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1 
 INTEREST OF AMICI CURIAE 

Amici are 83 computer scientists, engineers, and 
professors who are pioneering and influential figures 
in the computer industry.1 Amici include the 
architects of iconic computers from the mainframe era 
to the microcomputer era, including the IBM S/360 
and the Apple II; languages such as AppleScript, 
AWK, C, C#, C++, Delphi, Go, Haskell, PL/I, Python, 
RenderMan, Scala, Scheme, Standard ML, Smalltalk, 
and TypeScript; and operating systems such as MS-
DOS, Unix, and Linux.2 Amici are responsible for key 
advances in the field, including in computer graphics, 
computer animation, computer system architecture, 
cloud computing, algorithms, public key cryptography, 
the theory of computation, deep learning, object-
oriented programming, relational databases, design 
patterns, virtual reality, the spreadsheet, and the 
Internet. Amici wrote the standard college textbooks 
in areas including artificial intelligence, algorithms, 
computer architecture, computer graphics, computer 
security, data structures, functional programming, 
Java programming, operating systems, software 
engineering, and the theory of programming 
languages.  

 
1 Both parties consent to the filing of this brief. No counsel for a 
party authored this brief in whole or in part, and no party or 
counsel for a party made a monetary contribution intended to 
fund its preparation or submission. No person, other than amici 
or their counsel, made a monetary contribution to the preparation 
or submission of this brief. 
2 Amici’s biographies are in the Appendix (and included in the 
word count). 
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 Amici are widely recognized for their 

achievements. They include 13 Association for 
Computing Machinery (ACM) Turing Award winners 
(computer science’s most prestigious award); 32 ACM 
Fellows; 15 Institute of Electrical and Electronics 
Engineers (IEEE) Fellows; 12 Computer History 
Museum (CHM) Fellows; 7 National Academy of 
Sciences (NAS) Members; 26 National Academy of 
Engineering (NAE) Members; 10 American 
Association for the Advancement of Science (AAAS) 
Members; 14 American Academy of Arts and Sciences 
(AAoAS) Members; 5 National Medal of Technology 
recipients; and numerous professors at many of the 
world’s leading universities. 

As computer scientists, amici have long relied on 
reimplementing interfaces to create fundamental 
software. They join this brief because they believe, 
based on their extensive experience with and 
knowledge of computer software and programming, 
that the decisions below threaten to upend decades of 
settled expectations across the computer industry and 
chill continued innovation in the field. 

SUMMARY OF ARGUMENT 

The decisions of the Federal Circuit below are 
wrong and threaten significant disruption if allowed to 
stand. They undermine a fundamental process—
software interface reimplementation—that has 
spurred historic innovation across the software 
industry for decades.  

Software interfaces, including those embodied in 
the Java Application Programming Interface (API) at 
issue here, are purely functional systems or methods 
of operating a computer program or platform. They are 
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 not computer programs themselves. Interfaces merely 

describe what functional tasks a computer program 
will perform without specifying how it does so. The 
Java API’s functional interfaces, called declarations, 
are written using the Java programming language, 
which mandates each declaration’s precise form.  

In contrast, implementations provide the actual 
step-by-step instructions to perform each task 
included in an interface. Sun implemented the Java 
API for desktop computers. Google reimplemented—
or wrote its own original implementation of—the Java 
API when it created the Android platform for 
smartphones and tablets. Android was highly 
transformative: It enabled programs written in the 
Java programming language to successfully run on 
smartphones and tablets for the first time. Doing so 
required Google to make significant additions to the 
Java API to handle mobile-specific features, like 
touchscreen inputs.  

Android also provided interoperability with Java: 
Programmers could use their preexisting knowledge to 
simultaneously write Java libraries for both desktops 
and smartphones. Reimplementing the Java API was 
the only way to make Android interoperable with 
Java. Reimplementation requires duplicating an 
interface’s declarations and organizational scheme—
its structure, sequence, and organization (SSO). Had 
Android changed the Java API’s declarations or SSO, 
programmers would have been forced to write 
different software for desktops and smartphones, 
eliminating one of Android’s most significant benefits. 

Google’s decision to reimplement an existing 
interface was not unusual. Reimplementing software 
interfaces is a long-standing, ubiquitous practice that 
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 has been essential to realizing fundamental advances 

in computing. It unleashed the personal computer 
revolution, created popular operating systems and 
programming languages, and established the 
foundation upon which the Internet and cloud 
computing depend. It has increased consumer choice, 
lowered prices, and fostered compatibility between 
programs. Free reimplementation of software 
interfaces has long been, and continues to be, essential 
for innovation and competition in software.  

The Court should reverse the decisions below to 
preserve software interfaces as uncopyrightable and 
prevent copyright from stifling innovation and 
competition in software. 

 

ARGUMENT 

I. The Decisions Below Reflect the Federal 
Circuit’s Fundamental Misunderstanding of 
How Interfaces Differ from Programs 
The decisions below extend copyright protection to 

software interfaces—including the Java API—by 
erroneously equating them with computer programs. 
Asserting that software interfaces are simply a type of 
computer program, all of which are “by definition 
functional,” the Federal Circuit misapplied general 
Ninth Circuit law that recognizes computer programs 
as copyrightable. See Pet. App. 162a. But software 
interfaces are not computer programs, and no party 
argues that “one can copy line-for-line someone else’s 
copyrighted computer program.” Id. at 239a.  

The Federal Circuit’s conclusory review fails to 
appreciate the district court’s reasoned—and correct—
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 recognition of software interfaces as uncopyrightable 

under 17 U.S.C. § 102(b) and the merger doctrine. See 
Pet. App. 262a-267a. The Federal Circuit compounded 
its error by overturning a jury finding of fair use and 
holding that Google’s creation of Android was not fair 
use as a matter of law. Id. at 3a.  

Amici join Google’s arguments that software 
interfaces cannot be copyrighted under either § 102(b) 
or the merger doctrine, and that, regardless, the jury 
could reasonably have found that Google’s creation of 
Android was fair use. Pet. Br. 19, 34. In support of 
those arguments, amici emphasize that software 
interfaces correspond to functional ideas, that Google 
had to duplicate the Java API’s declarations exactly to 
provide interoperability between Android and Java, 
and that Android was a transformative achievement 
that successfully introduced Java to smartphones for 
the first time. 

A. Software Interfaces Specify What a 
Program Does, Not How It Does So 

A software interface specifies the set of commands 
used to operate a computer program or system. Each 
command defines one functional task a program must 
accomplish, such as finding the maximum of two 
numbers, sorting a list of numbers, or displaying text 
on the screen.  

Each command in an interface includes its name, 
inputs, and outputs. Together, these comprise the 
command’s “declaration.” The declaration for a 
command to find the maximum of two numbers, for 
example, would include the name “max,” two numbers 
as inputs, and one number—the maximum—as 
output. Declarations are purely functional: They 
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 specify what a computer program or system needs to 

do without specifying how it does so. By themselves, 
declarations do not instruct a computer to do anything.  

In contrast, an interface’s implementation is the 
actual “set of statements or instructions to be used 
directly or indirectly in a computer in order to bring 
about a certain result,” namely, carrying out the tasks 
its declarations specify. 17 U.S.C. § 101 (defining 
“computer program”). The same declaration can be 
implemented in various ways to accomplish the same 
task. Some implementations prioritize speed, others 
memory use. But as long as an implementation carries 
out the specified task, it is valid. As the district court 
aptly explained, while the “specification is the idea,” 
the “implementation is the expression.” Pet. App. 
263a-264a.  

Because real-world software interfaces can 
include thousands of declarations, programmers group 
related declarations into their own “folders,” just as 
everyday computer users group related files into 
folders on their desktop. The courts and parties have 
referred to this organizational scheme throughout this 
litigation as the interface’s structure, sequence, and 
organization (SSO). 

i. Declarations specify the individual 
tasks a program must perform 

To better understand the relationship between an 
interface’s declarations, implementations, and SSO, 
consider the sort declaration in the Java API.3 In 
English, this declaration would read, “Given a list of 

 
3 Courier font denotes Java keywords and declarations. 
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 numbers, sort them in ascending order.” To express 

this functional requirement in terms a computer can 
understand, a programmer would write the following 
declaration in the Java language4:  

public static void sort(int[] a) 

Before explaining each component of this 
declaration, we emphasize that this line does not 
instruct the computer to do anything. If a programmer 
attempted to run this “program,” nothing would 
happen because there are no instructions to run. The 
line simply indicates that this declaration’s 
implementation will include a command, which Java 
calls a “method,” for sorting numbers. The Java 
language requires almost every word in this 
declaration. A programmer must type those words 
exactly as they appear above, including the same 
capitalization, punctuation, and order. Otherwise, the 
declaration will cause an error or specify a method 
with different functionality, like sorting words instead 
of numbers.  

The word public is a Java language keyword 
that enables other programs to use sort once it has 
been implemented (other keywords, like private, 
restrict other programs’ access to a method). Similarly, 
the Java language requires static for sort to work 

 
4 The Java language is one part of the Java platform (J2SE), 
which also includes the API and API implementations (also called 
“libraries”). While the boundary between the language and the 
API is fuzzy, the language is broadly responsible for defining the 
syntax and keywords programmers use to write software. Only 
the API is at issue here. See Pet. App. 220a. 
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 as expected.5 The void keyword means that the 

method has no output; rather than output a sorted 
copy of the list, sort simply rearranges the given list 
of numbers. Finally, the parentheses enclose the 
method inputs. Here, the only input is the list of 
integers to be sorted—designated by the Java keyword 
int followed by two brackets [].  

In contrast, only two words in the declaration 
leave the programmer any choice, and both are names. 
The first is sort itself. This word descriptively names 
the method based on the task its implementation will 
perform. While it would be possible to use a 
synonym—perhaps arrange or order—for the same 
method, few names are as intuitive as sort to describe 
the task this method’s implementation will perform. 
Particularly short and intuitive names for common 
operations like sort become customary terms of art 
used across interfaces.6 Customary naming enhances 
an interface’s readability and minimizes errors, 
especially when, as is typically the case, that interface 
is designed and used by different programmers. Thus, 
while interface designers have some choice when 

 
5 The Java language primarily views programs in terms of 
interactions among “objects.” Normal methods operate directly on 
an object without passing it as an input. Adding the static 
keyword to a method declaration instead indicates that all inputs 
must be passed explicitly, as with sort. 
6 As of January 2020, eight of the top ten most used programming 
languages (Java, Python, C++, C#, Visual Basic .NET, 
JavaScript, PHP, and Swift) include a command called sort to 
arrange a list in ascending order. See TIOBE Index for January 
2020, TIOBE (last visited Jan. 5, 2020), 
https://tinyurl.com/ycoaep4a. 
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 naming methods, the method’s function, name length, 

and clarity constrain their choice.  
Similarly, the programmer may choose the names 

for method inputs. Here, a names the input “array,” or 
list, of numbers to be sorted. Other options include 
array, numbers, and list. Unlike method names, 
Java permits input names to vary between a 
declaration and its implementation while maintaining 
interoperability. In creating Android, Google took 
advantage of this creative freedom and frequently 
used names for inputs that differed from those in Sun’s 
Java API. See Pet. App. 226a. 

ii. Implementations provide the step-by-
step instructions to perform the tasks 
declarations specify 

Once a software interface has been designed, 
programmers can supply implementations to carry out 
the tasks specified by its declarations. Google, for 
example, wrote its own implementations for the Java 
API’s declarations. Implementations take the inputs 
listed in declarations and manipulate them to produce 
the correct output. While the syntax of the 
programming language dictates the form of each 
declaration, implementations are open-ended and can 
be thousands of lines long. Naïve implementations can 
be prohibitively slow or use excessive amounts of 
memory. In contrast, clever implementations can run 
quickly enough to make formerly unfeasible 
operations practical, or conserve enough memory to 
allow programs to run on entirely new hardware—
such as phones, tablets, televisions, or even home 
thermostats—that have far less memory available 
than desktop computers.  
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 Computer scientists have evaluated dozens of 

implementations for sort. One of the simplest 
implementations is “selection sort.” Given a list of 
numbers, selection sort starts at the beginning of the 
list and walks through number by number, keeping a 
running tally of the smallest number it has found. 
Once it reaches the end of the list, it swaps the 
smallest number with the number at the beginning of 
the list. Then, the program searches through the 
remainder of the list again, this time looking for the 
second smallest number to swap into the second 
position. This process repeats until the program has 
swapped every number into its correct position. 
Unfortunately, this implementation is prohibitively 
slow for large lists of numbers.  

More sophisticated implementations for sort, 
like “mergesort,” can sort even large lists efficiently. 
With modern data sets comprising hundreds of 
millions or even billions of numbers, names, or images, 
inefficient sorting implementations like selection sort 
make entire categories of programs impossible to use. 
Because different devices have different constraints, 
software engineers devote considerable effort to 
choosing the best implementation to meet their 
specific needs. Their choice could mean the difference 
between the success of two competing pieces of 
software. 

iii. SSOs establish how software 
interfaces group related declarations 

Because interfaces can include tens of thousands 
of declarations, their designers organize related 
declarations just as users organize related files into 
folders on their desktop. In fact, Java’s designers 
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 organized the Java API’s files in exactly this way. See 

Figure 1. 
 

 
Figure 1 

 
Java’s API is organized in three tiers: packages, 

classes, and methods. Packages correspond to folders, 
classes to files, and declarations to individual lines in 
a file. The full file path for sort, for example, is 
java.util.Arrays.sort. The overall folder for the 
interface is named java, while util, short for utility, 
is the name of the package, or subfolder, containing 
the API’s various general-purpose classes. One such 
class, Arrays, is a file that contains methods for 
manipulating lists of objects, like numbers. One of the 
lines in Arrays is the declaration given above for 
sort. 

Programmers who reimplement, i.e., provide their 
own implementation for, an interface must maintain 
its SSO. Failure to do so will result in incompatibility. 
Just as users must know how to navigate to their 
saved documents, programmers using a software 
interface must specify the path for each declaration 
they use, like sort, so that the computer knows where 
to find the corresponding implementation. Telling a 
person to click on “My Documents,” then on a folder 
called “Receipts,” and finally on a file called “Sofa” to 



12 
 find how much their sofa cost is just like a program 

navigating through the Java API to a package called 
util and opening a class called Arrays to find the 
implementation for the sort method.  

Changing this organizational hierarchy would 
prevent a person or a program from locating the file or 
implementation they need, rendering the interface 
specification incompatible and not interoperable. The 
only change an implementation may make to the SSO 
is the specific order that method declarations are 
listed within a class because doing so does not alter the 
method’s file path. Whether sort appears first or fifth 
within the Arrays class, for example, does not change 
its file path: java.util.Arrays.sort. While the 
district court did not exhaustively compare the 
sequence of method declarations for each class in the 
Java API and Android, it did find that Google 
reordered the method declarations from the Java 
API’s Math class. Pet. App. 266a n.10.  

Thus, although interface designers have some 
choice in naming their method declarations and 
inputs, programmers who reimplement an existing 
interface, like Google did with the Java API, must use 
the same standard names and structure to achieve 
interoperability. 

B. Google Wrote Its Own Implementation 
of the Java API to Promote 
Interoperability and Transform Java to 
Run on Smartphones 

Google created the Android platform to promote 
interoperability and enable Java to run on an entirely 
new class of devices: smartphones. This required 
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 Google to reimplement the Java API: It duplicated the 

Java API’s declarations and SSO but wrote its own 
implementations. See Pet. App. 219a-220a. It would 
have been impossible for Google to make Android 
interoperable, or compatible, with Java without 
reimplementing the Java API.7 In this context, 
making software interoperable means reimplementing 
a software interface. 

In both of its opinions, the Federal Circuit 
questioned Google’s claim that Android 
reimplemented the Java API to promote 
interoperability with Java because programs written 
for Android are not fully compatible with Java. Pet. 
App. 46a n.11, 172a. But complete compatibility is not 
necessary, or even desirable, to promote 
interoperability in software development.  

Because of its longevity, Java, and almost every 
other computer system, must remain backwards-
compatible. Any program written in earlier versions of 
Java must also run on later versions, or programmers 
would be unable to make cumulative improvements 
and the software ecosystem would break down. 
However, this also means that inefficient or outdated 
software survives several generations of software 
development solely to maintain compatibility. 

To avoid this problem, Google selectively 
reimplemented portions of the Java API for Android to 
eliminate functionality that was obsolete or 
inappropriate for smartphones, like using a mouse. 

 
7 We follow convention in using “interoperable” to mean 
“compatible.” Oracle’s requirement that companies obtain a Java 
Compatibility Kit (JCK) license to demonstrate “compatibility” is 
merely a licensing scheme, not a technical necessity. 
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 See Pet. App. 219a-220a. Rather than copy Sun’s 

implementations, Google was careful to write its own 
implementations to carry out the tasks that the Java 
API’s declarations specify. Id. at 219a. Google’s 
decision empowered software developers to write Java 
programs that run equally well on both desktops and 
smartphones.  

Android was highly transformative. Creating 
Android required Google to significantly expand 
Java’s API in novel ways to account for external 
features and constraints unique to the smartphone 
context: built-in GPS tracking, limited battery life and 
memory, fluctuating network connections, and an 
entirely new user interface based on touchscreen 
gestures. See Pet. App. 111a. In contrast, the district 
court found that “Sun and Oracle never successfully 
developed its own smartphone platform using Java 
technology.” Id. at 220a. While Sun did release Java 
ME to run Java on feature phones, these devices are 
far less sophisticated than modern smartphones. 
JA99-102. Moreover, Java ME did not support the 
entire Java language, omitting basic features like 
numbers with decimal points. Kim Topley, J2ME in a 
Nutshell 11, 13 (2002). Nor did Java ME support key 
Java API features like the Java Collections 
Framework, which is part of java.util, id. at 11, 24, 
a package necessary “to make any worthwhile use of 
the [Java] language,” Pet. App. 125a. Thus, Java ME 
was far less compatible with standard Java than 
Android, and Java ME’s failure to include such core 
functionality only underscores how transformative 
Android was.  

Google’s significant augmentations to Java’s API 
introduced Java to an entirely new platform, Android, 
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 that, with 2.5 billion active devices, is “by far” the 

most-used operating system in the world. Liam Tung, 
Bigger than Windows, Bigger than iOS: Google Now 
Has 2.5 Billion Active Android Devices, ZDNet (May 8, 
2019), https://tinyurl.com/v94nep4. Programmers 
using only the reimplemented packages can write 
programs for desktops and smartphones using the 
same familiar instructions. Additionally, because Java 
and Android are both open source (meaning anyone 
can read and contribute to their implementations), 
Google’s focus on interoperability has enabled outside 
programmers, including many amici, to contribute 
improvements to both platforms simultaneously.  

Contrary to the Federal Circuit’s assertion that 
there was no evidence of programs that rely only on 
Google’s reimplemented packages, or that “[no] such 
program would be useful,” Pet. App. 172a n.15, Java 
and Android form parts of a broad and largely 
compatible ecosystem that drastically simplifies 
writing software for desktops and smartphones. Many 
important programs, including Guava (which provides 
efficient implementations of numerous core functions), 
Gradle and Maven (which serve as project 
management tools), and JUnit (which helps test the 
output of a program’s subcomponents), are routinely 
used with programs developed using Java and 
Android. Android revitalized this ecosystem, inspiring 
renewed innovation and collaboration among 
programmers.  

Sun had always promoted the Java API, along 
with the Java language, as free and open for all to use. 
See Pet. App. 106a-107a, 115a. Many amici, along with 
instructors at high schools and colleges across the 
country, taught Java in introductory programming 
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 courses precisely because of its free availability. 

Assertions that the Java API might be copyrightable 
only emerged after Oracle acquired Sun in 2010. While 
Oracle does not dispute that Google was free to use the 
Java language, it asserts a copyright interest in the 
Java API. Id. at 220a. Even then, Oracle concedes that 
at least sixty-two classes, spread across three Java 
API packages, are necessary for the Java language to 
work. Id. at 102a-103a. 

As professors, textbook authors, and industry 
leaders, amici have broad experience with both 
teaching and using the Java language and do not 
consider it to be fully separable from the Java API. In 
fact, for any programming language, the core API is 
integral to the language. Thus, amici agree with the 
district court that “there is no bright line” between the 
Java language and API. Pet. App. 227a. Introductory 
Java textbooks typically introduce the Java API at the 
outset, and amici know of no Java textbook that 
teaches the language without covering the API. A Java 
program which failed to use the Java API would 
hardly be recognizable: The API is part of what makes 
the Java language Java. Indeed, Oracle’s own online 
tutorials consider portions of the Java API—including 
packages like java.util.regex that it accuses 
Google of infringing—“essential to most programmers” 
for programming in Java. Trail: Essential Classes (The 
JavaTM Tutorials), Oracle (last visited Jan. 5, 2020), 
https://tinyurl.com/tndpwg4.  
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 II. The Decisions Below Upend Decades of 
Settled Expectations and Threaten 
Future Innovation in Software  
Software interfaces are essential to innovation. 

For decades, programmers have relied upon 
reimplementing interfaces to create fundamentally 
transformative technologies. Reimplementing 
software interfaces also promotes innovation by 
countering network effects and lock-in effects that 
inhibit competition. This Court should reverse the 
decisions below to preserve software interface 
reimplementation and the vitality of the software 
industry. 

A. The Computer Industry Has Long 
Relied on Freely Reimplementing 
Software Interfaces to Foster 
Innovation and Competition 

Oracle’s attempt to assert copyright in the Java 
API is historically anomalous and jeopardizes the 
unparalleled innovation and competition that 
continue to flourish across the computer industry. The 
first practical description of an API appeared in 1951, 
see generally Maurice V. Wilkes, David J. Wheeler & 
Stanley Gill, The Preparation of Programs for an 
Electronic Digital Computer (1951), and the specific 
phrase “application programming interface” dates to 
at least 1968, see Ira W. Cotton & Frank S. Greatorex, 
Jr., Data Structures and Techniques for Remote 
Computer Graphics, Am. Fed’n Info. Processing Soc’ys 
Fall Joint Computer Conf. 533, 534-35 (1968). 
Programmers have freely reimplemented software 
interfaces throughout the ensuing decades. By 
creating standard specifications for computer 
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 programs to communicate with each other, 

uncopyrightable software interfaces have promoted 
competition in personal computing and led to the rise 
of popular operating systems, programming 
languages, the Internet, and cloud computing. 
Google’s reimplementation of the Java API fits 
squarely within this tradition of innovation and 
competition. 

i. Reimplementing interfaces unleashed 
the personal computer revolution 

Reimplementing software interfaces made 
personal computing commonplace. IBM released its 
first home computer in 1981. Software companies 
developed an ecosystem of products to run on IBM’s 
machine, including the popular spreadsheet program 
Lotus 1-2-3 co-created by amicus Mitchell Kapor. To 
run these programs, however, users had to purchase 
IBM’s PC because the programs required full 
compatibility with IBM’s basic input-output system 
(BIOS) responsible for starting the operating system 
and initializing the computer’s hardware when turned 
on. To compete with IBM, programmers like amicus 
Tom Jennings at software company Phoenix, along 
with those at computer manufacturers, like Compaq, 
reimplemented the BIOS API, including its SSO, to 
enable users to run their favorite IBM-compatible 
software on competing machines. 

Thus, reimplementing the BIOS API resulted in 
the manufacture and sale of faster, cheaper, and 
compatible alternatives to IBM’s PC that could run 
important programs like DOS, the operating system 
responsible for Microsoft’s early success. If copyright 
had prevented competitors from reimplementing 
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 IBM’s BIOS API and making IBM-compatible PCs, 

companies like Microsoft would never have been able 
to revolutionize personal computing. 

ii. Reimplementing interfaces created 
the world’s most ubiquitous operating 
systems 

Operating systems, the fundamental programs 
responsible for managing all of a computer’s hardware 
and software resources, depend on software interface 
reimplementation. The first modern operating system, 
Unix, was implemented in 1969 by amici Ken 
Thompson, Douglas McIlroy, and Brian Kernighan 
and others at AT&T Bell Labs. AT&T licensed Unix’s 
source code to academic institutions for a nominal fee, 
leading to widespread adoption. See Eric S. Raymond, 
The Art of UNIX Programming 29-41 (2004). Because 
commercial licenses from AT&T were costly and 
restrictive, and because hardware evolutions outpaced 
AT&T’s Unix, programmers reimplemented and 
extended the API themselves. See id. 

Today, nearly 70% of websites run on Unix-based 
operating systems, including the popular open source 
operating system Linux created by amicus Linus 
Torvalds. See Usage Statistics of Unix for Websites, 
W3Techs (Jan. 6, 2020), https://tinyurl.com/tcbrmtc. 
Linux alone runs nearly 35% of Internet servers and 
the 500 fastest supercomputers in the world. See id.; 
Steven J. Vaughan-Nichols, Linux Totally Dominates 
Supercomputers, ZDNet (Nov. 14, 2017, 12:04 PM 
PST), https://tinyurl.com/swmkdqy. Android’s 
operating system, the most popular in the world, see 
Tung, supra, is itself built atop Linux. And Apple, co-
founded by amicus Steve Wozniak, also 
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 reimplemented the Unix API for its desktop OS X and 

mobile iOS operating systems. Programmers’ ability to 
reimplement the Unix API established a standardized 
design for the fundamental program running on any 
computer: its operating system. 

iii. Reimplementing interfaces fueled 
widespread adoption of popular 
programming languages 

One of the most influential programming 
languages, C, became widespread due to the relative 
ease of reimplementing its API to enable C programs 
to run on different hardware. Open source enthusiasts 
reimplemented a version of C compatible with Linux, 
and industry leaders like Microsoft and Google 
reimplemented C for their own products. Other 
popular programming languages like C++, created by 
amicus Bjarne Stroustrup, also proliferated due in 
part to reimplementations of their APIs. 

Similarly, Sun reimplemented existing APIs as 
part of the Java platform. Java reimplemented C’s 
math API, which includes methods for calculating a 
variety of mathematical functions. While at Sun, 
amicus Joshua Bloch oversaw Sun’s reimplementation 
of the Perl programming language’s regular 
expression API, which allows sophisticated text 
searches and alterations. Oracle’s attempt to 
copyright Java’s API and hold Google liable for 
infringement of the resulting java.util.regex API 
ignores Java’s own history of API reimplementation. 
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 iv. Reimplementing interfaces enables 

computer networks, including the 
Internet, to function 

The Internet relies on programmers’ ability to 
reimplement standardized interfaces to transmit data. 
Copyrighting those interfaces would defeat the 
Internet’s goal of creating a global network of 
interconnected computers. In 1983, the Berkeley 
Systems Research Group released the Berkeley 
Systems Distribution (BSD) sockets API. Sockets 
control the endpoints for any communication over the 
Internet. Because the BSD sockets API was not 
copyrighted, every major operating system 
reimplemented it to enable Internet communication. 
Thus, programmers can write standardized software 
compatible across computers to manage Internet 
connectivity. 

v. Reimplementing interfaces is 
fundamental to cloud computing 

Finally, reimplementing software interfaces has 
been, and continues to be, fundamental to cloud 
computing, a key driver of innovation in the big data 
era. With cloud computing, developers can rent 
powerful computer servers to run resource-intensive 
computations, like deep learning algorithms pioneered 
by amicus Geoffrey Hinton, without purchasing and 
managing those servers themselves. Amazon’s Web 
Services (AWS) API serves as the de facto industry 
standard for cloud computing. AWS itself 
reimplemented IBM’s BIOS API, enabling familiar 
BIOS commands to run on Amazon’s servers. AWS 
therefore allows programmers to write programs as if 
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 they were running on a standard PC rather than learn 

commands unique to Amazon. 
Major competitors, including Microsoft, Google, 

and Oracle, have in turn adopted AWS’s API. See Rita 
Zhang, Access Azure Blob Storage from Your Apps 
Using S3 Java API, Microsoft (May 22, 2016), 
https://tinyurl.com/rt8mb67; Cloud Storage 
Interoperability, Google Cloud (last updated Oct. 23, 
2018), https://tinyurl.com/hr855ur; Amazon S3 
Compatibility API, Oracle Cloud (last visited Jan. 6, 
2020), https://tinyurl.com/ss5ohua. Rather than 
compete on the API’s design, cloud providers compete 
on business factors—like price and customer service—
and on implementation factors—like latency, 
downtime, and redundancy. Software interface 
reimplementation therefore fosters competition in the 
cloud by allowing customers to transfer their data or 
programs to competing cloud providers offering 
cheaper or better service without having to learn an 
entirely new interface or rewrite their software to 
conform to a new specification. 

B. Allowing Copyright to Restrict the 
Reimplementation of Software 
Interfaces Will Stifle Competition  

The decisions below jeopardize the market for 
software. Reimplementing software interfaces enables 
startups to counter network effects and compete with 
established players. Network effects arise when a 
service’s value increases along with its number of 
users. They make users unlikely to switch to 
technically “better” competing software services that 
have not yet established a large userbase because 
much of a service’s value comes from its community of 
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 users and its secondary market of compatible services. 

For example, a developer might not learn a new 
programming language unless it is used by potential 
employers, even if that language is more intuitive than 
others or runs more efficiently. Yet an archaic 
language used by institutional employers is worth 
learning, regardless of its inefficiencies. 
Uncopyrightable software interfaces address network 
effect barriers by enabling startups to plug into 
existing systems and innovate through cumulative 
improvements. 

Just as the first car would look laughable today, 
the first word processing software would be a 
laughable replacement for modern applications. Yet a 
steering wheel and gas and brake pedals have been 
standard in cars for over a century. If Tesla had to re-
invent the standard driving interface to make electric-
powered cars, it would face high barriers in attracting 
new customers. See Fred von Lohmann, The New 
Wave: Copyright and Software Interfaces in the Wake 
of Oracle v. Google, 31 Harv. J.L. & Tech. 517, 517 
(2018). Treating software interfaces as copyrightable 
would be like requiring car manufacturers to invent a 
substitute for the steering wheel. Startups would not 
risk manufacturing such a car, and even if they did, 
consumers likely would not purchase it. See also CDT 
Br. 14-17 (using keyboard shortcuts and spreadsheet 
compatibility as examples of the benefits of 
uncopyrightable interfaces). 

Furthermore, extending copyright to software 
interfaces would enable companies to monopolize 
standard interfaces. Companies could initially make 
their interfaces freely available to lure developers to 
their platform, and then, after attracting a significant 
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 number of developers, demand a licensing fee for 

further use. These fees would be passed on to 
consumers, making software more expensive. 
Copyrightable interfaces could also curtail employee 
mobility because different employers would use 
competing proprietary APIs, and employees with 
expertise in one proprietary API would be less 
desirable to employers using another. Innovation 
could stagnate. 

Amazon, for example, could follow Oracle’s lead 
and use the decisions below to force companies that 
reimplement its cloud storage APIs to pay a licensing 
fee, stifling competition in a vibrant market valued at 
$42 billion in 2017. See Jay Greene & Laura Stevens, 
“You’re Stupid If You Don’t Get Scared”: When Amazon 
Goes from Partner to Rival, Wall St. J. (June 1, 2018, 
5:30 AM ET), https://tinyurl.com/y927p3ot. Amazon 
could gain a monopoly over cloud storage until its 
competitors redesigned their systems from scratch to 
avoid infringing on Amazon’s APIs. The decisions 
below will transform copyright into a tool for 
incumbents to improperly stave off competition. 

Reimplementing software interfaces also protects 
consumers from lock-in effects by promoting 
interoperability among operating systems and 
programs. Consumers depend on operating systems 
that run on their hardware, programs that run across 
operating systems, and Internet applications that run 
across browsers. Under the decisions below, software 
interfaces enabling interoperability might require 
expensive licenses, and their owners could 
significantly restrict their use. Consumers will face 
higher prices and fewer choices. Software will become 
harder to use because switching to a competing service 
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 will require users to learn an unfamiliar interface. 

Rather than switch to more innovative software, users 
will remain locked in to outdated systems. See also 
CDT Br. 17-19. 

Forcing companies that reimplement APIs to rely 
on fair use will not meaningfully address these anti-
competitive effects. Though better than nothing, a fair 
use standard creates uncertainty because it depends 
on fact-intensive, case-by-case determinations which 
can result, as this case demonstrates, in lengthy and 
expensive litigation. Rather than risk crippling 
lawsuits, startups will choose not to enter markets at 
all or will undertake inefficient workarounds. 

Restricting API reimplementation to situations 
where fair use can be established would impede 
innovation and competition almost as much as 
denying reimplementation outright: Users will suffer 
from fewer product choices, higher prices, and 
incompatible software. 
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 CONCLUSION 

The Court should reverse the decisions below to 
ensure continued innovation and protect competition 
in the software industry. 
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 APPENDIX — LIST OF AMICI  

Amici sign this brief on their own behalf, not on 
behalf of the organizations with which they are 
affiliated.1  

Harold Abelson.¶ Professor, MIT. Co-author, 
innovative introductory CS text with worldwide 
impact. Founding director, Creative Commons, Public 
Knowledge. Four major awards for contributions to CS 
education. Fellow, IEEE. 

Brian Behlendorf. Executive Director, 
Hyperledger. Chairman, EFF. Member, Mozilla 
Foundation. Co-founder, Benetech, Apache Software 
Foundation. Former CTO, World Economic Forum. 

Jon Bentley. Researcher: programming 
techniques, tools, algorithms. Previously, 
Distinguished Member of Technical Staff, Bell Labs; 
Professor, Carnegie-Mellon; visiting faculty, West 
Point, Princeton. 

 
1 Amici represent a substantial cross section of the world’s most 
distinguished computer scientists and engineers. As such, the 83 
amici include seven who are presently Google employees 
(indicated by * next to their names); two who testified as unpaid 
fact witnesses at trial in this case (indicated by †); two who were 
retained as experts by Google but did not testify (indicated by ‡), 
and a number who may have received some research support 
from Google at some point during the last 14 years (indicated by 
¶). Each of these amici signs this brief based on their personal 
experience and beliefs as individual, independent computer 
scientists whose work in the field long preceded their affiliation 
with Google or their participation in this case. None sign on 
behalf of Google or at Google’s request. Amici’s bios are included 
in the word count. 
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 Matthew Bishop. Professor, UC Davis. Author, 

Computer Security: Art and Science. 
Joshua Bloch.† Professor, Carnegie-Mellon. 

Specialist in API Design. Previously, Chief Java 
Architect, Google; Distinguished Engineer, Sun 
Microsystems. Led design, implementation of 
numerous Java APIs. Author, Effective Java. 

Gilad Bracha. Creator, Newspeak programming 
language. Previously, Scientist, Google; VP, SAP Labs; 
Distinguished Engineer, Sun Microsystems. Co-
author, Java Language and VM Specifications. Dahl-
Nygaard Prize. 

Daniel Bricklin. Conceived and co-developed 
VisiCalc, the first spreadsheet. Fellow, CHM, ACM. 
Member, NAE. ACM Software System Award, ACM 
Grace Murray Hopper Award.  

Frederick P. Brooks, Jr. Professor Emeritus, 
UNC Chapel Hill. Project Manager, IBM System/360 
hardware and OS/360 software. Architect, Stretch and 
Harvest supercomputers. Founder, UNC’s CS 
Department. Author, The Mythical Man-Month. 
National Medal of Technology, ACM Turing Award. 
Member, NAS, NAE, British and Dutch academies. 

Edwin Catmull. Co-founder, Pixar Animation 
Studios. Previously, President, Pixar and Disney 
Animation. Architect, RenderMan (used in nearly all 
films nominated for Academy Awards in Visual 
Effects). Five Academy Awards, including two Oscars 
and lifetime achievement award. IEEE John von 
Neumann Medal. Fellow, ACM, CHM. Member, NAE. 
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 R.G.G. Cattell.‡ Distinguished Engineer, Sun 

Microsystems; Researcher, Xerox PARC, CMU. 
Responsible for numerous APIs including Enterprise 
Java, JDBC. Author, first monograph on 
object/relational databases. Fellow, ACM. 

Vinton G. Cerf.* “Father of the Internet.” Co-
designer, TCP/IP. VP, Google. Previous positions at 
MCI, DARPA, Stanford. Fellow: IEEE, AAAS, ACM, 
AAoAS. Member: NAE, British Royal Society. Former 
President, ACM. Founding President, Internet 
Society. Presidential Medal of Freedom, National 
Medal of Technology, Queen Elizabeth Prize for 
Engineering, ACM Turing Award, Japan Prize, Legion 
d’Honneur. 

David Clark.¶ Internet pioneer. Senior Research 
Scientist, MIT CSAIL; Technical Director, MIT IPRI. 
Was Chief Protocol Architect, Internet Activities 
Board; Chairman, National Academies CSTB. 
Member, NAE, AAoAS. 

William Cook. Professor, UT Austin. Chief 
architect, AppleScript. Dahl-Nygaard Prize. 

Thomas H. Cormen. Professor, Dartmouth. Co-
author, Introduction to Algorithms. Former chair, 
Dartmouth CS department. ACM Distinguished 
Educator. 

Miguel de Icaza. Distinguished Engineer, 
Microsoft. Cofounder, GNOME, Mono 
(reimplementing Microsoft’s .NET platform on Linux). 
FSF Software Award, MIT Technology Review 
Innovator of the Year. 
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 Jeffrey Dean.* Google Senior Fellow, in charge 

of Research, AI, Health. Co-creator, five generations of 
web search systems; distributed computing 
infrastructure. Previously, DEC WRL, CDC, WHO. 
Fellow, ACM, AAAS. Member, NAE. Mark Weiser 
Award, ACM-Infosys Foundation Award. 

Dr. L Peter Deutsch. Co-developed Interlisp-D, 
Smalltalk-80 at Xerox PARC. Originated Just-In-Time 
Compilation. Created Ghostscript open-source 
reimplementation of PostScript. ACM Software 
System Award. Fellow, ACM. 

Whitfield Diffie. Discovered public key 
cryptography, which underlies all modern secure 
communication. Previously, Chief Security Officer, 
Sun Microsystems; Manager, Secure Systems 
Research, Bell-Northern Research. ACM Turing 
Award. Member, NAE, Royal Society. 

David L. Dill. Donald E. Knuth Professor, 
Emeritus, Stanford. Fellow, IEEE, ACM. Member, 
NAE, AAoAS. Computer-Aided Verification Award, 
Alonzo Church Award. 

Lester Earnest. Served on ARPAnet startup 
committee; invented Finger social networking 
protocol. Aviation Electronics Officer, Digital 
Computer Project Officer, NADC. Co-designed SAGE 
air defense system, MIT. 

Dawson Engler. Professor, Stanford. ACM 
Grace Murray Hopper Award, Mark Weiser Award, 
Numerous Best Paper awards. 
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 Dr. Stuart Feldman. Chief Scientist, Schmidt 

Futures. Wrote first Fortran 77 compiler, make tool. 
Formerly at Google, IBM, Bell Labs, ACM President. 
ACM Software System Award. Fellow, IEEE, ACM, 
AAAS. 

Martin Fowler. Chief scientist, ThoughtWorks. 
Author, seven popular software development books. 

Bob Frankston. Co-founder, Software Arts. 
Implemented VisiCalc (first spreadsheet). Fellow, 
IEEE, ACM, CHM. ACM Software System Award. 

Neal Gafter. Principal Engineer, Microsoft: 
Technical lead, Roslyn Project. Previously, Software 
Engineer, Google; Senior Staff, Sun Microsystems. 
Developed Java compiler, implemented Java language 
features. 

Erich Gamma. Microsoft Technical Fellow. Co-
author, Design Patterns: Elements of Reusable Object-
Oriented Software, which won ACM Programming 
Language Award. Previously, Distinguished 
Engineer, IBM. ACM Software System Award. 

Andrew Glover. Director, Delivery Engineering, 
Netflix. Steering Committee Chair, Spinnaker Open 
Source project. Author, Java Testing Patterns. 

Allan Gottlieb. Professor, NYU. Led 
Ultracomputer group which introduced fetch-and-add 
instruction still in use today.  

Anoop Gupta. Co-founder, CEO, SeekOut. 
Previously, Distinguished Scientist, VP Unified 
Communications, VP Global Technology Policy, 
Microsoft; Professor, Stanford. 



A6 
 Robert Harper. Professor, Carnegie-Mellon. Co-

designer, Standard ML programming language. Allen 
Newell Medal for Research Excellence, Herbert Simon 
Award for Teaching Excellence. Fellow, ACM. 

Anders Hejlsberg. Technical Fellow, Microsoft. 
Lead architect, TypeScript open source project. 
Designer, C#, Delphi, Turbo Pascal programming 
languages. 

Martin Hellman. Co-inventor, public-key 
cryptography, which protects trillions per day in 
financial transactions. Professor Emeritus, Stanford. 
Previously, MIT Professor. ACM Turing Award. 
Member, NAE. Fellow, CHM. 

Maurice Herlihy. Professor, Brown. Previously, 
Carnegie-Mellon. Dijkstra Prize in Distributed 
Computing, Gödel Prize in theoretical computer 
science, Fulbright Distinguished Chair. Fellow, ACM, 
AAoAS, National Academy of Inventors. 

Geoffrey Hinton.*¶ “The Godfather of Deep 
Learning.” Emeritus Professor, University of Toronto; 
Google Engineering Fellow; Member NAE; Fellow of 
the Royal Society. ACM Turing Award, Honda 
Foundation award, IEEE Maxwell Gold medal, BBVA 
award, NSERC Herzberg Gold medal. 

Tom Jennings. Faculty, CalArts 
Art+Technology Program. Co-wrote Phoenix 
Software’s IBM compatible ROM BIOS. Creator of 
FidoNet, the first and most influential message and 
file networking system. 
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 Mitchell Kapor. Partner, Kapor Capital. Co-

Chair, Kapor Center for Social Impact. Previously, 
Founder, President, CEO, Lotus Development 
Corporation: Co-created Lotus 1-2-3; Co-founder, EFF; 
Founding Chair, Mozilla Foundation; Adjunct 
Professor, MIT, Berkeley. Fellow, CHM. 

Alan Kay. Pioneer in object-oriented 
programming, personal computing, GUIs. Co-author, 
Smalltalk programming language. Positions at HP, 
Disney, Apple, Xerox PARC. ACM Turing Award, NAE 
Draper Prize, Kyoto Prize. Member, AAAS, NAE, 
AAoAS. Fellow, ACM, CHM, Royal Society of Arts. 

Brian Kernighan.*¶ Professor, Princeton. Unix 
pioneer, Bell Labs. Co-creator, AWK programming 
language. Co-author, 13 books including seminal work 
on C programming language. Member, NAE, AAoAS. 

David Klausner. Fifty years software/hardware 
experience at Microsoft, AT&T, Cisco, IBM, HP, Intel. 

Kin Lane. Computer scientist working on API 
technology, business, politics. Twenty years’ API 
experience as programmer, architect, executive. 
Author, Business of APIs. 

Ed Lazowska.¶ Professor, University of 
Washington. Member, NAE. Fellow, ACM, IEEE. 
Member, NAE, AAoAS. Past co-chair, President’s 
Information Technology Advisory Committee. 

Douglas Lea.¶ Professor and Department Chair, 
SUNY Oswego. Creator of Java concurrency APIs. 
Author, Concurrent Programming in Java. Dahl–
Nygaard Prize. Fellow, ACM. 

Bob Lee.† CEO, Present Company. Previously, 
CTO, Square; Staff Engineer, Google. Led Android 
core library team, created Guice framework. 
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 Harry Lewis. Professor, Harvard. Students 

included Bill Gates, Mark Zuckerberg. Previously 
Dean, Harvard College; Interim Dean, Harvard’s 
School of Engineering and Applied Sciences. 

Sheng Liang. Co-founder, CEO, Rancher Labs. 
Previously, CTO, Cloud Platform group, Citrix; Staff 
Engineer, Sun Microsystems. Designed Java Native 
Interface, led JVM development. Author, The Java 
Native Interface. 

Barbara Liskov. Professor Emeritus, MIT. 
Created CLU, first programming language to support 
data abstraction; Argus, first high-level language to 
support distributed programming. ACM Turing 
Award, IEEE John von Neumann Medal, ACM 
SIGPLAN Programming Languages Award, ACM 
SIGOPS Lifetime Achievement Award. Fellow, ACM, 
AAoAS, National Academy of Inventors. Member, 
NAS, NAE. 

Douglas McIlroy. Professor, Dartmouth. 
Headed Bell Labs department that originated Unix. 
Many contributions to Unix including pipes 
abstraction. Designer, PL/I programming language. 
USENIX lifetime achievement award, programming 
tools award. Fellow, AAAS. Member, NAE. 

Paul Menchini. CISO, North Carolina School of 
Science and Mathematics. Previously, HP, Intel, GE. 
Edited IEEE VHDL Standard. Developed first 
commercially successful VHDL compiler. IEEE Senior 
Life member. 

James H. Morris. Professor Emeritus, Carnegie-
Mellon. Previously Dean, Department Head; 
Professor, UC Berkeley; Principal Scientist and 
Research Fellow, Xerox PARC. Co-inventor, Knuth-
Morris-Pratt algorithm. Fellow, ACM. 
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 Peter Norvig.* Director, Google Research. 

Previously directed Google’s search algorithms group. 
Co-author, Artificial Intelligence: A Modern Approach. 
Fellow, AAAI, ACM, AAoAS. 

Martin Odersky.¶ Professor, EPFL (Lausanne, 
Switzerland). Creator, Scala programming language. 
Designed original Java generics. Wrote Java compiler. 

 John Ousterhout.¶ Professor, Stanford. 
Formerly, Professor, UC Berkeley. Creator, Tcl 
scripting language. Fellow, ACM. Member, NAE. ACM 
Software System Award, ACM Grace Murray Hopper 
Award. 

Tim Paterson. Wrote OS that was sold to 
Microsoft and became MS-DOS. At Microsoft, worked 
on QuickBASIC, Visual Basic, VBScript, Visual J++ 
(Java). 

David Patterson.*¶ Professor Emeritus, 
Berkeley. Previously Director, Parallel Computing 
Lab; Chair, CS Division; Chair, Computing Research 
Association; President, ACM. Projects included 
Reduced Instruction Set Computers (RISC), 
Redundant Arrays of Inexpensive Disks (RAID), 
Network of Workstations. All led to multibillion-dollar 
industries. Forty honors including ACM Turing 
Award, IEEE John von Neumann Medal. Member, 
NAE, NAS, AAoAS. Fellow, AAAS, CHM, ACM, IEEE. 
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 Alex Payne. Advisor to early-stage technology 

startups. Previously, Platform Lead at Twitter. Co-
author, Programming Scala. Organizer, Emerging 
Languages Conference. Lectured on API design at 
Stanford. 

Tim Peierls. President, Seat Yourself. 
Previously, VP, Descartes Systems Group; MTS, Bell 
Labs. Member, four expert groups developing Java 
API specifications. Co-author, Java Concurrency in 
Practice. 

Ronald L. Rivest. Institute Professor, MIT. Co-
inventor, RSA public-key cryptosystem. Co-author, 
Introduction to Algorithms. ACM Turing Award. 
Fellow, ACM, IEEE. Member, AAAS, NAE, NAS. 

Aviel D. Rubin.¶ Professor, Technical Director 
of Information Security Institute, Johns Hopkins. 
Director, JHU Health and Medical Security Lab. EFF 
Pioneer Award, Fulbright Scholar. 

Curtis Schroeder. Computer Scientist, Draper. 
Served as editor for widely reimplemented SISO CIGI 
API. Previously, Antycip Simulation, Lockheed 
Martin. 

Robert Sedgewick. Founding Chair and 
Professor, Princeton CS Department. Co-inventor, 
Red-Black tree data structure. Author, 20 books 
including million-selling Algorithms. Steele Prize, 
ACM Karlstrom Award. Fellow, ACM. 

Mary Shaw. Professor, Carnegie-Mellon. 
Specialist in software engineering. National Medal of 
Technology and Innovation, ACM SIGSOFT 
Outstanding Research Award, IEEE Distinguished 
Women in Software Engineering Award. Fellow, ACM, 
IEEE, AAAS. 
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 Barbara Simons. IBM Research (retired). 

Former President, ACM. Computing Research 
Association Distinguished Service Award, EFF 
Pioneer Award, UC Berkeley College of Engineering 
Distinguished Alumni Award. Fellow, ACM, AAAS. 

Daniel Sleator. Professor, Carnegie-Mellon. 
Specialist in algorithms, data structures. Previously 
Bell Labs. Joint winner (with Bob Tarjan) Paris 
Kanellakis Theory and Practice Award. 

Alfred Z. Spector. CTO, Two Sigma. Previously, 
VP of Research, Google; CTO, IBM Software; VP, IBM 
Services and Software; Professor, Carnegie-Mellon. 
Fellow, IEEE, ACM. Member, NAE, AAoAS. IEEE 
Kanai Award for Distributed Computing, ACM 
Software Systems Award. 

Michael Stonebraker. Database pioneer. Main 
architect, INGRES relational DBMS, POSTGRES 
object-relational DBMS. CTO, Paradigm4, Tamr; 
Professor, MIT. Previously, Professor, UC Berkeley. 
ACM Turing Award, IEEE John von Neumann Medal, 
ACM System Software Award, SIGMOD Innovations 
Award. Member, NAE. 

Bjarne Stroustrup. Inventor, C++ programming 
language. Author, The C++ Programming Language. 
On ISO Standards committee since 1989. NAE 
Charles S. Draper Prize. Fellow, ACM, IEEE, CHM, 
Cambridge’s Churchill College. Member, NAE. 

Gerald Jay Sussman. Professor, MIT. Co-
author, innovative introductory CS text with 
worldwide impact. ACM Karlstrom Award. Fellow, 
ACM, IEEE, AAoAS, AAAS. Member, NAE. 
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 Ivan E. Sutherland. Professor, founder of 

Asynchronous Research Center, Portland State. 
Previously, Technical Fellow, Sun Microsystems. 1963 
MIT Ph.D. thesis, Sketchpad, is widely known; he has 
been called “the father of computer graphics.” ACM 
Turing Award, IEEE John von Neumann Medal, 
Kyoto Prize. Fellow, ACM, CHM. Member, NAE, NAS. 

Andrew Tanenbaum. Professor emeritus, Vrije 
Universiteit. Principal designer, Linux-precursor 
MINIX. Author, 24 books. Member, Royal Netherlands 
Academy of Arts and Sciences. Fellow ACM, IEEE. 
USENIX Lifetime Achievement Award, Eurosys 
Lifetime Achievement Award. 

Brad Templeton. Founder, ClariNet (perhaps 
the earliest dot-com company). First employee, 
Personal Software/Visicorp (first major 
microcomputer applications company). Author, 
numerous microcomputer software titles. Chairman 
Emeritus, EFF. 

Ken Thompson.* Spent much of his career at 
Bell Labs where he created Unix operating system, 
invented B programming language (precursor to C), 
defined UTF-8 encoding, co-developed first master-
level chess-playing machine. Google Advisor, 
Previously Distinguished Engineer. Co-invented Go 
programming language. ACM Turing Award, IEEE 
Richard W. Hamming Medal, National Medal of 
Technology. Fellow, CHM. Member, NAS, NAE. 

Linus Torvalds. Principal developer, Linux 
kernel, which runs on billions of devices from 
cellphones to supercomputers. Millennium Technology 
Prize, Lovelace Medal, IEEE Computer Pioneer 
Award, EFF Pioneer Award, Takeda Award. Fellow, 
CHM, Linux Foundation. 
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 Jeffrey Ullman. Professor Emeritus, Stanford. 

Previously Bell Labs. Author, 16 books, many 
considered classics. Member NAE. Fellow, AAoAS. 
IEEE John von Neumann Medal. 

Leslie Valiant. Professor, Harvard. Founding 
contributor to theory of machine learning. Devised 
bulk synchronous model of parallel computation. 
Developed fundamental theories of computational 
complexity. ACM Turing Award, International 
Mathematical Union Nevanlinna Prize. Fellow of the 
Royal Society. Member, NAS. 

Andries van Dam.¶ Professor, Brown 
University. Cofounder ACM SICGRAPH. Co-author 
Computer Graphics: Principles and Practice. Fellow 
IEEE, ACM. Member NAE, AAoAS. Numerous 
awards including IEEE Centennial Medal. 

Guido van Rossum. Created Python 
programming language. Was Principal Engineer, 
Dropbox; Senior Staff, Google. ACM Distinguished 
Engineer. Fellow, CHM, CWI Dijkstra. 

John Villasenor.‡ UCLA Professor of electrical 
engineering, law, and public policy. Brookings 
Institution Senior Fellow. Hoover Institution Visiting 
Fellow. Member, Council on Foreign Relations. 
Former Vice Chair, World Economic Forum’s Global 
Agenda Council on the Intellectual Property System. 

Jan Vitek.¶ Professor, Northeastern. Specialist 
in programming languages. Chief Scientist, Fiji 
Systems. Past Chair, ACM SIGPLAN. 
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 Philip Wadler. Professor, Edinburgh; Senior 

Research Fellow, IOHK. Contributor, Haskell, Java, 
XQuery. Co-author, Java Generics and Collections. 
POPL Most Influential Paper Award. Fellow, ACM, 
Royal Society of Edinburgh. 

James Waldo. Professor, CTO, Harvard. Was 
Distinguished Engineer, Sun Microsystems; developed 
Java APIs for distributed systems. Author, Java: The 
Good Parts. 

Dan Wallach.¶ Professor, Rice University. Rice 
Scholar, Baker Institute for Public Policy. Former 
member, Air Force Science Advisory Board, USENIX 
Board of Directors. 

Steve Wozniak. Co-founder, Apple. Inventor, 
Apple I and Apple II computers. ACM Grace Murray 
Hopper Award, National Medal of Technology. Twelve 
honorary doctorates. Fellow, CHM. Inductee, National 
Inventors Hall of Fame. 

Frank Yellin. Original member, Sun 
Microsystems’ Java Project. Co-author, The Java 
Virtual Machine Specification, Java API specification. 
Formerly Google, Lucid. 


