reliably, you know, that you
can use to use our services is really important, and so
I think that was the main reason why we did Android.

Q. You mentioned during your direct examination
that Android is open source. Was it always the idea to
make Android [1844] available as an open source pro-
ject?

A. Yeah. I think from the very early days, that was–
that was the intention.

Q. Why was that important?

A. I think that we were generally aligned around
having really wide distribution and also because, like
I said, we make most of our money from Google Search.
We want people to be able to access that, you know,
even if they don’t have that much money or have basi-
cally very wide distribution. That’s always been our phi-
losophy.

Q. You mentioned that it took five years to get
Android out on the market. Can you tell the jurors why
it took so long?

244
MR. BICKS: Again, Your Honor, this is beyond the

scope of my cross.

THE COURT: The thing about five years did come
up on your direct. Overruled.

THE WITNESS: I think even longer than five years.
I mean, the company we acquired also had been work-
ing on Android for a while. People had also been work-
ing on phones for a while and built other phones and
so on.

So I think as much as I would like things to not take
very long, it takes a long time to make something good.
I think the iPhone took a similar amount of time. So
in order to make a product that’s really transformative
and that is much better than the ones before, it did
take a significant amount of time [1845] and effort.

THE COURT: All right. This has turned into a speech
about transformative. Objection sustained. Okay. Come
on.

BY MR. VAN NEST:

Q. Did you ever believe there was some window in
which you had to get Android out on the market?

A. No. I think there’s always moving targets and
we always have different options available to us and
we have very clever engineers and product people.

Q. Now, you mentioned – you were asked on direct
examination about discussions with Sun. Were you
kept advised about discussions between Google and
Sun? Let’s focus on these early days in August 2005
through May of 2006. Were you generally kept aware
of the progress of discussions with Sun?

A. Yeah. I think we were briefed from time to time.

245
Q. What was Google looking for in a relationship

with Sun at that time?

A. I think we were, you know, intending to use
their technology, the implementation of Java, and
their proprietary technology to put into Android.

Q. Would you have needed a license for all that?

A. Yes.

MR. BICKS: Objection, Your Honor. Calling for a
legal conclusion.

THE COURT: Well, that’s true. But you could ask
the [1846] question were you seeking a license. That
would be all right.

MR. VAN NEST: Sure.

Q. Were you seeking a license as part of those dis-
cussions?

A. Yes. And I think a broader deal around other
things, you know, branding and cooperation and so on.

Q. How would a partnership with Sun have bene-
fited Google, if at all?

A. Well, I think, you know, they spent a lot of time
on the implementation of that code and that may have
been useful to us.

Q. Now, after discussions with Sun broke off, did
you believe that Google needed a license to use the
APIs in Java?

A. No, I did not believe that.

Q. And tell the jury why.

A. The declarations of the APIs, yes.

Q. Okay. The declarations. Tell the jury why you
felt that way.

246
A. I think it was established industry practice that

the API, just the headers of those things, could be
taken and basically reimplemented very carefully, not
to use any of the existing implementation of those sys-
tems. That’s been done many, many times.

Q. Okay. And you’re familiar with that practice?

A. Yes.

Q. Is it common in the industry?

[1847] A. Yes. I think it’s very common in the indus-
try.

Q. Has it been going on for years?

A. Yeah. I think that’s how you–

MR. BICKS: Objection. No foundation. This is now
into an area where the Court has already cautioned.

MR. VAN NEST: Well, Your Honor, his state of –

MR. BICKS: He is not disclosed as a witness on cus-
tom and usage.

MR. VAN NEST: His state of mind. He was asked a
lot of questions about licenses and so on on his cross,
Your Honor. He has got a right to explain what the
company did.

THE COURT: Well, Mr. Bicks, you did accuse him
of willful conduct, basically, on your direct examina-
tion through the questions that you asked, and he’s
entitled to give his response on – so I think this is –
this is legitimate within the scope of the examination.

Overruled. Please go ahead.

BY MR. VAN NEST:

Q. Go ahead, Mr. Page.

247
THE COURT: But you have to stick to what was in

your mind at the time all this was going on and not
veer off into a speech.

THE WITNESS: Okay. I think we acted very respon-
sibly and carefully around these intellectual property
issues.

[1848] BY MR. VAN NEST:

Q. And what was your understanding about the
Java API method declarations?

A. They were free and open, and even after that
fact, we know Sun publicly supported our use of Java
and Android.

MR. VAN NEST: I have nothing further, Your
Honor.

THE COURT: Anything more?

MR. BICKS: No, Your Honor.

THE COURT: All right. May the witness be excused
and discharged?

MR. BICKS: Yes.

THE WITNESS: Thank you, Your Honor.

THE COURT: Thank you, Mr. Page, you are free to
go.

MS. HURST: Your Honor, we have some read-ins
before we recall Dr. Java.

THE COURT: Okay.

MS. HURST: It will go quick.

THE COURT: All right.

248
MS. HURST: “Request for Admission No. 285 from

Oracle to Google: Admit that code in Android is not
derived from code from the GNU Classpath project.

“Response: Google admits that its source code imple-
mentation for the Android core libraries is not derived
from the GNU Classpath project.

“Request for Admission No. 287 from Oracle to
Google:

* * *

[1851] Q. And there are many, many internal docu-
ments at Sun back in ’05 and ’06 reflecting the fact
that they knew the market for mobile phones was
changing; right?

A. I don’t know that there were many. We have
seen some.

Q. There certainly were some that you came upon
in your review of the files and records in this case;
right?

A. Yes.

Q. Could we have TX 7237 on the screen, please.
And let’s start with the cover page.

We did look at this yesterday, Your Honor. It’s
already in evidence. Just to establish the date again,
it’s September 29th, 2006.

Do you see Mr. Brenner’s name on the cover of the
slide deck?

A. I do.

Q. He was here yesterday to testify. That’s the
same person, isn’t it?

A. That’s my understanding.

249
Q. Okay. So let’s go to page 3. And “Market Chang-

es Threaten Our Position.” That’s the title of this slide
deck. This is one of the documents that reflect that Sun
was fully aware that changes were afoot for smart-
phones – for mobile phones, excuse me; right?

A. I’m not sure I understand the question. This is
a document that says what it says.

[1852] Q. Okay. Let’s go down to the third bullet.
“Increase in device capability and networking shifting
the market to advanced platforms. Growth is more
than 5X feature phones.”

You understood that as a reference to the fact that
folks at Sun back in ’06 knew that increase in device
capability and networking is shifting to more advanced
phone platforms; right?

A. You read it correctly.

Q. And that was your understanding from all the
documents you have read, too?

A. That part, yes.

Q. Okay. And it also says below that “New competi-
tors entering the advanced market. No entrenched
incumbent”; right?

A. It says that.

Q. That’s consistent with your view that this mar-
ket was highly dynamic, changing, and very hard to
predict; right?

A. Yes.

Q. Okay. Now, could we go – I think we saw yester-
day, but let’s go down to page 5.

250
As a result of the changes that Sun saw coming, they

were predicting a potentially big drop in their ME
revenue; right?

A. They made a number of different predictions,
and as Mr. Brenner explained, they anticipated that
under some circumstances, they could have this kind
of revenue drop, yes.

Q. And it’s – this is ’06, so this is before Android
was announced. You’ve seen documents in ’07 and ’09
and 2011 where

* * *

[1858] A. Yes.

Q. And you testified that at least one of them,
Samsung, lost revenue – excuse me – that Oracle lost
revenue because Samsung didn’t renew its license at
as big amount as it had; right?

A. Yes.

Q. And the reason for that is that Samsung wanted
to build smartphones like Galaxy, not feature phones;
right?

A. I would agree that they wanted to build smart-
phones. I would not agree that that was necessarily
the reason why they were not licensing from Oracle.

Q. Well, you didn’t do any investigation to find out
exactly why Samsung did what they did; right?

A. That’s true.

Q. But don’t you assume, as an economist knowing
what you know about this market, that the reason
Samsung didn’t re-up on Java ME is they wanted to
build a smartphone and Java ME isn’t capable of
supporting a smartphone; right?

251
A. I don’t agree with everything in what you just

said.

Q. Okay. Let’s unpack it. I asked two questions.

So we’ve established that the folks at Sun and Oracle
have acknowledged that ME doesn’t support a modern
smartphone; right? We established that yesterday?

A. Yes.

Q. That’s because ME was intended for resource-
constrained [1859] devices much smaller and much
simpler than a modern smartphone; right?

A. That’s my understanding.

Q. Okay. And the reason that Samsung did not
re-up at as high a number is they want to build smart-
phones like the Galaxy; right?

A. I agree that they want to build smartphones.

Q. Okay. And the same is true for HTC and Sony,
they want to build smartphones, too?

A. Yes.

Q. Now, you’re offering an opinion on market
harm, and as we discussed yesterday, the test you’re
applying is whether or not there was market harm to
the copyrighted work or derivatives of that; correct?

A. Yes.

Q. Okay. The copyrighted work in this case is Java
SE?

A. Yes.

Q. And I didn’t hear any testimony from you yes-
terday about any loss of revenues in the Java SE line
of Oracle’s business, did I?

252
A. Well, honestly, it’s in my report. I don’t remem-

ber as the direct point yesterday whether we covered
that or not.

Q. Now, Java SE, the Standard – SE stands for
Standard Edition; right?

A. Yes.

[1860] Q. It’s traditional mark was desktops and
servers; correct?

A. I think that’s fair.

Q. And for years as Java SE was introduced and
sold, it was sold primarily for use in desktops and
servers and fairly powerful laptops; right?

A. That’s my understanding.

Q. Okay. And as far as you know, that part of
Oracle’s business – by that I mean Java SE – is doing
just fine; right?

A. Oracle continues to license SE in those markets,
yes.

Q. And as a matter of fact, it’s doing better than
ever?

A. I don’t recall.

Q. Did you look to see whether Java SE revenues
are going up or going down as part of your work?

A. Well, as I testified yesterday, in considering
market harm, I looked at the markets of mobile –
mobile phones, tablets and E-readers and other device
categories that I mentioned yesterday.

Q. But that wasn’t my question, Dr. Jaffe. My
question was did you look to see whether Java SE rev-
enues were going up or going flat or going down?

253
A. I looked at that within the markets that I

examined, which you’re right, did not include desktop
computers, laptops or servers.

Q. So in the traditional market for Java SE, as far
as you

* * *

[1864] Q. Because you didn’t even know what
implementing code was at the time you formed your
opinions; right?

A. That’s correct.

Q. Are you relying on some other expert for this
conclusion about the tipping point or that’s all you?

A. I think it’s both. I think there is some reliance
on the technical experts like Dr. Schmidt regarding
the role of the declarations, but I’m also as an econo-
mist thinking about the economic problem that Android
needed to solve, which was having a developer commu-
nity and getting the carriers on board, and, I mean,
even Mr. Bloch last week referred to the declaring code
as the nexus between the applications and the device,
and so as an economist, I can understand that that
means that having that is going to be important in
bringing that developer community on board.

Q. Okay. So as an economist, you also know that
SavaJe used the Java SE APIs; right?

A. I do know that, yes.

Q. And it was a big failure?

A. It was a failure.

Q. Huge; right?

A. It was a failure.

254
Q. Okay. So just having the Java – the method –

actually, SavaJe had the whole kit and caboodle. It
didn’t just have the method headers; it had the
implementing code and the whole [1865] thing, the
virtual machine, all of the proprietary Sun code; right?

A. Yes.

Q. It was a flaming failure.

A. It was a failure.

Q. So just having all that doesn’t guarantee suc-
cess for a smartphone; right?

A. It does not guaranty success.

Q. And that’s consistent with what you said yester-
day, which was this is a very hard market to predict
anything in; right?

A. Yes.

Q. I think you said nearly impossible to predict
how this market comes out; right?

A. I did say that, yes.

Q. Okay. You also know that other smartphones
that have been hugely successful don’t use any Java at
all; right?

A. Well, the only one that I know of is the iPhone.

Q. That’s a pretty big, successful item; right?

A. It is. They had a different way of solving that
economic problem.

Q. And they did it without any – they didn’t use the
Java programming language or the APIs or any of
that; right?

A. That’s correct.

255
Q. Apple is written in a completely different pro-

gramming language?

* * *

[1897] All right. Go ahead.

BY MR. RAGLAND

Q. Dr. Leonard, did you form an opinion as to
whether or not Android increased product variety?

A. I did.

It’s – it has a lot of characteristics that no existing
product in the marketplace at the time had; and, there-
fore, it expanded product variety and has been a boon
for consumers.

Q. Now I would like to talk a little more detail,
specifically regarding Java SE.

In the course of your work evaluating the evidence
in this case, did you come to an understanding of what
Java SE is?

A. Yes, I did.

Q. Can you please tell us what your understanding
is.

A. Java SE is one of the Java applications pro-
gramming platforms. And it’s the one that specifically
was designed for desktop computers.

Q. Did you reach an opinion as to whether or not
Android had superseded Java SE in the market?

A. I have.

Q. Can you please tell the jury what that opinion
is.

A. It has not superseded – Android has not super-
ceded Java SE.

256
Q. Do you have reasons for reaching that opinion?

If so can, you explain them?

[1898] A. Yes, I have two reasons.

The first is that the two products are on very differ-
ent devices. As I just mentioned, Java SE is on per-
sonal computers. Android, on the other hand, is on
smartphones.

Q. And what’s the second reason?

A. Yeah, the second reason is that – I think we
heard this before – is that Java SE is just an applica-
tions programming framework or platform. Whereas,
Android is an entire mobile operating stack that runs
a smartphone. Those are just very different types of
products.

Q. To what extent, if any, are you aware of efforts
by Sun to develop a smartphone operating system
based on Java SE?

A. Uhm, well, Sun made several attempts to do
that. And they ultimately all failed.

Q. And are you aware of whether or not Oracle
similarly made attempts to develop a smartphone oper-
ating system using Java SE?

A. They did. And they also failed.

Q. Have you reached any conclusion, Dr. Leonard,
with regard to the market impact, if any, of Android
on Java SE?

A. Well, my conclusion is that Android does not
have any market impact on Java SE.

Q. Turning, Dr. Leonard, to Java ME, did you
perform an analysis of Java ME?

A. I did.

257
[1899] Q. Why did you do that?

A. Well, because that really was the focus of Dr.
Jaffe’s analysis, that the market for Java ME had been
harmed.

Q. Do you have a view as to whether or not Dr.
Jaffe is correct on that?

A. Uhm, my view is that it has not been harmed by
the use of the 37 – or the declaring code and SSO of
the 37 APIs.

Q. Do you have any reasons for that conclusion?

A. I do.

Q. Can you explain them?

A. It’s really, in a way, the same two reasons as it
was for Java SE.

The products are used on different devices and,
therefore, there’s no overlap from that point of view.
And, secondly, they’re just very different types of prod-
ucts.

Q. Did you consider, in the course of your review of
the evidence, Dr. Leonard, any evidence that at one
time Java ME was used on feature phones?

A. I did, yes.

Q. And what conclusions, if any, did you draw
based on that review of the evidence?

A. I mean, it doesn’t really change anything
because, again, once smartphones, the advent of smart-
phones, following first with the iPhone and thereafter,
once those products were introduced to the market –
and those were, of course, very [1900] different than
what had preceded it, including feature phones, and
those products were addressing an unmet need.

258
And just as with the wordprocessing software we

had, people who switched to smartphones because
they wanted those kind of functionalities, those people
weren’t going to then consider a feature phone to be a
substitute.

So once the smartphone movement started, Java’s –
ME’s days were numbered because, as we’ve heard, it
is not able to run on a smartphone. It wasn’t designed
for it. And it just wasn’t going to be able to compete in
this new world of smartphones.

Q. In your area of expertise and market research,
Dr. Leonard, do you occasionally study consumer
behavior?

A. Yes, I do.

Q. And how might consumer behavior relate to this
analysis?

A. Well, it’s really – and consumers are driving the
economic substitution.

It’s really what I just mentioned, that once you
have – you have people who want to do certain things
on their phone like watch a YouTube video. And the
current – the existing products before Android came
on the market, there was the iPhone that could do it.
But other products, feature phones in particular,
weren’t very good at it.

This is what Mr. Rubin talked about. He wanted to
create something that would allow that kind of experi-
ence.

* * *

[1924] outside the context of this litigation?

A. These visualizations – and I think Professor
Schmidt talked about how he created them using soft-

259
ware – aren’t at all similar to what Sun and Oracle
have provided for developers to understand the API
packages. We saw one of those in the courtroom.

Q. And what was that, that we saw in the court-
room?

A. We saw something that we were told you could
get from Amazon that could be hung on the wall.

In fact, when I first started programming in Java, I
had that diagram, because it did show all the classes
in one kind of wall art that you could use to under-
stand the API packages. You saw their names and how
they were related.

So that chart was something that Sun and then
Oracle distributed to help developers understand the
API packages.

Q. Professor Astrachan, did you see Dr. Reinhold’s
slide setting forth some example labels using the API
packages?

A. Yes, I did.

MR. PAIGE: Slide 17 of Dr. Reinhold’s demonstra-
tives, please.

(Document displayed.)

BY MR. PAIGE

Q. What does that slide demonstrate, in your opin-
ion, about the nature of the names used in the API
package labels?

A. I thought this was a very clear example of how
functional [1925] and descriptive the names for the
declaring code, the packages and classes and methods,
are.

260
MS. HURST: Your Honor, I’m going to object. This

is beyond the reply report; contains no rebuttal of Dr.
Reinhold.

MR. PAIGE: Dr. Reinhold did not submit a report,
Your Honor. He was disclosed as an employee expert
on February 29th, the day the reply reports were due.
So Professor Astrachan hasn’t had chance to submit
anything in writing, as this was the first time,
yesterday, the witness has been shown –

MS. HURST: All right. I’ll withdraw the objection,
Your Honor.

THE COURT: Thank you.

Go ahead.

THE WITNESS: As I was explaining, I think this
shows exactly how descriptive and functional the
names of the methods, classes and packages are in the
Java programs.

BY MR. PAIGE

Q. Let’s take an example of that.

Were you familiar with the API label for the authen-
tication class in the java.net package before Tuesday?

A. No. It was kind of interesting.

So I knew about the java.net package. That’s one of
the things I talked about, that because it’s name is
java.net we would understand that it had network
classes.

[1926] But in my own programming use, I hadn’t
used the authenticator class before. But I thought
when I looked at this description, I would have a pretty
good understanding of how that method worked simp-
ly because of how the labels, the names are described.

261
THE COURT: It’s not clear to me.

What the jury is now seeing, is that something you
prepared? Or is that something that another witness
has shown the jury?

THE WITNESS: This is what Dr. Reinhold showed
the jury.

THE COURT: This very document?

THE WITNESS: This very one, yes, sir.

THE COURT: All right. And the – under
“Declaration,” what is – what is that?

THE WITNESS: Okay. I was going to explain that –

THE COURT: All right.

THE WITNESS: – second line there.

So what we see there is the package name, java.net,
the class name, authenticator. Now, the declaration,
that’s a method declaration. So if we look at java.net.
authenticator.requestpasswordauthentication, that’s
the method declaration. It includes the package name,
the class name, and the method name, which, for me,
is hard to say, apparently, because it has an “s” and a
“th” [1927] requestpasswordauthentication.

So I knew immediately, when I read that label
name, what it was used for. It was used to request a
password authentication.

And so I thought, when I saw Dr. Reinhold display
this, I think I can understand pretty well what this
method would do based simply on its names and its
inputs and outputs.

I thought that was kind of a good example of func-
tionality and descriptive nature of these labels.

262
BY MR. PAIGE

Q. Well, did you do anything to confirm your opin-
ion about what that class did?

A. I did. After I saw this in the – in trial, I went
and looked up the API specification, the comments
that a developer would use to understand it.

And my own understanding that I had built simply
from looking at this demonstrative, were kind of vali-
dated because when I read the description, it was the
same, which I think isn’t surprising based on these
descriptive names that we see for both the method, the
inputs, and the outputs.

Q. Can you explain to the jury what you concluded
from looking at those elements of the declaration?

A. There’s a lot on this line.

For a developer, it wouldn’t be too hard to under-
stand because developers are used to being able to find
the pieces.

[1928] And when I described the pieces of the meth-
od, I said the word “limiting,” “request password
authentication,” and then the inputs and the outputs.

The output comes after “public static.” We can see
“password authentication.” Now, that might be hard
for people who aren’t programmers, but for me I
realized right away that’s the return. That’s what this
method gives you back. It’s a password authentication
object. So I knew right away that’s what I would get.

The inputs are also described. And we can see many.
Host, iNet address, protocol, prompt, scheme, requester
type. And, again, for a developer, those descriptive
names would be very easy to understand.

263
If you look, for example, at the one that says “URL,”

a URL is a uniform resource locater. It’s how we find
things on the Internet like www.cnn.com. That would
be a URL.

So here, this method requires as one of its inputs a
URL. So the name of the class, URL in capital letters,
is very descriptive and functional about what it does.
And then the name of the input itself, which is the
lower case url.

So although this looks like it’s complicated, each
part is very descriptive and functional about what the
method does.

Q. And what does the name there tell you about
the SSO of this method, if anything?

A. Well, I talked about how the package name,
class name and [1929] method name, that together
is, in my opinion, the structure, sequence and
organization.

Because Java – the Java Language requires that
every method be in a class, and that every class be in
a package. So we see right there what’s called the SSO;
the package name, the class name, the method name.
Java.net.authenticator.requestpassportauthentication.

Q. Would you expect to find a class like this in
java.net?

A. I would absolutely expect to find a class like this
in java.net because it deals with network authentica-
tion.

So the classes in java.net would be those around
networks. This is precisely where I would think to find
it.

264
Q. So what’s your conclusion as to what Dr.

Reinhold’s slide shows about the functional nature of
these names?

A. I think it’s a good example of how these names
are functional and descriptive of their purpose in Java.

Q. Dr. Reinhold also expressed the opinion that
declaring code was relatively more important to some
develop than implementing code.

Do you remember that testimony?

A. I do, yes.

Q. What is your opinion regarding the relative
importance of declaring code and implementing code
to application developers?

A. I think that you can’t really make valid conclu-
sions about the relative importance of declaring code
versus implementing

* * *

[1935] BY MR. PAIGE

Q. In your opinion, was putting the entirety of the
Java SE on a mobile phone a good idea?

A. No, I don’t think that was a good idea.

Q. Why not?

A. Using all 166 packages from Java SE, which is
a platform designed for desktop and laptop computers,
all of those wouldn’t be appropriate for a mobile plat-
form.

And we saw that, for example, with SavaJE. It didn’t
work in making a successful platform. They missed,
kind of, a key step by taking all of Java SE.

Q. What’s the key step you’re talking about?

265
A. Well, the Google engineers took – they took the

ideas and they used the labels of these 37 packages. So
in using the labels of just 37 packages, they were able
to create the Android platform by adding the func-
tionality to it that they need.

So the key step there was selecting just the 37 labels
and not using the entirety of the Java SE.

Q. So, Professor Astrachan, could you summarize
your opinion on Google’s use of the Java APIs?

A. Sure.

That first step that I just outlined was selecting the
37 packages and using those method declarations, the
declaring code. And then the next step was implement-
ing those [1936] declarations with code optimized for a
mobile platform, and then adding to that the library
specific for a mobile platform. Things like location and
WiFi.

So at that point, the Google Android developers then
brought in third-party libraries, these open source
libraries for making Web browsers or graphics. And
then they made a virtual machine, the Dalvik Virtual
Machine. Again, specifically optimized for a mobile
platform.

So starting with that selection and then going down
through the virtual machine, all optimized for Android,
and then building that on top of Linux, a version of the
low-level operating system specific for this Android
platform, that whole sequence led to this open source
innovative Android platform.

MR. PAIGE: Thank you, Professor Astrachan.

I pass the witness.

THE COURT: All right.

266
CROSS-EXAMINATION

BY MS. HURST

Q. Professor Astrachan, I want to hand you a bind-
er with your reports in it, Exhibit 7641.

A. Okay.

Q. And if you open the binder, you’ll see that your
reply report there is with a flag on it, on page 5. Do
you see that, sir?

A. I – this is my opening report. Do you want me
to look at

* * *

267
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

FINAL CHARGE TO THE JURY (PHASE ONE)
AND SPECIAL VERDICT FORM

————

1.

Members of the jury, it is now my duty to instruct
you on the law that applies to the issue of fair use. A
copy of these instructions will be available in the jury
room for you to consult as necessary.

It is your duty to determine the facts from all the
evidence in the case. To those facts, you will apply the
law as I give it to you. You must follow the law as I
give it to you whether you agree with it or not. You
must not be influenced by any personal likes or dis-
likes, opinions, prejudices or sympathy. That means
that you must decide the case solely on the evidence
before you. You will recall that you took an oath
promising to do so at the beginning of the case. In
following my instructions, you must follow all of them
and not single out some and ignore others; they are
all equally important. You must not read into these

268
instructions or into anything the Court may have
said or done as suggesting what verdict you should
return — that is a matter entirely up to you.

2.

The evidence from which you are to decide what the
facts are consists of:

1. The sworn testimony of witnesses, on both
direct and cross-examination, regardless of who called
the witness;

2. The exhibits which have been received into
evidence;

3. The sworn testimony of witnesses in deposi-
tions and other proceedings, read into evidence;

4. Any facts to which the lawyers have stipulated.
You must treat any stipulated facts as having been
conclusively proved;

5. Answers to interrogatories and requests for
admission read to you during trial; and

6. Any facts that I have instructed you must be
treated as having been established.

3.

Evidence may be direct or circumstantial. Direct
evidence is direct proof of a fact, such as testimony by
a witness about what that witness personally saw or
heard or did. Circumstantial evidence is proof of one
or more facts from which you could find another fact.
By way of example, if you wake up in the morning and
see that the sidewalk is wet, you may find from that
fact that it rained during the night. However, other
evidence, such as a turned-on garden hose, may explain
the presence of water on the sidewalk. Therefore,
before you decide that a fact has been proved by

269
circumstantial evidence, you must consider all the
evidence in the light of reason, experience, and com-
mon sense. You should consider both kinds of evidence.
The law makes no distinction between the weight to be
given to either direct or circumstantial evidence. It is
for you to decide how much weight to give to any
evidence. You should base your decision on all of the
evidence regardless of which party presented it.

4.

In reaching your verdict, you may consider only the
types of evidence I have described. Certain things are
not evidence, and you may not consider them in
deciding what the facts are. I will list them for you:

1. Arguments and statements by lawyers are not
evidence. The lawyers are not witnesses. What they
have said in their opening statements, closing
arguments, and at other times is intended to help
you interpret the evidence, but it is not evidence. If
the evidence as you remember it differs from the
way the lawyers have stated it, your memory of it
controls.

2. A suggestion in a question by counsel or the
Court is not evidence unless it is adopted by the
answer. A question by itself is not evidence. Consider
it only to the extent it is adopted by the answer.

3. Objections by lawyers are not evidence. Lawyers
have a duty to their clients to consider objecting
when they believe a question is improper under the
rules of evidence. You should not be influenced by
any question, objection, or the Court’s ruling on it.

4. Testimony or exhibits that have been excluded
or stricken, or that you have been instructed to
disregard, are not evidence and must not be

270
considered. In addition, some testimony and exhibits
have been received only for a limited purpose; where
I have given a limiting instruction, you must follow
it.

5. Anything you may have seen or heard when the
Court was not in session is not evidence. You are to
decide the case solely on the evidence received at the
trial.

5.

The weight of the evidence as to a fact does not
necessarily depend on the number of witnesses who
testify. Nor does it depend on which side called wit-
nesses or produced evidence. You should base your
decision on all of the evidence regardless of which
party presented it.

6.

You are not required to decide any issue according
to the testimony of a number of witnesses, which does
not convince you, as against the testimony of a smaller
number or other evidence, which is more convincing to
you. The testimony of one witness worthy of belief is
sufficient to prove any fact. This does not mean that
you are free to disregard the testimony of any witness
merely from caprice or prejudice, or from a desire to
favor either side. It does mean that you must not
decide anything by simply counting the number of
witnesses who have testified on the opposing sides.
The test is not the number of witnesses but the
convincing force of the evidence.

7.

A witness may be discredited or impeached by
contradictory evidence or by evidence that, at some
other time, the witness has said or done something or

271
has failed to say or do something that is inconsistent
with the witness’ present testimony. If you believe
any witness has been impeached and thus discredited,
you may give the testimony of that witness such
credibility, if any, you think it deserves.

8.

Discrepancies in a witness’ testimony or between a
witness’ testimony and that of other witnesses do not
necessarily mean that such witness should be discred-
ited. Inability to recall and innocent misrecollection
are common. Two persons witnessing an incident or a
transaction sometimes will see or hear it differently.
Whether a discrepancy pertains to an important matter
or only to something trivial should be considered by
you.

However, a witness you think is willfully false in
one part of his or her testimony is to be distrusted
in others. You may reject the entire testimony of
a witness who willfully has testified falsely on a
material point, unless, from all the evidence, you
believe that the probability of truth favors his or her
testimony in other particulars.

9.

In determining what inferences to draw from evi-
dence you may consider, among other things, a party’s
failure to explain or deny such evidence.

10.

You may have heard from a witness that there was
a prior trial in this case. It is true that there was a
prior trial. We have heard evidence in this trial of
a prior proceeding, which is the earlier trial that
occurred in this case. Do not speculate about what
happened in the prior trial. No determination on fair

272
use was made one way or the other in that trial. It is
up to you, the jury, to determine fair use based on the
evidence you have heard in this trial and my
instructions of the law.

11.

In this case, members of the jury, you have heard
two types of witnesses. First, you have heard fact
witnesses. These are people who were part of the story
on trial and have testified to the facts they experienced
firsthand. Second, you have heard expert witnesses.
Unlike fact witnesses who were part of the story on
trial, the various expert witnesses have been retained
by both sides after-the-fact to testify to opinions based
on their specialized training or experience. To take an
example from a more routine case, in a traffic case, a
fact witness is someone who saw or heard the accident
or was part of it, whereas an expert witness is someone
like an accident reconstruction specialist who offers an
opinion of the car’s speed based on skid marks.

12.

In deciding the facts in this case, you may have to
decide which testimony to believe and which testimony
not to believe. You may believe everything a witness
says, or part of it or none of it. In considering the
testimony of any witness, you may take into account:

1. The opportunity and ability of the witness to
see, hear, or know the things testified to;

2. The quality of the memory of the witness;

3. The manner of the witness testifying;

4. The interest of the witness in the outcome of
the case and any bias or prejudice;

273
5. Whether other evidence contradicted the testi-

mony of the witness;

6. The reasonableness of the witness’ testimony
in light of the evidence; and

7. Any other factors that bear on believability.

13.

With respect to expert witnesses, the main reason
we allow their testimony is because they may have
specialized training and experience with insights that
may help the jury understand a field of specialized
knowledge and how it applies to the case at hand.
Usually, these witnesses are paid by their respective
sides in litigation. Two important caveats for experts
are as follows:

No expert witness should ever vouch for
which side’s fact scenario is correct. No retained
expert was present at the events in question.
None has firsthand knowledge. Experts may
rely on particular documents and testimony
and may make an assumption that the docu-
ment or testimony is correct and then give an
opinion based on that assumption, but the
opinion is only as good as the factual assump-
tion and that foundational fact question is
always for you, the jury, to resolve, not for the
experts. Put differently, experts should not
invade the province of the jury by purporting
to tell the jury which side’s fact version is
true.

Similarly, no expert witness should attempt
to tell the jury what someone had in mind or
was thinking. The mental state and intent of
the characters in our story on trial is for you

274
to decide, not for the experts to decide. It is,
however, permissible for experts to quote
testimony or documents and then to assume
that the statements therein were accurate
and then based thereon to apply their exper-
tise to render an opinion.

14.

With this in mind, I will now suggest to you some
further inquiries for your evaluation of the testimony
of experts.

1. To what extent, if at all, has the expert witness
overstepped his or her role and tried to usurp the
function of the jury by vouching for the truth of
one side’s witnesses versus the other or by giving
opinion on the mental state of the characters
involved in the case?

2. To what extent is the expert witness’ opinion
actually anchored in his or her specialized knowledge
and training as opposed to just partisan argument,
which you are just as qualified to make or reject as
him or her?

3. To what extent is the expert witness’ opinion
supported by facts you find have been independently
proven?

4. To what extent is the opinion contradicted by
the facts?

5. To what extent has the expert witness relied
upon a source of factual information that is biased?

6. To what extent has the expert witness “cherry
picked” the factual record to highlight material
helpful to his or her opinion while downplaying the
facts that undercut his opinion?

275
7. To what extent has the expert witness forth-

rightly conceded points versus stubbornly refused to
concede a point you think he or she should?

8. To what extent has the expert witness been
influenced by money compensation paid by the side
presenting him or her?

These are merely considerations. It is always up to
you, the jury, to decide how much weight to give, if
any, to any testimony or evidence, including from
expert witnesses.

15.

Under the law, a corporation is considered to be a
person. It can only act through its employees, agents,
directors, or officers. Therefore, a corporation is respon-
sible for the acts of its employees, agents, directors, or
officers performed within the scope of authority.

You have heard testimony that Oracle Corporation
bought Sun Microsystems, Inc., in 2010 and changed
the name of the corporation from “Sun Microsystems,
Inc.” to “Oracle America, Inc.” This means that Sun
and Oracle America, the plaintiff in this case, are the
same legal entity.

16.

In these instructions, I will often refer to a party’s
“burden of proof.” Let me explain what that means.
When a party has the burden of proof on any claim by
a preponderance of the evidence, it means you must be
persuaded by the evidence that the claim is more
probably true than not true. To put it differently, if you
were to put the evidence favoring a plaintiff and the
evidence favoring a defendant on opposite sides of a
scale, the party with the burden of proof on the issue
would have to make the scale tip somewhat toward its

276
side. If the party fails to meet this burden, then the
party with the burden of proof loses on that issue.
Preponderance of the evidence basically means “more
likely than not.”

17.

If you find that Google carried its burden of proof as
to fair use, your verdict should be for Google. If you
find that Google did not carry its burden of proof, your
verdict should be for Oracle.

18.

I will now remind you of some important established
facts regarding the copyrighted works at issue in this
case.

The Java platform is a software application platform
that is used to write and to run programs in the Java
programming language. The Java programming lan-
guage is free and available to use without permission
from anyone. The Java platform includes, among other
things, the Java Virtual Machine and the Java API
packages. “API” stands for “Application Programming
Interface.”

What is at issue in this case are the Java API
packages, which are sets of prewritten computer pro-
grams used to perform common computer functions
without a programmer needing to write code from
scratch. These prewritten computer programs assist
developers in writing applications. These prewritten
programs are organized into packages, classes, and
methods. An API package is a collection of classes.
Each class contains methods and other elements.

The packages, classes, and methods are defined by
declaring code. The declaring code is the line or lines
of source code that introduce, name, and specify the

277
package, class, or method. The declaring code allows
programmers to understand and make use of the
prewritten programs in the API packages to write
their own programs.

The declaring code for the packages, classes, and
methods reflects the structure, sequence, and organ-
ization (or “SSO”) for the Java API packages. The SSO
specifies the relationships between and among the
elements of the Java API packages and also organizes
the classes, methods, and other elements in the pack-
age. The term structure, sequence, and organization is
a concept used by lawyers and courts in connection
with copyright. It is not a term used by computer
scientists.

Each individual method performs a specific function.
The declaring code for a method is sometimes referred
to as the “method declaration,” “header,” or “signa-
ture.” The declaring code for a method tells the
programmer the information the method needs (the
inputs) to perform the desired function.

Each method also contains implementing code. The
implementing code provides step-by-step instructions
that tell the computer how to perform the function
specified by the declaring code. The declaring code and
the SSO of the 37 Java API packages at issue are
protected as part of the overall work protected by
copyrights owned by Oracle. The copyright protection
does not extend to the idea of organizing functions into
packages, classes, and methods, but the copyright
protection does cover the SSO as expressed in the 37
Java API packages.

19.

Sun developed the Java programming language and
made it free for all to use. Sun further developed the

278
copyrighted Java API library of prewritten code,
including implementing code, to carry out more
advanced functions and made it available for all to use
with a license, although the question for you to decide
is the extent to which, if at all, the declaring code
and SSO may be copied without a license under the
statutory right of fair use. Anyone using the Java
programming language may write their own library of
prewritten programs to carry out various common
functions. They may even write their own library to
cover the same functions as covered by the copyrighted
works. This is because copyright protects a particular
set of words or expression, but it does not and cannot
cover ideas or functions. However, even in writing
their own programs to carry out the same functions,
Java programmers may not begin their methods,
classes, or packages with the identical line (or lines) of
declaring code as used in the copyrighted works —
unless such use of the declaring lines constitutes a fair
use. Nor may they organize their methods into the
same packages and classes as in the copyrighted works
unless to do so qualifies as fair use.

20.

Now, I will turn to the law that applies to this case.
In this trial, it has already been established that the
Android versions in question used aspects of Java 2
Standard Edition Version 1.4 and Java 2 Standard
Edition Version 5.0, specifically using the declaring
code and the structure, sequence, and organization of
37 Java API packages. The pertinent Android versions
are: 1.0, 1.1, Cupcake, Donut, Eclair, Froyo, Gingerbread,
Honeycomb, Ice Cream Sandwich, Jelly Bean, Kit-Kat,
Lollipop, and Marshmallow. Google’s use of the declar-
ing lines of code and the structure, sequence, and
organization of those 37 API packages constituted

279
copyright infringement unless you find that Google
has carried its burden as to the defense of fair use. In
other words, for purposes of this trial, it is a given,
already established, that Google used certain aspects
of copyrighted works, and the question remaining for
you to decide is whether or not Google’s use was a
fair use. There is no contention, however, that Google
copied the implementing code for the 37 API packages.
The point of contention is over the declaring lines of
code within the 37 API packages, also referred to as
declarations or header lines, which Google concededly
used in Android, which reflect the structure, sequence,
and organization for the Java API packages.

21.

Now, I will explain what fair use means under the
law.

One policy behind our copyright law, of course, is to
protect the compositions of authors from exploitation
by others. When it applies, however, the right of fair
use permits the use of copyrighted works by others
without the copyright owner’s consent. The policy
behind the right of fair use is to encourage and allow
the development of new ideas that build on earlier
ones, thus providing a counterbalance to the copyright
policy to protect creative works. Since the doctrine of
fair use is an equitable rule of reason, no generally
accepted definition is possible, and each case raising
the question must be decided on its own facts. And, in
this dispute between Oracle and Google, that question
falls to you for decision.

22.

Under the Copyright Act, an author owns the
exclusive right to use or to license his or her writings
or images or other copyrightable works with the

280
statutory exception that anyone may make fair use of
even a copyrighted work and may do so without
anyone’s permission and without payment of money to
anyone. Specifically, the Act states (and I will quote it
exactly):

The fair use of a copyrighted work for
purposes such as criticism, comment, news
reporting, teaching (including multiple copies
for classroom use), scholarship or research, is
not an infringement of copyright. In deter-
mining whether the use made of a work in
any particular case is a fair use the factors to
be considered shall include

1. The purpose and character of the use,
including whether such use is of a commercial
nature or is for nonprofit educational purposes;

2. The nature of the copyrighted work;

3. The amount and substantiality of the
portion used in relation to the copyrighted
work as a whole; and

4. The effect of the use upon the potential
market for or value of the copyrighted work.

I have just quoted for you the right of fair use exactly
as enacted by Congress. As you just heard, the statute
includes several examples of some types of uses that
may be found to be fair uses, but that list is not
exhaustive or exclusive. In your deliberations, you
must decide whether or not Google has met its burden
in this trial to prove that its copying was a fair use.
Now I will further explain each of the four statutory
factors.

281
23.

The first statutory factor concerns the purpose and
character of the accused use. This factor includes these
issues: (1) whether and to what extent the accused use
serves a commercial purpose, which weighs against
fair use, versus a nonprofit educational purpose, which
weighs in favor of fair use, and (2) whether and to
what extent the accused work is “transformative,”
which supports fair use. Although the Act does not
explicitly use the word “transformative,” our courts
uniformly hold that the first statutory factor calls for
an evaluation whether and to what extent the purpose
and character of the accused work is transformative.

24.

What does transformative mean? A use is trans-
formative if it adds something new, with a further
purpose or different character, altering the first use
with new expression, meaning, or message rather than
merely superseding the objects of the original creation.
New works have been found transformative when they
use copyrighted material for purposes distinct from
the purpose of the original material. A use is consid-
ered transformative only where a defendant changes a
plaintiff’s copyrighted work or, where the copyrighted
elements remain unchanged from the original, a defend-
ant uses them in a different context such that the
original work is transformed into a new creation. A
work is not transformative where the user makes little
or no alteration to the expressive content or message
of the original work and uses it in the same or similar
context. The extent of transformation may vary from
case to case. The greater the transformation, the more
likely an accused use will qualify as a fair use, and the
less the transformation, the less likely an accused use
will qualify as a fair use.

282
25.

To qualify as transformative, the material copied
need not be modified in the new work, so long as the
material and the context in which the material is used
qualifies as transformative under the test stated
above. In this case, Google contends that it used the
exact lines of declaring code at issue and their SSO
together with new implementing code (and additional
technology) as part of a new platform for mobile
devices. Oracle contends that Sun was already using,
licensing, and adapting the copyrighted works in
mobile and other devices. It is up to you to decide the
extent to which Google’s use qualifies as transforma-
tive under the test stated above, but you may not
disqualify it from being transformative merely because
the declaring code and SSO were carried over without
change. On the other hand, even if you find that the
accused use was transformative, you must weigh that
and the extent of the transformativeness against the
commercial purpose of the use and its extent, which I
will now discuss.

26.

In evaluating the first statutory factor, the extent
of the commercial nature of the accused use must
be considered. In this case, all agree that Google’s
accused use was commercial in nature but disagree
over the extent. Commercial use weighs against a
finding of fair use, but even a commercial use may be
found (or not found, as the case may be) to be
sufficiently transformative that the first statutory
factor, on balance, still cuts in favor of fair use. To put
it differently, the more transformative an accused
work, the more other factors, such as commercialism,
will recede in importance. By contrast, the less

283
transformative the accused work, the more other
factors like commercialism will dominate.

27.

Also relevant to the first statutory factor is the
propriety of the accused infringer’s conduct because
fair use presupposes good faith and fair dealing. Where,
for example, the intended purpose is to supplant the
copyright holder’s commercially valuable right of first
publication, good faith is absent. In evaluating the
question of the propriety of Google’s conduct, meaning
good faith or not, you may only consider evidence up to
the commencement of this lawsuit on August 12, 2010,
and may not consider events thereafter. Your decision
as to fair use, however, will govern as to all versions of
Android at issue in this case, regardless of their date
of issue. Again, in evaluating good faith or not, you
should limit your consideration to events before
August 12, 2010, and disregard any evidence you
have heard after that date. This evidence cut-off date
applies only to the issue of good faith or not.

In evaluating the extent to which Google acted in
good faith or not, you may take into account, together
with all other circumstances, the extent to which
Google relied upon or contravened any recognized prac-
tices in the industry concerning re-implementation of
API libraries.

You have heard evidence concerning the possibility
of Google seeking a license from Oracle. Under the
law, if the accused use is otherwise fair, then no
permission or license need be sought or granted. Thus,
seeking or being denied permission to use a work does
not weigh against a finding of fair use.

Similarly, you have heard evidence about various
licenses from the Apache Foundation, the Apache

284
Harmony Project involving Java, and the General
Public License. These are relevant in some ways, but
Google concedes it had no license from Sun or Oracle,
and it is important to remember that Google makes no
claim that its use was pursuant to a license from Sun
or Oracle, directly or indirectly. Instead, Google claims
that its use was a fair use and therefore required no
license at all.

28.

The second statutory factor is the nature of the
copyrighted work. This factor recognizes that tradi-
tional literary works are closer than informational
works, such as instruction manuals, to the core of
intended copyright protection. Creative writing and
expression lie at the very heart of copyright protection,
so fair use is generally more difficult to establish for
copying of traditional literary works than for copying
of informational works. The focus of this statutory
factor is on how close the used material is to the
core values of copyright protection. The less the used
material implicates the core values of copyright pro-
tection, the more viable will be fair use and vice versa.

29.

In this case, it is undisputed that the declaring code
and the structure, sequence, and organization of the
37 API packages at issue were sufficiently creative and
original to qualify for copyright protection. “Original,”
as the term is used in copyright, means only that the
work was independently created by the author (as
opposed to copied from other works) and that it pos-
sesses at least some minimal degree of creativity. The
extent to which the 37 API packages in question here
involved greater creativity than the minimum required
to obtain copyright is disputed and is open for you to

285
examine. That is, you should consider the extent to
which the used materials were creative versus func-
tional. The more creative the work, the more this
factor disfavors fair use, and the more functional the
work, the more this factor favors fair use.

30.

Even though a computer program performs func-
tions and has functional elements, the structure,
sequence, and organization of a computer program
may be (or may not be) highly creative. When there
are many possible ways to structure, sequence, and
organize a program, the particular way chosen for a
copyrighted program and individual lines of declaring
code may be (or may not be) highly creative. On the
other hand, when the declaring code and the structure,
sequence, and organization are dictated by functional
considerations such as efficiency, compatibility, or
industry standards, then less creativity is indicated
and the core values of copyright protection are
less implicated. When purely functional elements are
embedded in a copyrighted work and it is necessary to
copy associated creative elements in order to utilize
those functional elements, then this circumstance also
favors fair use. Conversely, copying creative expres-
sion that is not necessary to perform the functions cuts
against fair use.

31.

Google, of course, had the right to write its own code
to perform any function it wished because no one can
get a copyright on a general method of operation (other
than to get a copyright on its specific implementation
for that function). Unless it was a fair use, however,
Google did not have the right to use the exact lines of
declaring code and the overall structure, sequence,

286
and organization of the 37 API packages, as copy-
righted by Sun (and now owned by Oracle).

32.

Because Google was free to use the Java program-
ming language to write Android, you should also
consider the extent to which you find it was necessary
for Google to use any or all of the declaring code and
structure, sequence, and organization of any of the 37
API packages to write in the Java language. Such a
finding, to that extent only, would support fair use; to
the extent you find it was not necessary, however, that
finding would disfavor fair use. It is established that
170 lines of code at issue are technically necessary to
use the Java programming language. Those 170 lines
of declaring code are listed in Trial Exhibit 9223.
Because that declaring code is necessary to use the
language, it is established that Google’s use of the
declaring code in Trial Exhibit 9223 was a fair use. It
is for you to determine the extent to which other
additional declaring code beyond those lines identified
in Trial Exhibit 9223 either was or was not necessary
for use of the Java programming language. To the
extent you find they were not necessary, you still must
consider whether their use was (or was not) a fair use
in light of the statutory factors for fair use. This
consideration also bears on the third statutory factor,
to which I will now turn.

33.

The third statutory factor is the amount and
substantiality of the portion used in relationship to the
copyrighted work as a whole, which concerns how
much of the overall copyrighted work was used by the
accused infringer. Analysis of this factor is viewed in
the context of Oracle’s copyrighted works, namely

287
Java 2 Standard Edition Versions 1.4 and 5.0. For this
factor, the total number of lines in Android is
irrelevant. The fact, if true, that a substantial portion
of an infringing work was copied verbatim is evidence
of the qualitative value of the copied material, both to
the originator and to whoever seeks to profit from
marketing someone else’s copyrighted work. Wholesale
copying does not preclude fair use per se but it mili-
tates against a finding of fair use. Even a small part
may be qualitatively the most important part of a
work. If, however, the secondary user only copies as
much as is necessary for a transformative use, then
this factor will not weigh against him or her. The
extent of permissible copying varies with the purpose
and character of the use, which relates back to the first
statutory factor.

In assessing this third statutory factor, both the
quantity of the material used and the quality or
importance of the material used should be considered.

34.

The fourth and final statutory factor is the effect of
the accused infringer’s use on the potential market for
or value of the copyrighted work. This factor militates
against fair use if the accused use materially impairs
the marketability or value of the copyrighted work.
This is the single most important statutory factor, but
it must be weighed with all other factors and is not
necessarily dispositive. This factor considers whether
the accused work is offered or used as a substitute for
the original copyrighted work. This factor considers
not only the extent of any market harm caused by the
accused infringer’s actions but also whether unrestricted
and widespread use of the copyrighted materials of the
sort engaged in by the accused infringer would result
in a substantially adverse impact on the potential

288
market for the copyrighted work. Market harm to the
value of the copyrighted work may be a matter of
degree, and the importance of this factor will vary not
only with the amount of harm shown, but also with the
relative strength of the showings on the other factors.

35.

In connection with the fourth statutory factor, the
term “potential market for or value of refers to the
value of the entire copyrighted work itself and
licensing opportunities for the copyrighted work and
its derivative works. A derivative work is a work based
in whole or in substantial part upon one or more
preexisting copyrighted works, such as a musical
arrangement or dramatization based on a book, to
name only two specifics, or any other form in which a
work may be recast or adapted. In this case, the
copyrighted works in suit are Java 2 Standard Edition
Versions 1.4 and 5.0, so the only derivative works that
count are those derived from those two works.

36.

In making your evaluation under the fourth factor,
you should assess the harm, if any, to the potential
market for or value of the copyrighted work itself and
to its licensing value for it and its derivative works.
You may consider the broader potential market for
products that feature independent elements in addi-
tion to the copyrighted material and their successes
and/or failures only insofar as they shed light on the
licensing or market value of the copyrighted work
itself and its derivative works. In doing this, moreover,
you must ignore benefits from the use to the copyright
owner outside the genre claimed to have been harmed.

289
37.

Actual present harm need not be shown. Nor is it
necessary to show with certainty that future harm will
result so long as some meaningful likelihood of future
harm exists to the market value of the copyrighted
work or the licensing value for the copyrighted work
and its derivative works in traditional, reasonable, or
likely to be developed markets. If the intended accused
use is for commercial gain, that likelihood may be
presumed except where the second use is transform-
ative because in cases of transformation, market
substitution is at least less certain and market harm
may not be so readily inferred.

38.

I have now completed my explanation of the four
factors in the Act. You might ask, are we limited to
these four factors? The Act states that the factors to be
considered “include” the four statutory factors, and the
law holds that those four factors are not exclusive and
you may consider any additional circumstances and
evidence, pro or con, that, in your judgment, bear upon
the ultimate purpose of the Copyright Act, including
protection of authors and the right of fair use, namely,
to promote the progress of science and useful arts.

39.

It is up to you to decide whether all relevant factors,
when considered fully and together, favor or disfavor
fair use. All of these factors must be explored, dis-
cussed, and evaluated by you. No single factor is
dispositive. Your evaluation of all factors must be
weighed together in light of the purpose of copyright,
which as our Constitution states in enumerating
the legislative power of Congress, is to promote the
progress of science and useful arts. Some factors may

290
weigh in favor of fair use and some against fair use,
and you must decide, after giving the factors such
weight as you find appropriate based on the evidence
and my instructions, whether or not, on balance,
Google has shown by a preponderance of the evidence
that they predominate in favor of fair use.

40.

When you begin your deliberations, you should elect
one member of the jury as your foreperson. That
person will preside over the deliberations and speak
for you here in court.

You will then discuss the case with your fellow
jurors to reach agreement if you can do so. Your verdict
must be unanimous. Each of you must decide the case
for yourself, but you should do so only after you have
considered all of the evidence, discussed it fully with
the other jurors, and listened to the views of your
fellow jurors.

Do not be afraid to change your opinion if the
discussion persuades you that you should. Do not come
to a decision simply because other jurors think it is
right. It is important that you attempt to reach a
unanimous verdict but, of course, only if each of you
can do so after having made your own conscientious
decision. Do not change an honest belief about the weight
and effect of the evidence simply to reach a verdict.

I will give you a special verdict form to guide your
deliberations.

41.

Some of you have taken notes during the trial.
Whether or not you took notes, you should rely on your
own memory of what was said. Notes are only to assist
your memory. You should not be overly influenced by

291
the notes. When you go into the jury room, the Clerk
will bring in to you the trial exhibits received into
evidence to be available for your deliberations. The
Clerk will also provide you with an index to them.

42.

As I noted before the trial began, when you retire to
the jury room to deliberate, you will have with you the
following things:

1. All of the exhibits received into evidence;

2. Indices of the exhibits, one in chronological
order, one in order of exhibit number, and one index
of the exhibits shown in video depositions.

3. A work copy of these jury instructions for each
of you;

4. A work copy of the verdict form for each of you;

5. An official verdict form; and

6. A cart with a computer which holds exhibits
that exist only in electronic form.

When you recess at the end of a day, please place
your work materials in the brown envelope provided
and cover up any easels with your work notes so that
if my staff needs to go into the jury room, they will
not even inadvertently see any of your work in
progress.

43.

A court security officer will be outside the jury-room
door during your deliberations. If it becomes necessary
during your deliberations to communicate with me,
you may send a note through the officer, signed by
your foreperson or by one or more members of the
jury. No member of the jury should ever attempt to

292
communicate with me except by a signed writing, and
I will respond to the jury concerning the case only in
writing or here in open court. If you send out a
question, I will consult with the lawyers before answer-
ing it, which may take some time. You may continue
your deliberations while waiting for the answer to any
question. Remember that you are not to tell anyone —
including me — how the jury stands, numerically or
otherwise, until after you have reached a unanimous
verdict or have been discharged. Do not disclose any
vote count in any note to the Court.

44.

You have been required to be here each day from
7:45 A.M. to 1:00 P.M. Now that you are going to begin
your deliberations, however, you are free to modify
this schedule within reason. For example, if you wish
to continue deliberating in the afternoons after a
reasonable lunch break, that is fine. The Court does,
however, recommend that you continue to start your
deliberations by 8:00 A.M. If you do not reach a verdict
by the end of today, then you will resume your
deliberations tomorrow and thereafter.

It is very important that you let us know via the
officer what hours you will be deliberating so that the
lawyers may be present in the courthouse at any time
the jury is deliberating.

45.

You may only deliberate when all of you are
together. This means, for instance, that in the morn-
ings before everyone has arrived or when someone
steps out of the jury room to go to the restroom, you
may not discuss the case. As well, the admonition that
you are not to speak to anyone outside the jury room
about this case still applies during your deliberation.

293
46.

Once you render a verdict on the fair use question,
we may proceed to the shorter and final phase of the
trial on damages issues, depending on your answer to
the fair use question. This would still be within the
June 10 end date stated earlier. Please do not allow
any desire to complete trial sooner to influence your
thinking. Once you render your verdict on the fair use
issue, it will be final and may not be re-visited or
modified during the second phase.

47.

After you have reached a unanimous agreement on
a verdict, your foreperson will fill in, date and sign the
verdict form and advise the Court that you have
reached a verdict. The foreperson should hold onto the
filled-in verdict form and bring it into the courtroom
when the jury returns the verdict. Thank you for your
careful attention. The fair use issue is now in your
hands. You may now retire to the jury room and begin
your deliberations.

Dated: May 23, 2016.

/s/ William Alsup
WILLIAM ALSUP
UNITED STATES DISTRICT JUDGE

294
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

————

SPECIAL VERDICT FORM

YOUR ANSWER MUST BE UNANIMOUS.

Has Google shown by a preponderance of the evidence
that its use in Android of the declaring lines of
code and their structure, sequence, and organization
from Java 2 Standard Edition Version 1.4 and Java 2
Standard Edition Version 5.0 constitutes a “fair use”
under the Copyright Act?

Yes __________ (finding for Google)

No __________ (finding for Oracle)

Dated: May __, 2016.

FOREPERSON

295
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

SPECIAL VERDICT FORM

————

YOUR ANSWER MUST BE UNANIMOUS.

Has Google shown by a preponderance of the evidence
that its use in Android of the declaring lines of code
and their structure, sequence, and organization from
Java 2 Standard Edition Version 1.4 and Java 2
Standard Edition Version 5.0 constitutes a “fair use”
under the Copyright Act?

Yes ________ (finding for Google)

No __________ (finding for Oracle)

Dated: May 26, 2016.

/s/ [Illegible]
FOREPERSON

296
IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-03561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,
v.

GOOGLE INC.,

Defendant.
————

FINAL JUDGMENT

————

Based upon the unanimous verdict by the jury,
FINAL JUDGMENT IS HEREBY ENTERED in favor of
defendant Google Inc., and against plaintiff Oracle
America, Inc.

IT IS SO ORDERED.

Dated: June 8, 2016.

/s/ William Alsup
WILLIAM ALSUP
UNITED STATES DISTRICT JUDGE

297

[224] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 17, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[286] part of the business, is intellectual property im-
portant?

A. What we do is create intellectual property. We
create hardware designs and we create, in this case,
software designs.

And we, again, design computer software, they are
computer programs. So we design computer pro-
grams. And then we build those computer programs.

298

Both the design of the program and the program itself
are both intellectual property.

Q. Now, we’re going to talk in this trial both about
patent and copyrights, but I just want to focus on cop-
yrights right now.

Does Oracle use copyrights to protect its intellectual
property?

A. We use copyrights to protect both our software
designs and the programs—and the computer pro-
grams themselves.

Q. Is it expensive to design software programs and
develop software programs?

A. Oracle spends about $5 billion a year on re-
search and development. 90 percent of that is spent
on creating—designing and programming and creat-
ing computer software.

Q. And would it be possible to make that kind of in-
vestment if you did not have copyright protection for
the intellectual property, the software that you cre-
ated?

A. Well, no. If people could copy our software, in
other words create cheap knock offs of our products,
we wouldn’t get paid for our engineering and we
wouldn’t be able to continue to

* * *

[290] programmer writes in the Java language, and
then the Java programmer gets to reuse these build-
ing blocks, these programs, and include them and
build a still larger program.

299

Q. When you refer to “these building blocks,” these
prewritten programs, what are you referring to?

A. That’s, again, this library of programs that you
access through APIs.

Again, the Java—the Java program environment
includes these two parts: The Java language and this
library of prewritten programs.

And those prewritten programs, again, are—the
command structure of those prewritten programs are
these APIs.

So when you program in Java, you write language
statements, and you use the APIs to these prewritten
programs.

Q. Now, is it necessary to use the Java APIs that
Sun has created in order to use the Java program-
ming language?

A. Absolutely not.

MR. VAN NEST: Objection, Your Honor. Calls for
expert testimony.

THE COURT: Do you know the answer to the ques-
tion?

THE WITNESS: Yes, Your Honor.

THE COURT: From personal knowledge?

THE WITNESS: Yes, Your Honor.

THE COURT: Overruled. Please answer.

THE WITNESS: There’s a company in the UK that
built [291] its own Java environment. And they used
the Java programming language, but they created

300

their own set of APIs, prewritten programs. And that
other environment is called Spring.

So Spring uses the Java programming language,
but it doesn’t use the Sun-created APIs. They have
their own set of APIs and their own set of prewritten
programs.

Furthermore, there are lots of programming lan-
guages that are just programming languages and
don’t have any prewritten library or programs for re-
use.

BY MR. BOIES:

Q. Now, is it difficult/expensive to create APIs?

A. Uhm, arguably, it’s one of the most difficult
things we do at Oracle. When you design a program,
the very first thing you do is create or define the APIs
of the program. That’s a task that’s done by our most
senior experienced and talented software engineers.

Q. Does Sun, and now Oracle, offer licenses to peo-
ple who want to use the APIs for Java that Sun has
created or Oracle has now created?

A. We do have a variety of licenses for Java.

Q. Can you explain what those types of licenses
are?

A. Yeah. There are three kinds of licenses. There’s
the GPL open source license. There’s a specification
license. And then there’s a commercial license.

Q. I want to go through each of those licenses and
talk about

* * *

301

[293] open source license.

Q. Now, was a Java GPL open source license avail-
able to Google?

A. Absolutely.

Q. Now, you said a second type of license was a Java
specification license. Do you recall that?

A. Yes.

Q. And would you explain what the nature of a Java
specification license is.

A. Of course.

The Java specification license lets you look at all of
the source code—excuse me. Excuse me. Let me be
clear. The Java specification license—that is incor-
rect, what I said. It doesn’t let you look at the source
code. Let me back up.

The Java specification license lets you look at the
Java documentation. Not the source code. All of the
Java documentation, something that’s in English. It’s
printed out on a sheet of paper. Let’s look at all of
those specifications, those design specifications.

And, then, using those design specifications you can
build your own version of Java. So you can use our—
you can use the designs and all the specs. You cannot
look at the code. Very specifically, you are not allowed
to look at the code. And then using those specifica-
tions, you can then build [294] your own version of
Java.

Once you have built that version of Java, you must
run a—what’s called a compatibility test, to make
sure that it is Java, to make sure—because we want

302

everyone’s version of Java—IBM, by the way, did this.
IBM has its own version of Java. Oracle has a version
of Java. SAP has a version of Java.

There are lots of companies that have built their
own versions of the Java environment; both the envi-
ronment for writing programs and the environment
for running programs.

Lots of people have done this, and they got a speci-
fication license. But they must—part of the specifica-
tion license requires them to run this compatibility
test called the TCK. I think it’s Test Compatibility
Kit. They have to run this TCK. And Oracle—before,
Sun—charges for this compatibility test.

You can build your own version of Java using the
specifications, but you must pass the compatibility
test. When you do pass the compatibility test, you
then are granted a license for Java copyrights and
Java patents. But not until you pass the compatibility
test.

Q. Is the Java specification license itself free?

A. The Java specification license itself is free. What
we charge for is the TCK, the compatibility test kit.

Q. In order to use a Java specification license, you
must buy

* * *

303

[298] You don’t have to do that at this moment.
We’ll take 15 minutes. Thank you.

MR. BOIES: Thank you, Your Honor.

(Recess taken from 9:33 to 9:52 a.m.)

THE COURT: Be seated. Let’s go back to work.

Just so everyone will know, the rule against talking
to the witness only applies on cross-examination. So
we aren’t there yet.

Please, bring in the jury.

(Jury enters at 9:52 a.m.)

THE COURT: All right. Be seated, please.

Mr. Boies, please continue.

MR. BOIES: Thank you, Your Honor.BY MR.
BOIES:

Q. Mr. Ellison, before the break you were talking
about the importance of compatibility for Java. Do
you recall that generally?

A. I do.

Q. Now, the jury has heard and will hear terms
about fragmenting Java and forking Java. And could
you explain what those terms mean.

A. It means creating incompatibility versions of
Java and—that creates two problems.

One, it fragments the developer community because
they have to, if you will, learn how to program in in-
dustry [299] standard Java and then this incompati-
ble version of Java. So you would have to learn how to
program two slightly—you know, somewhat different
ways. So it fragments the developer community.

304

Second, it ends the notion of write once, run any-
where. No longer can a programmer write a program
once and expect it to run on all the different comput-
ers that run the Java runtime environment.

So it fragments the developer community and it
breaks the write once, run anywhere promise.

Q. Now, you mentioned earlier that IBM had its
own version of the Java; Oracle has got its own ver-
sion of Java; SAP, another big software company, has
its own version of Java. Are those different versions
of Java all compatible?

A. They are all compatible. The ones that you men-
tioned, IBM, SAP, Oracle, Red Hat, Sun—we can go
on and on—they are all compatible.

Q. And I think you said the Java specification li-
cense required that a person taking that license, in
order to get the copyrights and the other intellectual
property that they got, had to agree to create a com-
patible version of Java. Is that correct?

A. Right. They got a specification license. They cre-
ated their compatible version of Java, and they proved
it was compatible by running the compatibility test.

* * *

[303] Q. Can you give me some examples of compa-
nies that are on the Java executive committee.

A. IBM—Oracle, IBM, SAP, HP, Red Hat. All of
whom are our competitors, by the way. We compete,
but we still cooperate around Java. And Google is also
on the executive committee for Java.

Q. And from time to time are new versions of Java
created through this community process?

305

A. Yeah. The people ask for improvements for Java,
so they basically—they’ll come up and they’ll say,
we’d like to add this feature to Java, we’d like to add
that feature to Java.

And these recommendations then go before the ex-
ecutive committee. The executive committee votes on
them. Eventually, we have a collection of improve-
ments, and we come up with a new version of Java.

And Java 7, recently the executive committee voted
on and approved Java 7.

Q. And is Java 7 a new version of Java?

A. Java 7 is the new version of Java.

Q. And when was that approved by the executive
committee?

A. Several months ago.

Q. And when this Java 7 was up for approval, did
all of the members of the executive committee have an
opportunity to vote?

A. Yes. Everyone—everyone on the executive com-
mittee had an opportunity to vote.

[304] Q. And did anybody vote against this new
version?

A. Everyone voted for it except for one company.
The only company that voted against Java 7 was
Google.

Q. With respect to the APIs that you’ve mentioned
earlier, is using the APIs that Sun and Oracle created
an advantage to a company that wants to program in
the Java programming language?

306

A. We—we think these—this library of prewritten
programs—and they use those prewritten programs
through their APIs.

We think this library of prewritten programs, it’s a
good library of programs. We think it makes program-
mers much more productive if they use the library,
they use our library.

Q. You mentioned there was this company, I think
you said Spring, who had written their own APIs?

A. Yes.

Q. Does it take a period of time and expense and
resources if you’re going to go that route?

A. Yeah. Spring had to design their own APIs, and
then they had to teach the developer community
about these new APIs. And they had to persuade them
that their collection of APIs, their library of programs,
was in some ways better than the library of programs
that Oracle and Sun had produced.

Q. And there came a time when you became aware
that Google was using Java APIs that Sun had copy-
righted and Oracle now owned the copyrights to; is
that correct?

[305] A. That’s correct.

Q. And did you take any action to try to address
that?

A. I met with Eric Schmidt when he was CEO of
Google, and I met with Larry Page, the current CEO
of Google. And I tried to persuade them to build—to
be compatible with the industry standard version of
Java.

307

Q. And did they agree to do that?

A. No.

MR. BOIES: Your Honor, we have no more ques-
tions at this time.

THE COURT: Before we—thank you.

Before we go to the cross, someone out there has a
very loud and noisy keypad. Who is that? I’m going to
ask you to stop typing because it is distracting. And if
you don’t, the marshals will remove you.

I said before, when the lawyer has the floor there
will be no distractions. And I mean that.

This is an important case to these parties, and the
jury is going to hear every word without a bunch of
tick, tick, tick, tick.

I don’t know who it was, but I know the direction it
was coming from. I don’t think it was your table, Mr.
Van Nest. I’m not accusing you. It’s somebody out
there in the public seating.

I’m sorry to be so strong about this, but this is

* * *

[389] the Java Community Process, number one.

Number two, we also took over the engineering of
the—what we call the reference implementations and
design specifications for many of the Java standards.
Things like the Java Standard Edition, the design
specifications for Java Enterprise Edition, et cetera.

And, third, we invested additionally, we also be-
came the sponsors for the Java user groups, what’s
called the Java, you know, developer community,

308

which has a number of forums and other things where
we go out and do events to get developers excited
about where Java is going and also train new devel-
opers on Java technology so that we can keep the de-
veloper ecosystem vibrant.

Q. Do you have an estimate for how much Oracle
has invested in Java since the acquisition?

A. Annually, we spend hundreds of millions of dol-
lars on Java.

Q. And any plans to change that?

A. Not—no.

Q. Did you at some point get involved in analyzing
Android for purposes of determining what Oracle
would do about Android?

A. I evaluated Android to understand largely from
the point of view of trying to understand, one, how we
could make Android compliant with the Java specifi-
cation, and, secondly, what technically would be in-
volved to help make that possible.

* * *

309

[430] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 18, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[601] I’ve got a problem, how am I going to solve it?”
you don’t care about all the Exception Classes. Even-
tually you might care when you find an error condi-
tion could happen, but if you care about that, then you
can read the more detailed documentation.

BY MR. JACOBS:

Q. And can you focus for a minute on what this tells
us about relationships between classes?

310

A. Sure. So just in the diagram, as in the diagram I
was showing, there are tree structures on the left re-
lating classes, and then there are also structures on
the right showing interfaces, and dotted lines be-
tween the classes and the interfaces showing the re-
lationship between the classes and the interface.

Now, moreover, as we were—as I was saying ear-
lier, some classes are shown in a package even if they
are defined in some other package, and that’s just for
reference. So here in the java.nio.channels Package,
there is the Object Class. Then there is a little blue
icon here indicating that Object is actually defined in
the package with that particular blue icon. That blue
icon is for the java.lang Package and here is Object
(indicating).

Similarly, in the Channels Package we have refer-
ence to the Closable interface. As I said, that’s not de-
fined in the Channels Package. That’s defined over in
java.io which is right above, so here is the definition
of the Closable [602] interface (indicating).

Q. Now, again, does the poster shows us methods or
fields?

A. It does not show us methods or fields.

Q. Did methods or fields have relationships them-
selves that would extend to different interfaces or
classes?

A. Methods and fields can be—are related to other
interfaces or classes.

Q. And can you maybe return to your—

A. Yes.

(Witness resumes stand.)

311

Q. I think you have slides to illustrate this?

A. Yeah. If we can go to the next slide, please? That
one.

(Document displayed)

A. Right. So let’s go back for just a moment to the
Car Class that we started with. So car has Stop, Start
and blowHorn methods. Suppose it had another
method called Paint.

Can you click that in, please?

So if you want to paint a car, you need to specify
what color you want. And so the Paint method has
what we call an input parameter and that input pa-
rameter is the color you want the car to be painted.

Now, to talk about a color, we need some way to rep-
resent that. And the way—the most natural way to do
that is to create another class called Color. And
maybe, maybe members of the Color Class have fields
that are, for example,

* * *

[622] what are the core classes and interfaces and
methods I would want in the API? And it’s important
fairly quickly to get to a high level summary of that
so that you can understand, you know, what a possi-
ble structure may be and so that you can show it to
other people and get feedback on it.

And when you do that, you actually—I mean, what
I do, what every Java API developer I know does, is
you start writing in fragments of actual Java pro-
gramming language code. You would sketch out in a
file—maybe it’s just an email. It’s not an actual source
file. You sketch out in a file, well, there is going to be

312

this class called Channels and it’s going to have a
NewInputStream method and maybe some other
method in it, and sketch out a few other classes, and
you send that around to get comments from your col-
leagues, other people you’re working with.

As time goes on, as you get feedback, you revise that
design. It starts to get a little bit longer because it’s
getting more real. Maybe you start to insert some of
the English prose. It’s really sketchy right now, but
you started to do that.

And then another thing to get to, not too quickly,
but as quickly as you can, is to write actual instruc-
tions in the method, write actual code into those so
that you can compiled this file, which is now a Java
source file. You can compile it and share that com-
piled version of this class with [623] other developers
to get their feedback.

Some developers are really good at looking at just a
design and saying, “Oh, well, yea, I could use that,”
or, “No, that doesn’t solve my use case.” Other devel-
opers really like to have code that they can run and
write their own code to use directly to see how it
works. So it’s important to have that.

Another reason that working on the implementa-
tion at the same time is important is that when you’re
designing an API, working on the implementation at
the same time often identifies bugs in the API design.
You might notice, for example, that the point I said
earlier about an API requiring—sort of requiring bad
performance. You might write some code, do a few
tests and see, Well, no, I don’t actually need to allo-
cate an object every time. Let me change the API to

313

work in a different way so that bad performance isn’t
required.

Q. How long does it take you to design a substantial
Java API package?

A. So to continue with the java.io Package example,
that was an effort that took almost exactly two years.
I was probably working on it around half time during
that two-year period.

THE COURT: Just you or did you have helpers?

THE WITNESS: I had helpers. I had a couple of
other engineers on the team helping me with the de-
sign and the implementation, and I also had a group
of experts who were

* * *

[628] counting them.

You need to—you need to choose names. Choosing
names is really important in an API. Sometimes a
name is suggested by the context in which it’s going
to be used. But other times a name—finding the right
name for something requires a lot of thought.

I’m reminded of what the old mystics used to say: If
you know the name of the thing, you have power over
the thing.

And so it’s really important in an API for it to be
easy to learn, to choose good names.

Good names can be really hard because if we think
of the space of names as real estate, many of the good
names are already taken, and you can’t reuse them.

Especially the good short names. So if you’re design-
ing an API, you want to take into careful

314

consideration, well, if I’m going to define a class, is
this a class that many developers are going to use,
or—and so I should really work hard to find a great
descriptive short name for it? Or is this a class that is
not going to be used that much, and so it’s okay if it
has a longer and uglier name? So there are a lot of
choices to be made there.

But it’s not just about the names. It’s also about the
structure. You know, how should classes be organized
under other classes? How should interfaces be orga-
nized under other interfaces? How should classes and
interfaces relate? Where [629] should the methods be?
What should the methods be named? What kinds of
inputs do the methods take? What kind of outputs do
the methods provide for the fields? How do with they
relate? Is the value in a field a color, or is it just a
number, or is it a string, or is it something else?

So there are many, many design choices to be made.

THE COURT: Can I ask a question before you leave
this subject.

This committee, do any of the—if someone on the
outside of Sun wanted to propose an API or a new
method to go in an old API, did that ever happen?

THE WITNESS: Oh, yes. That happens all the time.

THE COURT: Give us an example of how that
would come down.

THE WITNESS: So there have been quite a few
JSRs that were not initiated by Sun, and now not in-
itiated by Oracle. I don’t remember offhand what the
statistics are, sir.

315

In the case of someone outside the company who
wants to propose just a small new thing, that would
generally come in through a process we have for col-
lecting input from any software developer as a—a re-
quest for enhancement.

When a developer submits an idea like that, they
might actually include a little bit of code. And when
they submit that idea, there’s—there’s a button I be-
lieve they have to click on where they agree that
they’re contributing any [630] IP that might be in that
idea, that code, whatever it is, so that Sun or now Or-
acle can use it.

An additional way things can come in more recently
is through the OpenJDK community, where we have
outside contributors who are actually able to suggest,
review, and actually put the code in themselves, be-
cause they’ve demonstrated they have the experience
and knowledge and judgment to do that in the right
way.

THE COURT: Thank you. Go ahead.

BY MR. JACOBS:

Q. Could you give an example of a package in the
Java API that has a different—that has a different
version of it out there with a different structure?

A. So pretty much any Java API package you could
look at and find something out in the world that’s sort
of like it. But—excuse me—a good example is a pack-
age called java.util.logging. L-o-g-g-i-n-g.

Logging is a facility that is often used in programs
that run for a very long time. Like maybe on a server,
computer, something that’s processing. Bank transac-
tion is—hopefully, it’s going to run without crashing

316

for at least a day during the banking day. During that
time, many different things could happen. If some-
thing goes wrong, you want to be able to diagnose
what went wrong with it.

So in a long-running program, it’s useful to create a
[631] log of its activities. In a log for a banking appli-
cation, you might record each transaction, just in text
form. What’s going on with this transaction? Is it com-
pleted yet? Whose account is it for? And so forth. So if
something does go wrong, you can go back and look at
that log.

Anyway the java.util.logging API package is a sim-
ple facility for logging messages. Around the time it
was introduced, there was a competing package called
Log4J. This was created by developers outside of Sun.

There’s actually, to this day, a little bit of tension in
the community because the people who like Log4J,
they really hate java.util.logging. And the people who
like java.util.logging don’t much like Log4J.

But if you look at them from a functional perspec-
tive, they solve exactly the same kinds of problems.
But, they are very different APIs. They have different
class names, different method names, different inter-
faces, and different relationships.

Q. Has the number of Java APIs changed over
time?

A. The number of Java APIs has grown dramati-
cally over time.

Q. How many API packages were in the first re-
lease of Java, in 1996?

A. In 1996, Java 1.0 had seven API packages.

317

Q. And remind us how many there are in SE 5 and
in Java 7.

A. Java SE 5 had 166, and Java 7 has 209.

* * *

318

[648] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 19, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[747] your presentation. “Code should read like
prose.”

Do you see that on your presentation?

A. Yes.

Q. What were you driving at?

A. Well, writing a program is very much a creative
process. And if you have good words to use, if the API
gives you good words that really mean what it is that
you’re doing with the API, then once it comes time for

319

you to take that API and write a program with it, the
program will read like English text.

For example, you know, suppose you have a car
class. This is the example I have here. If you have a
method called speed, and you have—then you can say
if car.speed is more than twice the speed of light, gen-
erate alert, watch out for cops.

Now, even though you aren’t programmers, you
know what that mean.

THE COURT: “Speed of light.” I think you meant
speed limit.

THE WITNESS: Speed limit. I’m sorry.

(Laughter)

MR. JACOBS: You’re talking quickly.

THE WITNESS: You’re violating laws if it’s faster
than the speed of light. Guarantee that.

(Laughter)

THE WITNESS: The point is, if you look at this code

* * *

[751] A. Nominally, Professor Doug Lee. There’s
something called JSR-166x. This was sort of a contin-
uing sort of pseudo JSR that’s been going on for the
past decade or so, that allows a group of colleagues …

Q. But that person who came up to you, had obvi-
ously left a vivid impression in your mind, was saying
to you: API design is a noble and rewarding craft. You
changed my life with the quality of your craftman-
ship. Correct?

A. Yes.

320

Q. And, “Here’s what good API design can do,” you
said in your presentation, “It can improve a lot of pro-
grammers and users and companies.” Correct?

A. Yes.

Q. And “API design is tough.” That’s what you were
also saying?

A. Yeah. Designing a good API is tough.

Q. Like any work of craftmanship?

A. I agree with that.

Q. Creating a beautiful painting is tough?

A. I’m not sure if that’s craftsmanship or art, but I
guess that’s a fine distinction.

Q. And API design, you said and believe, is a noble
and rewarding craft. Correct, sir?

A. Yes, I certainly believe that.

Q. And, in fact, people have told you that this
presentation

* * *

321

[1133] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 23, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[1218] Review with us what this poster is showing.

A. This is a great poster. This shows a number of
packages from the Java Class Library. For each pack-
age there’s a really nice, graphical notation showing
the relationships between elements in that package;
and, also, there’s a color-coding system used to show
connections and relationships between separate pack-
ages.

322

Q. What’s the basic concept in the Java class librar-
ies illustrated on the poster?

A. The most basic concept is a class. And a class is
used in object-oriented programming to create ob-
jects. Each object created by a class has the methods.
Those are operations on objects of that class. And
fields, each object has fields which are, again, associ-
ated with objects of the class.

Q. Can classes be related to each other?

A. Yes, they can. The most fundamental relation-
ship between classes is the subclass relationship.
When one class has all of the methods and fields of
another, it can be declared to be a subclass of the first
class.

Q. So let’s look at a portion of this poster. We’re
looking at the lower right-hand corner, down here, of
this exhibit. Can you tell us what this is showing?

A. This is the graphical notation. To me, it kind of
reminds me of musical notation because there are
lines and dots in it. On the left side there are classes.
And here there’s [1219] a vertical line underneath a
class with horizontal solid lines connecting to sub-
classes of that class. So that illustrates the class/sub-
class relationship that’s fundamental to object-ori-
ented programming.

Another relationship illustrated here is a relation-
ship between classes and interfaces. An interface lists
a set of methods. And a class is related to that inter-
face if the class provides all the methods and other
elements listed in that interface.

Here, this word “interface” is used in a particular
way specific to the Java language. It’s different from

323

the more generic use of the word “interface” in the
term API or application program interface.

Q. How are the classes and interfaces grouped?

A. Uhm, the classes are hierarchical, and grouped
under each other. The interfaces can be hierarchical.
Classes, interfaces, and other elements can be orga-
nized into packages. And packages, again, can be hi-
erarchical. A package can have a number of subpack-
ages that are related to it in some way.

Another thing that’s shown on this legend for the
poster is the way a class might—in one package,
might be a subclass of a class that comes from another
package. So that’s another kind of relationship be-
tween packages and classes.

Here, this illustration shows a class with a blue dot
with a star in it. That’s to indicate that that class in
the

* * *

[1239] a subclass hierarchy to make it easier to
write the implementation and to make it easier for
programmers who use the library to understand how
the different concepts in the library work together.

Interfaces are used to make it possible to write code
that operates over many different classes in the same
way showing commonality across those classes.

And then the organization into packages is helpful
in informing programmers how to understand where
each solution, each program they might want to use
in buildings their system, sits in the library. And to
make a summary and conceptual organization clear
across the library.

324

Q. And how are those choices illustrated on the
slide 9 we saw before and is up again?

A. If—if you remember, there are—each class has
methods. So this shows an example of the methods in
one class. The hierarchy of Buffer, ByteBuffer,
MappedByteBuffer and how these classes are related
to each other is shown in this slide.

And then it’s a little bit gray in the slide, but this
package—these classes shown here are in the nio
package. That package is part of a larger library of
interrelated packages with classes that refer to each
other in various ways.

I don’t think I mentioned yet that each method in a
class has parameters, data that must be supplied to
the method [1240] in order for it to do its job, and re-
turns a value of a given type.

The types of the parameters and the return type of
the method can be classes from anywhere in the li-
brary. So that’s another way that code in one portion
of a library, in one package, can depend on and use
code in another.

The arguments to a method, the parameters to the
method and the return can be classes from other pack-
ages.

Q. How does designing an application program-
ming interface compare with other aspects of writing
software?

A. When you start to design an API for a portion of
a library, you really start with a clean slate. So at that
point nothing has really been determined. The high-
level decisions that govern the organization of the

325

whole software system can start with the API. So
that’s the starting point.

And then from there, as more and more decisions
are made, the remaining decisions are more con-
strained. That’s not to say there isn’t creativity in-
volved at all levels, but there certainly is quite a bit
at the beginning in order to map out the organization
of a system.

Q. Let’s take a look at a—an example of an API con-
cept as architected in different contexts.

Can you explain to us what’s shown on slide 10?

A. Certainly. This is one of my favorite examples. I
usually teach the—some elements or aspects of the
Smalltalk

* * *

[1266] language ever, right?

A. It certainly is very popular, yes.

Q. And it was released back in 1996?

A. I believed that’s correct.

Q. And it became popular very quickly?

A. Yes.

Q. Thousands of developers were very soon writing
the Java programming language, correct?

A. Yes.

Q. They built a developer conference for the devel-
opers trained in the language to come to every year
called JavaOne?

A. Yes.

326

Q. And that became a larger and larger event every
year?

A. Right. Yeah, I believe it was, even in those early
years, the largest developer conference at that time.

Q. And soon the Java language was being taught in
colleges and universities around the country—

A. Yes.

Q. (Continuing)—right?

Thousands of students learning the Java language
every year?

A. Yes.

Q. You were teaching—you were teaching the Java
language in your class?

A. I have covered it. It’s also been covered in the—
in [1267] other programming classes at our university
and others.

Q. And so a large group of people writing in the
Java language has grown up over time and now
there’s a very large group, hundreds of thousands of
people writing in the Java programming language
around the world?

A. There are many developers who are familiar
with the language and use it.

Q. And the language itself has been among the top
three programming languages for a long time, right?

A. The statistics probably show that, yes.

Q. And you set forth in your report that even in
2011 the Java programming language was number

327

one in terms of popularity of programming languages
around the world?

A. You’re probably referring to what’s called of Ti-
obe Survey. It’s based on examination of web pages.

Q. And in preparing your report, you assumed that
Oracle was making no claim for copyright infringe-
ment based on the use of the language, right?

A. I have heard that said, yes.

Q. Actually, you relied on it in your report, correct?

A. I wasn’t asked to look into issues of copyright of
the language specifically.

Q. In other words, in preparing your opinions you
started from the premise that the Java language itself
was free to use and there was no claim in this case of
infringement based on

* * *

328

[1879] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 26, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[2062] A. First page.

Q. Last paragraph.

A. Yes, the financials—okay. I do see that.

Q. What did you mean by that?

A. We—we had a very lucrative revenue stream
from J2ME, which was the handset version of Java,
that we had licensed to just about every smart phone
carrier, except Apple, around the world.

329

So it was—it was a very strong revenue stream for
us. It was royalties which have no cost to goods sold,
so it was fundamentally nearly pure profit, that reve-
nue stream. So it was quite valuable.

Q. Let me ask you to look next at Trial Exhibit 563,
which we believe is in evidence, but I want to check
with counsel.

MR. VAN NEST: Yes, it is.

THE WITNESS: Can I use the screen? It’s empty.

THE COURT: Sure, you can use the screen.

(Document tendered to the witness.)

BY MR. BOIES:

Q. This is an e-mail from you to Mr. Schwartz, and
then a response from Mr. Schwartz to you. Correct?

A. Yes, it is.

Q. And you wrote this in or about March of 2007; is
that correct?

A. That’s correct.

* * *

330

[2128] UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

————

No. C 10-3561 WHA

————

ORACLE AMERICA, INC.,

Plaintiff,

vs.

GOOGLE, INC.,

Defendant.

————

San Francisco, California
April 27, 2012

Before the Honorable William H. Alsup

————

TRANSCRIPT OF JURY TRIAL PROCEEDINGS

————

* * *

[2229] THE COURT: All right. Go ahead.

BY MR. JACOBS

Q. In court we’ve heard some critique of the blue-
print analogy, that APIs are not like a blueprint be-
cause you can’t actually use them to build anything.
Do you agree with that?

A. No, I don’t. In a way, the whole, the whole point
of the Java community process is exactly to be design-
ing APIs, blueprints, so that different organizations,

331

different companies, can create competing implemen-
tations.

Q. So how does a software developer—or how in the
Java community do software developers go about us-
ing Java API for a blueprint for a class library?

A. So when you already have a good API designed,
it already has an established gone-through hierarchy
of packages and classes and methods and fields, to-
gether with English descriptions of how everything is
supposed to work together.

Once you’ve got that, to do an implementation from
scratch is a relatively easier job. You start by copying
the declarations from the API into your source code.
And then you fill in the methods with actual instruc-
tion code that will go at runtime. And you might need
to write some subsidiary internal classes, but those
are strictly not part of the API.

Q. Is implementing—based on your experience in
this business, is implementing an existing API design
less or more work than creating the API design in the
first place?

[2230] A. It’s almost always less. You’ve already got
a map worked out of what you need to do. You follow
that map. You fill in the details. There’s room for cre-
ativity, but only within the scope of the existing API
design.

Q. Dr. Reinhold, you started working on Java at
Sun in what year?

A. 1996.

Q. Was there a JCP, a Java Community Process, in
1996?

332

A. No.

Q. When was it formed.

A. 1998.

Q. There has been testimony in this case, including
from you, about the process that takes place at the
JCP, about approving a new specification, called the
JSR. And you described that, in working on the JSR,
usually an expert group is formed that gives advice
and comments on the new spec.

Do you recall that testimony?

A. Yes.

Q. Were these experts required to sign any kind of
agreement to participate in the expert group?

A. Yes, they are.

Q. What kind of agreement is that?

A. So that’s an agreement called the JSPA, the
Java Specification Participation Agreements.

Q. And how strict was Sun about requiring the
JSPAs to be

* * *

333

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

Case No. CV 10-03561 WHA

ORACLE AMERICA, INC.,

 Plaintiff,

vs.

GOOGLE, INC.,

 Defendant.

Dept. Courtroom 8, 19th Floor
Judge: Honorable William H. Alsup

JOINT RESPONSE TO COURT’S REQUEST FOR
CHART OF ELEMENTS IN ACCUSED PACKAGES

(ECF NO. 1124)

334

Package Name

J2SE 5

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

java.awt.font 18 175

java.beans 35 209

java.io 62 569

java.lang 43 813

java.lang.annotation 1 4

java.lang.ref 5 9

java.lang.reflect 17 135

java.net 40 440

java.nio 10 236

java.nio.channels 20 112

java.nio.channels.spi 5 33

java.nio.charset 5 75

java.nio.charset.spi 1 2

java.security 62 362

java.security.acl 5 27

java.security.cert 35 267

java.security.interfaces 13 27

java.security.spec 25 75

java.sql 25 662

335

Package Name

J2SE 5

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

java.text 27 342

java.util 65 866

java.util.jar 10 43

java.util.logging 17 137

java.util.prefs 7 95

java.util.regex 3 48

java.util.zip 15 117

javax.crypto 18 166

javax.crypto.interfaces 4 6

javax.crypto.spec 15 44

javax.net 2 11

javax.net.ssl 29 184

javax.security.auth 7 33

javax.secu-
rity.auth.callback

9 32

javax.secu-
rity.auth.login

4 10

javax.secu-
rity.auth.x500

2 11

javax.security.cert 2 20

336

Package Name

J2SE 5

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

javax.sql 14 111

TOTAL 677 6508

Package Name

Android Froyo

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

java.awt.font 2 11

java.beans 5 23

java.io 62 570

java.lang 43 805

java.lang.annotation 1 4

java.lang.ref 5 8

java.lang.reflect 17 132

java.net 40 433

java.nio 10 236

java.nio.channels 20 112

java.nio.channels.spi 5 33

java.nio.charset 5 75

337

Package Name

Android Froyo

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

java.nio.charset.spi 1 2

java.security 62 358

java.security.acl 5 27

java.security.cert 35 267

java.security.interfaces 13 27

java.security.spec 25 75

java.sql 25 662

java.text 27 342

java.util 65 868

java.util.jar 10 44

java.util.logging 17 137

java.util.prefs 7 95

java.util.regex 3 49

java.util.zip 15 119

javax.crypto 18 166

javax.crypto.interfaces 4 6

javax.crypto.spec 15 44

javax.net 2 11

javax.net.ssl 29 184

338

Package Name

Android Froyo

Classes
plus Inter-
faces

Methods
from Clas-
ses and In-
terfaces

javax.security.auth 5 27

javax.secu-
rity.auth.callback

3 6

javax.secu-
rity.auth.login

0 0

javax.secu-
rity.auth.x500

1 6

javax.security.cert 2 20

javax.sql 12 104

TOTAL 616 6088

339

Trial Exhibit 1072

Accused API Packages and Files in Android

API Packages

1. java.awt.font

2. java.beans

3. java.io

4. java.lang

5. java.lang.annotation

6. java.lang.ref

7. java.lang.reflect

8. java.net

9. java.nio

10. java.nio.channels

11. java.nio.channels.spi

12. java.nio.charset

13. java.nio.charset.spi

14. java.security

15. java.security.acl

16. java.security.cert

17. java.security.interfaces

18. java.security.spec

19. java.sql

20. java.text

21. java.util

340

22. java.util.jar

23. java.util.logging

24. java.util.prefs

25. java.util.regex

26. java.util.zip

27. javax.crypto

28. javax.crypto.interfaces

29. javax.crypto.spec

30. javax.net

31. javax.net.ssl

32. javax.security.auth

33. javax.security.auth.callback

34. javax.security.auth.login

35. javax.security.auth.x500

36. javax.security.cert

37. javax.sql

Files

TimSort.java

ComparableTimSort.java

AclEntryImpl.java

AclImpl.java

GroupImpl.java

OwnerImpl.java

PermissionImpl.java

341

PrincipalImpl.java

PolicyNodeImpl.java

AclEnumerator.java

CodeSourceTest.java

CollectionCertStoreParametersTest.java

